
Approximate Query Translation
Across Heterogeneous Information Sources�

Chen-Chuan K. Chang
Electrical Engineering Department

Hector Garcia-Molina
Computer Science Department

Stanford University
fkevin,hectorg@db.stanford.edu

Abstract

In this paper we present a mechanism for
approximately translating Boolean query con-
straints across heterogeneous information sources.
Achieving the best translation is challenging be-
cause sources support different constraints for for-
mulating queries, and often these constraints can-
not be precisely translated. For instance, a query
[score > 8] might be “perfectly” translated as
[rating > 0.8] at some site, but can only be ap-
proximated as[grade = A] at another. Unlike
other work, our general framework adopts a cus-
tomizable “closeness” metric for the translation
that combines both precision and recall. Our re-
sults show that for query translation we need to
handle interdependencies among both query con-
juncts as well as disjuncts. As the basis, we iden-
tify the essential requirements of a rule system for
users to encode the mappings for atomic seman-
tic units. Our algorithm then translates complex
queries by rewriting them in terms of the seman-
tic units. We show that, under practical assump-
tions, our algorithm generates the best approximate
translations with respect to the closeness metric of
choice. We also present a case study to show how
our technique may be applied in practice.

1 Introduction
To enable interoperability, mediator systems [1, 2] must
integrate heterogeneous information sources with different
data representations and search capabilities. A mediator
presents a unified context for uniform information access,
and consequently must translateoriginal user queries from
the unified context to atarget source for native execution.
This translation problem has become more critical now that

� This material is based upon work supported by the National Science
Foundation under Grant NSF IIS 9811992.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

the wide range of disparate sources are just “one click away”
across the Internet. Achieving the best translation is chal-
lenging because sources use different constraints for for-
mulating queries, and often these constraints cannot be pre-
cisely translated. This paper presents a framework that finds
perfect mappings if possible, or in general the “closest” ap-
proximations, taking into account differences in attribute
names, operators, and data formats.

Example 1: Consider a mediator that integrates online
shopping sites for books, audio, and videos. (This
example is based on our case study in Section 6.)
In particular, the mediator presents a unified view
Media(name, format, � � �). Suppose a user wants to find
the “VHS” items by some actor “Harrison.” Let us
consider translating the corresponding constraintsv =
[format = vhs] andn = [name contains Harrison].

The mediator will find perfect mappings whenever pos-
sible (e.g., it will translaten to [au contains Harrison] for
sourcefatbrain.com, andv as is foramazon.com). How-
ever, in many cases such perfect mappings simply do not
exist. For instance, for sourceEB at www.evenbetter.-
com, neitherv norn can be translated precisely.

Consequently, some schemes focus on “minimal-
superset” mappings [3], which will return all the potential
answers but with as few unwanted answers as possible. In
particular, the mediator will mapv to [type = movies] (i.e.,
searching the “movies” category) forEB, returning VHS as
well as DVD items. Unfortunately, forn the only super-
set mapping atEB is True (i.e., returning the entire source
database), which is often unacceptable.

However, in many cases, good approximations do exist,
and they may be more favorable. For instance,EB can ap-
proximaten as[star = "Harrison"] to matchHarrison as
a last name. (Note thatEB requires at least a last name for
star.) It will miss those answers withHarrison as the first
name,e.g., Ford, Harrison. However, since most users
will actually mean last names (e.g.,Harrison, George) in
such a name query, this mapping may be better thanTrue.

In fact, evenv may need a different approximation, say if
[type = movies] returns a huge number of DVDs and very
few VHS items. Alternatively, mapping[desc contains vhs]
simply looks forvhs in the textual descriptions. This map-
ping may return a lot less data than[type = movies], but
may perhaps miss a few VHS items (that do not mention
vhs in desc). If the “false negatives” are acceptable, then
the alternative mapping may be more attractive.

566

We can view a query as a Boolean expression of con-
straints of theselectionform [attr1 op value] or the join
form [attr1 op attr2]. (While not discussed here, we stress
that our approach can generally handle join constraints as
well; see [4].) These constraints constitute the query “vo-
cabulary,” and must be transformed to “native” constraints
understood by the target source. For example, constraint
[score > 8] may have to be mapped to[grade = A]. In this
process, attributes have to be mapped (e.g., score to grade),
values have to be converted (e.g., score 8 to gradeA), and
operators have to be transformed (e.g., “>” to “=”). Refer-
ence [3] provides more details on how we generally model
this constraint-mapping problem in the common mediation
architecture [1, 2].

After we first studied query translation in an earlier
work [3], and implemented that machinery, we soon real-
ized thatapproximate translationis critical for “real-world”
applications. Our earlier work focused on minimal-superset
mappings as the “correct” translations, because theexactre-
sults can be recovered by post-processing their supersets.
As just illustrated, in many cases only approximations ex-
ist, and they might be even more practical than the strictly
correct ones. (Analogously, a concurrent system with strict
serializability may result in undesirable low concurrency.)
In fact, in our case study of a “real-world” scenario (Sec-
tion 6), we informally estimated that70% of the translations
must rely on approximation.

Furthermore, different mediation applications need dif-
ferent “correctness” orclosenesscriteria for mappings. It is
thus essential for a translation system to flexibly support a
wide range of closeness metrics. This paper presents such a
framework, where the best approximate translations can be
found under virtuallyany reasonable metric. In particular,
the framework supports minimal-superset, maximal-subset
(when extra-answers must not be returned), and other “hy-
brid” criteria in between. Our customizable criteria allows
one to quantify “false positives” and “false negatives” that
are expected to occur in a translation, in an analogous fash-
ion to how the conventional IR parameters of precision and
recall quantify “errors” in executing a single query.

Our results show that, under such flexible metrics, one
must cope withinterdependenciesamong both query con-
juncts and disjuncts (Section 4). It is thus critical to note
that query mapping is not simply a matter of translating
each constraint separately. Some interrelated constraints can
form a “semantic unit” that must be handled together. This
discovery is surprising since our previous study [3] showed
that query disjunctions can be translated separately, signif-
icantly simplifying the translation process. Now, in an ap-
proximate translation scenario, interrelation depends on the
particular closeness metric, as we next illustrate.

Example 2: Let us continue our movie search example.
Suppose that the user is looking for both VHS and DVD for-
mats with the queryQ = v _ d, whered = [format = dvd].
(Recall thatv = [format = vhs].) Let us denote the closest
mapping (for some closeness metric) of queryQ asS(Q).

Suppose that the mediator adopts the minimal-superset
metric, under which it will generateS(v) andS(d) both as

[type = movies] (Example 1). In this case, to translateQ,
the mediator can separately map the disjunctsv andd, i.e.,
S(Q) = S(v) _ S(d) = [type = movies], which indeed
precisely translatesQ, i.e.,Q � S(Q).

To contrast, assume that the mediator is concerned
about large result sizes, so as illustrated earlier, uses
the mappingsS(v) = [desc contains vhs] and S(d) =
[desc contains dvd]. (That is, given the mediator's close-
ness metric, these are the best approximate transla-
tions.) Now S(v) _ S(d) = [desc contains vhs] _
[desc contains dvd]. This mapping is not as good as[type
= movies], which in our example exactly gets all VHS and
DVD titles. Thus, for the closeness metric in use, translating
S(v) andS(d) separately leads to a suboptimal mapping,
and hence disjunctionQ is not “separable.”

Query translation must rely on human expertise to define
what constraints may be interrelated, and how to translate
basic semantic units. For instance, in Example 2 we need
a rule for translating the single-constraint pattern[format =
F] such asv andd. But do we need a rule for composite
queries,e.g., (v _ d)? What kind of queries must constitute
such “semantic units”? In this paper we will answer these
questions, identifying the essential requirements for a trans-
lation rule system.

Based on rules, our challenge is to translate arbitrary
queries as Boolean expressions of constraints (we currently
do not handle negation). Our approach is todivide-and-
conquer. We present AlgorithmNFB to “decompose” an
original query into its semantic units, which can then be
translated by the given rules. Note that there are many
decompositions, but not all of them will lead to the clos-
est mapping. In our running example, suppose that we are
given translation rules for the semantic units (n), (v), (d),
and(v _ d), and we wish to translate querynv _ nd. We
can decompose the query as(n)(v) _ (n)(d), or with some
rewriting, as(n)(v_d). On which expression should we ap-
ply the rules to obtain the best mapping? Is the best solution
unique? How is the optimality of translation guaranteed?
Again, we will answer these questions in this paper.

In summary, we make the following main contributions
for approximate query translation:

� We propose a generalframework, and we define the no-
tion of translation closeness. Our framework can adopt
different closeness metrics for different applications.

� We present analgorithm for systematically finding the
best translation with respect to a given closeness metric.
AlgorithmNFB will find a uniquebest-mapping in the
practical cases when semantic units do not “interlock.”

� We develop fundamental theorems on the separability
of query components, and safeness of decompositions.
These results are critical for the development of any al-
gorithm that attempts approximate query translation.

� We study how to estimate the precision and recall pa-
rameters of a translation, and we show that reasonable
formulas do exist for such estimation.

We briefly discuss related work in Section 2, and then
start in Section 3 by defining closeness criteria that combine

567

precision and recall. Section 4 studies a basic assumption
on compositional monotonicity and our results on composi-
tional separability. In Section 5 we present our framework
and AlgorithmNFB . Finally, Section 6 concludes with a
case study to show how our approach may be applied in
practice. Note that, due to space limitations, we leave the
details of some important results (that support but are not
directly used by our algorithms) and their formal proof to
an extended report [5].

2 Related Work
Information integration has been an active research area [1,
2, 6, 7]; however, we believe that our focus on thecon-
straint mappingproblem is unique. Many integration sys-
tems have dealt with source capabilities,e.g., Information
Manifold [8, 9], TSIMMIS [10, 11], Infomaster [12, 13],
Garlic [14, 15], DISCO [16], and others [17, 18, 19]. These
efforts have mainly focused on generating query plans that
observe thegrammarrestrictions of native queries (such as
allowing conjunctions of two constraints, or disallowing dis-
junctions).

Our work complements these efforts by addressing the
semantic mapping of constraints, or analogously the trans-
lation ofvocabulary(of native constraints). In particular, the
output of our semantic mapping (which uses the constraint
vocabulary understood by the target source) can be the in-
put to the capability mapping that others have analyzed. See
reference [3] for additional details of what distinguish our
focus on the constraint mapping problem from other inte-
gration efforts and how our approach can be applied in the
common mediation architecture [1, 2].

There has also been much work on data translation and
schema integration. The main focus of these related ef-
forts (e.g., [20, 21, 22, 23, 24, 25]) is to unify data represen-
tations across mismatched domains by transforming data to
a unified context, where queries can be performed. In con-
trast, our complementary goal is to map queries to the native
domain where data reside. We believe our approach is espe-
cially well suited for autonomous sources containing large
volumes of data, such as found on the Web (where it is not
economical or feasible to transform all data). In addition,
note that in our constraint mapping problem we must con-
sider both data conversion and query capability mapping (as
Section 1 discusses). Furthermore, we consider translation
errors and closeness, which as far as we know are not con-
sidered in traditional schema and data translation work.

Surprisingly, while approximation is critical for query
mapping (Section 1), we have seen virtually no translation
efforts that stress this notion. However, approximation has
been studied for query processing: First, some work aims
to reduce processing cost through approximation. For in-
stance, references [26, 27] study the approximate fixpoints
of Datalog predicates, and [28] uses approximate predicates
as filters for expensive ones. Second, several researchers
have explored accelerated but approximated query answer-
ing to reduce response time [29, 30, 31, 32]. Third, refer-
ence [33] develops a framework for representing approx-
imate complex-objects and supporting queries over them.
Finally, CoBase [34] explored query relaxation for approxi-

MQ Q ∧ M

false-positivefalse-negative

Figure 1: Venn diagram of a queryQ and its mappingM .

mate answering.
We define our translation metrics based on the param-

eters of precision and recall. Both classic notions have
been commonly used for quantifying respectively false-
positives and false-negatives, most notably for information
retrieval [35, 36]. In addition, some single-valued measures
for IR effectiveness have also been proposed, such as the
well-known E-measure [35] (see Section 3).

Finally, the approximate translation discussed in this pa-
per was motivated by our previous work [3]. As Section 1
mentioned, our earlier model of “exact” mappings signifi-
cantly simplifies the translation process, but unfortunately
cannot accommodate general closeness metrics. In contrast,
this paper specifically explores the notion ofapproxima-
tion, and deals with mappings under virtuallyany reason-
able closeness metric.

3 Query Approximation:
Accounting for Precision and Recall

Our goal for query mapping is to find the closest translation
for an original query, which may not be fully expressible at
the target. To quantify how closely a mappingM approx-
imates the original queryQ, we use acloseness criterion
F [M;Q] that returns a normalized “rating” in[0 : 1] as the
closenessbetweenM andQ. The higher the rating is, the
closerM approximatesQ. Our framework allows a wide va-
riety of closeness functions (we will discuss some intuitive
and important ones). We say that a mappingM is theclos-
est mappingfor Q with respect to the closeness criterionF ,
if for any other mappingM 0 of Q, F [M;Q] � F [M 0; Q]
(with ties broken arbitrarily). We denote the closest map-
ping ofQ byS(Q).

An approximation may erroneously introducefalse-
positivesor false-negatives, as compared to the original
query. Figure 1 illustrates these errors using a Venn dia-
gram for the result sets of a queryQ and its mappingM . To
quantify (and ultimately minimize) these errors, we define
the following metrics. Theprecisionmeasures the propor-
tion of the mapping results that are correct:

P [M;Q] =
jQ ^M j

jM j
: (1)

(We denote the size of the result set of queryX by jX j.)
This parameter captures the false-positive component in the
approximation error. As Figure 1 suggests, precision will
increase as we reduce the number of false-positives.

In contrast,recall measures the proportion of the correct
results that are retrieved by the mapping,i.e.,

R[M;Q] =
jQ ^M j

jQj
: (2)

As the dual of precision, recall captures the false-negatives,
i.e., higher recall corresponds to fewer false-negatives. Note
that both theP andR parameters are normalized in[0 : 1].

568

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonth

1 2 33
original:
Term

 1 2 6 5 4 3
target:
Bimonth

(a) Correspondence ofterm andbimonth.
Jan Feb Mar Apr May Jun

Q

M2

M1

M3

(b) Mappings forQ = [term = 1].
Figure 2: Mappingterm constraints tobimonth constraints.

Example 3 (Precision & Recall): Consider translating be-
tween two different calendar systems. As the time unit,
the original context uses theterm attribute, while the tar-
get usesbimonth. Figure 2(a) shows the correspondence.
In the original context a year consists of three terms (i.e.,
trimesters); e.g., constraint [term = 1] representsFeb
throughMay. In contrast, the target divides a year into six
bimonths;e.g., [bimonth = 1] matchesJan and Feb. We
illustrate some mappings for queryQ = [term = 1] (see
Figure 2(b)).

First, considerM1:[bimonth = 1:3] (bimonth 1 to 3).
Note thatQ covers (Feb, Mar, Apr, May), whileM1 covers
JanandJunin addition. Thus,M1 incurs no false-negatives,
but does have false-positives. By Eq. 2, asQ^M1 = Q, the
recall isperfect, i.e., R[M1; Q] = 1. Furthermore, accord-
ing to Eq. 1, we can estimateP [M1; Q] = 4=6 = :67 since
M1 ^Q covers four out of the six months ofM1 (assuming
that each month has equal likelihood).

In contrast,M2:[bimonth = 2] is a subset ofQ (M2 �
Q). As Figure 2(b) shows,P [M2; Q] = 2=2 = 1; as a dual
of the superset mapping, a subset mapping implies a perfect
precision (i.e., no false-positives). The high precision comes
at the cost of a lowered recall,i.e.,R[M2; Q] = 2=4 = :5.

Finally, a mapping may have neither perfect precision nor
perfect recall. ForM3:[bimonth = 1:2], we can similarly
computeP [M3; Q] = 3=4 = :75 andR[M3; Q] = 3=4 =
:75. Note thatM3 incurs both false-positives (Jan is extra)
as well as false-negatives (May is missed).

To quantify translation closeness, a reasonable metric
must account for the twocompetinggoals of precision and
recall. We thus define our closeness criterionF [M;Q] as a
function of the precision and recall betweenM andQ. For
instance, some applications may want to focus on precision
while requiring a recall threshold. We denote this important
class of closeness functions asRThresh. Given a threshold
�, we defineRThresh(�) as follows:

RThresh(�) : F(P ;R)[M;Q] = F(P [M;Q];R[M;Q]) =�
P [M;Q] if R[M;Q] � �
undefined otherwise (3)

Example 4: Consider the mappings in Example 3 forF=
RThresh(:7). The closeness forM1 is F [M1; Q] = F(P =
:67;R = 1) = .67. SimilarlyF [M3; Q] = F(:75; :75) =
.75. SinceM2 has an unqualified recall (:5 < :7), its close-
ness isundefined, i.e., M2 is an invalid mapping. For our

illustration, assume thatM1, M2 andM3 representall the
relevant mappings forQ. M3 is thus the best mapping,
i.e., S(Q) = M3, because it has the highest closenessw.r.t.
RThresh(:7).

We similarly definePThresh(�) as follows:
PThresh(�) : F(P ;R)[M;Q] = F(P [M;Q];R[M;Q]) =�

R[M;Q] if P [M;Q] � �
undefined otherwise (4)

ThePThresh andRThresh classes represent many intu-
itive and important closeness metrics. We stress two spe-
cial instances typically adopted for query mapping, namely
RThresh(1) andPThresh(1). First, some applications may
require perfect recall and henceRThresh(1), whereM sub-
sumesQ, i.e.,M � Q. The goal here is to find the most pre-
cise mapping (with the highestP) that subsumes the query
(with R = 1), usually referred to as theminimal subsum-
ing mapping[3] or the tight upper envelope[26, 27]. We
designateRThresh(1) asMinSup, sinceM will retrieve a
minimal supersetof whatQ does.

As the dual, other applications may instead require that
a mapping return only precise answers,i.e., M � Q. We
can implement this closeness criterion asPThresh(1) with
perfect precision. UnlikeMinSup, the goal now is to find the
maximal subsumed mappingor thetight lower envelope[26,
27]. We thus refer toPThresh(1) asMaxSub.

Example 5: Different closeness criteria will determine dif-
ferent mappings as the closest. Example 4 showed that
in our calendar applicationS(Q) = M3 w.r.t. F=
RThresh(:7). To contrast, considerF= MinSup: We ob-
tain F [M1; Q] = F(:67; 1) = .67, F [M2; Q] = F(1; :5)
= undefined, and F [M3; Q] = F(:75; :75) = undefined.
Thus insteadS(Q) = M1 underMinSup. Furthermore, if
we adoptMaxSub, bothF [M1; Q] andF [M3; Q] will be
undefined, and thusS(Q) =M2.

In addition to the above intuitive metrics, many other rea-
sonable criteria are possible. For instance, if we need a func-
tion that is defined for everyP andR, we can adopt the aver-
ages such as the arithmetic averageF(P ;R) = (P +R)=2
(corresponding to the error measure of [27]) or the harmonic
meanF(P ;R) = 2PR=(P+R). The latter actually corre-
sponds to theE-measure[35], a conventional single-valued
measure for information retrieval.

Finally, we stress that our general framework (Section 5)
does not assume particular metrics. However, we do require
that the closeness criterion bemonotonic: If P1 � P2 and
R1 � R2 thenF(P1; R1) � F(P2; R2). That is, if mapping
M2 (with parametersP2 andR2) is better thanM1 (with P1
andR1) in both parameters, thenM2 must be an overall
better mapping. Because precision and recall capture both
false-positive and false-negative errors, clearly anyreason-
ablecloseness metric (such as the sample functions just dis-
cussed) must satisfy monotonicity. (Monotonicity supports
our framework through the “separability” theorems, which
we discuss in [5] due to space constraint.)

569

4 Query Compositions
In this section we address two fundamental questions,
whose answers will help us build our approximate query
translation machinery. The first question (Section 4.1) is
about compositional monotonicity. For instance, if we wish
to translate queryQ = A^B asS(A)^S(B), can we com-
puteS(A), the best translation forA, independently from
that forB? Or will somehow the best translation forA de-
pend on the fact that it will be eventually intersected with
S(B)? Furthermore, the second question (Section 4.2) is
whether in general it is possible to find the best translation
for a query likeQ = A ^ B by separately translating its
componentsA andB.

4.1 Compositional Monotonicity

Consider a query compositionQ = Q1 � � � � � Qn, where
operator� is either^ or _. The following assumption re-
duces our search space when looking for a best translation.

Assumption 1 (Compositional Monotonicity): For a
query compositionQ = Q1 � � � � � Qn, let S(Qi) be
the closest mapping ofQi with respect to some closeness
criterionF . For every mappingMi of Qi:

F [M1 � � � � �Mn; Q] � F [S(Q1)� � � � � S(Qn); Q]:

This assumption tells us that, if we wish to search for
the best way to decompose a query, we can focus on using
the “local optimals” as the building blocks,i.e., the mapping
S(Q1)� � � � � S(Qn), with the best mappings for eachQi.
In other words, the search for the best translation for each
Qi will not be affected becauseQi appears with other terms
in Q. Note, however, that this assumption doesnot tell us
if decomposition is the right strategy,i.e., it does not tell us
if S(Q1) � � � � � S(Qn) is as good asS(Q). (We study
this “separability” issue in Section 4.2.) It only says that
S(Q1)�� � ��S(Qn) is the best of the mappings forQ that
use decomposition.

Under certain closeness metrics, such asMinSup and
MaxSub, we can formally verify Assumption 1 (see [5]).
We do not have a proof for the general case, but we believe it
holds in all cases where we need to use the assumption. That
is, whenQi's are “semantically independent,” their individ-
ual best-mappings should lead to an overall better mapping,
and Assumption 1 should be valid. Otherwise, whenQi 's
are indeed interrelated, the closest mappingS(Q) proba-
bly cannot be constructed by separating the components.
For such “inseparable” compositions (Section 4.2), our al-
gorithm will not use Assumption 1 and thus it is harmless.
Finally, we stress that, even for the rare exceptional cases,
S(Q1)� � � � � S(Qn) clearly remains at least agoodmap-
ping forQ.

4.2 Compositional Separability

When translating a query compositionQ = Q1� � � � �Qn,
can we handle the subqueries separately? We say thatQ is
separableif S(Q) = S(Q1)� � � � � S(Qn), in which case
we can obtain the overall mapping simply by translating the
components individually. It turns out that separability de-
pends on the particular closeness metric chosen. Our results
indicate that disjunctions arealwaysseparablefor and only

S(t1) S(t2) S(t1 _ t2) S(t1 ^ t2)

[bimonth = 1:3] [bimonth = 3:5] [bimonth = 1:5] False

(P ;R) = (:67; 1) (P ;R) = (:67; 1) (P ;R) = (:8; 1) (P ;R) = (1; 1)

(a)F(P ;R) = MinSup.
S(t1) S(t2) S(t1 _ t2) S(t1 ^ t2)

[bimonth = 2] [bimonth = 4] [bimonth = 2:4] False

(P ;R) = (1; :5) (P ;R) = (1; :5) (P ;R) = (1; :75) (P ;R) = (1; 1)

(b) F(P ;R) = MaxSub.
Figure 3: Closest mappings fort1 andt2 (Example 6).

for MinSup (i.e., RThresh(1), which requires a perfect re-
call threshold). As a dual result, conjunctions arealways
separablefor and only forMaxSub (i.e., PThresh(1), which
requires a perfect precision threshold). Due to space limita-
tions, please refer to reference [5] for our formal results.
Here we simply illustrate with an example.

Example 6 (Separability): Consider queryt1:[term = 1]
andt2:[term = 2] (for the calendar systems in Example 3).
We will compare if their disjunction(t1 _ t2) and conjunc-
tion (t1 ^ t2) are separable underMinSup andMaxSub.

(a)MinSup: Figure 3(a) shows the closest mappingsS(t1),
S(t2), S(t1 _ t2), andS(t1 ^ t2) underMinSup (e.g., Ex-
ample 5 shows how we determinedS(t1)). It turns out
that forMinSup disjunctions are separable, but not conjunc-
tions: We can verify thatS(t1 _ t2) = S(t1) _ S(t2) (i.e.,
[bimonth = 1:5] = [bimonth = 1:3]_ [bimonth = 3:5]). In
contrast,S(t1 ^ t2) 6= S(t1)^S(t2), becauseS(t1 ^ t2) =
False , whileS(t1) ^ S(t2) = [bimonth = 3].

(b) MaxSub: We obtain the opposite results: First, the con-
junction is separable, sinceS(t1 ^ t2) = S(t1) ^ S(t2) =
False (see Figure 3(b)). Second, the disjunction is not sepa-
rable:S(t1)_S(t2) = [bimonth = 2] _ [bimonth = 4], but
S(t1 _ t2) = [bimonth = 2:4].

In general, for any metric other thanMinSup orMaxSub,
neither conjunctions nor disjunctions are always separable.
Therefore, a general framework for more flexible approxi-
mation metrics must cope with the potential inseparability
for both types of compositions, as we will discuss next.

5 Framework and Algorithm
This section presents our framework and the associated al-
gorithm for approximate translation. Section 5.1 first de-
fines a translation rule system for codifying the mappings
of basic semantic units. Based on the given rules, our algo-
rithm will rewrite an original query using the semantic units
to construct the closest mapping. As we just discussed, the
rewriting must respect compositional separability to ensure
mapping optimality; Section 5.2 presents such an algorithm.

5.1 Semantic Translation Rules

Query translation must be based on human expertise to re-
solve semantic heterogeneity. This section identifies the es-
sential requirements of a rule system that codifies human
expertise. We will illustrate with a “reference rule system,”
which is based on our mechanism designed earlier specif-
ically for minimal-superset mapping [3]. We adapt this

570

R1) [format = F] 7! emit : [desc contains F] == (P;R) = (1:0; 0:8)

R2) [format = F1] _ [format = F2]; FormatPair(F1,F2) 7! T = TypeOfPair(F1,F2); emit : [type = T] == (P;R) = (1:0; 1:0)

R3) [term = T] 7! (B1,B2) = TermToBimonth(T) ; emit : [bimonth = B1:B2] == (P;R) = (:75; :75)

R4) [term = T1] _ [term = T2] 7! (B1,B2) = TermToBimonth(T1,T2) ; emit : [bimonth = B1:B2] == (P;R) = (0:8; 1:0)

R5) [fn = F] 7! emit : [review contains F] == (P;R) = (0:9; 0:7)

R6) [ln = L] 7! A = LnFnToName(L, "�"); emit : [name = A] == (P;R) = (1:0; 1:0)

R7) [ln = L] ^ [fn = F] 7! A = LnFnToName(L, F); emit : [name = A] == (P;R) = (1:0; 1:0)

R8) [price in P1:P2] 7! emit : [price � P1] ^ [price � P2] == (P;R) = (1:0; 1:0)

R9) [subject = S] 7! K = SubjKwds(S); emit : [review contains K] == (P;R) = (0:9; 0:7)

R10) [title = T] 7! W = WordsIn(T); emit : [title contains W] == (P;R) = (0:9; 1:0)

Figure 4: Example mapping specificationKmed with respect toF= RThresh(:7).

mechanism (to handle semantic units that can be complex
queries) for general approximate translation.

We stress that our contribution isnot the rule system
itself, but its integration with a general query mapping
scheme. The “reference” rule system is rather simple (e.g.,
it has no recursion and negation). However, note that our al-
gorithm can work with any rule mechanism that satisfies our
soundness and completeness requirements (see later). For
instance, if necessary, our framework can adopt more so-
phisticated rules that support recursive query patterns (e.g.,
a conjunction of arbitrary number of conjuncts). Neverthe-
less, we believe that our simple system is well suited to most
query translation tasks, as we will demonstrate through a
case study in Section 6.

Figure 4 shows amapping specificationKmed consisting
of rulesR1; : : : ; R10 for translating queries that search for
media items of books, audios, and videos (based on a real
scenario that Section 6 will study). Our discussion assumes
F= RThresh(:7). Each rule defines the closest mapping
(with respect toF) of the matching query patterns, as we
next illustrate. (Note that, as Section 6 will discuss, we typi-
cally only need a rule for a query “pattern” rather than every
“instance.”) Figure 4 also shows the estimated(P ;R) for
the particular mappings. We stress that our algorithm will
not require these numeric values to compute the best map-
pings. However, if we want to quantify the actual closeness
of an output mapping, we can estimate it based on theP and
R of the rules (using the technique in [5]).

Example 7 (Mapping Rules): We illustrate ruleR1 and
R2 for translating mediaformat. Suppose that the original
context expects formatshardcover and softcover (for
books),cassette anddisc (for audios), andvhs anddvd
(for videos). In contrast, the target accepts mediatype of
book, audio, andvideo.

First, consider aformat constraint such asv =
[format = vhs]. As an atomic constraint, it needs a rule
to define its mapping. To illustrate, we have at least
two choices: First, considerM1 = [type = video].
SinceM1 will access both VHS and DVD titles, it has
(P ;R) = (:5; 1) (assuming VHS accounts for50% of
videos). WithF= RThresh(:7) (see Eq. 3),M1 has a
closeness ofF(:5; 1) = :5. Alternatively, mappingM2 =
[desc contains vhs] simply looks for the keyword indesc
(a textual description of the media). Suppose that about
80% VHS descriptions mention the word, and on the other
hand only VHS items do,M2 will have (P ;R) = (1; :8) or
F(1; :8) = 1. ThusM2 is the closest mapping with respect

to RThresh(:7), i.e., S(v) = M2 (assuming no other rele-
vant mappings exist). RuleR1 simply matches anyformat
constraintf (as amatching) at the left side and definesS(f)
with respect toF at theemit: clause of the right side.

Furthermore, we notice that a query asking for a pair of
formats (such asv _ d, whered = [format = dvd]) can
map perfectly to a particular type (e.g., [type = video]).
Since we cannot construct this perfect (and thus the clos-
est) mapping from the components, such a query forms a
new semantic unit and thus RuleR2 defines its transla-
tion. At the left side,R2 will match a disjunctive pattern
[format = F1] _ [format = F2] for thoseF1 andF2 that sat-
isfy the conditionFormatPair(�) as a pair of formats. For
a matchingm (e.g.,m = v _ d), the right side then finds the
corresponding type with functionTypeOfPair(�) and emits
S(m). Note that we assume that conditions and functions
are both implemented externally with some programming
language (e.g., our implementation uses Java).

Our discussion will assume an original queryQ
med

=
t(h _ c)(v _ d) as a running example. (Referring to Fig-
ure 5(a), we are querying the VHS or DVD titles by Tom
Hanks or Tom Cruise. Note that we omit the^ operator for
notational simplicity.) To map a query, we begin by match-
ing it to the rules to find the subqueries for constructing the
overall mapping, as we next illustrate.

Example 8 (Rule Matching): Consider matchingQmed

against rulesKmed ; i.e., we want to find the subqueries of
Qmed that match a pattern described by some rule inKmed .
Since a matching can be any complex query (with conjunc-
tions, disjunctions, or both), we perform the matching on
some normal form, say, DNF (Disjunctive Normal Form).
(We could have instead chosen CNF or Conjunctive Normal
Form. The choice is not critical, but it does affect how we
structure the algorithm, as Section 5.2 will discuss.)

Specifically, we writeQ
med

in a DNF to compare it with
the DNF patterns of the rules. Note that a DNF has the form
D̂1 _ � � � _ D̂n. (Note that we writeX̂ to stress that it is a
conjunction; we will similarly use�X for a disjunction). For
Qmed we haveD̂1 = (thv); : : : ; D̂4 = (tcd) (see Figure 5).
As our framework also assumes, each rule specifies a DNF
pattern of the form̂d1 _ � � � _ d̂m: e.g., ruleR2 has pattern
P2 with d̂1:[format = F1] andd̂2:[format = F2].

We next determine if the rule pattern matches some sub-
query ofQ

med
. To see if a patternP represents asubquery,

we check if everyd̂j in P is “simpler” than some differ-

571

vt h

∧

dt h

∧

vt c

∧

d

∧

∨

 t c

mt mh mvd mth mvmc mtc md

t = [fn = tom]

h = [ln = hanks] c = [ln = cruise]

v = [format = vhs] d = [format = dvd]

DNF(Qmed)

(a) Matchings in query DNF.
rule matching rule output (P,R)

R1 mv :v mv :[desc contains vhs] (1:; :8)

R1 md :d md :[desc contains dvd] (1:; :8)

R2 mvd :v _ d mvd :[type = video] (1:; 1:)

R5 mt :t mt :[review contains tom] (:9; :7)

R6 mh :h mh :[name = "hanks,�"] (1:; 1:)

R6 mc :c mc :[name = "cruise,�"] (1:; 1:)

R7 mth :th mth :[name = "hanks,tom"] (1:; 1:)

R7 mtc :tc mtc :[name = "cruise,tom"] (1:; 1:)

(b) Matchings and their mappings.
Figure 5: Example queryQ

med
= t(h _ c)(v _ d) and its

matchings with respect toKmed .

ent D̂i in the query. Note that, since botĥDi and d̂j are a
simple conjunction, we say that̂dj is simpler thanD̂i (or
D̂i is more complexthan d̂j) if d̂j matches some part of
D̂i. For instance, consider pattern̂d1 _ d̂2 of R2: Sinced̂1
can matchv (with F1 bound to constantvhs), it is simpler
than D̂1 (among others). Similarlŷd2 can matchd (with
F2 = dvd) and is thus simpler than̂D2. ThusR2 matches
subqueryv _ d (ormvd in Figure 5) ofQmed , i.e., v _ d is a
matching toR2.

We repeat this process for every rule to find all the match-
ings. Figure 5(a) indicates these matchings as subtrees of
Qmed 's DNF. Figure 5(b) then summarizes each matching
m, the rule output form (denoted bym), and the estimated
(P ;R) (from Figure 4). (As noted, our algorithm does not
need these parameter values for computing mappings.)

To enable query translation, we assume two essential re-
quirements for semantic rules.First, we require that each
rule define the closest mappings of the matching queries
with respect toF(P ;R)— which we refer to as thesound-
nessrequirement (i.e., a rule generates sound mappings). To
determine such mappings, we can use source statistics (or
perform sample queries) to estimate the precision and recall
for different mappings (as Example 7 showed) and choose
the one with the highestF(P ;R). In fact, we can also sim-
ply makeintuitivechoices;i.e., in practice a closeness func-
tion is not explicitly required when defining mapping rules,
which Section 6 will discuss.

Second, we require that there be one rule for every se-
mantic unit— which we refer to as thecompletenessre-
quirement, since it enforces necessary rules be supplied. A
semantic unit(e.g., v andv _ d in our example) is a query
whose closest mapping cannot be constructed from that of
its subqueries. Since a semantic unit is “atomic” in query
translation, its mapping must be manually defined with a

rule (and thus this requirement). Note that any individual
constraint (such asv) is clearly a semantic unit;e.g.,R1 and
R3 in Kmed both describe such single-constraint units.

Moreover, a semantic unit can be a composite query
(such asv _ d). Our separability results (Section 4.2) show
that query compositions can be inseparable (and thus form
a unit) depending on the particularF(P ;R). For instance,
since forF= RThresh(:7) disjunctions are not always sep-
arable (see [5] for the formal results), a semantic unitmay
contain disjunctions,e.g., as inR2 andR4. (Obviously we
only need a rule for interrelated disjuncts;e.g., we do not
need one for[ln = hanks]_ [format = dvd].) Similarly, we
may expect a semantic unit with conjunctions [5],e.g.,R7.

In fact, as Section 4.2 discussed, for any closeness metric
other thanMinSup andMaxSub, neither disjunctions nor
conjunctions are always separable, and thus a semantic unit
may be just any complex queries. Although in many cases
a unit might be no more complex than simple disjunctions
or conjunctions (as inKmed), our algorithm can generally
handle any complex units.

We stress that our soundness and completeness require-
ments together enable the analogouslydivide-and-conquer
approach. Given an original queryQ, if Q can match a rule,
then itself is a semantic unit. We simply fire the rule to com-
puteS(Q). SupposeQ denotes the rule output after match-
ing Q, the soundness requirement ensures thatS(Q) = Q.
For instance, since(v_d) will match ruleR2, it follows that
S(v _ d) = [type = video] as given byR2.

On the other hand, ifQ does not match any rule, then by
the completeness requirementQ is not a semantic unit. In
other words, we can constructS(Q) with the semantic units
that are subqueries ofQ. For instance, sinceQmed contains
the matching subqueries shown in Figure 5, these semantic
units will be thebuilding blocksfor constructingS(Qmed).
Such construction of complex mappings thus becomes the
main challenge of our framework, which we next discuss.

5.2 Algorithm NFB : Normal-Form Based Algorithm

This section presents the core algorithm of our query trans-
lation framework. Based on the rule system just discussed,
AlgorithmNFB will construct the mapping of a given query
from the semantic units that it contains.

To construct a complex mapping, we are essentially look-
ing for a rewriting using the semantic units. For instance,
consider our example queryQmed . As we will see, we can
construct its mapping from that of the unitsmth, mtc, and
mvd (see Figure 5):i.e., S(Qmed) = (mth _ mtc)(mvd).
(Recall thatm denotes the rule output for a matchingm.)
In other words, we rewriteQ

med
into a Boolean function

of these units:B1(mth, mtc, mvd) = (mth _ mtc)(mvd).
(Note that as a rewritingB1 is logically equivalent toQ

med
.)

We refer to such a rewriting as adecomposition, since it
breaks the query into the semantic units. Based on de-
compositionB1 (but not others), we can simply construct
S(Qmed) = B1(mth, mtc,mvd).

There existmanydecompositions for a given query;e.g.,
B2 = (mth _ mtc)(mv _ md) is another one forQmed .
For query mapping we want to find asafe decomposi-
tion, in which everycomposition (conjunction or disjunc-

572

S(Qmed) = (mth ∨ mtc)(mvd)

1. DNF Normalization

Qmed = t(h ∨ c)(v ∨ d)

2. Rule Matching

Kmed

4. Safe Disjunction

5. Mapping Construction

3. Safe Conjunction

Qmed = thv ∨ thd ∨ tcv ∨ tcd

Qmed = (th ∨ tc)(v ∨ d)

B = (mth ∨ mtc)(mvd)

mv , …, mtc
(see Figure 5)

Algorithm NFB

Figure 6: Illustration of AlgorithmNFB for queryQmed

with respect to rulesKmed .

tion) is guaranteed to be separable. The optimal map-
ping can then be constructed straightforwardly from such
a decomposition: We simply separate every composition,
and thus only deal with the semantic units by their rules.
To demonstrate, note thatB1 is such a safe decomposi-
tion (which can be shown by our results in [5] for deter-
mining suchsafety). BecauseQmed � B1, we can ob-
tain S(Qmed) or S(B1) as[S(mth) _ S(mtc)]S(mvd) (by
separating every composition sinceB1 is safe). Apply-
ing the rules for the units (Figure 5), we can construct the
mapping formB1, i.e., S(Q

med
) = (mth _ mtc)mvd =

([name = "hanks,tom"] _ [name = "cruise,tom"]) ^
[type = video].

Therefore, the main challenge for mapping a query is to
find its safe decomposition. Our results (as we will see in
Theorem 1) show that, in practical cases, there exists exactly
onesafe decomposition (among many possible rewritings)
for a query. Our AlgorithmNFB (Figure 7) will find such a
unique decomposition to construct the closest mapping.

Given a queryQ and mapping rulesK, NFB will out-
put the closest mapping ofQ with respect to the closeness
metricF(P ;R) thatK is defined upon. Referring to Fig-
ure 7,NFB first formulates the safe decomposition in Step
(1) through Step (4), and finally Step (5) constructsS(Q)
accordingly. We will illustrate by translatingQmed using
Kmed , which defines the mappings underF= RThresh(:7).
Figure 6 summarizes this process, showing the input and
output for each step.

Algorithm NFB (for Normal-Form-Based) is essentially
based on Boolean normal forms to systematically rewrite a
query into a safe decomposition. As Figure 6 shows,NFB
starts by normalizing the input query into a DNF (of the
constraints) in Step (1) and finally formulates the safe de-
compositionB as a CNF (of the semantic units) in Step (4).
Note that we could have instead structured adualalgorithm
that starts with a CNF and concludes at a DNF.

As an overview, we now summarize howNFB works
(Figure 6). Step (1) first normalizesQmed into a DNF, on
which Step (2) performs rule matching. Section 5.1 dis-
cussed these steps, resulting in the matching units in Fig-
ure 5. NFB will then rewriteQmed into a safe decompo-
sition B in a CNF (as just mentioned), a simpletwo-level
tree with a root conjunction and some leaf disjunctions. To
ensure that such CNF rewriting is safe, Step (3) focuses
on forming a separable conjunction (or asafeconjunction)

at the root, and similarly Step (4) will form separable dis-
junctions (orsafedisjunctions) at the leaves. Specifically,
as Example 9 below explains, Step (3) will rewriteQ

med

into a conjunctive form (see Figure 6) that is separable,
i.e., S(Q

med
) = S(th _ tc)S(v _ d). Step (4) then further

rewrites each resulted conjunct into a separable disjunction
of the semantic unit:i.e., the first conjunct as(mth _mtc)
and the second as(mvd), which Example 10 will illustrate.
We have thus formulated the safe decomposition in a CNF:
B = (mth _ mtc)(mvd). Finally, AlgorithmNFB simply
constructsS(Qmed) fromB as just discussed.

Example 9 (Safe Conjunction): We explain Step (3) of
AlgorithmNFB , which uses functionSafeConj to rewrite an
input query into a conjunction that is guaranteed to be sepa-
rable. As a basis, to determine whether a conjunction is sep-
arable, we have developed the sufficient conditions (called
the safetyconditions) that imply the separability. Due to
space limitations, we will leave to reference [5] the safety
formalism. We simply stress here that the conjunction that
Step (3) formulates will satisfy our formal safety conditions
in [5] and thus must be separable.

Intuitively, to eventually form a safe decomposition of
Q
med

using the semantic units (see Figure 5), we first form
a safe decomposition for every conjunction in the former
using that in the latter. Note that, since bothQmed and
the units are written in DNF, all their conjunctions are ex-
plicit at the leaves (of the query tree);e.g.,Qmed has(thv),
(thd), (tcv), and (tcd) as Figure 6 shows. In particular,
we can rewrite(thv) as (t)(h)(th)(v) with the four “sub-
conjunctions” from unitsmt, mh, mth, andmvd. We
can then omit(t) and (h), since they are subexpressions
of (th) and are thus redundant (i.e., they will not con-
tribute to the next step). Consequently, we have rewrit-
ten Qmed = (th)(v) _ (th)(d) _ (tc)(v) _ (tc)(d) or
_f(th)(v); (th)(d); (tc)(v); (tc)(d)g.

Our goal here is to formulate a conjunction (at the root
of the query tree). Since the above rewriting is disjunc-
tive, Step (b) ofSafeConj simply distributes the outer dis-
junction over the inner conjunctions (using the standard
Boolean algebra). Omitting any redundancies, we will ob-
tain a conjunctive formQ

med
= �C1

�C2 with two conjuncts
�C1 = (th _ tc) and �C2 = (v _ d). (In [5] we show that the
conjunction is safe and thus separable.)

Finally, Step (c) ofSafeConj determines if every such
conjunct is ready for Step (4) of AlgorithmNFB , or else
it needs further rewriting. In other words, we want to test if
�Ci can be written as the sum of the contained units (which is
essentially the safe disjunction that Step (4) will formulate).
In particular, referring to Figure 5,�C2 contains unitsmv ,md

andmvd. Since we can indeed write�C2 as their sum (i.e.,
�C2 � mv _md _mvd), it does not need further rewriting,
and similarly neither does�C1.

In general, while not shown in the above example, any
resulted conjunct that cannot be written as a sum-of-units
will be further “decomposed.” In other words, such�Ci will
be rewritten, by recursively callingSafeConj , into simpler
conjuncts. To illustrate, consider a querywx _ yz, and sup-
pose that the matching units arem1 = wx _ y, m2 = w,

573

Algorithm NFB: Normal-Form Based Query Mapping
Input: � Q: an arbitrary query in the original context.

� K: the constraint mapping speci�cation for a target system T w.r.t. a closeness criterion F .
Output: S(Q), the closest mapping of Q for T w.r.t. F .
Procedure:

(1) DNF Normalization:

� convert Q into DNF: DNF (Q)
Pm

l=1
D̂l, where D̂l is a simple conjunction of constraints.

(2) Rule Matching:
� if Q itself matches a rule: S(Q) Q; output S(Q) == �re the rule for Q as a semantic unit.

� else: �nd all the matchings m1; : : : ;mu of Q w.r.t. K; note mi is in DNF: mi =
P

d̂ij
(3) Safe Conjunction: == rewrite DNF(Q) into a safe conjunction Q � ^(C), such that

� C = f �C1; : : : ; �Cng SafeConj(DNF (Q)) == every conjunct �Ck can then form a safe disjunction.
(4) Safe Disjunction:
� for all �Ck 2 C: rewrite �Ck = x̂1 _ � � � _ x̂m into �Ck �

P
mi, for all matchings mi s.t.:

{ every d̂ij in mi appears as some x̂l in �Ck == i.e., mi can be found in �C and mi � �C.
== omit mi if mi � mi0 for some mi0 , and thus mi is redundant because of mi0 .
{ 6 9 mi0 s.t. mi � mi0 , i.e., mi covers only a subset of x̂l terms that mi0 does

� B(m1; : : : ;mu)
Qn
k=1

�Ck == the safe decompositon in terms of the matchings as units.

(5) Mapping Construction:
� compute mi for each mi actually used in B == �re rules for the relevant matchings.
� S(Q) B(m1; : : : ;mu); output S(Q) == construct the mapping from B.

Function SafeConj(DNF (Q) =
Pm

l=1
D̂l): == rewrite a query in DNF into a safe conjunction in CNF.

(a) Conjunction Rewriting: == rewrite each D̂l using the DNF disjuncts of any matching mi found in Q.

� for all D̂l: rewrite D̂l �
Q
d̂ij for all d̂ij (a disjunct of DNF(mi); see Step (2) above) s.t.:

{ d̂ij � D̂l, i.e., d̂ij is a subconjunction of D̂l == as simple conjunctions, d̂ij is simpler than D̂l.

{ 6 9 d̂i0j0 s.t. d̂ij is a subconjunction of d̂i0j0 == omit d̂ij that is simpler than other d̂i0j0 .
(b) CNF Formulation: == standard Boolean algebra to convert Q into a conjunctive form.

� rewrite Q in CNF (in terms of the d̂ij 's), i.e., Q �
Q

�C, for all �C s.t.

{ �C = x̂1 _ � � � _ x̂m, where every x̂l denotes some �dij from D̂l as formulated in (a)
== omit �C if �C0 � �C for some �C0, and thus �C is redundant in the CNF of Q.

{ 6 9 �C0 = x̂0

1 _ � � � _ x̂
0

m s.t. 8x̂0

j; 9x̂i; x̂
0

j � x̂i
(c) Recursive Rewriting:
� C � == to store the formulated conjuncts.

� for all �C = x̂1 _ � � � _ x̂m formulated in (b):

{ M fmi j every d̂ij in mi appears as some x̂l in �Cg == all mi found in �C s.t. mi � �C.

{ if every x̂l in �C appears as d̂ij in some mi in M : == i.e., �C � _(M).

{ C C [f �Cg == a safe disjunction of Step (4) can be formed; no need for further rewriting

{ else: C C [SafeConj(�C) == recursively perform further rewriting of �C.
� return C == DNF(Q) is rewritten safely into ^(C).

Figure 7: AlgorithmNFB for approximate query translation.

m3 = x, m4 = y, andm5 = z. Givenwx _ yz as in-
put, SafeConj will first rewrite it into (wx _ y)(wx _ z).
Conjunct(wx _ y) can be written as sum-of-units simply
asm1, but the latter conjunct cannot. Consequently, a re-
cursive callSafeConj(wx _ z) will further rewrite the latter
into (w_ z)(x_ z), where the new conjuncts can be written
as(m2 _m5) and(m3 _m5) respectively.

This recursive process will eventually terminate and pro-
duce a separable conjunction: Intuitively, every recursion
will derive strictly simpler subqueries as just illustrated.
Eventually,SafeConj will terminate with the simplest form
(if not earlier),i.e., a disjunction of atomic constraints (e.g.,
w _ z), which is trivially a sum of single-constraint units.
Please refer to reference [5] for a formal proof that the con-
junctions so formulated are separable.

After forming the safe conjunction in Step (3) as just
shown, AlgorithmNFB will then focus on the disjunctions
in Step (4), as the following example illustrates.

Example 10 (Safe Disjunction): Continuing our example,
Step (4) will next rewrite each conjunct�Ci into a safe dis-
junction. (Like our discussion for conjunctions, the resulted
disjunctions will satisfy the formal safety conditions in ref-
erence [5] and thus must be separable.) As just illustrated,
Step (3) ensures that every�Ci can be written as the sum of

the contained units,e.g., �C2 � (mv _ md _ mvd). Re-
moving the redundant terms (i.e., mv � mvd andmd �
mvd), we obtain �C2 � mvd. Similarly, we can rewrite
�C1 � (mth _ mtc). (We show in [5] that the disjunction
is indeed safe).

It turns out that, when semantic units are not “interlock-
ing,” the disjunctions so formulated will be safe and thus
separable. As we will see, in the rare interlocking cases, a
safe decomposition may not exist and thus Step (4) may not
form safe disjunctions. For the majority of cases, as in this
example, the resulted disjunctions (and thus the decomposi-
tion overall) are safe.

By constructing a safe decomposition, AlgorithmNFB
will generate the best translation, as we have illustrated.
Essentially, based on the optimal mappings for semantic
units (as given by sound rules), and by respecting constraint
dependencies (as the units indicate) to preserve optimality
through query rewriting,NFB guarantees the overall opti-
mal mappings. Our results below show that, in the vast
majority of cases, namely when no semantic units “inter-
lock” (defined below), a query will have auniquesafe de-
composition. Consequently, AlgorithmNFB will find this
unique decomposition and thus construct the closest map-
ping. Please refer to reference [5] for a proof.

574

Theorem 1 (Unique Safe Decomposition):Given a query
Q and a mapping specificationK w.r.t.some closeness crite-
rionF , if Q has no interlocking semantic units by matching
K, then
� there exists auniquesafe decomposition ofQ, from

whichS(Q) w.r.t.F can be constructed, and
� Algorithm NFB will find the safe decomposition and

outputS(Q).

Otherwise, when there are interlocking units, a safe decom-
position forQ may not exist.

On the other hand, Theorem 1 also states that, when a
query involves interlocking units, it maynot have a safe
decomposition. Note thatQ still have a best mapping, but
S(Q) must instead be found among the unsafe decomposi-
tions. (Our completeness requirement in Section 5.1 asserts
thatS(Q) can be constructed fromsomedecomposition us-
ing its semantic units.) We formally define interlocking be-
low, and then illustrate with Example 11.

Definition 1 (Interlocking Units): A set of semantic units
U is interlocking, if for some m 2 U , there exist
m1; : : : ;mn also inU such that the following hold:
(1) Let DNF (m) =

P
d̂k andDNF (mi) =

P
d̂ij . (a)

Everymi has somed̂ij that overlaps with but is not
strictly simpler than somêdk ; at least one sucĥdij is
strictly more complex than the correspondingd̂k. (b)m
is simpler than(m1 _ : : : _mn).

(2) Let CNF (m) =
Q

�ck andCNF (mi) =
Q

�cij . For
some�ck, �ck �

Pn
i=1 �ciji but�ck 6� �ciji ;8i.

Example 11 (Interlocking Units): Consider queryQ =
xy _ z. Suppose that (by matching rules)Q has semantic
units (written in DNF):mx_z = (x) _ (z), mxy = (xy),
mx = (x), my = (y), andmz = (z). Note that these units
are interlocking: Intuitively, an interlock exists becausex is
involved in both conjunctionmxy and disjunctionmx_z.

More formally, we show the interlocking by Definition 1.
Let m = mx_z, m1 = mxy, andm2 = mz. First, Condi-
tion (1) will hold: Term (xy) of m1 satisfies (a) with re-
spect to term(x) of m, and similarly term(z) of m2 with
respect to term(z) of m. In addition, term(xy) of m1 is
also strictly more complex than(x) of m. Becausem is
indeed a subexpression ofm1 _ m2, (b) is also satisfied.
Second, sinceCNF (m) = (x _ z), CNF (m1) = (x)(y),
andCNF (m2) = (z), Condition (2) also holds because
(x_ z) � (x)_ (z) while (x_ z) 6� (x) and(x_ z) 6� (z).

Consequently,Q may not have a safe decomposition
(by Theorem 1) because of the interlocking. Intuitively,
to rewriteQ using the semantic units, we must separate
either the disjunction (betweenxy andz) or the conjunc-
tion (betweenx andy). (Otherwise,Q remains monolithic.)
However, neither will be safe— The former, such as in
B1 = mxy _ mz, will break the dependency betweenx
andz (as indicated bymx_z) and thus is not safe (i.e., it
will fail the safety conditions in [5]). Similarly, the latter
will breakmxy, such as inB2 = mx_z(my _mz), which is
also unsafe (by the safety conditions in [5]).

We believe that such interlocking cases will be rare in
practice. As we intuitively noted above, interlock occurs
between such “overlapping” units asmxy andmx_z. That
is, interlocking will happen only when a constraint (e.g., x
in our example) participates inbotha conjunction unit (e.g.,
mxy) and a disjunction unit (e.g., mx_z). If x appears in
only simple-disjunction units, like(x _ y) and(x _ z), no
interlocking will form. (Similarly, no simple-conjunction
units can interlock.) Because a semantic unit represents in-
terdependencies among its constraints, such complex inter-
locking is very unlikely in practice. In fact, in our case study
of real mapping systems (see Section 6), we have indeed ob-
served no instances of such an “anomaly.”

When interlocking does occur, because no safe decom-
position exists, AlgorithmNFB will not be able to construct
S(Q). We can address these exceptional cases in two ways:
First, we may simply require these interlocking queries (e.g.,
xy _ z) be defined by rules. Alternatively, we can find all
the unsafe decompositions, estimate the closeness of each
corresponding mapping, and select the best asS(Q). Note
that it is possible to estimate theP andR parameters and
thus the closeness of a constructed mapping; we show such
estimation technique in [5] due to space limitations.

Finally, we conclude by analyzing the running time of
AlgorithmNFB . First, in Step (1) and Step (3) (i.e., subrou-
tine SafeConj), NFB will perform DNF and CNF conver-
sion respectively. Such a conversion is in general exponen-
tial in the number of query constraints (because the Boolean
satisfiability problem is NP-complete [37]). However, this
conversion has been well studied and practical algorithms
have been proposed in the literature [38]. Therefore, for
queries of practical sizes, we believe this normalization can
be reasonably efficient.

Furthermore, the other steps of AlgorithmNFB are quite
efficient and actually run in linear time of the input size:
Consider a queryQ and rulesK as input (note that they are
all in DNF after Step (1)). LetDQ andNQ be the num-
ber of disjuncts and constraints-per-disjunct in the DNF of
Q; similarly, let DR andNR be those of the DNF query
pattern in a rule. LetR be the number of rules inK.
With these input size parameters, Step (2) will take time
O(NQNRDQDRR): That is, the algorithm will match each
pair of constraints (thus the factorNQNR), for each pair
of query and rule disjuncts (thus the factorDQDR), and
for each rule (thus the factorR). Step (4) will then run in
O(CQM) time, whereCQ is the number of CNF conjuncts
of Q (thus an upper bound of what Step (3) can generate)
andM is the number of matchings found in Step (2). Fi-
nally, Step (5) will simply take time ofO(M).

6 Practical Implications: A Case Study
To verify that our framework makes sense in practice, we
explore several sources on the Web. We wish to study how
to “program” our general framework for a specific mapping
system. That is, we will demonstrate the mapping rules for a
representative scenario. Through this concrete example, we
also want to understand practical issues such as the ease of
composing rules, the number of rules typically required, and
whether approximation is essential in practice. This case

575

Target Source: BN at www.barnesandnoble.com
B1) [title O T] 7! W = WordsIn(T); emit : [title contains W]
B2) [fn = F] 7! emit : [keyword contains F]

B3) [ln = L] 7! A = LnFnToName(L, null); emit : [author = A]

B4) [ln = L] ^ [fn = F] 7! A = LnFnToName(L, F); emit : [author = A]

B5) [subject O S1]; EqualsOrStarts(O) 7!
S2 = MapSubjHeading(S1); emit : [subject = S2]

B6) [subject contains W] 7!
S = SubjKwdToSubjHeading(W); emit : [subject = S]

B7) [format = F1] 7! F2 = MapFormat(F1); emit : [format = F2]

Target Source: Socrates at socrates.stanford.edu
S1) [title O T] 7! [title O T]
S2) [A = N]; LnOrFn(A) 7! emit : [au contains N]

S3) [subject O S1]; EqualsOrStarts(O) 7!
S2 = MapSubjHeading(S1); emit : [subject = S2]

S4) [subject contains W1] 7!
W2 = MapSubjKwd(W1); emit : [subject contains W2]

S5) [format = F] 7! [keyword contains F]

S6) [format = hardcover]_ [format = paperback] 7! True

Target Source: EB at www.evenbetter.com
E1) [title O T] 7! W = WordsIn(T); emit : [title contains W]
E2) [fn = F] 7! emit : [keyword contains F]

E3) [ln = L] 7! A = LnFnToName(L, null); emit : [author = A]

E4) [ln = L] ^ [fn = F] 7! A = LnFnToName(L, F); emit : [author = A]

E5) [subject O S] 7! W = WordsIn(S); emit : [keyword contains W]

E6) [format = F] 7! emit : False
E7) [format = hardcover]_ [format = paperback] 7! True

Figure 8: Rules for mappingAmazonto different sources.

study is based on a similar scenario that is available online
for demonstrating our translation server (see Section 7).

6.1 A Book-Search Mediator

Let us consider building a book-search mediator that in-
tegrates online sourcesAmazon at www.amazon.com and
BN at www.barnsandnoble.com (both are online book-
stores),EB at www.evenbetter.com (a comparison shop-
ping service), andSocratesat socrates.stanford.edu
(Stanford library online catalog, currently not publicly ac-
cessible). Our scenario assumes that the mediator integrates
these sources by adoptingAmazon's query context and thus
needs translation for the other sources.

We will thus demonstrate constraint mappings from
Amazonto respectivelyBN, EB, andSocrates. For each tar-
get source, we compare its constraint vocabulary (i.e., sup-
ported constraints as described in the specific query inter-
face and the documentations) with that ofAmazonand de-
fine the mapping rules. As Figure 8 shows, we need seven
rules forBN, six rules forSocrates, and seven rules forEB.
As Section 5.1 discusses, each rule gives the best mapping
for the matching semantic unit with respect to the closeness
metric, which we assume to beF = PThresh(:7). In fact, in
practice it isnot required to explicitly consider the closeness
function, as we will discuss in Section 6.2.

For instance, rulesB1; : : : ; B7 map the constraints on
attributestitle, ln, fn, subject, and format in the Ama-
zon1 context to ones ontitle, keyword, author, subject, and
format in theBN context. Note that when defining mapping
rules, we only need to focus on the correspondingclustersof
attributes in either contexts. For instance, clusterfln, fng at
Amazon corresponds tofauthor, keywordg at BN, whose

1Since Amazon distinguishes the first and last names inauthor at-
tribute, we separate it intoln andfn in translation.

mappings are given byB2, B3, andB4. In addition, note
thatTrue (a trivial superset) andFalse (a trivial subset) are
both possible mappings (when no better ones exist, as in
rulesS6, E6, andE7), which will effectively remove the
matching units from the translated query.
6.2 Observations
Our case study shows that the query-mapping framework
that we have presented can be easily applied in practice. The
number of mapping rules are small: Observe that constraint
dependencies exist only within a cluster of attributes (e.g.,
fln, fng as inB4 andfformatg as inS6) and are typically
simple. Thus we will only need a few more rules (that de-
scribe compositional units) than the number of atomic con-
straint patterns in the original context. In addition, note that
we only need a rule for a querypattern (e.g., [subject O
S1] of B5) when its instantiations(e.g., [subject = "web
design"] and[subject starts "web"]) share the same way
of mapping, which we found to be true in our study. Fur-
thermore, it is often possible to reuse mapping rules for dif-
ferent sources as they share some common constraints;e.g.,
E2,E3, andE4 are reused fromB2,B3, andB4.

Furthermore, we indeed observed no instances of inter-
locking units (as Section 5.2 discussed). Note that semantic
units essentially indicate the correspondence of attributes,
such as theconjunctionof ln andfn versusauthor (or sim-
ilarly month and year versusdate) and thedisjunctionof
format versustype. We have observed no attributes involved
in bothtypes of correspondence, without which interlocking
simply cannot occur (Section 5.2). Our algorithm will thus
generate the unique best mappings in the practical cases.

While our framework is formally supported by the notion
of closeness, a closeness function isnot explicitly required
when defining a mapping rule. That is, given a semantic
unit, we canintuitively choose its best mapping when there
are competing choices (without explicitly computing their
closeness with a metric as in Example 7). Such mappings
are thus defined with someimplicit metric that corresponds
to the “intuition” we may have in mind. However, we stress
that, as Theorem 1 states, our algorithms will preserve the
optimality with respect to any closeness metrics that the
mapping rules conform to– be it explicitly or implicitly.

Furthermore, our case study shows that the general no-
tion of approximation (as this paper specifically introduces)
is truly essential for a “usable” query-mapping framework.
Observe that, among the twenty rules in Figure 8, only six
(B3, B4, B7, S1, E3, E4) are perfect mappings, a ratio of
30% – the other70% is not possible without approxima-
tion. Moreover, we need a general framework that can deal
with all types of approximation,i.e., supersets (e.g.,B1,S2),
subsets (e.g., E6), and hybrid mappings that contain both
false-positives and false-negatives (e.g., B2, B5). The ap-
proximate translation technique presented in this paper can
thus be very helpful in practice. We have studied additional
scenarios to the one presented here, and in all cases we have
found our observations to hold.

7 Conclusion
In this paper we have presented a framework and the as-
sociated algorithm for approximate query translation. Our

576

framework is robust under virtually any reasonable close-
ness metric that combines both precision and recall. We
also intuitively presented our results on the separability and
safety of query compositions (and we cover the full details
in [5]). These results are critical for the development of any
algorithm that attempts approximate query translation. Our
AlgorithmNFB will generate a unique best-mapping in the
practical cases when semantic units do not “interlock.”

While our algorithm generates the closest mappings, it
does not compute the actual “closeness,” in terms of the pre-
cision and recall parameters. (In fact, our algorithm does not
explicitly use the parameter to compute the best mappings.)
While not essential for the operation of our algorithm, in
some cases it may be desirable to estimate theP andR (or
the corresponding closeness) of a mapping. As a comple-
ment to our translation machinery, we have developed sim-
ple formulas for such estimation, and it is covered in [5].

Although we present our approach specifically for trans-
lating queries across contexts, we believe its generality can
support much broader heterogeneous problems. For in-
stance, the framework can be applied to mapdata and
queries acrossontologies. In fact, we have studied in [25]
how to model data as conjunctive queries and thus apply the
minimal-superset algorithms [3] for data translation.

We have implemented the approximate query translation
mechanism described in this paper in the Stanford Digital
Libraries Project. Our implementation of an online transla-
tion server is available for demonstration. While the back-
end translation server is generic, we program it (by defining
specific mapping rules) to demonstrate a particular transla-
tion scenario of online media search (whose simplified ver-
sion is presented in Section 6). The server is available at
http://www-db.stanford.edu/�kevin/aqt.

References
[1] G. Wiederhold. Mediators in the architecture of future information

systems.IEEE Computer, 25(3):51–60, Mar. 1992.
[2] J. D. Ullman. Information integration using logical views. InProc.

of the 6th ICDT, Jan. 1997.
[3] C.-C. K. Chang and H. Garcia-Molina. Mind your vocabulary: Query

mapping across heterogeneous information sources. InProc. of the
1999 ACM SIGMOD Conf., pages 335–346, Philadelphia, Pa., June
1999. ACM Press, New York.

[4] C.-C. K. Chang and H. Garcia-Molina. Mind your vocabulary: Query
mapping across heterogeneous information sources (extended ver-
sion). Technical Report SIDL-WP-1998-0095, Stanford Univ., 1999.
Accessible athttp://www-diglib.stanford.edu.

[5] C.-C. K. Chang and H. Garcia-Molina. Approximate query trans-
lation across heterogeneous information sources (extended version).
Technical Report SIDL-WP-1999-0115, Stanford Univ., 1999. Ac-
cessible athttp://www-diglib.stanford.edu.

[6] R. Hull. Managing semantic heterogeneity in databases: A theoretical
perspective. InProc. of the 16th ACM PODS, pages 51–61, 1997.

[7] M. A. Hearst. Trends & controversies: Information integration.IEEE
Intelligent System, 13(5):12–24, Sept. 1998.

[8] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous
information sources using source descriptions. InProc. of the 22nd
VLDB Conf., pages 251–262, Bombay, India, 1996.

[9] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-answering algo-
rithms for information agents. InProc. of the 13th National Conf. on
Artificial Intelligence,AAAI-96, Portland, Oreg., Aug. 1996.

[10] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker:
A mediation system based on declarative specifications. InProc. of
the 12th Intl. Conf. on Data Engineering, New Orleans, La., 1996.

[11] Y. Papakonstantinou, H. Garcia-Molina, A. Gupta, and J. Ullman.
A query translation scheme for rapid implementation of wrappers.
In Proc. of the 4th Intl. Conf. on Deductive and Object-Oriented
Databases, pages 161–186, Singapore, Dec. 1995. Springer, Berlin.

[12] O. M. Duschka. Query Planning and Optimization in Information
Integration. PhD thesis, Stanford Univ., Dec. 1997.

[13] M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster: An
information integration system. InProc. of the 1997 ACM SIGMOD
Conf., Tucson, Ariz., 1997. ACM Press, New York.

[14] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing
queries across diverse data sources. InProc. of the 23rd VLDB Conf.,
pages 276–285, Athens, Greece, Aug. 1997.

[15] M. T. Roth and P. M. Schwarz. Don' t scrap it, wrap it! a wrapper
architecture for legacy data sources. InProc. of the 23rd VLDB Conf.,
pages 266–275, Athens, Greece, Aug. 1997.

[16] O. Kapitskaia, A. Tomasic, and P. Valduriez. Dealing with discrepan-
cies in wrapper functionality. Tech. Report RR-3138, INRIA, 1997.

[17] H. Garcia-Molina, W. Labio, and R. Yerneni. Capability sensitive
query processing on internet sources. InProc. of the 15th Intl. Conf.
on Data Engineering, Sydney, Australia, Mar. 1999.

[18] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using
templates with binding patterns. InProc. of the 14th ACM PODS,
pages 105–112, San Jose, Calif., May 1995.

[19] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries
using limited external query processors. InProc. of the 15th ACM
PODS, pages 27–37, Montreal, Canada, June 1996.

[20] L. G. DeMichiel. Resolving database incompatibility: An approach
to performing relational operations over mismatched domains.IEEE
Trans. on Knowledge and Data Engineering, 1(4):485–493, 1989.

[21] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to
facilitate interoperability among heterogeneous information systems.
Trans. on Database Systems, 19(2):254–290, June 1994.

[22] P. Buneman, S. Davidson, K. Hart, C. Overton, and L. Wong. A data
transformation system for biological data sources. InProc. of the 21st
VLDB Conf., Zurich, Switzerland, 1995.

[23] S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation
for heterogeneous data. InProc. of the 6th ICDT, 1997.

[24] S. Cluet, C. Delobel, J. Simon, and K. Smaga. Your mediators need
data conversion! InProc. of the 1998 ACM SIGMOD Conf.

[25] C.-C. K. Chang and H. Garcia-Molina. Conjunctive constraint map-
ping for data translation. InProc. of the Third ACM Intl. Conf. on
Digital Libraries, pages 49–58, Pittsburgh, Pa., June 1998.

[26] S. Chaudhuri. Finding nonrecursive envelopes for datalog predicates.
In Proc. of the 12th ACM PODS, Washingtion, D.C., 1993.

[27] S. Chaudhuri and P. G. Kolaitis. Can datalog be approximated? In
Proc. of the 13rd ACM PODS, Minneapolis, Minn., 1994.

[28] N. Shivakumar, H. Garcia-Molina, and C. Chekuri. Filtering with
approximate predicates. InProc. of the 24th VLDB Conf., pages 263–
274, New York City, USA, 1998. VLDB Endowment, Saratoga, Calif.

[29] K.-L. Tan, C. H. Goh, and B. C. Ooi. On getting some answers
quickly, and perhaps more later. InProc. of the 15th Intl. Conf. on
Data Engineering, pages 32–39, Sydney, Austrialia, 1999.

[30] V. Poosala and V. Ganti. Fast approximate query answering using
precomputed statistics. InProc. of the 15th Intl. Conf. on Data Engi-
neering, page 252, Sydney, Austrialia, 1999. ACM Press, New York.

[31] M. J. Carey and D. Kossmann. On saying ”enough already!” in SQL.
In Proc. of the 1997 ACM SIGMOD Conf., Tucson, Arizona, 1997.

[32] M. J. Carey and D. Kossmann. Reducing the braking distance of an
SQL query engine. InProc. of the 24th VLDB Conf., pages 158–169,
New York City, USA, 1998. VLDB Endowment, Saratoga, Calif.

[33] P. Buneman, S. B. Davidson, and A. Watters. A semantics for com-
plex objects and approximate answers.Journal of Computer and Sys-
tem Sciences, 43(1):170–218, Aug. 1991.

[34] W. W. Chu, M. A. Merzbacher, and L. Berkovich. The design and
implementation of cobase. InProc. of the 1993 ACM SIGMOD Conf.,
pages 517–522, Washington, D.C., 1993. ACM Press, New York.

[35] C. J. V. Rijsbergen.Information Retrieval, 2nd edition. Butterworths,
London, 1979.

[36] G. Salton.Automatic Text Processing. Addison-Wesley, 1989.
[37] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The design and analysis

of computer algorithms. Addison-Wesley, Reading, Mass., 1974.
[38] E. J. McCluskey.Logic Design Principles. Prentice Hall, 1986.

577

