Performance Issues in Incremental Warehouse Maintenance

Wilburt Juan Labio, Jun Yang, Yingwei Cui, Hector Garcia-Molina, Jennifer Widom

Computer Science Department, Stanford University
{wilburt, junyang,cyw,hector,widom}@db.stanford.edu

Abstract Example 1.1 A warehouse often must support bag (dupli-
: o cate) semantics. For instance, to efficiently maintain com-

A well-known challenge in data warehousingis the 0. \iews involving aggregates, we also need to maintain
efficient incremental maintenance of warehouse g,hn0rting (auxiliary) views that may contain duplicates.
data in the presence of source data updates. Inthis g, rthermore, bag semantics can simplify incremental main-
paper, we identify several critical data represen- yonance as we will see below. How should views be repre-
tation and algorithmic choices that must be made gonted when bag semantics are called for? If iewon-
when developing the machinery of an incremen- i, three copies of tupteshould we explicitly store those
tally maintained data warehouse. For each decision three copies? Or should we addi@pent attribute toV” to

area, we identify various alternatives and evaluate roord the number of copies 6 For each case, how should
them through extensive experiments. We showthat 1 DBMS insert or delete new tuples?

the right alternative leads to dramatic performance To illustrate, consider a concrete buéry simpleex-
gains, and we propose guidelines for making the ample. Conéider a source tabR(K, A, As, ..., A,)
right decisions under different scenarios. All of the | i key attribute K, and a simple7wa’reh(’)us’e view
Issues addressed in this paper arose in our dgvel- V (A1, A, ..., A,) defined overR which projects out the
opment of WHIPS, a prototype data warehousing oy of R, Without bag semantics, maintainifig would
system supporting incremental maintenance. be expensive: when a tupl, ai, as, ..., a,) is deleted
. from R, we cannot decide whether to delétg, ao, ..., a,,)
1 Introduction from V without queryingR, because there might exist

Data warehousing systems integrate and store data froma@other tuple(k’, a1, az, ..., a,) in R which also derives
mote sources asaterialized views the warehouse [11, 3]. (a1, az, ..., a,) in V.. On the other hand, if duplicates are
When source data changes, warehouse views need tdtgserved inV, we should always delete one tuple from
maintainedso that they remain consistent with the sourdé for each tuple deleted from, and noR queries are re-
data. Commercial data warehousing systems typically félired.
compute all warehouse views periodically to keep them up Suppose that we implement bagby keeping explicit
to date, but this process can be very expensive for lagepies of tuples. Suppose further that based on the deletions
views. In contrast, witlincrementaimaintenance, only the from R we have computeg/V', a bag of tuples to be deleted
portions of the views that have changed are actually mdgem V. To apply/V to V, one might be tempted to use
ified [6]. Because of the potential performance advantadiee following:
@ncremental v_iew maintenance has recently found its WBY ETE FROM V WHERE (A, As, DA IN
into cor_nmermal systems_, eg.,[4, 1, 2]. _ _ (SELECT * FROM V)

In this paper we experimentally study various options for
incremental maintenance when the warehouse data is std/8éprtunately, this statement does not work because SQL
in an off-the-shelf commercial database system (DBMSELETE always removeall tuples satisfying th@HERE con-
For instance, we investigate how views are best storeddiion. If V' has three copies of a tupleand/V" contains
the DBMS, how aggregate views should be maintained, h&¥o copies oft, the above statement will delete all three
deletions can be handled by the DBMS, how paramet&@pies, instead of correctly leaving one. To properly ap-
such as memory and base relation size impact our choidd¥, vV, we need to use a cursor apV’ (details will be
and several other issues. To illustrate the types of questi®fgvided later). However, a cursor-based implementation
we address, we briefly introduce one of the options faced i§jcesv/V to be processed one tuple at a time.
the warehouse implementor: how to represent views. ~ Given this problem with deletions, we may want to con-

* This work was supported by the National Science Foundation upider thedupent approaCh_, where we store only one copy
der grant 11S-9811947, by NASA Ames under grant NCC2-5278, and 6Qr each tuple, together with an extra attribute to record the
Sagent Technology Inc. number of duplicates for that tuple. Under this representa-
Permission to copy without fee all or part of this material is granted pration, 57V can be applied in batch with two SQL statements
vided that the copies are not madt_a or distribut'ed for direct qom_mercieégain, details will be given later). Besides the obvious ad-
advantage, the VLDB copyright notice and the title of the publication a%ntage of being more compact when the number of dupli-

its date appear, and notice is given that copying is by permission of the) ! .
Large Data Base Endowment. To copy otherwise, or to republish, requifédt€s is large, how does this count representation compare

a fee and/or special permission from the Endowment. with the default duplicate representation? In particular, does
Proceedings of the 26th VLDB Conference, it speed up overall view maintenance? Are SQL statements
Cairo, Egypt, 2000. really better than a cursor loop for applyigy? |

461

In this paper we study several issues like the ones illy80te data sources. Data in the warehouse is modeled con-

trated in Example 1.1. For each issue we propose variouségPtually using aiew directed acyclic grap(VDAG). Each
ternatives, including interesting new variations for aggregdt@de in the graph represents a materialized view stored at
view maintenance that turn out to have important advantag§ Warehouse. An edge; — V; indicates that view’;

over previous algorithms. In many of the decision areas Wwedefined over view;. A node with no outgoing edges
discuss, making a wrong decision can severely hamper {RBr€sents a view that is defined over source data. WHIPS
efficiency of warehouse maintenance. For example, the tiffguires that each warehouse viéws defined either only
required to install changes into a view can vary by orders 8Yer source data, or only over other warehouse views, be-
magnitude depending on how maintenance is implement§guse views defined over source data require special algo-
as data volumes grow, picking the right strategy can medfjims for ensuring their consistency [15]. We call views
the difference between a few minutes and many hours 4§jfined over source dabase viewsand views defined over
warehouse maintenance time. Based on the results of 8{ter warehouse viewderived views (In a typical OLAP-

experiments, we provide guidelines for making the right defiented data warehouse, fact tables and dimension tables
cisions under different scenarios. would be modeled as base views, while summary tables

would be modeled as derived views.) In WHIPS, each base

InformationProcessingSysten), a prototype data warehousYIEW IS defined over source data using a single SQLECT-
ing system at Stanford [14]. (In fact, most of the design jEROM-WHERE (SFW) statement. This S|mple_base View defi-
sues we consider in this paper arose in the design and impiEon language allows the warehouse designer to filter and
mentation of WHIPS.) Because WHIPS is representative gimPine source data using appropriate selection and join

warehousing infrastructures built using commercial DBMEONGitions in theWHERE clause. Currently, aggregation is

we believe that our results have applicability well beyorfE;Ot permitted in base view definitions because it is difficult

WHIPS—they should prove helpful to any impIementatioW ensure the consistency of aggregates over remote source

of incremental warehouse maintenance either within or Eq:{ations [15]. Each derived view is defined over other ware-
top of a commercial DBMS. ouse views using one or more SQELECT-FROM-WHERE-

: : : : . _GROUP-BY (SFWG) statements, where aggregation is permit-
In closing our introduction, we make two points. Fws% Multiple SFWG statements may be combined using

For our experiments we use WHIPS &fHouse

even though incremental maintenance has enjoyed con ?I—'ON ALL
erable attention from the research community [6], very lit- '

tle research to date covers practical implementation issl@&mple 2.1 As a concrete example, let us suppose that
backed up by thorough experiments. Thus we believe tfiere are three remote information sourées Sz, andsSs,

our paper makes a unique contribution in this regard. S&xporting the tabledineitem, Order, and Customer, re-

ond, experimental evaluations always raise many questiosggctively. The schema of these tables is loosely based
especially if the evaluations involve commercial producten the TPC-D benchmark [13], but simplified for succinct-
Was “enough” memory used? Were the databases studi€gs of presentation. (All our experiments in Section 4
“big enough?” Should the query optimizer be hand-tuned srictly follow the TPC-D schema.) Base views, V2, and
maximize performance? Will next year's DBMS invalidatés at the warehouse could be defined as projections over
the conclusions because it has a snazzy new feature? SAglineitem, Sz.Order, andSz. Customer as follows:
quest_ions like these arise in our paper, keep in rr_liljd that Qb rr vIEW Vi AS

goal isnot to make absolute_ performance pred_lctlons, but g1 ror orderID , partID , gty , cost FROM S,
rather to understand the choices and tradeoffs involved. Wegate viEw V5 AS

study incremental maintenance in a realistic, off-the-shelfseLECT orderID, custID, date FROM Ss.Order
scenario, and we have varied many of the parameters (REATE VIEW Vs AS

volved (e.g., memory size). Of course, there are other in-SELECT custID,name, address FROM S3.Customer

teresting scenarios and more questions that can follow @yqrse, selection and join operations may be used in base

initial study. view definitions as well. Derived view; could be defined

_ The rest of the paper is organized as follows. In Segs count the number of orders each customer has made in
tion 2, we give an overview of the WHIPS architecture,ggg-

which sets the stage for later discussions. In Section 3, we

focus on the component of WHIPS responsible for war€BEATE VIEW Vi AS

house maintenance and discuss the various choices in b”ik‘?}'ﬁ;ﬁgTVwSt[Zb COUgT(*)tfgoﬁN]‘f’ Vs

. _ 5.CUS = V3.cus

ing its view maintenance machinery. In Section 4, we con Vo.date>=?1998-01-01" AND Vi.date<’1999-01-01

duct experiments to evaluate each alternative and preser&téoup BY custID O
guidelines for making the best choices. Finally, we discuss

related work in Section 5 and conclude in Section 6.

.Lineitem

Three types of components comprise the WHIPS sys-
. tem: theExtractors the Integrator, and theWarehouse
2 WHIPS Architecture Maintainer. As mentioned previously, WHIPS also relies
The warehouse views incrementally maintained by WHIRS a commercial relational DBMS to store and process
are derived from one or more independent and usually wearehouse data. The WHIPS components, along with the

462

DBMS, are shown in Figure 1 (most figures appear at theder/D]partID]qty[cost] [orderID[partID [qty] cost|dupeni]

end of the paper). We discuss the components by walk- i ‘Z ; 22500 i ‘Z ; 22500 ?
ing through how warehouse data is maintained when soutee— o 150 ——
data changes. EadExtractor component periodically de- Table 2:vi™.

) : . . Table 1.V,
tectsdeltas(insertions, deletions, and/or updates) in sour el.l Storage Cost and Query Performance

data. One Extractor is used for each information source:
For instance, in Figure 1, the Extractor assignediale- ThecnNT representation of a view has lower storage cost
tects the changes to thkineitem table which resides in if there are many duplicates # and if the tuples ol are

S1. TheIntegrator component receives deltas detected B§rge enough that the storage overhead of havidgpant

the Extractors, and computes a consistent set of deltagtibute is not significant. The reduction in storage achieved
the base views stored in the warehouse. The Integrator nusingV’ " instead ofl’°"* may speed up selection, join,
need to send queries back to the sources to compute b3@ aggregation queries ovErby reducing 1/O. However,
view deltas. For details, see [14, 15]. TWarehouse Main- Projections may be slower when therT representation is
tainer component receives the base view deltas from the ksed. Consider the following simple operation of listing the
tegrator and computes a consistent set of deltas to the dederID’s in Vi:

rived views. The Warehouse Maintainer then updates all@f zcr orderiD FrROM 13

the warehouse views based on the provided and computed i .

deltas. To compute the derived view deltas and update {hi/e operate directly on thent representatiof;™" (Ta-
materialized views, the Warehouse Maintainer sends a 3€- 2), the answer to the above query will not remain in
quence of Data Manipulation Language (DML) command@€ cNT representation. We need to group the tuples with
to the DBMS. These DML commands include SQL queridBatchingorderD’s and sum up theidupcnt values:

for computing the deltas, as well as modification statemeri§ ECT orderID, SUM(dupcnt) AS dupent

(e.g.,INSERT, DELETE, cursor updates) for updating the ma- rFrRoM V™' GROUP BY orderID

terialized views.

The remainder of the paper focuses on the Wareho
Maintainer component. We refer readers to [8] and [15] fog
extended discussions of the Extractors and the Integrator.

3.1.2 Deletion Installation
3 The Warehouse Maintainer If V has no duplicates, then the deletions frbindenoted
%}/, can be installed using a singlLETE statement. For
ample, to instalty1; in our working example, we use:

In general, whenever projection is used in a query, aggre-
ion may be necessary to produce an answer ircke
presentation.

The Warehouse Maintainer is the component responsible
initializing and maintaining the warehouse views. There ar&
many possible ways of representing the warehouse VIEB¥SETE FROM Vi WHERE (Vi.orderID, Vi.partID) IN
and performing incremental maintenance on them. In Sec<{SELECT order/D, partID FROM 7V1)

tions 3.1 and 3.2, we identify specific important decision 8 he above statement assumes thatderID, partID} is a

eas. For each decision area, we propose s'everal alternawé@sfor Vi. TheWHERE clause can be modified to handle
and analyze them qualitatively. Quantitative performanggys yyith any number of attributes, where in the worst case,
results will be presented in Section 4. We have decideddf5itributes of the view together form a key. Unfortunately,
separate the performance results from the discussion Of\m‘?envl has duplicates and hence no key, the above state-

decision areas (rather than mixing them), because some iy s incorrect because it may delete more tuples than in-
the decision areas are interrelated and it is important to ha¥Rqed. as discussed in Example 1.1.

a complete overview of the issues before we delve into the |, general, care must be taken when installipig in the

detailed performance analysis. presence of duplicates. Under tvep representation, a cur-
sor onsy VPUF is required. For each tuptdn VP exam-
ined by the cursor, we delete one and only one tupléiff
Views in WHIPS are defined using SQL SFWG statemerttsat matcheg. Doing so generally requires another cursor
(for derived views) and SFW statements (for base viewsh VV°UF. However, if the DBMS provides some mechanism
with bag semantics. There are two ways to represent a lidgestricting the number of rows processed by a statement
of tuples in a view. One representation, which we call t{guch as allowing statements to reference row counts or tu-
DUP representation, simply keeps the duplicate tuples, plg ID’s), we can avoid the cursor drPv*.

shown in Table 1 for a small sample of data in viéw Under thecNT representation, each deleted tuplen
from Example 2.1. Another representation, which we calf V" results in either an update to or a deletion from
the cNT representation, keeps one copy of each unique WN™. If ¢.dupcent is less than th@upcent value of the tuple

ple and stores the number of duplicates in a spekigtnt in V" that matches, we decrement the matching™"*
attribute, as in Table 2. Let us denote a viEél8 DUP repre- tuple’s dupent value byt.dupent. Otherwise, we delete
sentation a¥ °'* and itscNT representation dg°NT. Next, the matching tuple fronV“~*. This procedure can be im-
we compare the two representations in terms of their storggemented with a cursor oy VYT, Alternatively, the en-
costs and implications for queries and view maintenancetire syV°" can be processed in batch with oBRDATE

3.1 View Representation and Delta Installation

463

statement and onBELETE statement, but both statementsisually have keys. Summary tables often perfGROUP-
contain potentially expensive correlated subqueries. TBeoperations, and theROUP-BY attributes become the keys
DELETE statement is illustrated below. TREPDATE state- of the summary tables. [KEYINSTALL consistently out-
ment is twice as long, with one correlated subquery in iperformsGeNINSTALL for these common cases, the Ware-
WHERE clause and one in it3ET clause. We omit the detailshouse Maintainer should suppétyINsTALL as well.

due to space constraints. Finally, we also need to evaluate different implementa-

DELETE FROM V" tions of GENINSTALL under thecNT representation. As

WHERE EXISTS (SELECT * FROM V" discussed earlie(zENINSTALL under thecNT representa-
WHERE vV “".orderID = V°".orderID tion can be implemented with a cursor loop, with two SQL
AND 7V™.partID = V™".partID statements, or with one SQL statement and a trigger. (Un-

A vV . dupent >= VCNT.dupcnt) der theDpUP representation(GENINSTALL must be imple-
We could eliminate th®ELETE statement by using a row- anted with a cursor loop.) With a cursor loop or a row-

level trigger that automatically deletes any tupleinwith oy trigger, we have better control over the execution of
dupcnt less than or equal t0. Under this approach, Wehe installation procedure, so we can optimize it by hand
only need on@PDATE statement to decrement thlepcnt 5ccording to our knowledge of the warehouse workload.
values of allV’ tuples with matchingz V" tuples. The o the other hand, the SQL statements are optimized by
trlgggr_ is fired for each updated tuple that satisfies the trigggg, DBMS, armed with a more sophisticated performance
condition. model and statistics. Although traditional DBMS optimizers

3.1.3 Insertion Installation were not designed originally for data warehousing, modern

Under thepup representation, we can install the insertiorf@Ptimizers have added considerable support for warehouse-
into VU, denotedA\ VU, using a single straightforwardtYPe data and queries [3]. It is interesting to determine
SQL INSERT statement. Under thenT representation, we whgther the SQL-based delta installation proc:_adure can be
can install AV with a singleINSERT statement only if OPtimized adequately by the DBMS we are using. In Sec-
we know that’ never contains any duplicates. In generdfon 4.1, we presentanswers to all of the questions discussed
however, each tuplein AV results in either an update ordbove based on the experiments we have conducted.

an insertion td/“". If there is a tuple i/ that matches 5 , Maintaining Aggregate Views

t, we increment the matchirig“"* tuple’s dupcnt value by .] o
t.dupent. Otherwise, we insert into VN, Again, this Given deltas for base views, the Warehouse Maintainer

procedure can be implemented with a cursor'gi™, or needs to modify the derived views so that they remain con-
we can process the entirtel’ " in batch with onaypDATE ~ SiStent with the base views. A simple approach is to re-

statement and ONENSERT statement, but again, both state€ompute all of the derived views from the new contents of

ments contain potentially expensive correlated subquerie§e base views, as many existing warehousing systems do.
WHIPS, on the other hand, maintains the derived views in-

3.1.4 Discussion crementally for efficiency. The Warehouse Maintainer first
Intuitively, for a warehouse view that never contains ampmputes the deltas for the derived views using a predefined
duplicates (i.e., it has a known key), tbep representa- set of queries calleghaintenance expressigrad then it in-
tion should outperform theNnT representation in all met- stalls these deltas into the derived views. The maintenance
rics (storage cost, query performance, and delta instakéxpressions of views defined using SQL SFW statements
tion time) because theup representation does not have th@without subqueries) are well studied, e.g., [5], and we do
overhead of onelupcnt attribute per tuple. On the othemot discuss them here. For views defined using SFWG state-
hand, for a view with many duplicates, we would expect thaents (i.e., views witlGROUP-BY and aggregation), we in-
CNT representation to be preferable because it is more camoduce and contrast four different maintenance algorithms
pact. For WHIPS, we are interested in knowing, quantitéarough a comprehensive example.
tively, which representation is better as we vary the averageln this example, let us suppose that viévcontains the
number of duplicates in a view. We also would like to quanuples shown in Table 3. A viewarts is defined oveil;
tify the overhead of the~T representation for views with to group theV; tuples bypartID. The revenue of each
no duplicates. part stored inParts is computed from/; by summing the

Another issue we wish to investigate is the strategy fpfoducts ofqty and cost for each order for that particular
delta installation. As discussed earlier in this section, defjart. Parts also records in @uplecnt attribute the number
installation becomes much simpler if we know that the viegf V; tuples that are used to derive eaklrts tuple. The
will not contain duplicates. LeKEYINSTALL denote the SQL definition of Parts is as follows:
method of installing deltas that exploits a lack of duplicates
(i.e., a known key), and léEENINSTALL denote the general CREATE VIEW Parts AS ,
method that does not. It is easier for the Warehouse MainSELECT partID, SUM(gtyxprice) AS revenue,
tainer component to support onyENINSTALL because it COUNT(x) AS tuplecnt

: ;) FROM Vi GROUP BY partID

works for all views with or without keys. However, ware-
house views frequently do have keys. For instance, dimélhe tuples inParts are shown in Table 4. We use tbep
sion tables and fact tables, which are modeled as base viewpresentation foParts since Parts has a key fartID)

464

[orderID [partID] qty] cost| [partID] revenue [tuplecnt| [orderID [partID] qty] cost| [orderID [partID] gty cost)

1 e | 1]20 a 20 2 1 e 220 1 e | 1]20
T b2 250 b 500 1 2 c 11500 T b2 250
2 a 1720 P 500 1 1 d 1730 Table 6:V4.
3 c | 1]500 Table 4: Parts. Table 5:A V4.

Table 3:Vv1.

and hence contains no duplicates. Note thattipéecnt at- to Parts. For instance, tupléa, 20, 0) affects Parts by in-
tribute differs from thedupcnt attribute used under thenT crementing thes tuple’s revenue by 20 and tuplecnt by
representation sinceplecnt does not reflect the number of0. This change reflects the effect of updating tiig of a
duplicates inParts. Nevertheless, likelupcnt, tuplecnt parts in the first order (segVy and AVy). The tuplecnt
helps incremental view maintenance by recording the nuis-unchanged because the update does not change the num-
ber of base view tuples that contribute to each derived vider of V7 tuples that derive the tuple in Parts. Tuple
tuple: Thetuplecnt attribute is used to determine when &b, —500, —1) in Partss, affects Parts by decrementing
Parts tuple t should be deleted because all of tHgtu- the b tuple’s revenue by 500 and tuplecnt by 1, which
ples that derive have been deleted froii. In fact, had reflects the effect of deletingl, b,2,250) from V; (see
tuplecnt not been included iParts’s definition, WHIPS <7V;). Moreover, theb tuple is then deleted fron®arts,
would automatically modify the view definition to includesince itstuplecnt becomes zero after it is decremented. Tu-
tuplecnt so thatParts could be maintained incrementally. ple (¢, 500, 1) increments the tuple’s revenue by 500 and

Now suppose that the tuples shown in Table 5 are taplecnt by 1, reflecting the effect of insertingt, ¢, 1, 500)
be inserted intol;, and the ones shown in Table 6 arinto V; (seeAV;). Finally, tuple(d,30,1) results in an
to be deleted. (Note that tupl€s, a,1,20) in vV; and insertion, since there is no existing tuple with the same
(1,a,2,20) in AV; together represent an update in whichartID.
the gty of a parts purchased in the first orderder/D = 1) 35 3 gymmary-Delta With Batch Installation
is increased from 1 to 2.) Next we illustrate how we can i) i i
maintain Parts given the deltas;yV; and AV;, using four The summary-delta algorithm with batch installation

different algorithms. (SDBATCH) is a variation we propose in this paper on
the original summary-delta algorithm from [12] described
3.2.1 Full Recomputation above. The idea is to do more processing in the compute

phase in order to speed up the install phase, since views
st be locked during installation. In the compute phase

of SDBAaTCH, we first compute the summary-deRartsy,

as before. FronPartss,, we then compute the deletions

v Parts and insertionsA Parts to be applied toParts.

3.2.2 Summary-Delta With Cursor-Based Installation <7 Parts contains all theParts tuples that are affected by

Partsspy:

Full recomputationfuLLRECOMP) is conceptually simple
and easy to implement. First, we install the base view del
vV1 andAV; into V;. Then, we delete the entire old con
tents of Parts and compute its new contents frdm.

The original summary-deltaalgorithm SDcursor for
short) for incremental maintenance of aggregate views [ISELECT * FROM Parts WHERE partID IN

has acompute phasand a cursor-basddstall phase In (SELECT partID FROM Partssp)

the compute phase, the net effectol; and7Vi on Parls A Parts is the result of applyingPartss, to <7 Parts:
is captured in aummary-deltaable, denotedPartss, and

Computed as follows: SELECT partID, SUM(revenue) AS revenue,

SUM(tuplecnt) AS tuplecnt

SELECT partID, SUM(revenue) AS revenue, FROM ((SELECT * FROM t\/Parts) UNION ALL
SUM(tuplecnt) AS tuplecnt FROM (SELECT * FROM Partssp))
((SELECT partID, SUM(qty*price) AS revenue, GROUP BY partID HAVING SUM(tuplecnt) > O

COUNT () AS tuplecnt FROM AVi GROUP BY partID) Notice that we filter out those groups witlaplecnt less than
l(lgéggC'?L;artID SUMCatyprice) AS revene one because they no longer contain any tuples &ftetss;,
- ’ is applied. Given théartss, shown in Table 7, the resulting
GRO;gOggT(*) AS tuplecnt FROM Vi GROUP BY partID)) o pwic and A Parts are shown in Tables 8 and 9.
partlD . .
In the install phase d3DBATCH, we first applysy Parts,
The summary-delta applies tls®&0UP-BY and aggregation and then/\ Parts, to Parts. Because of the way we com-
operations specified in the definition Surts to AV; and putesy Parts in the compute phase, evetyParts tuple al-
V1 and combines the results. Note that the aggregate wakys results in a true deletion froarts, instead of an
ues computed fromyyV; are negated to reflect the effectsipdate that decrements thevenue andtuplecnt attributes
of deletions on theSUM and COUNT functions. Given the of an existingParts tuple. SinceParts is an aggregate view
AV; andsyV; shown in Tables 5 and 6, the summary-deltand hence contains no duplicates, the engitarts can be
Partsgp is shown in Table 7. applied in batch using(EYINSTALL with a SimpleDELETE
In the install phaseSDCcURSOR instantiates a cursor to(Section 3.1.2). Oncgy Parts has been applied t&arts,
loop over the tuples in the summary-defartss,. For each every A Parts tuple always results in a true insertion into
Partssp, tuple, SDCURSOR applies the appropriate changeParts, instead of an update that incrementstbwnue and

465

[partID [revenue[tuplecnt] [partID] revenue]| tuplecnt | [partID] revenue [tuplecnt|

a 20 0 a 20 1 a 40 1
b —500 —1 b 500 1 c 1000 2
c 500 1 c 500 1 d 30 1
d 30 1 Table 8:5/Parts. Table 9:AParts.

Table 7: Partssy,.
tuplecnt attributes of an existing tuple. Thereford Parts update. This measure is important because once a view
can be applied in batch usifgeyINSTALL with a simple is locked for update, it generally becomes inaccessible for
INSERT. OLAP queriesFuLLREcoMP needs to lock while it is re-
generating the viewsDCURSOR andSDBATCH only need
) to lock the view during their install phaséSD OVERWRITE
Both SDcursor and SDBATCH update Parts in place, goes not lock the view at all, because it computes the new
which requires identifying theParts tuples affected contents of the view in a separate table. In fact, with
by the Partsy, tuples. To avoid this potentially ex-an additional table, we can eliminate the locking time of
pensive operation, we introduce a new summary—deﬁ%LLRECOMP' SDCURSOR, SDBATCH, or any mainte-
algorithm with overwrite installation YDOVERWRITE). nance algorithm in general, since we can work on a copy
SDOVERWRITE completely replaces the old contents o the view while leaving the original accessible to queries.
Parts with the new contents, just k& ULLRECOMP. | this case, it is useful to know how much locking time
However, SDOVERWRITE differs from FULLRECOMP e gre saving in order to justify the additional storage cost.

in that SDOVERWRITE does not recomput@arts from |5 Section 4.2, we experimentally compare the performance
scratch; instead, it uses the summary-déliatsy, and the 44 locking time of the four algorithms.

old contents ofParts to compute the newarts. The SQL g far \ve have focused on how WHIPS maintains a sin-
statement used here is similar to the one used to COMPYL, ey, n practice, WHIPS maintains a set of views orga-

3.2.4 Summary-Delta With Overwrite Installation

AParts in SDBATCH: nized in a VDAG (Section 2). When a vieW is modified,

SELECT partID, SUM(revenue) AS revenue, other views defined ovér need to be modified as well. In
SUM(tuplecnt) AS tuplecnt order to maintain the other views incrementally, we must be

FROM ((SELECT * FROM Parts) UNION ALL able to capture the incremental changes madé.tAmong
(SELECT * FROM Partss)) our four algorithms for aggregate view maintenance, only

GROUP BY partID HAVING SUM(tuplecnt) > O SDBATCH explicitly computes the incremental changes to
One technicality remains: there is no easy way to replapeas delta tablesyV and AV. Although the summary-
the contents oParts with the results of the abo\8ELECT deltaVy, in a way also captures the incremental changes to
statement since the statement itself referenReds. To V, usingVi, to maintain a higher-level view is much harder
avoid unnecessary copying, we store the results of the abgivan usingyV and AV, especially if the higher-level view
query in another table, and then designate that table asithgot an aggregate view. For this reason, we might prefer
new Parts. Therefore, compared to the other three alg&-DeaTcH as long as it is not significantly slower than the
rithms, SDOVERWRITE requires additional space roughlyother algorithms.

the size ofParts.

3.2.5 Discussion 4 Experiments

Although the example in this section only shows how tpeection 3 introduced several areas in which we must make
various algorithms can be used to maintain a specific aggFglical decisions on warehouse view representation and
gate view, it is not hard to extend the ideas to handle vief&intenance, and provided some qualitative comparisons
with arbitrary combinations a§UM, COUNT, andAVG aggre- qf the alternatives. For each decision area, we now quan-
gate functions. For views witMAX or MIN, SDCURSOR titatively compare the performance of various alternatives
SDBaTCH, andSDOVERWRITE are not applicable in gen-through experiments. _ _
eral, since we cannot perform true incremental maintenancel he base views gsed n the experiments are from
when a base tuple providing theAX or MIN value for its TPC-D [13], often including fact tablesOrder and
group is deleted. Lineitem, which we callO and L for short. The derived

To summarize, we have presented four algorithms f$ews vary from one experiment to the next. Contents of
maintaining SFWG viewsFULLRECcOMP recomputes the the base views and their deltas are generated by the stan-
entire view from scratch. Intuitively, if the base data i§arddbgen program supplied with the TPC-D benchmark.
large, FULLRECOMP can be very expensiv&Dcursor, ATPC-D scale factor of .0 means that the entire warehouse
SDBATCH, and SDOVERWRITE avoid recomputation by iS aboutlGB in size, withL andO together taking up about
applying only the incremental changes captured in QQOMB. The commercial D.BMS_we use is running on aded-
summary-delta table. These three algorithms differ in tig@ted Windows NT machine with a Pentium Il processor.
ways they apply the summary-delta to the view. The database buffer size is set6atMB. We have chosen

In WHIPS, we are interested in knowmg which algorlthm 1We are not permitted to name the commercial DBMS we have used

is best under different settin.gs. We also wish to COMP3HRr the second one we are using to corroborate some of our results), but
how long the different algorithms must lock the view foboth are state-of-the-art products from major relational DBMS vendors.

466

a small database buffer in combination with relatively smalbnal dependencies to exploit, we would have to equate all

TPC-D scale factors in order to limit the duration and this attributes ofL instead of onlyorderkey andlinenumber

storage requirement of repeated experiments. To study sedten matching. tuples withsy L and AL tuples. We per-

ability issues we have explored wide ranges of buffer sizBsmed experiments where no functional dependencies were

and scale factors for some of our experiments, and fouexbloited, and our results (not shown here) reveal that in this

the performance trends to be consistent with the results prase all implementations dhENINSTALL become slower

sented. An example will be shown in Section 4.2.1. by almost an order of magnitude. Nevertheless, the overall
Recall that the WHIPS Warehouse Maintainer sendsparformance trends remain identical to the results presented

sequence of DML statements to the DBMS to query amalthis section.

update views in the data warehouse. In the experimentsFig. 2 plots the time it takes for the tWGENINSTALL

we measure the wall-clock time required for the DBMS tm*]p|ementations to proces&L andAL. Recall from Sec-

run these DML commands, which represents the bulk @bn 3.1 that cursor-base@ENINSTALL processes a delta

the time spent maintaining the warehouse. We have spegi{ple one tuple at a time, similar to a nested-loop join be-

cally avoided hand-tuning the DBMS optimizer for our exween the delta and the view with the delta being the outer

periments because improvements are very sensitive to {fi§le. As a result, the plots of cursor-bas@eNINSTALL

workload and to the expertise of the person doing the tur /L and AL are linear in the size of/L and AL re-

ing. We believe it is more instructive to study performancgectively.

with an “out of the box” DBMS (system parameters at their SQL-basedGENINSTALL is optimized by the DBMS,

default values), under the assumption that all of the resu{lg ensure that the optimizer has access to the most up-
we present could probably be improved somewhat in SOMEdate statistics, we explicitly ask the DBMS to gather

cases by careful tuning. statistics afterL, 7L, and AL are populated (and the

4.1 View Representation and Delta Installation time spent in gathering statistics is not counted in the delta

In Section 3.1.4 we identified three decisions that needlpg’ta"atlon time). If the optimizer were perfect, SQL-
asedGENINSTALL would never perform any worse than

b_e made regarding view representation a’?d delta InStaE%_rSOr-based}ENINSTALL, because the cursor-based plan
tion: (1) whether to useup or cNT as the view represen-

. is but one of the many viable ways to execute SQL-based
tation; (2) whether to USGE.NINSTALL Or KBvINSTALL (GGENINSTALL. Unfortuxlately we 3s/ee in Fig. 2 th;?[SQL-
Losén:tgﬂrggrltﬁjsothe(glfgfa;gmr?gs;‘r;egégl(_sgt;\;gﬁgﬁ; B%aed GENINSTALL is consi,stently slower than cursor-

a trigqer to im |(§r,nenGENINSTALL l,Jnder theCNT repre- PaSedGENINSTALL for deletion installation. This phe-
sentga%ion In tphis section, we present erformancg resylnenon lllustrates the difficulty of optimizi®gLETE and

: ’ pr P #I]EBATE statements with correlated subqueries, such as the
that help us make the best decisions for all three areas. L ?ond}ELETE statement shown in Section 3.1.2. The way
results are presented in reverse order, pecause we neetgleege statements are structured in SQL leads naturally to an
choose the bestENINSTALL implementation focNT (de-

cision area 3) before we can com with pup (deci- execution plan that scans the entire view looking for tuples
sion area 1) paret to delete or update. However, in an incrementally main-

tained warehouse, deltas are generally much smaller than
4.1.1 GEeNINsTALL Under CNT: Cursor vs. SQL the view itself, so a better plan is to scan the deltas and delete
QL update matching tuples in the view, assuming the view is
indexed. Evidently, the state-of-the-art commercial DBMS
gﬁg d by WHIPS missed this plan, which explains why the
plots for SQL-base@ENINSTALL go nowhere near the ori-

In the first experiment, we compare the time to install delt
for base viewL™" (view L using thecNT representation)
using a cursor-based implementation versus a SQL-ba

implementation folGENINSTALL. It would be interesting to

compare the performance of a trigger-based implementat%ﬂ' We expec’t this behavior may be typlc_:al of many com-
as well, but unfortunately the DBMS we are using does n%e_rmal DBMS S t_oday, and we have Cor!f"med this expec-
allow a row-level trigger to modify the table whose upda tion by rgpllcatlng some of our experiments on another
caused the trigger to fire. major relational DBMS.] .
For this experiment, a TPC-D scale factor @fl is On the other hand, the DBMS is more adept at opti-
used. Normally,L has a key{orderkey, linenumber} Mizing SQL-basedGENINSTALL for insertions, presum-
and therefore contains no duplicates. We artificially ifPly becaus&NSERT can be optimized similarly to regular
troduce duplicates intd so that on average eadh tu- SELECT queries and more easn_y th@BLETE. As shown in
ple has two other duplicates (i.el, has amultiplicity Fi9.- 2, SQL-base@ENINSTALL is faster than cursor-based
of 3). We also vary the update ratio df from 1% to GENINSTALL for insertion installation when the update ra-
10%. An update ratio ofc% implies |7L| = |AL| = Uois higher thanl%. To summarize, at TPC-D scale factor
(k/100) - ||, i.e., (k/100) - |L| tuples are deleted from0-1 and update ratio betweéfio andl(_)% on the DBMS we
L and (k/100) - |L| tuples are inserted. Finally, we as&re using, cursor-basédENINSTALL is preferred for dele-
sumeL" has an index oforderkey, linenumber}, since tion installation and SQL-basedENINSTALL is preferred
{orderkey, linenumber} functionally determine all other for insertion installation under then representation.
13 attributes ofL. In general, if there are no nontrivial func- In the next experiment, we investigate how the size of

467

the views might affect this decision. We fix the size of | [[puP representatiofuNT representation
v L andAL at about2.6MB each while varying the TPC- v (deletion)|| 1.94ms/tuple % [tuple
D scale factor from0.04 to 0.36. The update ratio thus A (insertion]| 0.57ms /tuple | e [tuple
varies from9% to 1%. The results in Fig. 3 indicate that the
running time of cursor-basedENINSTALL is insensitive
to the change inL|, while the running time of SQL-based In the next experiment, we increase the multiplicity/of
GENINSTALL grows linearly with|L|. Thus, we should usefrom 1 to 3, thereby tripling the size of""", 7L """, and
cursor-base@ENINSTALL to process both deletions and in A LY. On the other hand, the increase in multiplicity has
sertions for large views with low update ratios. no effect on the size af“*, 7 LN*, andAL“". As Fig. 6
shows, installingy7 L°"* becomes more than twice as slow
4.1.2 Delta Installation: KEYINSTALL vs. GENINsTALL as installing7 L°", but installing/ALP"™" is still three times
faster than installing\ L. Overall, delta installation un-
Qer thepup representation is slightly slower than under the
CONT representation. By comparing Fig. 5 and 6, we also see
hat the delta installation time under thep representation

plicates. In. th's. case, we are only interested n the i{ncreases proportionately with multiplicity, while the time
representation sinceup should always be used instead o ndercNT remains the same

ONT when the view contains no duplicates (Section 3.1.

Furthermore, under theup representation, insertion instal- Tostudy the effect of view size on delta installation time,
: L . P ’ SO we conduct another experiment in which we fix the size of
lation requires one SimpleNSERT statement, which is the

same for bothKEYINSTALL and GENINSTALL. There- the d_el_ta_s and vary the TPC-D scale factorfr@)mlto_O.SG.
fore our task reduces to comparidgEleszLL and Multiplicity of L is set at3. FortheCNT rgpresgntatlon,we
GEI\;INSTALL for deletion installation under theup rep- use the besGENINSTALL |mplementat|on (either cursor-
resentation based or SQL-based, depending on the scale factor; recall
. ' o Section 4.1.1). The results are shown in Fig. 7. Notice that
In Fig. 4, we PlOt the time It take? f(KEYINSTALL ar_1d all four plots become nearly flat at large scale factors: when
GENINSTALL to install 7 L in base viewL, which contains }he view is sufficiently large, the cost of installing a delta
no duplicates and has an index on its key attrlbute_s. We tible into the view approaches a constant for each delta type
the TPC-D scale factor @tl and vary the update ratio fromg 4 e4ch view representation. Thus, measured once, these
1% to 10%. At first glance, the results may seem countefjor ple costs can be used to estimate the delta installation
intuitive: KEYINSTALL is slower thanGENINSTALL WheN e in a arge data warehouse. Table 10 shows the per-tuple
the update ratio is below%. However, recall from Sec- j,q5)jation costs measured under our experimental settings.

tion 3'1'.2 thaKEYINSTALL usesa SIMPIBELETE to install All experiments so far have focused on delta installation.
7L, while GENINSTALL requires a cursor loop. Clearly, e nex experiment, we compare the time to compute

the DBMS has failed again to take advantage of the smgliias tor derived views underur and cNT representa-
7L and the index orl. when optimizing th®ELETE State- qns - \we define one derived vieiO; as an equijoin be-

ment. Q'V‘?” t.h's Ilmltatl_on of the DBMS optimizer, Weyeqny, andO, with a total of24 attributes. Another derived
cannot justify implementingSEYINSTALL in addition 0 e\ 10, is defined as the same equijoin followed by a pro-
GENINSTALL in Fhe Warehouse Maintainer from a IoencorJ'ection which leaves only two attributes. In Fig. 8, we plot
mance perspective. the the time it takes to computg LO; ands/LO, given

v L under bothbup andcNT representations. We choose
an update ratio d¥% and increase the multiplicity df from

We now evaluate the performance ntp and cNT rep- 1to 5. When the multiplicity ofL is close tol (i.e., L con-
resentations in the case where the view may contain dains almost no duplicates)uyp andcNT offer comparable
plicates. In Fig. 5, we compare the the time it takg¥erformance for computing derived view deltas. The over-
to install 7L and AL underpup and cNT representa- head of the extrdupcnt attribute and the extra aggregation
tions. Again, the TPC-D scale factor is fixed @i and required for doing projection under tlievT representation
the update ratio varies from% to 10%. The multiplic- (discussed in Section 3.1.1) turns out to be insignificant in
ity of L in this first experiment is close to 1, i.eL, con- this case. As we increase the multiplicity, computing de-
tains almost no duplicates. We create indexes for baitied view deltas undepupr becomes progressively slower
LPY and LN on {orderkey, linenumber}, even though thancNT becauseNT is aboutn times more compact than
{orderkey, linenumber} is not a key for L°'* because DuUP, wherem is the multiplicity.

of potential duplicates. For thenT representation, we To summarize, theNT representation scales well with
use cursor-base@ENINSTALL to install 7 LY and SQL- increasing multiplicity and carries little overhead for com-
basedGENINSTALL to install ALY, as decided in Sec- puting derived view deltas. However, in the common case
tion 4.1.1 for scale factob.1. The results plotted in Fig. 5 where the average number of duplicates is low (e.g., multi-
indicate that delta installation (insertions and deletions coplicity is less tharB), the pup representation is preferable
bined) under theNT representation is about twice as experpecause it is faster in installing deltas, especially insertions,
sive as delta installation under thep representation. which are common in data warehouses.

Table 10:Per-tuple delta installation costs.

In the following experiment, we seek to quantify th
performance benefits of usinkEYINSTALL instead of

4.1.3 View RepresentationDuPp vs.CNT

468

4.2 Maintaining Aggregate Views as much asFuLLREcowmp, their running time still in-

ases becau$¥,,,.| grows with|L|. On the other hand,

In Section 3.2 we presented aggregate view maintenanceaf . :
gorithmsFuLLREcoMP and SDCURSOR, as well as two S%CUR.SOR is almost unaffected by ok '”Cfeasém- The
reason is tha®D CURSOR uses an index o, to find the

new variationsSSDBATCH and SDOVERWRITE. This sec- tchinal, tuoles f h tuole in th delt
tion compares their performance in terms of the total tiM@alg '22 dl‘;ﬁ; Igglfusp ct)irmeea((:)f tﬂg einlgex eresnlir:irr?sa::yo-n;ait
required for maintaining aggregate views. We also com ’ .) . ;

q g aggreg P or the range of|Viarg.| in this experiment. Fig. 13 also

the install phase lengths BDcursor andSDBATCH. Re- .

call from Section 3.2.5 that we want to minimize the Iengt'f"lhow.?hthatFS%LREcoMPtﬁs ;nu::h tslciwer_t';]har; the otr|1|er

of the install phase in a data warehouse because during g{%on 1MS. SUBATCH 1S (he 1astest algorithm for smaller

phase the view is locked for update. ase views, whil&DCcURSOR is the fastest for larger base
We consider two types of aggregate viewsfixed-ratio views.

sqgregate over a base vingroups! o - V] groups o, 11%, 1% COTPYES e e of e el phase fr

whereq is a fixedaggregation ratio The size of a fixed- CURSOR is not affected b the size of thepbase view

ratio aggregate increases with the size of the base view. : y ; ’

the other hand, fixed-sizeaggregate over a base viéi or the same reason dlscussgd above. The install phase of

groupsV into a small and fixed number of groups. We wil DBATCH takes much less time than that SDCURSOR

see that the four aggregate maintenance algorithms beh\ﬁ\géveéa;gfge?;" gfsgn\givf’a?ﬁt ;;éng;e?asr?astizi ﬁihees t\);itsﬁ
differently for these two types of aggregates. ger. gaun, P

the limitation of the DBMS optimizer. When executing the
SQL DELETE statement to instal7 V4., the DBMS fails
to make use of the index o¥q..; instead, it scan¥, qe

In the first experiment, we use a fixed-ratio aggred@g.. looking for tuples to delete, which requires time propor-
which groups the base view by orderkey into approxi- tional t0|Vigrge|, 0r0.25 - | L.

mately0.25 - |L| groups. First, we study the impact of the o . .
update ratio on the maintenance time/gf,. by fixing the 4.2.2 Maintaining Fixed-Size Aggregates
TPC-D scale factor dt.1 and varying the update ratio fromwe now compare the performance of the four algorithms for
1% to 10%. Fig. 9 shows that the update ratio has no e fixed-size aggregate vieWs..;;, which groups the base
fect onFULLREcoMP at all. However, the total mainte-view L by linenumber into exactly seven groups, regardless
nance time increases (gradually) with the update ratio fefthe size ofL. Fig. 15 shows the impact of the update ra-
the three summary-delta-based algorithms. Among thetig, on the maintenance ®f.,.q. Again, the performance of
SDcURsSOR is most sensitive to the change in update ratig,uL.LREcoMp does not change much as the update ratio in-
and SDOVERWRITE is least sensitive. Fig. 9 also showsgreases. Plots of the other three algorithms, although some-
that FuLLRECcowmP is far more expensive than the othersyhat noisy due to inconsistent DBMS behavior on such a
SDBATcH is the fastest when the update ratio is smabmall table, show that the total maintenance time increases
while SDOVERWRITE becomes the fastest when the updatg about the same rate for all three algorithms. The reason
ratio is higher thari0%. In Fig. 10, we further compareis that the time it takes to compute the summary-delta table
SDcursor and SDBATCH in terms of the install phase.(which is used by all three algorithms) increases with the
By doing more work in its compute phaseDBATCH has update ratio. On the other hand, the size of the summary-
a much shorter install phase thabbcursor. This shorter delta is usually fixed for a small fixed-size aggregate such as
install phase gives our new algorittidBaTCH an edge in v, ... because any base view delta of reasonable size will
applications where data availability is important. likely affect all groups in the aggregate. The type of work af-
Fig. 11 and 12 show the results of repeating the same &x-computing the summary-delta varies from one algorithm
periment with the size of the database buffer s&@VIB to another, but for each algorithm, the amount of work de-
instead of6.4MB (the default in our experiments). Despitgpends only on the size of the aggregate and the size of the
the large disparity in buffer size, the performance trends mtmmary-delta, which are both fixed in this case. Fig. 16
vealed by Fig. 11 and 12 are remarkably similar to those fferther indicates tha8DBaTcH has a shorter install phase
vealed by Fig. 9 and 10. We have repeated this experimétin SDcuRrsor, and neither is affected by the update ra-
with a number of different buffer sizes, and found that eveiv becausé’,,,..;; is a fixed-size aggregate. In this case the
though performance is improved by extra memory (thoughstall phase does not take a significant portion of the total
not linearly), the relative performance of the schemes n@aintenance time, but as we have discussed, the length of
mains the same. the install phase is still an important measure of warehouse
To study the impact of base view size on aggregasgailability.
maintenance, we fix the size gfL and AL and vary Finally, Fig. 17 and 18 plot the total maintenance time
the scale factor ofL from 0.04 to 0.36. Fig. 13 shows and installation time oV,,,.;; respectively as we fix the size
that the performance of uLLREcoMP deteriorates dra- of the base view deltas and vary the size of the base view.
matically as|L| increases, becaudeuLLREcOMP is re- We see in Fig. 17 th& uLLRECcoMP becomes dramatically
computing the aggregate over a largbr Although slower as the base view becomes larger. However, the other
SDoVERWRITE and SDBATCH are not affected byZ| three algorithms are not affected, again because the size of

4.2.1 Maintaining Fixed-Ratio Aggregates

469

fixedratio aggregate fixedsizeaggregate | g the first to investigate in detail the pros and cons of the
base view delta size base view sizg base view delta size base view size . . .
FoLLRmconn 0 3 0 3 two rep_resentatlt_)ns for view maintenance, and to present
SDOVERWRITE 1 2 1 0 supporting experiments.
Ssg’:‘;‘;;“rt z (1) i g We also briefly described the WHIPS system. Although

T : . ; ; — _significant research has been devoted to both view mainte-
able 11:Sensitivity of aggregate view maintenance algorithms, :
nance and data warehousing, only a few systems focus on
the aggregate and the size of the summary-delta remain cxeremental view maintenance the way WHIPS does. The
stant despite the increasing base view size. Fig. 18 aksdended version of this paper [10] discusses in detail how
shows that the install phase 8D cursor andSDBaTcH WHIPS relates to the other systems.
is not affected by the increasing base view size. Further-As mentioned in Section 1, incremental warehouse main-
more,SDBATCH has a faster install phase thebcursor. tenance has also found its way into commercial systems,
such as the Red Brick database loader [4], Oracle material-
4.2.3 Summary ized views [1], and DB2 automatic summary tables [2]. The
Based on our experiments, we learn that the aggregate ma#sults in this paper should be especially useful to the ven-
tenance algorithms behave differently on different types @brs for improving the performance of these systems, since

aggregate views. In addition, two other factors—the sizg have conducted all of our experiments on a commercial
of the base view and the size of the base view deltas—afsgMS as well.

affect the performance of aggregate view maintenance, and .

different maintenance algorithms react differently to the& Conclusion

factors. Table 11 summarizes the sensitivity of each algbhis paper has addressed performance issues in incremen-
rithm to various factors using a scale ®f(insensitive) to tally maintained data warehouses, with our own WHIPS

3 (very sensitive). In conclusion, the following guidelineprototype serving as a framework for experimenting with
may be used to choose an aggregate view maintenanceaalariety of techniques for efficient view maintenance. We
gorithm for a given scenario: identified several critical data representation and algorith-

e Algorithms based on summary-delta tableduic decisions, and proposed guidelines for making the right
(SDBaTCH, SDCURSOR, and SDoverwriTE) decisions in different scenarios, supported by our experi-

are much faster thaffuLLREcoMP, especially for mental results. From the results of our experiments, we
relatively large base views. can see that making the right decision requires considerable

analysis and tuning, because the optimal strategy often de-
é)ends on many factors such as the size of views, the size of
deltas, and the average number of duplicates. Ideally, some
large deltas.SDBATCH is a compromise between thetc?]c t_he depisions can and should be made by thg DBMS op-
WO. imizer, since it has access to most relevant statistics. How-
! _) ever, because of current limitations of DBMS optimizers,
» Forfixed-size aggregates, all three algorithms based QR decisions still need to be made by an external agent,
summary-delta tables perform equally well. such as the Warehouse Maintainer in WHIPS or a human
e SDBarcH generally has a shorter install phase thagarehouse administrator. As DBMS vendors continue to in-
SDcursoR. However, in the case of fixed-ratio agtroduce more data warehousing features, we hope that view
gregates this advantage 8Dsarcu could diminish maintenance, especially delta installation, will receive an in-
as the size of the base view increases if the DBMS dgeasing level of support.

unable to optimiz®ELETE statements effectively.

e For fixed-ratio aggregatessDCURSOR is preferred
for large base views with small deltas, whil
SDoOVERWRITE is preferred for small base views with

Acknowledgements
5 Related Work We are grateful to past WHIPS project members Reza Be-

There has been a significant amount of research devoted@00z, Himanshu Gupta, Joachim Hammer, Janet Wiener,
view maintenance; see [6] for a survey. However, there h@Rd Yue Zhuge, and to all of our colleagues in the Stanford
been little coverage of the important details of view maif?atabase Group who have contributed to WHIPS.
tenance that are the focus of this paper. For instance, ref-
erence [9] assumes there is kst operation for installing
deltas into a view, but does not cover the details on how to
implementnst Reference [12] proposes the summary-delta
algorithm for aggregate maintenance, but does not consider
the various alternatives for applying the summary delta to
the aggregate view. In this paper, we have presented three
possible implementations of the view maintenance proce-
dure, and evaluated their performance through experiments.
Reference [7] assumes that materialized views use the
CONT representation. On the other hand, reference [5] as-
sumes theup representation. To our knowledge, our paper

470

Scale = 0.1; multiplicity = 3

Update %x scale = 0.36; multiplicity = 3

350 |C T é LU 400 : : |
ursor —H—
300 |- CursorkyL 55—
oo (OIS G o
[—~ 250 - - < .
Malntalnera 2 SQUIAL —+— T SOUAL
@ 200 @ 250

E 150 P f
7 F 100 £ 150
‘ Extractor‘ ‘ Extractor‘ ‘ Extractor‘ 100
50 500 8 !
oL 1 1 1111 0 ! ! !
12345 6 7 8 910 004 012 02 028 036

Fig. 4: KEYINSTALL vS. GENINSTALL.

Time (sec)

Fig. 1: WHIPS components.

Scale = 0.1; no duplicates

Update %

Fig. 2: GENINSTALL UndercnT.

Scale = 0.1; multiplicity = 1

Scale factor

Fig. 3: GENINSTALL UndercnT.

Scale = 0.1; multiplicity = 3

MWOr—T—T—TT T T T T} 250 117171 I — O —T—TT T T T T
GENINSTALLINL -B— Dur/yyL B— | 350 Dur/yyL B— 1]
120 - KEYINSTALL/\7L %— 200 DUP/IAL <— DUP/IAL <—
100 | CONT/7L %— 300 - ONT/yL %— —
i CNT/AL —— o 250 CNT/AL —+—
80 _ g,),/ 150 ! g,),/
60 £ g 200 7
[100 iz 150
40 7 50 100
20[- | = 50 —
0 I N I O (N N 0E=—2 ¥ oE S S N T I |
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Update % Update % Update %

References

(1]

(2]
(3]

(4]

(5]

(6]

[7] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.

R. G. Bello, K. Dias, A. Downing, J. Feenan, W. D. Norcott,

H. Sun, A. Witkowski, and M. Ziauddin. Materialized views[10]
in Oracle. InProc. of the 1998 Intl. Conf. on Very Large Data
Basespages 659-664, August 1998.

S. Brobst and D. Sagar. The new, fully loaded, optimizer.
DB2 Magazine4(3):23—-29, September 1999.

S. Chaudhuri and U. Dayal. An overview of data warehou$! 1]
ing and OLAP technologySIGMOD Record26(1):65—74,
March 1997.

P. M. Fernandez and D. A. Schneider. The ins and outs (aHd?]
everthing in between) of data warehousing. Piroc. of the
1996 ACM SIGMOD Intl. Conf. on Management of Data
page 541, June 1996.

T. Griffin and L. Libkin. Incremental maintenance of viewd 13l
with duplicates. InProc. of the 1995 ACM SIGMOD Intl.
Conf. on Management of Datpages 328-339, May 1995. [14]

A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques, and applicatioHSEE Data
Engineering Bulletin18(2):3-18, June 1995.

Main-15
taining views incrementally. IRroc. of the 1993 ACM SIG- [15]

MOD Intl. Conf. on Management of Datpages 157-166,
May 1993.

[8] W.J. Labio and H. Garcia-Molina. Efficient snapshot differ-

ential algorithms for data warehousing. Pinoc. of the 1996
Intl. Conf. on Very Large Data Basggages 63—74, Septem-
ber 1996.

[9] W. J. Labio, R. Yerneni, and H. Garcia-Molina. Shrinking

the warehouse update window. Rroc. of the 1999 ACM

471

Fig. 5: Dup vs. cNT for delta installation. Fig. 6: Dup vs.cNT for delta installation.

SIGMOD Intl. Conf. on Management of Datpages 383—
394, June 1999.

W.J. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom.
Performance issues in incremental warehouse maintenance.
Technical report, Computer Science Department, Stanford
University, 1999.
www-db.stanford.edu/pub/papers/whips-wm.ps.

D. Lomet and J. Widom, editorsSpecial Issue on Material-
ized Views and Data Warehousing, IEEE Data Engineering
Bulletin, 18(2), June 1995.

I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of
data cubes and summary tables in a warehous@rdo. of
the 1997 ACM SIGMOD Intl. Conf. on Management of Data
pages 100-111, May 1997.

Transaction Processing Performance Coui&IC-D Bench-
mark Specification, Version 1.2996.www. tpc.org.

J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-
Molina, and J. Widom. A system prototype for warehouse
view maintenance. IProc. of the 1996 ACM Workshop on
Materialized Views: Techniques and Applicatippages 26—
33, June 1996.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View
maintenance in a warehousing environmentPtac. of the
1995 ACM SIGMOD Intl. Conf. on Management of Data
pages 316-327, May 1995.

Update %x scale = 0.36; multiplicity = 3

Dur/lyyL &—
Dur/AL <©—
150 - ONT/y7L >%— -
- /AL
o e il
2
o 100 -
= @
'_
501
Foo-o —o0—A
0 1 1 1
0.04 0.12 0.2 0.28 0.36

Scale factor

Fig. 7: Dup vs. cNT for delta installation. Fig. 8: Dup vs. cNT for delta computation.

Scale=0.1
Or—T—T T T T T 11
SDBATCH >— I
SDCURSOR —+—

Install time (sec)

0 TN R Y N N B
5 6 7 8 9 10
Update %

Fig. 10:Installing deltas fol/qrye .

Update %x scale = 0.36

250 T T
FuLLRECOMP H—
_.200} SDOVERWRITE ©—
3 SDBATCH >—
o SDCURSOR —+—
o 150
E
s 100
o
50
0
0.04 0.12 0.2 0.28 0.36
Scale factor
Fig. 13: Maintaining Vigrge .
Scale=0.1
T 1T 1 1 1 1
0.6 - -
'5_.{ 0.5 SDBATCH ><— 7]
@ SDCURSOR —+—
o 04 -
£
2 03F -
s
£ 02 m
0.1 -
0

IR R N I N R
1 2 3 456 7 8 910
Update %

Fig. 16:Installing deltas foVsa11.

Scale = 0.1; update % =5

80 T T T T T 1
70 - Dur/yLO; H— i
Dupr/yLOy <—
60 - ONT/\7LOp >—
o CNT/7LOy —+—
2 50 -
© 40+
E 30
208
10 & o oo
— g f
0 I I R NN N |
1 15 2 25 3 35 4 45 5
Multiplicity

Scale = 0.1; database buffer = 240MB

140 T T 1 LI

1201 i
— FULLRECcOMP H—
8 100 - SDOVERWRITE ©— .
a SDBATCH $—
g 80 - SDCURSOR —+— —
T 60 - =
S 40

20F _

) | 1 1 1 1

1]

1 2 3 45 6 7 8
Update %

Fig. 11: Maintaining Viarge -

20 -

Install time (sec)

15

10

Update %x scale = 0.36

ST I E— —

SDBATCH >—
SDCURSOR —+—

0]]]
0.04 0.12 0.2 0.28
Scale factor

Fig. 14:Installing deltas fol/jqrge .

Update %x scale = 0.36

10

0.36

90 T T T h
80 FurLLReEcomp H—
—~ 70 SDOVERWRITE <—
9 B SDBATCH X—
o 60 SDCURSOR —+—
)
= 50
(_*; 40
"é 30
20
104
0
0.04 0.12 0.2 0.28 0.36

Scale factor

Fig. 17: Maintaining Veai-

472

Install time (sec)

Scale=0.1
220 | L N
200 n
180 FuLLRECcomMP H— 1
160 - SDOVERWRITE -6— -
140 SDBATCH X— -
120 SDCURSOR —+— _

L1 1
1 2 3 4

[
5 6 7 8 9
Update %

Fig. 9: MaintainingVigrge -

Scale = 0.1; database buffer = 240MB

T T T T T T 1T
- SDBATCH >*—
| SDCURSOR —+—]

0
1 2 3 4

[
7 8 9

5 6 10
Update %

Fig. 12:Installing deltas foV/;qrge .

Total time (sec)

Install time (sec)

Scale=0.1
ASrTT T T T T T
40 — FuLLREcomp H— —
SDOVERWRITE <— 1
35 SDBATCH X—
30[SDCURSOR —+—
25 A
20
15
10
57 P
0 1 1 1 1 1 1 1 1
1 2 3 45 6 7 8 910
Update %
Fig. 15: Maintaining Vsau.
Update %x scale = 0.36
T T
0.5 -
SDBATCH <—
0.4 | SDCURSOR —+— -
0.3 -
0.2 -
01 M
0 1 1 1
0.04 0.12 0.2 0.28 0.36

Scale factor

Fig. 18:Installing deltas foV a1

