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Abstract

Fast indexing in time sequence databases for sim-
ilarity searching has attracted a lot of research
recently. Most of the proposals, however, typi-
cally centered around the Euclidean distance and
its derivatives. We examine the problem of multi-
modal similarity search in which users can choose
the best one from multiple similarity models for
their needs.

In this paper, we present a novel and fast index-
ing scheme for time sequences, when the dis-
tance function is any of arbitrary Lp norms (p =

1; 2; : : : ;1). One feature of the proposed method
is that only one index structure is needed for all
Lp norms including the popular Euclidean dis-
tance (L2 norm). Our scheme achieves signifi-
cant speedups over the state of the art: extensive
experiments on real and synthetic time sequences
show that the proposed method is comparable to
the best competitor forL2 andL1 norms, but sig-
nificantly (up to 10 times) faster for L1 norm.

1 Introduction
Time sequences of real-values arise in many applications
such as stock market, medicine/science, and multimedia.
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Retrieval of these sequences is based on ‘similarity’ as op-
posed to exact equality. For instance, a financial analyst
may be interested in such queries as:

� “Find all stocks whose prices moved similarly to that
of a company over the last two months.”

� “Find all companies which have similar patterns of
revenue growth to that of another company for the last
decade.”

� “Find all currencies whose prices w.r.t. US Dollar
have changed similarly to the price of gold for a spe-
cific period of time.

Results of the queries can be used for further analysis of
the market trends and/or key factors behind certain market
events.

Similarity-based search in large collections of time se-
quences has attracted a lot of research recently in database
community, including [1, 9, 11, 2, 19, 24], to name just
a few. Main focus has been fast indexing techniques to
improve performance when a particular similarity model
is given. Typically, sequences of fixed length are mapped
to points in an N -dimensional Euclidean space and, then,
multi-dimensional access methods such as R-tree fam-
ily [12, 21, 3] can be used for fast access of those points.

Since, however, time sequences are usually long, a
straightforward application of the above approach suf-
fers from performance degradation due to a phenomenon
known as ‘dimensionality curse.’ [4] To address the prob-
lem, several dimensionality-reduction techniques have
been proposed. Discrete Fourier Transform (DFT) was
the most popular and used in [1, 9, 11, 19] and, more re-
cently, Discrete Wavelet Transform (DWT) was also pro-
posed [15]. The basic idea is to approximate original time
sequences with a few transform coefficients and, hence,
map them into low-dimensional points. These methods
guarantee that every qualifying sequence will be retrieved
(no false dismissals). Some non-qualifying sequences may
be retrieved, but can be removed in the post-processing
stage. Other techniques include piece-wise constant ap-
proximation [7], and FastMap [8, 24].

Another issue in the area has been the choice of similar-
ity models. Euclidean distance (L2 norm) was the most
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heavily used one [1, 9, 11, 19]. Linear correlation co-
eff. [15] is closely related to the normalized Euclidean
distance [8]. We investigated the Time Warping distance
in [24]. Infinity norm (L1) was proposed in [2] as part of
a more complex similarity model. Other similarity models
are also possible and have been proposed, but due to the
space limitation we do not discuss them any further.

We note the following limitations in the previous ap-
proaches.

� Multi-Modality Support: No single model of simi-
larity is suitable for every application. Sometimes sev-
eral similarity models may be required for the same
database of sequences, depending on different per-
spectives of different users. (Even a single user may
want to have multiple models.) No previous work
has proposed a single framework to support this multi-
modal query processing for time sequences. To sup-
port it, we are forced to implement different tech-
niques for different models into a DBMS, which is
not efficient and only add complexity to the system,
making it hard to build core DBMS components such
as query optimizer, since different techniques may re-
quire different access methods and storage organiza-
tions etc.

� Feature Extraction: Proposed feature extraction (di-
mensionality reduction) methods are either (a) only
suitable for a particular similarity model, or (b) have
other shortcomings. For example, DFT as well as
DWT has been shown very effective when the given
distance function is Euclidean, but its effectiveness
is questionable for other similarity models. FastMap
may be used for a wider class of models, but it does
not guarantee ‘no false dismissal.’ Piece-wise con-
stant approximation does not allow for indexing due
to its irregularity.

In this paper, we address the above problems and propose a
new similarity-based query processing scheme for time se-
quences. We focus on arbitrary Lp norms, since they have
been widely used in real applications and can be used as
basic building blocks for more complex similarity models
as in [2].

We propose a new feature extraction method based on
segmented means. We divide each time sequence into a
fixed number, say ‘s’, equal sized segments and take the
mean of each segment to form a feature vector. It has a
nice mathematical property such that we can decrease the
given search range without affecting the correctness of the
query results. Moreover, the proposed method provides a
single unified framework in which,

� multiple similarity models are supported simultane-
ously,

� indexing for fast retrieval is supported, and,

� the same index structure can be re-used for different
models.

Symbol Definition

DFT Discrete Fourier Transform
DWT Discrete (Haar) Wavelet Transform
~x a time sequence
xi the i-th value of ~x (1 � i � L)
j~xj length of ~x
s number of segments
l length of each segment ( = dL=se)
P x
j the j-th segment of ~x (1 � j � s and jPx

j j = l)
~F x
s feature vector of ~x
� search tolerance
w sliding window size for the subsequence matching

Table 1: List of symbols

We will demonstrate the efficiency of the method via ex-
tensive experiments based on whole-sequence and subse-
quence matching queries against a stock price dataset as
well as a synthetic dataset.

Organization of the paper In Section 2, we survey re-
lated work. In Section 3, we present our proposed method
in detail as well as how to use existing techniques. Sec-
tion 4 reports experimental results to compare the proposed
method and the competitors. Finally, Section 5 discusses
the key contributions of the paper. In Table 1, we list the
symbols and their definitions that we use in the rest of the
paper.

2 Related Work
Similarity-based matching of time sequences has been
studied extensively in the signal processing area, and
specifically in speech processing [18]. However, the
usual assumptions are a small dataset (e.g., a few tens of
phonemes) so that the primary concern is precision rather
than efficiency in the presence of large datasets.

Performance is the main focus in the recent database
work on sequence matching. They differ in what type
of distance function is used and what type of matching
they aim at. In [1], Agrawal et al examined the whole
matching problem when the given dissimilarity function
is the Euclidean distance, and suggest using the Discrete
Fourier Transform (DFT). They argued that most of real
signals need only a few DFT coefficients to approximate
them. They proposed an indexing mechanism called F-
Index which takes a few of the first coefficients and re-
gards them as a point in the Euclidean space. Hence it
makes possible to use any of readily available multidi-
mensional access methods. The proposed method may al-
low a few false alarms which can be removed in the post-
processing stage, but guarantees no false dismissals. In [9],
authors generalized the approach for subsequence match-
ing. Follow-up work by Goldin and Kanellakis [11] sug-
gested that we normalize the sequences first, to allow for
differences in level and scale. Agrawal et al [2] introduce
a new distance function for time sequences, aiming to cap-
ture the intuitive notion that two sequences should be con-
sidered similar if they have enough non-overlapping time-
ordered pairs of similar subsequences. The model allows
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Ref. Dist. Features Matching Index Transformations

[1] L2 DFT whole yes none
[9] L2 DFT subseq yes none

[11] L2 DFT whole yes offset translation,
amplitude scaling

[2] L1 none subseq yes offset translation,
based amplitude scaling,

gaps allowed
[19] L2 DFT whole yes moving average,

time scaling
[15] Corr. DFT or subseq no offset translation,

Coeff. DWT amplitude scaling
[7] L2 piece-wise whole no regional add

variant constant
[24] Time FastMap whole yes none

Warping
[13] L2 PAA whole yes weighting

Table 2: Comparison of different approaches

the amplitude of one of the two sequences to be scaled
by any suitable amount and its offset adjusted appropri-
ately. It also allows non-matching gaps in the matching
subsequences. Rafiei and Mendelzon [19] extend previous
work by proposing techniques to handle moving average
and time scaling (i.e., globally stretching or shrinking of the
time axis), but not time warping. In [15], authors proposed
a hierarchical scanning method based on the linear correla-
tion coefficient as a similarity measure. Faloutsos et al [7]
proposed a generic framework for similar time sequences.
It takes advantage of piece-wise constant approximations
as signatures for fast comparison of sequences and allows
for regional add transform. We proposed efficient tech-
niques when the similarity measure is defined by the time
warping distance [24]. Keogh and Pazzani [13] proposed
a feature extraction method which is coincidently vey sim-
ilar to ours, but their focus was on L2. These approaches
are summarized in Table 2. We compared them in terms of
the distance metrics, the features, the type of matching, the
possibility of indexing and the allowed transformations.

3 Indexing Time Sequences for Lp Norms
Different dissimilarity measures have been discussed in the
literature. Among others,Lp norm is the most popular class
of dissimilarity measures and defined as follows:

Lp(~x� ~y) =

 
LX
i=1

jxi � yijp
! 1

p

It is called the city-block or the Manhattan norm when p =
1, and the Euclidean norm when p = 2. In the extreme
case when p = 1, it is called the maximum norm and can
be reformulated as follows:

L1(~x� ~y) =
L

max
i=1

jxi � yij

It is known that L2 norm is optimal (in the Maximum Like-
lihood sense) when measurement errors are additive, i.i.d.
(independent, identically distributed) Gaussian [22]. It has
been the most popular dissimilarity measure in similar time
sequence matching [1, 9, 11, 19]. Linear correlation coef-
ficient was used in [15], but it can be effectively converted
to L2 norm without loss of information [8].
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Figure 1: Different characteristics of L1, L2, and L1
L1 norm is optimal when measurement errors are addi-

tive, i.i.d. Laplacian (or Double Exponential), hence more
robust against impulsive noise [22]. L1 has been used in
the context of robust (parametric or non-parametric) regres-
sion [14, 20, 22] for many applications including time se-
quences [14, 6]. More recently, it was also used in [10] for
their hashing-based similarity search technique.
L1 was used for atomic matching in a more complex

dissimilarity measure in [2]. The measure proposed in [2],
however, only decides whether two sequences are similar
or not and ranking of query result is not possible.

Figure 1 illustrates the characteristics of different Lp
norms. All sequences are of length 32. The original se-
quence is in (a). We added a single impulse of size 2.5 in
(b), two impulses of size 1.5 in (c). In (d), we added and
subtracted 0.5 alternately at each time spot. Then the clos-
est sequences to the sequence (a) with respect to L1, L2,
and L1, are (b), (c), and (d), respectively. This example
clearly shows the different notion of similarity each norm
offers.

Effective feature extraction functions such as DFT and
DWT are available only for L2 because they are rotation-
based (orthonormal transformations) and do not preserve
distance for L1 and L1 in the feature space. Thus, in
case ofL1, they were forced to search in high dimensional
space [2], rather than low dimensional feature space as in
[1, 9].

We believe the choice of appropriate dissimilarity mea-
sures is highly application dependent and up to applica-
tion engineers. Since, however, the perspectives of differ-
ent users can vary even on the same dataset, some form
of multi-modality is required. In such an environment,
a DBMS for similarity-based retrieval of time sequences
must provide a single unified framework which supports:

� multiple similarity models simultaneously,

� indexing for fast retrieval, and,

� re-use of the same index structure for multiple models.

In this regard, our first goal is to provide a general in-
dexing scheme which can be used for any of Lp norms
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(p = 1; 2; : : : ;1). We specifically support the following
two types of queries.

Problem 3.1 (Lp-based Whole Sequence Matching)
Given a query sequence ~q and a set of sequences SEQ
(j~qj = j~xj, for all ~x 2 SEQ), find all sequences ~x in SEQ
such that Lp(~q�~x) � �, for any value of p = 1; 2; : : : ;1.

Problem 3.2 (Lp-based Subsequence Matching) Given
a query sequence ~q and a set of sequences SEQ (j~qj � j~xj,
for all ~x 2 SEQ), find all subsequences ~x0 of all ~x in SEQ
such that j~qj = j~x0j and Lp(~q � ~x0) � �, for any value of
p = 1; 2; : : : ;1.

While we are primarily concerned with whole and subse-
quence matching, we note that a fast method for both types
of matching is also essential for more complex matching
such as the one proposed in [2], in which atomic matching
is in fact whole matching based on L1.

Some transformations can be allowed before sequences
are compared. These include offset translation, amplitude
scaling [11, 2, 15], and time scaling [19]. Offset translation
subtracts/adds a certain offset value (usually mean) from
each element of a sequence. Amplitude scaling multiplies
a normalization factor to the element such that either the
amplitude is within a fixed range or the sample variance
is 1. Time scaling is to enlarge the time axis by a certain
amount so that two sequences of different lengths can be
matched. They provide a certain degree of flexibility in
the notion of similarity. Our next goal is to support these
transformations in our scheme.

Problem 3.3 (Transformations) Support efficiently ‘off-
set translation’, ‘amplitude scaling’, and ‘time scaling’ in
our indexing scheme.

3.1 Proposed Method – Segmented Means

Suppose we have a set of sequences of length L. The basic
idea of our proposal consists of two steps. First we partition
each time sequence into s segments of equal length l. We
assume L = s � l. Otherwise, we add zeros at the end of
sequences. Note that it does not affect query results. Next,
we extract simple features from each segment. We propose
to use mean as a feature for all Lp norms.

Formally, let ~x = hx1; : : : ; xLi be a sequence of length
L. Let s and l be two numbers such that L = s � l. Then ~x
can be divided into s segments of length l. Let P x

j
denote

the j-th segment of ~x, i.e.,

P x

j
= hx(j�1)l+1; : : : ; xj�li:

We define a feature vector of ~x as follows. (See Figure 2
for an example.)

Definition 3.1 (Segmented-Mean Feature) Given a se-
quence ~x = hx1; : : : ; xLi and the number of segments
s > 0, define the feature vector ~F x

s of ~x by,

~F x
s = hfx1 ; : : : ; fxs i = hmean(P x

1 ); : : : ;mean(P x

s )i

L = 24, s = 4

l = 6

mean

Figure 2: Example of Segmented Means

The algorithm to compute ~F x
s is fairly obvious and omitted

in this paper. To avoid the possibility of false dismissals,
we must show that the distance between feature vectors
lower-bounds that of original sequences. It is not very hard
to see that it is indeed the case, i.e., for all p = 1; : : : ;1,

Lp( ~F x
s
) � Lp(~x)

In practice, however, ~F x
s is a poor approximation of ~x,

since it is essentially a down-sampling of ~x. Much of the in-
formation would be lost and, consequently, too many false
alrams would occur.

Our goal is to find a way to compensate the loss of infor-
mation so that we could reduce the number of false alarms.
More specifically, we seek a factor �p > 1 such that,

�p � Lp( ~F x
s
) � Lp(~x)

We claim that there exists such a factor, thanks to the nice
mathematical property of ~F x

s , and we will take advantage
of it for efficient query processing. There is a well-known
mathematical result on convex functions. We borrow the
following theorem from [17, p.379].1(See Figure 3 for an
intuitive example.)

Theorem 3.1 Suppose that x1; : : : ; xL 2 R, and
�1; : : : ; �L 2 R such that �i � 0 and (

PL

i=1 �i) = 1.
If f is a convex function on R, then

f(�1x1 + � � �+ �LxL) � �1f(x1) + � � �+ �Lf(xL)

where R is the set of real numbers.

It is clear that f(�) = j � jp is a convex function on R
for 1 � p < 1. Hence, as a direct consequence of Theo-
rem 3.1 by taking �i = 1

L
, we have the following corollary.

Corollary 3.2 For any sequence ~x = hx1; : : : ; xLi and
1 � p <1, the following holds.

L � jmean(~x)jp �
LX
i=1

jxijp

Or, equivalently, for each segment of ~x, we have, for 1 �
j � s,

l � jmean(P x

j )jp �
j�lX

i=(j�1)l+1

jxijp

1The definitions of convex sets and functions are beyond the scope of
the paper and are found in [17, pp.373-376]. Note also that we modified
it such that we only consider R rather than Rd.
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Figure 3: Illustration of convex function theorem

Now we have our main theorem as follows.

Theorem 3.3 For any sequence ~x = hx1; : : : ; xLi and
1 � p � 1, the following holds.

p
p
l � Lp( ~F x

s ) � Lp(~x)
Proof: We first consider when p 6= 1. By the definitions
of Lp and ~F x

s ,

l � Lp( ~F x
s )

p
= l �

sX
j=1

jmean(P x

j )jp

By Corollary 3.2, �
sX

j=1

0
@ j�lX
i=(j�1)l+1

jxijp
1
A

=

LX
i=1

jxijp

= Lp(~x)p

By taking p-th root on both sides, we prove the theorem. If
p =1, then

L1( ~F x
s
) =

s

max
j=1

jmean(P x

j
)j

� s

max
j=1

�
j�l
max

i=(j�1)l+1
jxij
�

=
L

max
i=1

jxij = L1(~x)

Since 1

p
l = 1, it completes the proof. 2

3.1.1 Query Processing

Thanks to Theorem 3.3, we can efficiently handle �-range
queries with segmented-mean feature vectors. Suppose we
are to compare two sequences ~x and ~y. By the theorem, we
know that Lp(~x� ~y) � � implies Lp( ~F x

s
� ~F y

s ) � �=
p
p
l .

(The converse does not hold in general.) Therefore, any
Lp-based �-range queries against a set of sequences ~x can
be correctly converted to Lp-based (�=

p
p
l )-range queries

against a set of the corresponding feature vectors ~F x
s

with-
out worrying about the possibility of false dismissals. This
is an improvement to the plain usage of the feature vectors,
since we have reduced the search range by a factor of p

p
l .

We summarize a general strategy for the whole-
sequence matching (Problem 3.1) as follows:

1. Extract feature vectors ~F x
s for all ~x 2 SEQ. The num-

ber of segments, s, is a system tuning parameter as the
number of Fourier coefficients in [1]. (Trailing zeros
are padded if necessary.)

2. Build an index structure on ~F x
s

using any of the readily
available multi-dimensional access methods such as
the R-tree.

3. For each Lp-based �-range query with a query se-

quence ~q, extract ~F q
s and convert the query to an

equivalent (�= p
p
l )-range query with ~F q

s in the feature
space, and perform search on the index. (l = dL=se)

4. Filter out false alarms.

Processing subsequence matching queries (Problem 3.2)
is more complex. The basic idea is fairly the same as in [9].
We assume that all sequences including query sequences
are longer than a predetermined minimum length ‘w’. (In
this case, however, the length of each individual sequence
can vary.) Then, our strategy is the following:

1. A sequence ~x is divided into (j~xj � w + 1) sliding
windows of fixed length w and extract the segmented-
mean features from them. We use the same value of s
as in the case of whole-sequence matching.

2. The feature vectors form a trail in the s-dimensional
feature space. To reduce the storage overhead and en-
hance the system performance, we divide them into a
few sub-trails based on the ‘marginal cost’ criterion
defined in [9], and compute their minimum bounding
rectangles (MBRs).

3. We repeat the above steps for each ~x 2 SEQ.

4. Build an index structure on the MBRs using any of
the readily available multi-dimensional access meth-
ods such as the R-tree.

5. For each Lp-based �-range query with a query se-
quence ~q,

(a) Divide ~q into p(= bj~qj=wc) non-overlapping
subsequences, ~qk, 1 � k � p. (Note that we can
ignore the remaining (j~qj�p �w) elements with-
out compromising the correctness of the query
results.)

(b) For each feature vector of ~qk,
perform (�= p

p
l � p )-range search on the index

and ‘OR’ the query results.

6. Filter out false alarms.

3.1.2 Transformations - Data Preprocessing

We have shown how to efficiently processLp-based queries
using the proposed feature extraction method. We now turn
to our next goal. As for offset translation and amplitude
scaling, let ~y = a � ~x � b with ‘a’ for the scaling factor
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Algorithm HaarWaveletCoefficients
Input: X[1,...,L], L = 2n for some n

Output: H[1,...,L], Haar wavelet coeff. for X[]

H[1,...,L] := X[1,...,L];
For (len := L; len >= 2; len := len/2) f

For (i := j := 1; i < len; i := i+2, j := j+1) f
S[j] := (H[i] + H[i+1]) /

p
2 ;

D[j] := (H[i] - H[i+1]) /
p
2 ;

g
For (i := 1; i <= len/2; i := i+1) f

H[i] := S[i];
H[i+(len/2)] := D[i];

g
g
Return H[1,...,L];

End Algorithm

Figure 4: Algorithm to compute Haar wavelet coefficients

and ‘b’ for the offset value. That is, ~y is the translated and
rescaled version of ~x. Then the feature vector of ~z can be
computed as follows:

~F y
s = hmean(P y

1 ); : : : ;mean(P y

s
)i

= h(a�mean(P x

1 )� b); : : : (a�mean(P x

s )� b)i
= a � ~F x

s � b

Thus, once we have the feature vectors, it is almost straight-
forward to compute the translated and rescaled versions.

As for time scaling, since extending time axis does not
change the mean, the mean feature vector is invariant under
time scaling. Let ~z is an extended version of ~x by ‘c’ times
for an integer c. That is, zi = xdi=ce. Then,

~F z
s = hmean(P z

1 ); : : : ;mean(P z

s )i

=

�
c�mean(P x

1 )

c
; : : : ;

c�mean(P x
s )

c

�
= ~F x

s

Thus, we can reuse the same feature vector as-is for the
time-extended version. We believe other transformations
such as moving-average [19] can be easily handled like-
wise.

3.2 An Alternative–How to use DWT

As an alternative, we can use the existing feature extrac-
tion methods based on orthogonal linear transforms such
as DWT and DFT. In this paper, we focus on DWT, es-
pecially ‘Haar’ DWT, since it has been widely used as
a state-of-the-art method for various database applications
recently [16, 23]. We present an algorithm to compute 1-d
Haar wavelet coefficients in Figure 4. (For the theory of
wavelets, readers are referred to [5].)

Since DWT as well as DFT is an orthogonal linear trans-
form, it rotates the data distribution in a predetermined way.
As such, L2 norm is perfectly preserved by the transform,
since it is invariant under rotations. Other Lp norms for

r

8

L1

r

L

r

2 r

(a) Before rotation (b) After rotation

Figure 5: Example of adjusting ranges for rotated points

p 6= 2 are not preserved. Therefore, we can not use the
DWT-based feature vectors for arbitrary Lp-based query
processing.

One way to fix the problem is to adjust the search range
such that all qualifying sequences are included within the
search boundary. Suppose ~x0 and ~y0 are the rotated versions
of two sequences ~x and ~y of length L, respectively. Then,
it is not hard to see the following translation rules hold:
(Figure 5 describes the idea in the 2-d plane, i.e., L = 2.)

L1(~x� ~y) � � =) L2(~x0 � ~y0) � �

L1(~x� ~y) � � =) L2(~x0 � ~y0) �
p
L � �

Similar rules are possible for Lp norms for 3 � p <1.
We convert each L1- and L1-based �-range queries to

L2-based queries with search ranges according the above
conversion rules, and then perform search on the index built
on top of the DWT feature vectors. Note that, this way, we
can guarantee no false dismissals. As we will see in the
next section, however, it is not very efficient except for L2

norm.

3.2.1 The Haar DWT vs the Segmented Means

The two types of feature vectors produced by the proposed
method and the Haar DWT are closely related to each other.
More specifically, we have the following theorem.

Theorem 3.4 Let ~Hx
s denote a feature vector of ~x, com-

posed of the first s Haar wavelet coefficients. We further
assume j~xj = 2

n (n > 0) and s = 2
m (n � m � 0). Then,

the following equality holds.

L2(
p
l � ~F x

s
) = L2( ~Hx

s
)

where l = j~xj=s = 2
n�m.

Proof: By definition,
p
l � ~F x

s = h
p
l � mean(P x

1 ); : : : ;
p
l � mean(P x

s ) i
= h sum(P x

1 )=
p
l ; : : : ; sum(P x

s
)=
p
l i

Note that, if we take the Haar DWT of the above vector,
we get ~Hx

s . Since the Haar DWT is invariant under L2, we
have,

L2(
p
l � ~F x

s
) = L2(DWT(

p
l � ~F x

s
))

= L2( ~Hx
s )
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Hence, the theorem holds. 2

Let SSM and SDWT be two feature spaces defined byp
l � ~F x

s and ~Hx
s , respectively. The above theorem tells

us that if the dimension of feature space is some power of
2 (i.e., s = 2

m), then the SSM is a rotated version of SDWT

and vice versa. In Figure 6, we present examples of SSM

and SDWT of 100 time sequences (s = 2). We observe that
they are indeed rotated versions of each other. In terms of
indexing, however, SDWT seems a little bit better since its
minimum bounding rectangle (MBR) is smaller as we can
see in the example. Therefore, forL2-based queries, we ex-
pect slightly better performance from SDWT and, as we will
see later, the experimental results prove this point.

4 Experimental Results
To verify the effectiveness of the proposed method, we per-
formed experiments on real time sequences (daily stock
prices) and synthetically generated time sequences. Our
experiments were based on �-range queries for both whole-
and subsequence matching. We compared the proposed
method and the DWT-based method as well as the sequen-
tial scanning method as a sanity checker. All methods
were implemented in the C programming language. For R-
tree, we used DR-tree (v2.5) library developed at the Univ.
of Maryland with some modifications to handle Lp-based
search. As a measure of success, we recorded the wall
clock time with the UNIX ‘time’ command. All exper-
iments were performed on a dedicated Sun UltraSparc-1
workstation with a 143MHz CPU, 64MB of memory and
SCSI disks (Seagate ST410800N), running SunOS version
5.5 operating system.

We present more specific information on the experimen-
tal setting in the following subsection.

4.1 Experimental Setting

For the experiment, we prepared two datasets of sequences.
Samples of these time sequences are plotted in Figure 7.

� STOCK: The stock dataset contains 675 stocks, each
with varying number of daily closing prices. The av-
erage length is 1,187. For the whole-sequence match-
ing, we generated fixed length sequences with 128
samples each. The sample windows overlap by 1=3
of the window size. For subsequence matching, we
used the dataset as-is.
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Figure 7: Sample Time Sequences

Dataset Num. of Seq. (Avg.) Seq. Len. Feature Dim.

STOCK 675 1,187 4
SYNTH 30,000 128 4

Table 3: Summary of the Experimental Setting

� SYNTH: Additional 30,000 synthetic sequences, with
128 samples each, were generated using the random-
walk model following [1]. More specifically, each se-
quence was generated by the following formula.

xt = xt�1 + � � zt
where x0 � Uniform(2; 10), zt � Normal(0; 1), and
� = 0:06, for t = 1; : : : ; 128.

We compared the following 3 methods:

� SM: Our proposed method based on the segmented
means.

� DWT: The alternative method based on the Haar
wavelet transform.

� SCAN: The naive sequential scanning method.

An important parameter is the dimension of the feature
space, i.e., the length of feature vectors. In general, the op-
timal value depends on the datasets, the feature extraction
methods to use, and the distance functions (Lp norms). We
fixed it as 4 because of the following two reasons:

� The value was good enough for both SM and DWT
methods, a little more in favor of DWT, regardless of
the datasets.

� Since one of our goals is to re-use the same index
structure for all Lp norms, we need to fix it for all
values of p.

Table 3 summarizes the experimental setting.

4.2 Whole Sequence Matching Queries

We first performed Lp-based whole-sequence matching
queries. We took 100 sequences randomly from each
dataset and used them as the query sequences. We mea-
sured the average response time (including both the search
time and the post-processing time). Search ranges were
chosen such that the average selectivity of query results be
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Figure 8: L1-based whole-sequence matching
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Figure 9: L2-based whole-sequence matching

0.1%, 1%, 3%, and 7%, for each value of p = 1; 2;1 and
for each dataset.

The results ofL1-based whole matching queries are pre-
sented in Figure 8. The proposed method is the clear win-
ner for both datasets. Interestingly, DWT method was even
slower than the SCAN method on the stock dataset. For the
synthetic dataset, the proposed method achieved 10 time
speedup over the DWT method and 50 time speedup over
the naive method at the selectivity of 0.1%.

In the case ofL2-based queries (see Figure 9), the DWT
method was slightly faster than the proposed method for
the stock dataset. It is, however, expected because DWT
is highly optimized for L2 norm. For the synthetic dataset,
it is almost impossible to distinguish between the proposed
method and the DWT method and they both scaled up very
well.

Figure 10 presents the results from L1-based queries.
Again, the proposed method is the winner for both datasets,
although the difference between the proposed method and
the DWT method is small in the stock dataset. For the syn-
thetic dataset, they both scaled very well and the proposed
method consistently outperformed the competitor.

As a summary, we conclude that the proposed method
is the clear winner in all cases except for L2-based queries
against the stock dataset. But the DWT method performed
very poorly for L1-based queries.

4.3 Subsequence Matching Queries

We next performed Lp-based subsequence matching
queries. For the stock dataset, we re-used the same query
sequences that had been used for the whole matching

queries. For the synthetic dataset, we used the first 64 val-
ues of the query sequences from the whole matching exper-
iment. Hence the ratios between the query length and the
data length are 128:1187 for the stock dataset and 64:128
for the synthetic dataset. The search ranges were chosen in
the same way as in the previous experiment.

In Figure 11, presented are the results from L1-based
subsequence queries. We observed that, again, the pro-
posed method is the clear winner for both datasets and
it scales very well even at the relatively hight selectivity
(7%). The DWT performed poorly for both datasets. At
highest selectivity, it almost converged to the naive method.

In Figure 12, L2-based query results are shown. Yet
gain, the DWT method performed slightly better than the
proposed method on the stock dataset, but the difference
was small. For the synthetic dataset, the proposed method
outperformed the DWT method just a little after 1% of se-
lectivity. On both datasets, they scaled very well.

In the case of L1 (Figure 13), the results are not much
different from the other cases and the proposed method
consistently outperformed the competitor.

Summary In Table 4, we present the relative response
time of the proposed method w.r.t. the DWT-based
method for the 3%-selectivity queries. For L1-based
queries, the proposed method outperforms the DWT-based
method by big margins, in all datasets. For L2-based
queries, the DWT-based is slightly faster as we anticipated.
Note, however, the proposed method outperforms in subse-
quence queries against the synthetic dataset. ForL1-based
queries, the proposed method consistently outperforms by
the competitor by up to 30% margin. Overall, we conclude
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Figure 10: L1-based whole-sequence matching
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Figure 11: L1-based subsequence matching

Whole SubsequenceDataset
L1 L2 L1 L1 L2 L1

STOCK 0.23 1.1 0.93 0.43 1.05 0.88
SYNTH 0.12 1.03 0.7 0.18 0.95 0.74

Table 4: Relative response time (TSM=TDWT ) for 3%-
selectivity queries

that the proposed method is the winner in the competition.

5 Conclusion
The major contribution of the paper is two-folds:

� Multi-modality Support: No single model of sim-
ilarity is suitable for every application. Sometimes
several similarity models may be required for the same
database of sequences, depending on the different per-
spectives of different users. We addressed this prob-
lem by supporting arbitraryLp norms for any value of
p = 1; 2; : : : ;1, because they are the most popular
class of dissimilarity measures and, also, they can be
used as the building blocks for more complex ones.
No previous work has proposed a single framework
to support this multi-modal query processing for time
sequences.

� Efficient Indexing: For efficient query processing,
we proposed a new unified indexing scheme which
provides the following advantages over previous ap-
proaches.

– All Lp norms are supported simultaneously.

– Indexing for fast retrieval is supported.

– The same index structure can be re-used for dif-
ferent Lp norms.

– It is easy to incorporate such data preprocess-
ing techniques as ‘offset translation’, ‘amplitude
scaling’, and ‘time scaling’.

We showed the soundness of our method mathemati-
cally. We also explained in detail how to efficiently pro-
cess both the whole-sequence and the subsequence match-
ing queries in our unified indexing scheme. Through ex-
tensive experiments, we verified that our method is very
efficient. Our method achieved up to 10 time speedup over
the DWT-based state-of-the-art method and scaled up very
well for all Lp norms on both the real and the synthetic
datasets. Further research will focus on extending the pro-
posed method to a broader class of similarity models.
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