
Performance Issues in Incremental Warehouse Maintenance∗

Wilburt Juan Labio, Jun Yang, Yingwei Cui, Hector Garcia-Molina, Jennifer Widom
Computer Science Department, Stanford University

{wilburt,junyang,cyw,hector,widom}@db.stanford.edu

Abstract

A well-known challenge in data warehousing is the
efficient incremental maintenance of warehouse
data in the presence of source data updates. In this
paper, we identify several critical data represen-
tation and algorithmic choices that must be made
when developing the machinery of an incremen-
tally maintained data warehouse. For each decision
area, we identify various alternatives and evaluate
them through extensive experiments. We show that
the right alternative leads to dramatic performance
gains, and we propose guidelines for making the
right decisions under different scenarios. All of the
issues addressed in this paper arose in our devel-
opment of WHIPS, a prototype data warehousing
system supporting incremental maintenance.

1 Introduction
Data warehousing systems integrate and store data from re-
mote sources asmaterialized viewsin the warehouse [11, 3].
When source data changes, warehouse views need to be
maintainedso that they remain consistent with the source
data. Commercial data warehousing systems typically re-
compute all warehouse views periodically to keep them up
to date, but this process can be very expensive for large
views. In contrast, withincrementalmaintenance, only the
portions of the views that have changed are actually mod-
ified [6]. Because of the potential performance advantage,
incremental view maintenance has recently found its way
into commercial systems, e.g., [4, 1, 2].

In this paper we experimentally study various options for
incremental maintenance when the warehouse data is stored
in an off-the-shelf commercial database system (DBMS).
For instance, we investigate how views are best stored in
the DBMS, how aggregate views should be maintained, how
deletions can be handled by the DBMS, how parameters
such as memory and base relation size impact our choices,
and several other issues. To illustrate the types of questions
we address, we briefly introduce one of the options faced by
the warehouse implementor: how to represent views.

∗ This work was supported by the National Science Foundation un-
der grant IIS-9811947, by NASA Ames under grant NCC2-5278, and by
Sagent Technology Inc.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

Example 1.1 A warehouse often must support bag (dupli-
cate) semantics. For instance, to efficiently maintain com-
plex views involving aggregates, we also need to maintain
supporting (auxiliary) views that may contain duplicates.
Furthermore, bag semantics can simplify incremental main-
tenance, as we will see below. How should views be repre-
sented when bag semantics are called for? If viewV con-
tains three copies of tuplet, should we explicitly store those
three copies? Or should we add adupcnt attribute toV to
record the number of copies oft? For each case, how should
the DBMS insert or delete new tuples?

To illustrate, consider a concrete butvery simpleex-
ample. Consider a source tableR(K,A1, A2, ..., An)
with key attribute K, and a simple warehouse view
V (A1, A2, ..., An) defined overR which projects out the
key of R. Without bag semantics, maintainingV would
be expensive: when a tuple〈k, a1, a2, ..., an〉 is deleted
fromR, we cannot decide whether to delete〈a1, a2, ..., an〉
from V without queryingR, because there might exist
another tuple〈k′, a1, a2, ..., an〉 in R which also derives
〈a1, a2, ..., an〉 in V . On the other hand, if duplicates are
preserved inV , we should always delete one tuple from
V for each tuple deleted fromR, and noR queries are re-
quired.

Suppose that we implement bagV by keeping explicit
copies of tuples. Suppose further that based on the deletions
fromR we have computed5V , a bag of tuples to be deleted
from V . To apply5V to V , one might be tempted to use
the following:

DELETE FROM V WHERE (A1, A2, ..., An) IN
(SELECT * FROM 5V)

Unfortunately, this statement does not work because SQL
DELETE always removesall tuples satisfying theWHERE con-
dition. If V has three copies of a tuplet and5V contains
two copies oft, the above statement will delete all three
copies, instead of correctly leaving one. To properly ap-
ply 5V , we need to use a cursor on5V (details will be
provided later). However, a cursor-based implementation
forces5V to be processed one tuple at a time.

Given this problem with deletions, we may want to con-
sider thedupcnt approach, where we store only one copy
for each tuple, together with an extra attribute to record the
number of duplicates for that tuple. Under this representa-
tion,5V can be applied in batch with two SQL statements
(again, details will be given later). Besides the obvious ad-
vantage of being more compact when the number of dupli-
cates is large, how does this count representation compare
with the default duplicate representation? In particular, does
it speed up overall view maintenance? Are SQL statements
really better than a cursor loop for applying5V ? 2

461

In this paper we study several issues like the ones illus-
trated in Example 1.1. For each issue we propose various al-
ternatives, including interesting new variations for aggregate
view maintenance that turn out to have important advantages
over previous algorithms. In many of the decision areas we
discuss, making a wrong decision can severely hamper the
efficiency of warehouse maintenance. For example, the time
required to install changes into a view can vary by orders of
magnitude depending on how maintenance is implemented:
as data volumes grow, picking the right strategy can mean
the difference between a few minutes and many hours of
warehouse maintenance time. Based on the results of our
experiments, we provide guidelines for making the right de-
cisions under different scenarios.

For our experiments we use WHIPS (WareHouse
InformationProcessingSystem), a prototype data warehous-
ing system at Stanford [14]. (In fact, most of the design is-
sues we consider in this paper arose in the design and imple-
mentation of WHIPS.) Because WHIPS is representative of
warehousing infrastructures built using commercial DBMS,
we believe that our results have applicability well beyond
WHIPS—they should prove helpful to any implementation
of incremental warehouse maintenance either within or on
top of a commercial DBMS.

In closing our introduction, we make two points. First,
even though incremental maintenance has enjoyed consid-
erable attention from the research community [6], very lit-
tle research to date covers practical implementation issues
backed up by thorough experiments. Thus we believe that
our paper makes a unique contribution in this regard. Sec-
ond, experimental evaluations always raise many questions,
especially if the evaluations involve commercial products.
Was “enough” memory used? Were the databases studied
“big enough?” Should the query optimizer be hand-tuned to
maximize performance? Will next year’s DBMS invalidate
the conclusions because it has a snazzy new feature? As
questions like these arise in our paper, keep in mind that our
goal isnot to make absolute performance predictions, but
rather to understand the choices and tradeoffs involved. We
study incremental maintenance in a realistic, off-the-shelf
scenario, and we have varied many of the parameters in-
volved (e.g., memory size). Of course, there are other in-
teresting scenarios and more questions that can follow our
initial study.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of the WHIPS architecture,
which sets the stage for later discussions. In Section 3, we
focus on the component of WHIPS responsible for ware-
house maintenance and discuss the various choices in build-
ing its view maintenance machinery. In Section 4, we con-
duct experiments to evaluate each alternative and present
guidelines for making the best choices. Finally, we discuss
related work in Section 5 and conclude in Section 6.

2 WHIPS Architecture
The warehouse views incrementally maintained by WHIPS
are derived from one or more independent and usually re-

mote data sources. Data in the warehouse is modeled con-
ceptually using aview directed acyclic graph(VDAG). Each
node in the graph represents a materialized view stored at
the warehouse. An edgeVj → Vi indicates that viewVj
is defined over viewVi. A node with no outgoing edges
represents a view that is defined over source data. WHIPS
requires that each warehouse viewV is defined either only
over source data, or only over other warehouse views, be-
cause views defined over source data require special algo-
rithms for ensuring their consistency [15]. We call views
defined over source database views, and views defined over
other warehouse viewsderived views. (In a typical OLAP-
oriented data warehouse, fact tables and dimension tables
would be modeled as base views, while summary tables
would be modeled as derived views.) In WHIPS, each base
view is defined over source data using a single SQLSELECT-
FROM-WHERE (SFW) statement. This simple base view defi-
nition language allows the warehouse designer to filter and
combine source data using appropriate selection and join
conditions in theWHERE clause. Currently, aggregation is
not permitted in base view definitions because it is difficult
to ensure the consistency of aggregates over remote source
relations [15]. Each derived view is defined over other ware-
house views using one or more SQLSELECT-FROM-WHERE-
GROUP-BY (SFWG) statements, where aggregation is permit-
ted. Multiple SFWG statements may be combined using
UNION ALL.

Example 2.1 As a concrete example, let us suppose that
there are three remote information sourcesS1, S2, andS3,
exporting the tablesLineitem , Order , andCustomer , re-
spectively. The schema of these tables is loosely based
on the TPC-D benchmark [13], but simplified for succinct-
ness of presentation. (All our experiments in Section 4
strictly follow the TPC-D schema.) Base viewsV1, V2, and
V3 at the warehouse could be defined as projections over
S1.Lineitem , S2.Order , andS3.Customer as follows:

CREATE VIEW V1 AS
SELECT orderID,partID,qty,cost FROM S1.Lineitem

CREATE VIEW V2 AS
SELECT orderID,custID,date FROM S2.Order

CREATE VIEW V3 AS
SELECT custID,name,address FROM S3.Customer

Of course, selection and join operations may be used in base
view definitions as well. Derived viewV4 could be defined
to count the number of orders each customer has made in
1998:

CREATE VIEW V4 AS
SELECT custID, COUNT(*) FROM V2, V3
WHERE V2.custID = V3.custID AND
V2.date>=’1998-01-01’ AND V2.date<’1999-01-01’
GROUP BY custID 2

Three types of components comprise the WHIPS sys-
tem: the Extractors, the Integrator, and theWarehouse
Maintainer. As mentioned previously, WHIPS also relies
on a commercial relational DBMS to store and process
warehouse data. The WHIPS components, along with the

462

DBMS, are shown in Figure 1 (most figures appear at the
end of the paper). We discuss the components by walk-
ing through how warehouse data is maintained when source
data changes. EachExtractor component periodically de-
tectsdeltas(insertions, deletions, and/or updates) in source
data. One Extractor is used for each information source.
For instance, in Figure 1, the Extractor assigned toS1 de-
tects the changes to theLineitem table which resides in
S1. The Integrator component receives deltas detected by
the Extractors, and computes a consistent set of deltas to
the base views stored in the warehouse. The Integrator may
need to send queries back to the sources to compute base
view deltas. For details, see [14, 15]. TheWarehouse Main-
tainercomponent receives the base view deltas from the In-
tegrator and computes a consistent set of deltas to the de-
rived views. The Warehouse Maintainer then updates all of
the warehouse views based on the provided and computed
deltas. To compute the derived view deltas and update the
materialized views, the Warehouse Maintainer sends a se-
quence of Data Manipulation Language (DML) commands
to the DBMS. These DML commands include SQL queries
for computing the deltas, as well as modification statements
(e.g.,INSERT, DELETE, cursor updates) for updating the ma-
terialized views.

The remainder of the paper focuses on the Warehouse
Maintainer component. We refer readers to [8] and [15] for
extended discussions of the Extractors and the Integrator.

3 The Warehouse Maintainer
The Warehouse Maintainer is the component responsible for
initializing and maintaining the warehouse views. There are
many possible ways of representing the warehouse views
and performing incremental maintenance on them. In Sec-
tions 3.1 and 3.2, we identify specific important decision ar-
eas. For each decision area, we propose several alternatives
and analyze them qualitatively. Quantitative performance
results will be presented in Section 4. We have decided to
separate the performance results from the discussion of the
decision areas (rather than mixing them), because some of
the decision areas are interrelated and it is important to have
a complete overview of the issues before we delve into the
detailed performance analysis.

3.1 View Representation and Delta Installation

Views in WHIPS are defined using SQL SFWG statements
(for derived views) and SFW statements (for base views)
with bag semantics. There are two ways to represent a bag
of tuples in a view. One representation, which we call the
dup representation, simply keeps the duplicate tuples, as
shown in Table 1 for a small sample of data in viewV1
from Example 2.1. Another representation, which we call
thecnt representation, keeps one copy of each unique tu-
ple and stores the number of duplicates in a specialdupcnt
attribute, as in Table 2. Let us denote a viewV ’s dup repre-
sentation asV dup and itscnt representation asV cnt. Next,
we compare the two representations in terms of their storage
costs and implications for queries and view maintenance.

orderID partID qty cost

1 a 1 20
1 b 2 250
1 a 1 20

Table 1:V dup1 .

orderID partID qty cost dupcnt

1 a 1 20 2
1 b 2 250 1

Table 2:V cnt1 .

3.1.1 Storage Cost and Query Performance

Thecnt representation of a viewV has lower storage cost
if there are many duplicates inV and if the tuples ofV are
large enough that the storage overhead of having adupcnt
attribute is not significant. The reduction in storage achieved
by usingV cnt instead ofV dup may speed up selection, join,
and aggregation queries overV by reducing I/O. However,
projections may be slower when thecnt representation is
used. Consider the following simple operation of listing the
orderID ’s in V1:

SELECT orderID FROM V1

If we operate directly on thecnt representationV cnt1 (Ta-
ble 2), the answer to the above query will not remain in
thecnt representation. We need to group the tuples with
matchingorderID ’s and sum up theirdupcnt values:

SELECT orderID, SUM(dupcnt) AS dupcnt
FROM V cnt1 GROUP BY orderID

In general, whenever projection is used in a query, aggre-
gation may be necessary to produce an answer in thecnt
representation.

3.1.2 Deletion Installation

If V has no duplicates, then the deletions fromV , denoted
5V , can be installed using a singleDELETE statement. For
example, to install5V1 in our working example, we use:

DELETE FROM V1 WHERE (V1.orderID, V1.partID) IN
(SELECT orderID, partID FROM 5V1)

The above statement assumes that{orderID , partID} is a
key for V1. The WHERE clause can be modified to handle
keys with any number of attributes, where in the worst case,
all attributes of the view together form a key. Unfortunately,
whenV1 has duplicates and hence no key, the above state-
ment is incorrect because it may delete more tuples than in-
tended, as discussed in Example 1.1.

In general, care must be taken when installing5V in the
presence of duplicates. Under thedup representation, a cur-
sor on5V dup is required. For each tuplet in5V dup exam-
ined by the cursor, we delete one and only one tuple inV dup

that matchest. Doing so generally requires another cursor
onV dup. However, if the DBMS provides some mechanism
of restricting the number of rows processed by a statement
(such as allowing statements to reference row counts or tu-
ple ID’s), we can avoid the cursor onV dup.

Under thecnt representation, each deleted tuplet in
5V cnt results in either an update to or a deletion from
V cnt. If t.dupcnt is less than thedupcnt value of the tuple
in V cnt that matchest, we decrement the matchingV cnt

tuple’s dupcnt value by t.dupcnt . Otherwise, we delete
the matching tuple fromV cnt. This procedure can be im-
plemented with a cursor on5V cnt. Alternatively, the en-
tire 5V cnt can be processed in batch with oneUPDATE

463

statement and oneDELETE statement, but both statements
contain potentially expensive correlated subqueries. The
DELETE statement is illustrated below. TheUPDATE state-
ment is twice as long, with one correlated subquery in its
WHERE clause and one in itsSET clause. We omit the details
due to space constraints.
DELETE FROM V cnt

WHERE EXISTS (SELECT * FROM 5V cnt
WHERE 5V cnt.orderID = V cnt.orderID
AND 5V cnt.partID = V cnt.partID
AND 5V cnt.dupcnt >= V cnt.dupcnt)

We could eliminate theDELETE statement by using a row-
level trigger that automatically deletes any tuple inV with
dupcnt less than or equal to0. Under this approach, we
only need oneUPDATE statement to decrement thedupcnt
values of allV tuples with matching5V cnt tuples. The
trigger is fired for each updated tuple that satisfies the trigger
condition.

3.1.3 Insertion Installation

Under thedup representation, we can install the insertions
into V dup, denoted4V dup, using a single straightforward
SQL INSERT statement. Under thecnt representation, we
can install4V cnt with a singleINSERT statement only if
we know thatV never contains any duplicates. In general,
however, each tuplet in4V cnt results in either an update or
an insertion toV cnt. If there is a tuple inV cnt that matches
t, we increment the matchingV cnt tuple’sdupcnt value by
t.dupcnt . Otherwise, we insertt into V cnt. Again, this
procedure can be implemented with a cursor on4V cnt, or
we can process the entire4V cnt in batch with oneUPDATE
statement and oneINSERT statement, but again, both state-
ments contain potentially expensive correlated subqueries.

3.1.4 Discussion

Intuitively, for a warehouse view that never contains any
duplicates (i.e., it has a known key), thedup representa-
tion should outperform thecnt representation in all met-
rics (storage cost, query performance, and delta installa-
tion time) because thedup representation does not have the
overhead of onedupcnt attribute per tuple. On the other
hand, for a view with many duplicates, we would expect the
cnt representation to be preferable because it is more com-
pact. For WHIPS, we are interested in knowing, quantita-
tively, which representation is better as we vary the average
number of duplicates in a view. We also would like to quan-
tify the overhead of thecnt representation for views with
no duplicates.

Another issue we wish to investigate is the strategy for
delta installation. As discussed earlier in this section, delta
installation becomes much simpler if we know that the view
will not contain duplicates. LetKeyInstall denote the
method of installing deltas that exploits a lack of duplicates
(i.e., a known key), and letGenInstall denote the general
method that does not. It is easier for the Warehouse Main-
tainer component to support onlyGenInstall because it
works for all views with or without keys. However, ware-
house views frequently do have keys. For instance, dimen-
sion tables and fact tables, which are modeled as base views,

usually have keys. Summary tables often performGROUP-
BY operations, and theGROUP-BY attributes become the keys
of the summary tables. IfKeyInstall consistently out-
performsGenInstall for these common cases, the Ware-
house Maintainer should supportKeyInstall as well.

Finally, we also need to evaluate different implementa-
tions ofGenInstall under thecnt representation. As
discussed earlier,GenInstall under thecnt representa-
tion can be implemented with a cursor loop, with two SQL
statements, or with one SQL statement and a trigger. (Un-
der thedup representation,GenInstall must be imple-
mented with a cursor loop.) With a cursor loop or a row-
level trigger, we have better control over the execution of
the installation procedure, so we can optimize it by hand
according to our knowledge of the warehouse workload.
On the other hand, the SQL statements are optimized by
the DBMS, armed with a more sophisticated performance
model and statistics. Although traditional DBMS optimizers
were not designed originally for data warehousing, modern
optimizers have added considerable support for warehouse-
type data and queries [3]. It is interesting to determine
whether the SQL-based delta installation procedure can be
optimized adequately by the DBMS we are using. In Sec-
tion 4.1, we present answers to all of the questions discussed
above based on the experiments we have conducted.

3.2 Maintaining Aggregate Views

Given deltas for base views, the Warehouse Maintainer
needs to modify the derived views so that they remain con-
sistent with the base views. A simple approach is to re-
compute all of the derived views from the new contents of
the base views, as many existing warehousing systems do.
WHIPS, on the other hand, maintains the derived views in-
crementally for efficiency. The Warehouse Maintainer first
computes the deltas for the derived views using a predefined
set of queries calledmaintenance expressions, and then it in-
stalls these deltas into the derived views. The maintenance
expressions of views defined using SQL SFW statements
(without subqueries) are well studied, e.g., [5], and we do
not discuss them here. For views defined using SFWG state-
ments (i.e., views withGROUP-BY and aggregation), we in-
troduce and contrast four different maintenance algorithms
through a comprehensive example.

In this example, let us suppose that viewV1 contains the
tuples shown in Table 3. A viewParts is defined overV1
to group theV1 tuples bypartID . The revenue of each
part stored inParts is computed fromV1 by summing the
products ofqty andcost for each order for that particular
part. Parts also records in atuplecnt attribute the number
of V1 tuples that are used to derive eachParts tuple. The
SQL definition ofParts is as follows:

CREATE VIEW Parts AS
SELECT partID, SUM(qty*price) AS revenue,

COUNT(*) AS tuplecnt
FROM V1 GROUP BY partID

The tuples inParts are shown in Table 4. We use thedup
representation forParts sinceParts has a key (partID)

464

orderID partID qty cost

1 a 1 20
1 b 2 250
2 a 1 20
3 c 1 500

Table 3:V1.

partID revenue tuplecnt

a 40 2
b 500 1
c 500 1

Table 4:Parts .

orderID partID qty cost

1 a 2 20
4 c 1 500
4 d 1 30

Table 5:4V1.

orderID partID qty cost

1 a 1 20
1 b 2 250

Table 6:5V1.

and hence contains no duplicates. Note that thetuplecnt at-
tribute differs from thedupcnt attribute used under thecnt
representation sincetuplecnt does not reflect the number of
duplicates inParts . Nevertheless, likedupcnt , tuplecnt
helps incremental view maintenance by recording the num-
ber of base view tuples that contribute to each derived view
tuple: Thetuplecnt attribute is used to determine when a
Parts tuple t should be deleted because all of theV1 tu-
ples that derivet have been deleted fromV1. In fact, had
tuplecnt not been included inParts ’s definition, WHIPS
would automatically modify the view definition to include
tuplecnt so thatParts could be maintained incrementally.

Now suppose that the tuples shown in Table 5 are to
be inserted intoV1, and the ones shown in Table 6 are
to be deleted. (Note that tuples〈1, a, 1, 20〉 in 5V1 and
〈1, a, 2, 20〉 in 4V1 together represent an update in which
theqty of a parts purchased in the first order (orderID = 1)
is increased from 1 to 2.) Next we illustrate how we can
maintainParts given the deltas5V1 and4V1, using four
different algorithms.

3.2.1 Full Recomputation

Full recomputation (FullRecomp) is conceptually simple
and easy to implement. First, we install the base view deltas
5V1 and4V1 into V1. Then, we delete the entire old con-
tents ofParts and compute its new contents fromV1.

3.2.2 Summary-Delta With Cursor-Based Installation

The original summary-deltaalgorithm (SDcursor for
short) for incremental maintenance of aggregate views [12]
has acompute phaseand a cursor-basedinstall phase. In
the compute phase, the net effect of4V1 and5V1 onParts
is captured in asummary-deltatable, denotedPartssd and
computed as follows:

SELECT partID, SUM(revenue) AS revenue,
SUM(tuplecnt) AS tuplecnt FROM

((SELECT partID, SUM(qty*price) AS revenue,
COUNT(*) AS tuplecnt FROM 4V1 GROUP BY partID)
UNION ALL
(SELECT partID, -SUM(qty*price) AS revenue,
-COUNT(*) AS tuplecnt FROM 5V1 GROUP BY partID))

GROUP BY partID

The summary-delta applies theGROUP-BY and aggregation
operations specified in the definition ofParts to4V1 and
5V1 and combines the results. Note that the aggregate val-
ues computed from5V1 are negated to reflect the effects
of deletions on theSUM andCOUNT functions. Given the
4V1 and5V1 shown in Tables 5 and 6, the summary-delta
Partssd is shown in Table 7.

In the install phase,SDcursor instantiates a cursor to
loop over the tuples in the summary-deltaPartssd. For each
Partssd tuple,SDcursor applies the appropriate change

to Parts . For instance, tuple〈a, 20, 0〉 affectsParts by in-
crementing thea tuple’s revenue by 20 and tuplecnt by
0. This change reflects the effect of updating theqty of a
parts in the first order (see5V1 and4V1). The tuplecnt
is unchanged because the update does not change the num-
ber of V1 tuples that derive thea tuple in Parts . Tuple
〈b,−500,−1〉 in Partssd affectsParts by decrementing
the b tuple’s revenue by 500 and tuplecnt by 1, which
reflects the effect of deleting〈1, b, 2, 250〉 from V1 (see
5V1). Moreover, theb tuple is then deleted fromParts ,
since itstuplecnt becomes zero after it is decremented. Tu-
ple 〈c, 500, 1〉 increments thec tuple’srevenue by 500 and
tuplecnt by 1, reflecting the effect of inserting〈4, c, 1, 500〉
into V1 (see4V1). Finally, tuple 〈d, 30, 1〉 results in an
insertion, since there is no existing tuple with the same
partID .

3.2.3 Summary-Delta With Batch Installation

The summary-delta algorithm with batch installation
(SDbatch) is a variation we propose in this paper on
the original summary-delta algorithm from [12] described
above. The idea is to do more processing in the compute
phase in order to speed up the install phase, since views
must be locked during installation. In the compute phase
of SDbatch, we first compute the summary-deltaPartssd
as before. FromPartssd, we then compute the deletions
5Parts and insertions4Parts to be applied toParts .
5Parts contains all theParts tuples that are affected by
Partssd:

SELECT * FROM Parts WHERE partID IN
(SELECT partID FROM PartsSD)

4Parts is the result of applyingPartssd to5Parts :
SELECT partID, SUM(revenue) AS revenue,

SUM(tuplecnt) AS tuplecnt
FROM ((SELECT * FROM 5Parts) UNION ALL

(SELECT * FROM Partssd))
GROUP BY partID HAVING SUM(tuplecnt) > 0

Notice that we filter out those groups withtuplecnt less than
one because they no longer contain any tuples afterPartssd
is applied. Given thePartssd shown in Table 7, the resulting
5Parts and4Parts are shown in Tables 8 and 9.

In the install phase ofSDbatch, we first apply5Parts ,
and then4Parts , to Parts . Because of the way we com-
pute5Parts in the compute phase, every5Parts tuple al-
ways results in a true deletion fromParts , instead of an
update that decrements therevenue andtuplecnt attributes
of an existingParts tuple. SinceParts is an aggregate view
and hence contains no duplicates, the entire5Parts can be
applied in batch usingKeyInstall with a simpleDELETE
(Section 3.1.2). Once5Parts has been applied toParts ,
every4Parts tuple always results in a true insertion into
Parts , instead of an update that increments therevenue and

465

partID revenue tuplecnt

a 20 0
b −500 −1
c 500 1
d 30 1

Table 7:Partssd.

partID revenue tuplecnt

a 20 1
b 500 1
c 500 1

Table 8:5Parts .

partID revenue tuplecnt

a 40 1
c 1000 2
d 30 1

Table 9:4Parts .

tuplecnt attributes of an existing tuple. Therefore,4Parts
can be applied in batch usingKeyInstall with a simple
INSERT.

3.2.4 Summary-Delta With Overwrite Installation

Both SDcursor andSDbatch updateParts in place,
which requires identifying theParts tuples affected
by the Partssd tuples. To avoid this potentially ex-
pensive operation, we introduce a new summary-delta
algorithm with overwrite installation (SDoverwrite).
SDoverwrite completely replaces the old contents of
Parts with the new contents, just likeFullRecomp.
However, SDoverwrite differs from FullRecomp
in that SDoverwrite does not recomputeParts from
scratch; instead, it uses the summary-deltaPartssd and the
old contents ofParts to compute the newParts . The SQL
statement used here is similar to the one used to compute
4Parts in SDbatch:

SELECT partID, SUM(revenue) AS revenue,
SUM(tuplecnt) AS tuplecnt

FROM ((SELECT * FROM Parts) UNION ALL
(SELECT * FROM Partssd))

GROUP BY partID HAVING SUM(tuplecnt) > 0

One technicality remains: there is no easy way to replace
the contents ofParts with the results of the aboveSELECT
statement since the statement itself referencesParts . To
avoid unnecessary copying, we store the results of the above
query in another table, and then designate that table as the
newParts . Therefore, compared to the other three algo-
rithms, SDoverwrite requires additional space roughly
the size ofParts .

3.2.5 Discussion
Although the example in this section only shows how the
various algorithms can be used to maintain a specific aggre-
gate view, it is not hard to extend the ideas to handle views
with arbitrary combinations ofSUM, COUNT, andAVG aggre-
gate functions. For views withMAX or MIN, SDcursor,
SDbatch, andSDoverwrite are not applicable in gen-
eral, since we cannot perform true incremental maintenance
when a base tuple providing theMAX or MIN value for its
group is deleted.

To summarize, we have presented four algorithms for
maintaining SFWG views.FullRecomp recomputes the
entire view from scratch. Intuitively, if the base data is
large,FullRecomp can be very expensive.SDcursor,
SDbatch, andSDoverwrite avoid recomputation by
applying only the incremental changes captured in a
summary-delta table. These three algorithms differ in the
ways they apply the summary-delta to the view.

In WHIPS, we are interested in knowing which algorithm
is best under different settings. We also wish to compare
how long the different algorithms must lock the view for

update. This measure is important because once a view
is locked for update, it generally becomes inaccessible for
OLAP queries.FullRecomp needs to lock while it is re-
generating the view.SDcursor andSDbatch only need
to lock the view during their install phases.SDoverwrite
does not lock the view at all, because it computes the new
contents of the view in a separate table. In fact, with
an additional table, we can eliminate the locking time of
FullRecomp, SDcursor, SDbatch, or any mainte-
nance algorithm in general, since we can work on a copy
of the view while leaving the original accessible to queries.
In this case, it is useful to know how much locking time
we are saving in order to justify the additional storage cost.
In Section 4.2, we experimentally compare the performance
and locking time of the four algorithms.

So far, we have focused on how WHIPS maintains a sin-
gle view. In practice, WHIPS maintains a set of views orga-
nized in a VDAG (Section 2). When a viewV is modified,
other views defined overV need to be modified as well. In
order to maintain the other views incrementally, we must be
able to capture the incremental changes made toV . Among
our four algorithms for aggregate view maintenance, only
SDbatch explicitly computes the incremental changes to
V as delta tables5V and4V . Although the summary-
deltaVsd in a way also captures the incremental changes to
V , usingVsd to maintain a higher-level view is much harder
than using5V and4V , especially if the higher-level view
is not an aggregate view. For this reason, we might prefer
SDbatch as long as it is not significantly slower than the
other algorithms.

4 Experiments
Section 3 introduced several areas in which we must make
critical decisions on warehouse view representation and
maintenance, and provided some qualitative comparisons
of the alternatives. For each decision area, we now quan-
titatively compare the performance of various alternatives
through experiments.

The base views used in the experiments are from
TPC-D [13], often including fact tablesOrder and
Lineitem , which we callO andL for short. The derived
views vary from one experiment to the next. Contents of
the base views and their deltas are generated by the stan-
darddbgen program supplied with the TPC-D benchmark.
A TPC-D scale factor of1.0means that the entire warehouse
is about1GB in size, withL andO together taking up about
900MB. The commercial DBMS we use is running on a ded-
icated Windows NT machine with a Pentium II processor.1

The database buffer size is set at6.4MB. We have chosen

1We are not permitted to name the commercial DBMS we have used
(nor the second one we are using to corroborate some of our results), but
both are state-of-the-art products from major relational DBMS vendors.

466

a small database buffer in combination with relatively small
TPC-D scale factors in order to limit the duration and the
storage requirement of repeated experiments. To study scal-
ability issues we have explored wide ranges of buffer sizes
and scale factors for some of our experiments, and found
the performance trends to be consistent with the results pre-
sented. An example will be shown in Section 4.2.1.

Recall that the WHIPS Warehouse Maintainer sends a
sequence of DML statements to the DBMS to query and
update views in the data warehouse. In the experiments,
we measure the wall-clock time required for the DBMS to
run these DML commands, which represents the bulk of
the time spent maintaining the warehouse. We have specifi-
cally avoided hand-tuning the DBMS optimizer for our ex-
periments because improvements are very sensitive to the
workload and to the expertise of the person doing the tun-
ing. We believe it is more instructive to study performance
with an “out of the box” DBMS (system parameters at their
default values), under the assumption that all of the results
we present could probably be improved somewhat in some
cases by careful tuning.

4.1 View Representation and Delta Installation

In Section 3.1.4 we identified three decisions that need to
be made regarding view representation and delta installa-
tion: (1) whether to usedup or cnt as the view represen-
tation; (2) whether to useGenInstall or KeyInstall
to install deltas when the view has a key; (3) whether to
use a cursor loop, SQL statements, or a SQL statement and
a trigger to implementGenInstall under thecnt repre-
sentation. In this section, we present performance results
that help us make the best decisions for all three areas. The
results are presented in reverse order, because we need to
choose the bestGenInstall implementation forcnt (de-
cision area 3) before we can comparecnt with dup (deci-
sion area 1).

4.1.1 GenInstall Under Cnt: Cursor vs. SQL

In the first experiment, we compare the time to install deltas
for base viewLcnt (view L using thecnt representation)
using a cursor-based implementation versus a SQL-based
implementation forGenInstall. It would be interesting to
compare the performance of a trigger-based implementation
as well, but unfortunately the DBMS we are using does not
allow a row-level trigger to modify the table whose update
caused the trigger to fire.

For this experiment, a TPC-D scale factor of0.1 is
used. Normally,L has a key{orderkey , linenumber}
and therefore contains no duplicates. We artificially in-
troduce duplicates intoL so that on average eachL tu-
ple has two other duplicates (i.e.,L has a multiplicity
of 3). We also vary the update ratio ofL from 1% to
10%. An update ratio ofk% implies |5L| = |4L| =
(k/100) · |L|, i.e., (k/100) · |L| tuples are deleted from
L and (k/100) · |L| tuples are inserted. Finally, we as-
sumeLcnt has an index on{orderkey , linenumber}, since
{orderkey , linenumber} functionally determine all other
13 attributes ofL. In general, if there are no nontrivial func-

tional dependencies to exploit, we would have to equate all
15 attributes ofL instead of onlyorderkey andlinenumber
when matchingL tuples with5L and4L tuples. We per-
formed experiments where no functional dependencies were
exploited, and our results (not shown here) reveal that in this
case all implementations ofGenInstall become slower
by almost an order of magnitude. Nevertheless, the overall
performance trends remain identical to the results presented
in this section.

Fig. 2 plots the time it takes for the twoGenInstall
implementations to process5L and4L. Recall from Sec-
tion 3.1 that cursor-basedGenInstall processes a delta
table one tuple at a time, similar to a nested-loop join be-
tween the delta and the view with the delta being the outer
table. As a result, the plots of cursor-basedGenInstall
for 5L and4L are linear in the size of5L and4L re-
spectively.

SQL-basedGenInstall is optimized by the DBMS.
To ensure that the optimizer has access to the most up-
to-date statistics, we explicitly ask the DBMS to gather
statistics afterL, 5L, and4L are populated (and the
time spent in gathering statistics is not counted in the delta
installation time). If the optimizer were perfect, SQL-
basedGenInstall would never perform any worse than
cursor-basedGenInstall, because the cursor-based plan
is but one of the many viable ways to execute SQL-based
GenInstall. Unfortunately, we see in Fig. 2 that SQL-
basedGenInstall is consistently slower than cursor-
basedGenInstall for deletion installation. This phe-
nomenon illustrates the difficulty of optimizingDELETE and
UPDATE statements with correlated subqueries, such as the
secondDELETE statement shown in Section 3.1.2. The way
these statements are structured in SQL leads naturally to an
execution plan that scans the entire view looking for tuples
to delete or update. However, in an incrementally main-
tained warehouse, deltas are generally much smaller than
the view itself, so a better plan is to scan the deltas and delete
or update matching tuples in the view, assuming the view is
indexed. Evidently, the state-of-the-art commercial DBMS
used by WHIPS missed this plan, which explains why the
plots for SQL-basedGenInstall go nowhere near the ori-
gin. We expect this behavior may be typical of many com-
mercial DBMS’s today, and we have confirmed this expec-
tation by replicating some of our experiments on another
major relational DBMS.

On the other hand, the DBMS is more adept at opti-
mizing SQL-basedGenInstall for insertions, presum-
ably becauseINSERT can be optimized similarly to regular
SELECT queries and more easily thanDELETE. As shown in
Fig. 2, SQL-basedGenInstall is faster than cursor-based
GenInstall for insertion installation when the update ra-
tio is higher than1%. To summarize, at TPC-D scale factor
0.1 and update ratio between1% and10% on the DBMS we
are using, cursor-basedGenInstall is preferred for dele-
tion installation and SQL-basedGenInstall is preferred
for insertion installation under thecnt representation.

In the next experiment, we investigate how the size of

467

the views might affect this decision. We fix the size of
5L and4L at about2.6MB each while varying the TPC-
D scale factor from0.04 to 0.36. The update ratio thus
varies from9% to 1%. The results in Fig. 3 indicate that the
running time of cursor-basedGenInstall is insensitive
to the change in|L|, while the running time of SQL-based
GenInstall grows linearly with|L|. Thus, we should use
cursor-basedGenInstall to process both deletions and in-
sertions for large views with low update ratios.

4.1.2 Delta Installation:KeyInstall vs.GenInstall

In the following experiment, we seek to quantify the
performance benefits of usingKeyInstall instead of
GenInstall when the view has a key and hence no du-
plicates. In this case, we are only interested in thedup
representation sincedup should always be used instead of
cnt when the view contains no duplicates (Section 3.1.4).
Furthermore, under thedup representation, insertion instal-
lation requires one simpleINSERT statement, which is the
same for bothKeyInstall andGenInstall. There-
fore, our task reduces to comparingKeyInstall and
GenInstall for deletion installation under thedup rep-
resentation.

In Fig. 4, we plot the time it takes forKeyInstall and
GenInstall to install5L in base viewL, which contains
no duplicates and has an index on its key attributes. We fix
the TPC-D scale factor at0.1 and vary the update ratio from
1% to 10%. At first glance, the results may seem counter-
intuitive: KeyInstall is slower thanGenInstall when
the update ratio is below5%. However, recall from Sec-
tion 3.1.2 thatKeyInstall uses a simpleDELETE to install
5L, while GenInstall requires a cursor loop. Clearly,
the DBMS has failed again to take advantage of the small
5L and the index onL when optimizing theDELETE state-
ment. Given this limitation of the DBMS optimizer, we
cannot justify implementingKeyInstall in addition to
GenInstall in the Warehouse Maintainer from a perfor-
mance perspective.

4.1.3 View Representation:Dup vs.Cnt

We now evaluate the performance ofdup and cnt rep-
resentations in the case where the view may contain du-
plicates. In Fig. 5, we compare the the time it takes
to install 5L and4L underdup and cnt representa-
tions. Again, the TPC-D scale factor is fixed at0.1 and
the update ratio varies from1% to 10%. The multiplic-
ity of L in this first experiment is close to 1, i.e.,L con-
tains almost no duplicates. We create indexes for both
Ldup andLcnt on {orderkey , linenumber}, even though
{orderkey , linenumber} is not a key forLdup because
of potential duplicates. For thecnt representation, we
use cursor-basedGenInstall to install5Lcnt and SQL-
basedGenInstall to install4Lcnt, as decided in Sec-
tion 4.1.1 for scale factor0.1. The results plotted in Fig. 5
indicate that delta installation (insertions and deletions com-
bined) under thecnt representation is about twice as expen-
sive as delta installation under thedup representation.

dup representationcnt representation

5 (deletion) 1.94ms / tuple 2.49ms
multiplicity

/ tuple
4 (insertion) 0.57ms / tuple 4.48ms

multiplicity
/ tuple

Table 10:Per-tuple delta installation costs.

In the next experiment, we increase the multiplicity ofL
from 1 to 3, thereby tripling the size ofLdup, 5Ldup, and
4Ldup. On the other hand, the increase in multiplicity has
no effect on the size ofLcnt,5Lcnt, and4Lcnt. As Fig. 6
shows, installing5Ldup becomes more than twice as slow
as installing5Lcnt, but installing4Ldup is still three times
faster than installing4Lcnt. Overall, delta installation un-
der thedup representation is slightly slower than under the
cnt representation. By comparing Fig. 5 and 6, we also see
that the delta installation time under thedup representation
increases proportionately with multiplicity, while the time
undercnt remains the same.

To study the effect of view size on delta installation time,
we conduct another experiment in which we fix the size of
the deltas and vary the TPC-D scale factor from0.04 to0.36.
Multiplicity of L is set at3. For thecnt representation, we
use the bestGenInstall implementation (either cursor-
based or SQL-based, depending on the scale factor; recall
Section 4.1.1). The results are shown in Fig. 7. Notice that
all four plots become nearly flat at large scale factors: when
the view is sufficiently large, the cost of installing a delta
tuple into the view approaches a constant for each delta type
and each view representation. Thus, measured once, these
per-tuple costs can be used to estimate the delta installation
time in a large data warehouse. Table 10 shows the per-tuple
installation costs measured under our experimental settings.

All experiments so far have focused on delta installation.
In the next experiment, we compare the time to compute
deltas for derived views underdup and cnt representa-
tions. We define one derived viewLO1 as an equijoin be-
tweenL andO, with a total of24 attributes. Another derived
viewLO2 is defined as the same equijoin followed by a pro-
jection which leaves only two attributes. In Fig. 8, we plot
the the time it takes to compute5LO1 and5LO2 given
5L under bothdup andcnt representations. We choose
an update ratio of5% and increase the multiplicity ofL from
1 to 5. When the multiplicity ofL is close to1 (i.e.,L con-
tains almost no duplicates),dup andcnt offer comparable
performance for computing derived view deltas. The over-
head of the extradupcnt attribute and the extra aggregation
required for doing projection under thecnt representation
(discussed in Section 3.1.1) turns out to be insignificant in
this case. As we increase the multiplicity, computing de-
rived view deltas underdup becomes progressively slower
thancnt becausecnt is aboutm times more compact than
dup, wherem is the multiplicity.

To summarize, thecnt representation scales well with
increasing multiplicity and carries little overhead for com-
puting derived view deltas. However, in the common case
where the average number of duplicates is low (e.g., multi-
plicity is less than3), thedup representation is preferable
because it is faster in installing deltas, especially insertions,
which are common in data warehouses.

468

4.2 Maintaining Aggregate Views

In Section 3.2 we presented aggregate view maintenance al-
gorithmsFullRecomp andSDcursor, as well as two
new variationsSDbatch andSDoverwrite. This sec-
tion compares their performance in terms of the total time
required for maintaining aggregate views. We also compare
the install phase lengths ofSDcursor andSDbatch. Re-
call from Section 3.2.5 that we want to minimize the length
of the install phase in a data warehouse because during this
phase the view is locked for update.

We consider two types of aggregate views. Afixed-ratio
aggregate over a base viewV groupsV intoα · |V | groups,
whereα is a fixedaggregation ratio. The size of a fixed-
ratio aggregate increases with the size of the base view. On
the other hand, afixed-sizeaggregate over a base viewV
groupsV into a small and fixed number of groups. We will
see that the four aggregate maintenance algorithms behave
differently for these two types of aggregates.

4.2.1 Maintaining Fixed-Ratio Aggregates

In the first experiment, we use a fixed-ratio aggregateVlarge
which groups the base viewL by orderkey into approxi-
mately0.25 · |L| groups. First, we study the impact of the
update ratio on the maintenance time ofVlarge by fixing the
TPC-D scale factor at0.1 and varying the update ratio from
1% to 10%. Fig. 9 shows that the update ratio has no ef-
fect onFullRecomp at all. However, the total mainte-
nance time increases (gradually) with the update ratio for
the three summary-delta-based algorithms. Among them,
SDcursor is most sensitive to the change in update ratio,
andSDoverwrite is least sensitive. Fig. 9 also shows
thatFullRecomp is far more expensive than the others.
SDbatch is the fastest when the update ratio is small,
whileSDoverwrite becomes the fastest when the update
ratio is higher than10%. In Fig. 10, we further compare
SDcursor andSDbatch in terms of the install phase.
By doing more work in its compute phase,SDbatch has
a much shorter install phase thanSDcursor. This shorter
install phase gives our new algorithmSDbatch an edge in
applications where data availability is important.

Fig. 11 and 12 show the results of repeating the same ex-
periment with the size of the database buffer set to240MB
instead of6.4MB (the default in our experiments). Despite
the large disparity in buffer size, the performance trends re-
vealed by Fig. 11 and 12 are remarkably similar to those re-
vealed by Fig. 9 and 10. We have repeated this experiment
with a number of different buffer sizes, and found that even
though performance is improved by extra memory (though
not linearly), the relative performance of the schemes re-
mains the same.

To study the impact of base view size on aggregate
maintenance, we fix the size of5L and4L and vary
the scale factor ofL from 0.04 to 0.36. Fig. 13 shows
that the performance ofFullRecomp deteriorates dra-
matically as|L| increases, becauseFullRecomp is re-
computing the aggregate over a largerL. Although
SDoverwrite and SDbatch are not affected by|L|

as much asFullRecomp, their running time still in-
creases because|Vlarge | grows with|L|. On the other hand,
SDcursor is almost unaffected by the increase in|L|. The
reason is thatSDcursor uses an index onVlarge to find the
matchingVlarge tuples for each tuple in the summary-delta
table, and the lookup time of the index remains constant
for the range of|Vlarge | in this experiment. Fig. 13 also
shows thatFullRecomp is much slower than the other
algorithms.SDbatch is the fastest algorithm for smaller
base views, whileSDcursor is the fastest for larger base
views.

Fig. 14 compares the time of the install phase for
SDcursor and SDbatch. The install phase of
SDcursor is not affected by the size of the base view,
for the same reason discussed above. The install phase of
SDbatch takes much less time than that ofSDcursor
for relatively small base views, but it increases as the base
view becomes larger. Once again, the explanation lies with
the limitation of the DBMS optimizer. When executing the
SQL DELETE statement to install5Vlarge , the DBMS fails
to make use of the index onVlarge ; instead, it scansVlarge
looking for tuples to delete, which requires time propor-
tional to|Vlarge |, or 0.25 · |L|.
4.2.2 Maintaining Fixed-Size Aggregates

We now compare the performance of the four algorithms for
a fixed-size aggregate viewVsmall , which groups the base
viewL by linenumber into exactly seven groups, regardless
of the size ofL. Fig. 15 shows the impact of the update ra-
tio on the maintenance ofVsmall . Again, the performance of
FullRecomp does not change much as the update ratio in-
creases. Plots of the other three algorithms, although some-
what noisy due to inconsistent DBMS behavior on such a
small table, show that the total maintenance time increases
at about the same rate for all three algorithms. The reason
is that the time it takes to compute the summary-delta table
(which is used by all three algorithms) increases with the
update ratio. On the other hand, the size of the summary-
delta is usually fixed for a small fixed-size aggregate such as
Vsmall , because any base view delta of reasonable size will
likely affect all groups in the aggregate. The type of work af-
ter computing the summary-delta varies from one algorithm
to another, but for each algorithm, the amount of work de-
pends only on the size of the aggregate and the size of the
summary-delta, which are both fixed in this case. Fig. 16
further indicates thatSDbatch has a shorter install phase
thanSDcursor, and neither is affected by the update ra-
tio becauseVsmall is a fixed-size aggregate. In this case the
install phase does not take a significant portion of the total
maintenance time, but as we have discussed, the length of
the install phase is still an important measure of warehouse
availability.

Finally, Fig. 17 and 18 plot the total maintenance time
and installation time ofVsmall respectively as we fix the size
of the base view deltas and vary the size of the base view.
We see in Fig. 17 thatFullRecomp becomes dramatically
slower as the base view becomes larger. However, the other
three algorithms are not affected, again because the size of

469

fixed-ratio aggregate fixed-size aggregate
base view delta size base view size base view delta size base view size

FullRecomp 0 3 0 3

SDoverwrite 1 2 1 0

SDbatch 2 1 1 0

SDcursor 3 0 1 0

Table 11:Sensitivity of aggregate view maintenance algorithms.

the aggregate and the size of the summary-delta remain con-
stant despite the increasing base view size. Fig. 18 also
shows that the install phase ofSDcursor andSDbatch
is not affected by the increasing base view size. Further-
more,SDbatch has a faster install phase thanSDcursor.

4.2.3 Summary

Based on our experiments, we learn that the aggregate main-
tenance algorithms behave differently on different types of
aggregate views. In addition, two other factors—the size
of the base view and the size of the base view deltas—also
affect the performance of aggregate view maintenance, and
different maintenance algorithms react differently to these
factors. Table 11 summarizes the sensitivity of each algo-
rithm to various factors using a scale of0 (insensitive) to
3 (very sensitive). In conclusion, the following guidelines
may be used to choose an aggregate view maintenance al-
gorithm for a given scenario:

• Algorithms based on summary-delta tables
(SDbatch, SDcursor, and SDoverwrite)
are much faster thanFullRecomp, especially for
relatively large base views.
• For fixed-ratio aggregates,SDcursor is preferred

for large base views with small deltas, while
SDoverwrite is preferred for small base views with
large deltas.SDbatch is a compromise between the
two.
• For fixed-size aggregates, all three algorithms based on

summary-delta tables perform equally well.
• SDbatch generally has a shorter install phase than
SDcursor. However, in the case of fixed-ratio ag-
gregates this advantage ofSDbatch could diminish
as the size of the base view increases if the DBMS is
unable to optimizeDELETE statements effectively.

5 Related Work
There has been a significant amount of research devoted to
view maintenance; see [6] for a survey. However, there has
been little coverage of the important details of view main-
tenance that are the focus of this paper. For instance, ref-
erence [9] assumes there is anInst operation for installing
deltas into a view, but does not cover the details on how to
implementInst. Reference [12] proposes the summary-delta
algorithm for aggregate maintenance, but does not consider
the various alternatives for applying the summary delta to
the aggregate view. In this paper, we have presented three
possible implementations of the view maintenance proce-
dure, and evaluated their performance through experiments.

Reference [7] assumes that materialized views use the
cnt representation. On the other hand, reference [5] as-
sumes thedup representation. To our knowledge, our paper

is the first to investigate in detail the pros and cons of the
two representations for view maintenance, and to present
supporting experiments.

We also briefly described the WHIPS system. Although
significant research has been devoted to both view mainte-
nance and data warehousing, only a few systems focus on
incremental view maintenance the way WHIPS does. The
extended version of this paper [10] discusses in detail how
WHIPS relates to the other systems.

As mentioned in Section 1, incremental warehouse main-
tenance has also found its way into commercial systems,
such as the Red Brick database loader [4], Oracle material-
ized views [1], and DB2 automatic summary tables [2]. The
results in this paper should be especially useful to the ven-
dors for improving the performance of these systems, since
we have conducted all of our experiments on a commercial
DBMS as well.

6 Conclusion
This paper has addressed performance issues in incremen-
tally maintained data warehouses, with our own WHIPS
prototype serving as a framework for experimenting with
a variety of techniques for efficient view maintenance. We
identified several critical data representation and algorith-
mic decisions, and proposed guidelines for making the right
decisions in different scenarios, supported by our experi-
mental results. From the results of our experiments, we
can see that making the right decision requires considerable
analysis and tuning, because the optimal strategy often de-
pends on many factors such as the size of views, the size of
deltas, and the average number of duplicates. Ideally, some
of the decisions can and should be made by the DBMS op-
timizer, since it has access to most relevant statistics. How-
ever, because of current limitations of DBMS optimizers,
many decisions still need to be made by an external agent,
such as the Warehouse Maintainer in WHIPS or a human
warehouse administrator. As DBMS vendors continue to in-
troduce more data warehousing features, we hope that view
maintenance, especially delta installation, will receive an in-
creasing level of support.

Acknowledgements
We are grateful to past WHIPS project members Reza Be-
hforooz, Himanshu Gupta, Joachim Hammer, Janet Wiener,
and Yue Zhuge, and to all of our colleagues in the Stanford
Database Group who have contributed to WHIPS.

470

Extractor

Maintainer
Warehouse

S2

Extractor

S3

Extractor

S1

RDBMS

Integrator

Fig. 1: WHIPS components.

SQL/4L
SQL/5L

Cursor/4L
Cursor/5L

Scale = 0.1; multiplicity = 3

Update %

T
im

e
(s

ec
)

10987654321

350

300

250

200

150

100

50

0

Fig. 2:GenInstall undercnt.

SQL/4L
SQL/5L

Cursor/4L
Cursor/5L

Update %� scale = 0.36; multiplicity = 3

Scale factor

T
im

e
(s

ec
)

0.360.280.20.120.04

400

350

300

250

200

150

100

50

0

Fig. 3:GenInstall undercnt.

KeyInstall/5L
GenInstall/5L

Scale = 0.1; no duplicates

Update %

T
im

e
(s

ec
)

10987654321

140

120

100

80

60

40

20

0

Fig. 4:KeyInstall vs.GenInstall.

Cnt/4L
Cnt/5L
Dup/4L
Dup/5L

Scale = 0.1; multiplicity = 1

Update %

T
im

e
(s

ec
)

10987654321

250

200

150

100

50

0

Fig. 5:Dup vs.cnt for delta installation.

Cnt/4L
Cnt/5L
Dup/4L
Dup/5L

Scale = 0.1; multiplicity = 3

Update %

T
im

e
(s

ec
)

10987654321

400

350

300

250

200

150

100

50

0

Fig. 6:Dup vs.cnt for delta installation.

References
[1] R. G. Bello, K. Dias, A. Downing, J. Feenan, W. D. Norcott,

H. Sun, A. Witkowski, and M. Ziauddin. Materialized views
in Oracle. InProc. of the 1998 Intl. Conf. on Very Large Data
Bases, pages 659–664, August 1998.

[2] S. Brobst and D. Sagar. The new, fully loaded, optimizer.
DB2 Magazine, 4(3):23–29, September 1999.

[3] S. Chaudhuri and U. Dayal. An overview of data warehous-
ing and OLAP technology.SIGMOD Record, 26(1):65–74,
March 1997.

[4] P. M. Fernandez and D. A. Schneider. The ins and outs (and
everthing in between) of data warehousing. InProc. of the
1996 ACM SIGMOD Intl. Conf. on Management of Data,
page 541, June 1996.

[5] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. InProc. of the 1995 ACM SIGMOD Intl.
Conf. on Management of Data, pages 328–339, May 1995.

[6] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques, and applications.IEEE Data
Engineering Bulletin, 18(2):3–18, June 1995.

[7] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. InProc. of the 1993 ACM SIG-
MOD Intl. Conf. on Management of Data, pages 157–166,
May 1993.

[8] W. J. Labio and H. Garcia-Molina. Efficient snapshot differ-
ential algorithms for data warehousing. InProc. of the 1996
Intl. Conf. on Very Large Data Bases, pages 63–74, Septem-
ber 1996.

[9] W. J. Labio, R. Yerneni, and H. Garcia-Molina. Shrinking
the warehouse update window. InProc. of the 1999 ACM

SIGMOD Intl. Conf. on Management of Data, pages 383–
394, June 1999.

[10] W.J. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom.
Performance issues in incremental warehouse maintenance.
Technical report, Computer Science Department, Stanford
University, 1999.
www-db.stanford.edu/pub/papers/whips-wm.ps.

[11] D. Lomet and J. Widom, editors.Special Issue on Material-
ized Views and Data Warehousing, IEEE Data Engineering
Bulletin,18(2), June 1995.

[12] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of
data cubes and summary tables in a warehouse. InProc. of
the 1997 ACM SIGMOD Intl. Conf. on Management of Data,
pages 100–111, May 1997.

[13] Transaction Processing Performance Council.TPC-D Bench-
mark Specification, Version 1.2, 1996.www.tpc.org.

[14] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-
Molina, and J. Widom. A system prototype for warehouse
view maintenance. InProc. of the 1996 ACM Workshop on
Materialized Views: Techniques and Applications, pages 26–
33, June 1996.

[15] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View
maintenance in a warehousing environment. InProc. of the
1995 ACM SIGMOD Intl. Conf. on Management of Data,
pages 316–327, May 1995.

471

Cnt/4L
Cnt/5L
Dup/4L
Dup/5L

Update %� scale = 0.36; multiplicity = 3

Scale factor

T
im

e
(s

ec
)

0.360.280.20.120.04

200

150

100

50

0

Fig. 7:Dup vs.cnt for delta installation.

Cnt/5LO2

Cnt/5LO1

Dup/5LO2

Dup/5LO1

Scale = 0.1; update % = 5

Multiplicity

T
im

e
(s

ec
)

54.543.532.521.51

80

70

60

50

40

30

20

10

0

Fig. 8:Dup vs.cnt for delta computation.

SDcursor

SDbatch

SDoverwrite

FullRecomp

Scale = 0.1

Update %

To
ta

lt
im

e
(s

ec
)

10987654321

220
200
180
160
140
120
100
80
60
40
20
0

Fig. 9: MaintainingVlarge .

SDcursor

SDbatch

Scale = 0.1

Update %

In
st

al
lt

im
e

(s
ec

)

10987654321

70

60

50

40

30

20

10

0

Fig. 10: Installing deltas forVlarge .

SDcursor

SDbatch

SDoverwrite

FullRecomp

Scale = 0.1; database buffer = 240MB

Update %

To
ta

lt
im

e
(s

ec
)

10987654321

140

120

100

80

60

40

20

0

Fig. 11:MaintainingVlarge .

SDcursor

SDbatch

Scale = 0.1; database buffer = 240MB

Update %

In
st

al
lt

im
e

(s
ec

)

10987654321

50
45
40
35
30
25
20
15
10
5
0

Fig. 12:Installing deltas forVlarge .

SDcursor

SDbatch

SDoverwrite

FullRecomp

Update %� scale = 0.36

Scale factor

To
ta

lt
im

e
(s

ec
)

0.360.280.20.120.04

250

200

150

100

50

0

Fig. 13:MaintainingVlarge .

SDcursor

SDbatch

Update %� scale = 0.36

Scale factor

In
st

al
lt

im
e

(s
ec

)

0.360.280.20.120.04

20

15

10

5

0

Fig. 14: Installing deltas forVlarge .

SDcursor

SDbatch

SDoverwrite

FullRecomp

Scale = 0.1

Update %

To
ta

lt
im

e
(s

ec
)

10987654321

45
40
35
30
25
20
15
10
5
0

Fig. 15:MaintainingVsmall .

SDcursor

SDbatch

Scale = 0.1

Update %

In
st

al
lt

im
e

(s
ec

)

10987654321

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 16:Installing deltas forVsmall .

SDcursor

SDbatch

SDoverwrite

FullRecomp

Update %� scale = 0.36

Scale factor

To
ta

lt
im

e
(s

ec
)

0.360.280.20.120.04

90
80
70
60
50
40
30
20
10
0

Fig. 17:MaintainingVsmall .

SDcursor

SDbatch

Update %� scale = 0.36

Scale factor

In
st

al
lt

im
e

(s
ec

)

0.360.280.20.120.04

0.5

0.4

0.3

0.2

0.1

0

Fig. 18: Installing deltas forVsmall .

472

