

Push Technology Personalizatiom

Through Event Correlation

Asaf Adi, David Botzer, Opher Etzion, Tali Yatzkar-Haham
IBM Research Laboratory in Haifa

{(Adi / Botzer / Opher / Tali)@il.ibm.com}

Abstract

“Push Technology” stands for the ability to transfer
information as a reaction to event occurrence. This
demonstration proposal describes Amit, a middleware
framework that resolves a major problem in this area: the
gap that exists between events that are reported by various
channels, and the actual cases in which the user needs to
react to, hereby called; reactive situations. These
situations are composition of events or other situations
(for example, “when atleast four events of the same type
occurred”) or content filtering on events (for example,
“only events that relate to IBM stocks”) or both (“when
atleast four purchases of more than 50,000 shares have
been performed on IBM stocks in a single week”). This
paper describes the generic application development tool,
the middleware architecture and framework, and
describes the demo.

1. The problem

Reactive applications are those that include
components that respond to the detection of events by
triggering alerts or other actions (active databases is an
example of it). The importance of reactive applications
has increased in the recent years with the emergent of e-
commerce applications (stock market, business
opportunities, sale alerts), as well as system management
applications, command and control applications, and
customer relationship management applications. Many
tools in different areas have been built to detect events,
and to couple their detection with appropriate actions.
These tools exist in products that implement active
databases, event management systems, the
“publish/subscribe” protocol, real-time systems and
similar products.

Most current tools enable the application to respond
to a single event. A major problem in many reactive
applications is the gap between the events that are
supplied by the event source, and the situations to which
the clients are required to react, which can be (possibly
complex) predicates on the event history. In order to
bridge this gap in contemporary systems, the client must

monitor all the relevant events, and apply an ad hoc
decision process in order to decide if the conditions for
reactions have been met.

Some examples of situations that need to be handled are:
� The client wishes to activate an automatic “buy or

sell” program if, for any stock that belongs to a
predefined list of stocks that are traded in two stock
markets, there is a difference of more than 5 percent
between the values of the same stock in distinct
stock-markets, where the time difference of the
reported values is less than 5 minutes (“arbitrage”).

� The customer relationship manager wishes to receive
an alert if a request was reassigned by different
agents at least three times.

� A groupware user wishes to start a session when
there are 10 members of the group logged in to the
groupware server.

In most current implementations, the clients need to
store and process all the events. For example, in the
arbitrage case, the client has to subscribe to quotes in
different stock markets, accumulate the events, correlate
them and decide when to operate the “buy or sell”
program (in the second case). This may be impossible in
some cases, such as “thin” clients without significant
storage and processing capabilities. Even if it is possible,
the solution that requires a client to process single events
may result in a substantial overhead (ad-hoc programming
efforts, communication traffic is significantly increased,
redundant storage). The problem is intensified due to the
many-to-many relationships that exist between the event
sources, and the target clients. For example: many stock
traders may subscribe to the information services of
multiple stock markets.

The goal of the active middleware framework is to
personalize push technology through event correlation
and enable each client to detect customized situations
without the need to be aware of the occurrence of the
basic events, or their source.

643

Figure 1: The active middleware architectureFigure 1: The active middleware architecture

situation manager

event
handler

authoring
tool

subscription
and action manager

system
designers

event
sources

clients

FF
OO

C
O

C
O

50

40
30
20
10
 0
10
20
30
40
50

120
100

80

0
20

20
40

60

60
40

O R D E

M

E P

RO G R ES S O

2. The Architecture

Figure 1 illustrates the implementation’s architecture.
The architecture consists of the following components:

2.1. Event sources:

The “push” style of event reporting is typical for many
information notification applications.
An example is a stock market reporting application.

2.2. Event handler:

This component consists of two sub-components:

Event adapters: programs that convert the reported
events to a standard format;

Event base: a data store (implemented on top of a DBMS
or a file system) that stores the event instances that are
reported by the event sources.

2.3. The authoring tool:

The authoring tool is the system designer’s vehicle to
define metadata for situations and actions’ definitions. All
the definitions are phrased as XML propositions, while
the meta-meta-data is defined as DTD. The metadata
resides in a data store.

2.4. The situation manager:

This is the middleware engine. Its goal is to detect the
desired situations.

The situation manager receives two types of input:

� The metadata, which is a collection of parsed XML
propositions that guide the situation manager.

� The event instances that are being submitted from the
sources using the event adapters.

The situation manager employs composition
operators and content filtering on the basic events, and
detect situations. Each detected situation is detected as an
event, a feature that enables the definition of nested
situations. The architecture may vary from a totally
centralized solution of having a single situation manager,
to a totally distributed solution, in which each subscriber
has its own situation manager. In other cases there are
multiple instances of the situation manager, that are either
subject base, or peers that are aimed at improving the
scalability. Each enterprise can choose its own
architecture.

2.5. The Subscription and Action controller

This component uses the metadata definitions to
decide what to do when the situation is detected. This
information has two components:
� Who are the subscribers to this situation?
� What action should be taken for each subscriber (e.g.,

real-time alert notification, Email message, putting a
message on a message queue, triggering a software
module)?

2.6. Subscribers:

The clients that subscribe to the information or action.
The action can be performed at the client’s site, or at the
middleware’s site.

644

3. The Actual Demo

The Demo will show the following items:
� Definition of metadata (events and situations) using

XML editing GUI (new applications can be written
on-the-fly).

� Run-time reaction to simulated events file.
� Run-time trace of situation detection.
� Post-mortem graphical representation of the situation

detection
The Demo will show a variety of applications. Examples
are:
� E-brokerage application of personalized subscription

to situations related to the stock market.
� System management application of personalized

subscription to problems and other events.
� Reactive coordination application such as the 2 Phase

Commit protocol.

References

[1] S. Chakravarthy & D. Mishra - Snoop: an expressive
event specification language for active databases. Data &
Knowledge Engineering, 13(3), Oct 1994.

[2] C. Collet, T. Coupaye, T. Svenson - NAOS - Efficient
and modular reactive capabilities in an object-oriented
database system. In Proceedings. VLDB’94.

[3] S. Gatziu, K. Dittrich - Detecting composite events in
active database systems using Petri

 Nets. Proceedings IEEE RIDE’94.

[4] N.H. Gehani, H.V. Jagadish, O. Shmueli - Composite
event model specification in active databases: model and
implementation. Proceedings VLDB’92.

[5] G. Kappel, S. Rausch-Schott, W. Retschitzegger - A
Tour on the TriGS active database system - architecture
and implementation. Proceedings ACM SAC’98.

[6] Nebula white paper:
http://www.linmor.com/library/white_pa/nms_wp.html

[7] Nervecenter white paper:
http://www.seagatesoftware.com/nervecenter/

[8] K. R. Sheers - HP OpenView Event Correlation
Services. HP Journal. Oct 1996.

[9] S. Yemini et al.- High Speed and Robust Event
Correlation. IEEE Communications Magazine, May 1996.

[10] D. Zimmer, R. Unland, A. Meckenstock - A General
model for event specification in active database
management systems. In Proceeding 5th DOOD, 1997.

645

