
2/$3����3RZHUIXO�DQG�(DV\�WR�8VH�)HGHUDWLRQV�RI�2/$3�DQG�
2EMHFW�'DWDEDVHV��

Junmin Gu

Lawrence Berkeley National
Laboratory, Berkeley,

CA 94720, USA.
jgu@lbl.gov

Torben Bach Pedersen

Department of Computer
Science, Aalborg University,
9220 Aalborg Ø, Denmark.

tbp@cs.auc.dk

Arie Shoshani

Lawrence Berkeley National
Laboratory, Berkeley,

CA 94720, USA.
shoshani@lbl.gov

$EVWUDFW

We describe the OLAP++ system for
federating OLAP and object databases. The
system allows users to easily pose OLAP
queries that reference external object
databases. This enables very flexible and fast
integration of object data in OLAP systems
without the need for prior physical integration.

���,QWURGXFWLRQ

On-Line Analytical Processing (OLAP) systems
provide good performance and ease-of-use when
retrieving summary information from very large
amounts of data. However, the complex structures and
relationships inherent in related non-summary data are
not handled well by OLAP systems. In contrast, object
database systems are built to handle such complexity,
but do not support summary querying well.
This paper presents OLAP++, a flexible, federated
system that enables OLAP users to exploit
simultaneously the features of OLAP and object
database systems. In a previous paper [1], we have
defined a comprehensive framework for handling
federations of OLAP and object databases, including
the SumQL++ language that allows OLAP systems to
naturally support queries that refer to and retrieve data
from object databases. The OLAP++ system allows
data to be handled using the most appropriate data
model and technology: OLAP systems for summary
data and object database systems for the more complex,
general data. Also, the need for physical integration of
data is reduced considerably. We present a case study
based on the Transaction Processing Council (TPC)
TPC-R benchmark [3]. The system is implemented in
C++ on top of the Object Protocol Model (OPM)
system [4] and the Microsoft SQL Server OLAP
Services system [2].

���)HGHUDWLRQV�RI�2/$3�
DQG�2EMHFW�'DWDEDVHV�

OLAP systems use a PXOWLGLPHQVLRQDO view of data that
typically categorizes data as being measurable IDFWV
(measures) or GLPHQVLRQV, which are mostly textual and
characterize the facts. Dimensions are structured using
FDWHJRULHV (levels) that correspond to the required levels
of detail. Object systems use the familiar concepts of
FODVVHV, DWWULEXWHV, and UHODWLRQVKLSV between classes. A
IHGHUDWLRQ between an OLAP and an object database is
defined by specifying a OLQN between a category in the
OLAP database and a class in the object database.

6XSSOLHU
'LPHQVLRQ

0DQXIDFWXUHU
'LPHQVLRQ

5HJLRQ
name

1DWLRQ
name

6XSSOLHU
key

3DUW
key

���0DQXIDFWXUHU
name

2UGHU6XPPDU\

TotalOrders
TotalAmount

)DFW�7DEOH

OLAP schema links

5HJLRQ

Key
name
comments

1DWLRQ

Key
name
population
area
language
comments

1

0…*

6XSSOLHU

Key
name
address
phone
acctbal
comments

3DUW

Key
name
mfgr
brand
parttypr
partsize
container
retailprice
comments

0…*
0…*

0…*
1

1
1…*

1

1

0…*0…*

Object schema

supplier
link

part
link

nation
link

1 0…*

1
0…*

Figure 1: Schema of the Federation

Figure 1 shows an example schema of a federation in
UML notation. The schema is based on the TPC-R
benchmark [3], but has been divided into an OLAP part
and an object part. The measured facts in the OLAP
schema are the WRWDO�QXPEHU�RI�RUGHUV and the WRWDO�FRVW�
DPRXQW for the orders. The facts are characterized by a
6XSSOLHU�GLPHQVLRQ and a 0DQXIDFWXUHU�GLPHQVLRQ. The
Supplier dimension has &XVWRPHU��1DWLRQ��and 5HJLRQ

599

categories that allow the facts to be summarized to the
required level of detail. The Manufacturer dimension
has the categories 3DUW and�0DQXIDFWXUHU. The object
part of the schema has 5HJLRQ�� 1DWLRQ�� 6XSSOLHU� and�
3DUW classes and relationships between them. Link
QDWLRQOLQN� connects the Nation category in the OLAP
part to the Nation class in the object part as indicated by
the dotted lines. Links VXSSOLHUOLQN and SDUWOLQN connect
the Supplier category and class, and the Part category
and class, respectively. Below is an example
SumQL++ query for the schema.

6(/(&7 TotalAmount ,172 testdb
%<B&$7(*25< Manufacturer, Nation
)520 OrderSummary
:+(5(��Region = “ASIA”) $1'
Nation.nationlink.[Nation].population > 100,000,000

The above query gets the total cost amount for the two-
dimensional cross product of nation and manufacturer
where the nations have populations beyond 100 million
and are in the Asian region. This query uses the link
“nationlink” to go from the OLAP schema to the object
schema. The class name in the square brackets is
optional and is only specified here to indicate the class
reached by going through the link.

���6\VWHP�$UFKLWHFWXUH

The overall architecture of the federated system is seen
in Figure 2. The object part of the system is based on
the OPM tools [4] that implement the Object Data
Management Group’s (ODMG) object data model [5]
and the Object Query Language (OQL) [5] on top of a
relational DBMS, in this case the ORACLE RDBMS.
The OLAP part of the system is based on Microsoft’s
SQL Server OLAP Services using the Multi-
Dimensional eXpressions (MDX) [2] query language.
The GUI is implemented as Java classes running in a
standard Web browser for optimal flexibility.
When a SumQL++ query is received by the Federation
Coordinator (FC), it is first parsed to identify the
measures, categories, links, classes and attributes
referenced in the query. Based on this, the FC then
queries the metadata to get information about which
databases the object data and the OLAP data reside in
and which categories are linked to which classes.
Based on the object parts of the query, the FC then
sends OQL queries to the object databases to retrieve
the data for which the particular conditions hold true.
This data is then put into a “pure” SumQL statement,
i.e., without object references, as a list of category
values. This SumQL statement is then sent to the OLAP
database layer to retrieve the desired measures, grouped
by the requested categories. The SumQL statement is
translated into MDX by a separate layer, the “SumQL-

to-MDX translator”, and the data returned from OLAP
Services is returned to the FC.
The reason for using the intermediate SumQL
statements is to isolate the implementation of the OLAP
data from the FC. As an another alternative, we have
also implemented a translator into SQL statements
against a relational “star schema” design.
The system offers good query performance even for
large databases while making it possible to integrate
existing OLAP data with external data in object
databases in a flexible way that can adapt quickly to
changing query needs.

Federation
Coordinator

SumQL-to-MDX
translator

Object-to-relational
(OPM) translator

Microsoft
SQL server

OLAP service

ORACLE
RDBMS

SumQL++

SumQL
Link

MetadataOQL

SQL MDX

Graphical
User Interface

Figure 2: Architecture of the Federated System

���7KH�'HPRQVWUDWLRQ�

The demonstration will show the specification of, and
query processing for, specific queries on a large TPC-
R-based database. First, the use of the system will be
demonstrated. Second, we will describe the details of
query processing in the system. In the demonstration,
we will also show how new federations can be specified
“on-the-fly” and used immediately. Supporting material
in the form of slides and posters will be used in the
demonstration.

����8VHU�,QWHUIDFH�

The web screen interface shown in Figure 3 below
shows how the user perceives the specification of a
SumQL++ query. Figure 3 shows the selection of the
summary measure "TotalAmount". This is followed by
the section with the category attributes "Manufacturer"
and "Nation". Note that each category can be selected
from a "category hierarchy". In the figure, "Nation"
was selected from the "Region-Nation-Supplier"
category hierarchy. The order of the category grouping

600

Figure 3: Selection of Measures and Categories

can be specified in this screen as well by switching the
dimension positions.

Figure 4 shows the specification of query conditions.
Initially, each dimension is shown with its categories
and links to the object database. If a category is
selected, a category condition can be entered. In the
figure, Region= "ASIA" was selected. If a link is
clicked on, then the attributes of the object linked to are
shown. The user can select an attribute to specify a
condition. In the figure, the condition "population >
100 Million" was selected through the "nationlink". The
result of the above selections is a concise SumQL++
query (the same query as the example in Section 1), as
shown next.
�
6(/(&7 TotalAmount ,172 testdb
%<B&$7(*25< Manufacture, Nation
)520 OrderSummary :+(5((Region = “ASIA”)
$1' (Nation.nationlink.population > 100000000)

The result of this query is then displayed on the user's
screen, as shown in Figure 5.

����4XHU\�3URFHVVLQJ�

We now proceed to describe the steps in the query
processing in more detail.

Figure 4: Specification of Query Conditions

After the query is generated, the system parses the
query to determine the OLAP and object parts. For the
example above the result of the parsing is:

6(/(&7 TotalAmount ,172 testdb
%<B&$7(*25< Manufacturer, Nation
)520 OrderSummary
[AND]
 predicate: CATEGORY = Region
 no object path
 -------> = "ASIA"
 predicate: CATEGORY = Nation
 LINK = nationlink
 PATH = .
 ATTR = population
 -------> > 100000000

Each link predicate is then evaluated by the object
system. For example, the following OQL query is
passed to the object DB system to find the nations with
a population of more than 100 million:

6(/(&7 name = @n001
)520 @n000 ,1 tpcr:NATION,
 @n001 ,1 @n000.name
:+(5(@n000.population > 100000000;

After the results are returned, they are used in the
OLAP part of the system to generate the following
SumQL query that retrieves the desired data.

601

6(/(&7 TotalAmount ,172 testdb
%<B&$7(*25< Manufacturer, Nation
)520 OrderSummary :+(5(
(Region = ’ASIA’ $1' Nation ,1 (’BRAZIL’, ’INDIA’,
’INDONESIA’, ’JAPAN’, ’CHINA’, ’RUSSIA’,
’UNITED STATES’))

Figure 5: Query Result

This, in turn, gets translated into MDX as follows.
6(/(&7 {[Measures].[L ExtendedPrice] } 21�
&2/8016��,17(56(&7
(&5266-2,1([Part_Manufacture].[P
Mfgr].0(0%(56, '(6&(1'$176([R Region
Name].[ASIA],[N Nation Name],6(/))),
&5266-2,1([Part_Manufacture].[P
Mfgr].0(0%(56, {[N Nation Name].[BRAZIL],[N
Nation Name].[INDIA],[N Nation
Name].[INDONESIA],[N Nation Name].[JAPAN],[N
Nation Name].[CHINA],[N Nation
Name].[RUSSIA],[N Nation Name].[UNITED
STATES]})) 21�52:6�)520 OrderSummary

The result is then stored in the Oracle database “testdb,”
to make it available for further processing, and
converted to HTML for presentation to the user.

This section was intended to illustrate the amount of
work that a user will have to go through without the aid
of the user interface and the federated translation tools.
In particular, we wish to emphasize the usefulness of
the OLAP-object database links to generate the
combined result. Also, the users are spared the
verbosity of MDX (which is hidden from them). It is
optional to display the concise SumQL++ expression to
the user, as a way to verify the correctness of the query.
Due to space constraints, we do not describe the
specification of new links in this paper. However, this
will be shown at the demonstration.
�
�
5HIHUHQFHV�

1. T. B. Pedersen, A. Shoshani, J. Gu, and C. S.

Jensen. Extending OLAP Querying to External
Object Databases. Submitted for publication�

2. Microsoft Corporation, OLE DB for OLAP
Version 1.0 Specification. 0LFURVRIW� 7HFKQLFDO�
'RFXPHQW, 1998.

3. Transaction Processing Council. The TPC-R
Benchmark. 85/�� �ZZZ�WSF�RUJ!� Current as of
June 1, 2000.

4. I-Min A. Chen, Victor M. Markowitz: An
Overview of the Object-Protocol Model (OPM)
and OPM Data Management Tools. ,QIRUPDWLRQ�
6\VWHPV 20(5): 393-418 (1995).

5. R. G. G. Cattell et al. (editors). 7KH� 2EMHFW�
'DWDEDVH� 6WDQGDUG�� 2'0*� ���. Morgan
Kaufmann, 1997.

602

