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Abstract

In this paper, we describe a novel Web query
processing approach with learning capabilities.
Under this approach, user queries are in the form
of keywords and search engines are employed to
find URLs of Web sites that might contain the
required information. The first few URLs are
presented to the user for browsing. Meanwhile,
the query processor learns both the information
required by the user and the way that the user
navigates through hyperlinks to locate such
information. With the learned knowledge, it
processes the rest URLs and produces precise
query results in the form of segments of Web
pages without user involvement. The preliminary
experimental results indicate that the approach
can process a range of Web queries with
satisfactory performance. The architecture of
such a query processor, techniques of modeling
HTML pages, and knowledge for query
processing are discussed. Experiments on the
effectiveness of the approach, the required
knowledge, and the training strategies are
presented.

1.  Introduction

The Internet and the Web have changed everything. It is
estimated that the publicly indexable Web now contains
about 600 million pages, encompassing approximately 6
terabytes of text data [15]. The Web has become

everyone’s information source. Each day, a huge number
of people search the Web for information of interest, such
as news, prices of goods, research papers, etc. With the
excitement on electronic commerce growing, the Internet
will also become a common platform for conducting
business. The usage of the Web therefore will increase
more dramatically.

Search engines [4] are widely used to locate
information across the Web. Unfortunately for users who
are used to retrieving information from database systems,
searching from the Web is sometimes frustrating. For
example, if they would like to find the lowest price for a
certain part in a database, a simple SQL statement does
the job. However, it may cost hours to search for the
lowest price from the Web, if they have the stamina to
find it. One problem of search on the Web is that search
engines return very large hit lists with low precision.
Users have to sift relevant documents from irrelevant ones
by manually fetching and browsing pages. Another
discouraging aspect is that URLs or whole pages are
returned as search results. It is very likely that the answer
to a user query is only part of the page (like one field in a
relation). Retrieving the whole page actually leaves the
task of search inside a page to Web users. With these two
aspects remaining unchanged, Web users will not be freed
from the heavy burden of browsing pages and locating
required information, and information obtained from one
search will be inherently limited.

While the dissimilarity between querying the Web and
querying a database is caused by the fundamental
differences between the Web and a database system,
which will most likely remain, researchers from different
disciplines have been trying to improve the situation.

A wide range of research work has been reported in IR
to improve the easiness and effectiveness of querying the
Web, including developing better classification
mechanisms, building more effective indices, using better
searching strategies and ranking functions, etc.

Using intelligent agent to help users is originated from
the AI community. In the context of querying the Web,
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such agents can learn user profiles or models from user
search behaviors, and then employ the learned knowledge
to predicate URLs that may have interesting information,
thus providing suggestions to users. Some assistant
agents, such as Syskill & Webert [20] and WebWatcher
[13], help users in an interactive mode. Some other
assistant agents, Fab [3] and InfoSpider [17], use
heuristics and work autonomously to find interesting
pages.

Researchers from the database community take
another approach. They view the Web as a large
distributed database system and apply database
technologies to Web queries. The related efforts include
Web query language design and wrapper generation. The
Web query languages are classified into two generations
[10]. The first generation, including W3QL [14] and
WebSQL [18], aimed to unify content based queries and
link structure based queries. The second generation of
Web query language, such as WebOQL [2] and StruQL
[9], has the ability to access the structure of the Web
objects and to create new complex structures from the
query results. Research work on wrapper generation
tackles the fundamental difficulty in querying the Web,
i.e., Web pages are not well structured and there is no
schema that describes the contents of Web pages. It
exploits the formatting information on Web pages to
hypothesis the underlying structure of a page. With this
structure a wrapper that facilitates queries on the page is
generated [1, 5, 8, 12, 16, 21].

While there are various issues in Web query
processing and different approaches to tackling these
issues, we describe in this paper our efforts to build an on-
line query processing system that enables users to query
the Web with ease and obtain the results in a database-like
fashion. By our proposed approach, a user first issues a
key word query (probably not precise). It is passed to a
general search engine such as Yahoo!. The search engine
returns URLs of Web pages that might contain requested
information. At the beginning, these Web pages are
retrieved and presented to the user for browsing. During
the browsing, the system records down the segment of a
Web page that contains the query result and the sequence
of hyperlinks through which the user navigates to find it.
Query results and user actions are analyzed. After the user
browses a few pages, the system knows what the user
exactly wants and becomes capable of scanning Web
pages and following links, if necessary, to locate the
query results. Finally the system presents to the user the
segments of Web pages instead of the original Web pages.
A segment can be a paragraph in text, a table or a list.

To our knowledge, it is the first query processing
system that processes ad hoc queries on HTML pages and
automatically extracts segments of pages as query results.
Despite the superficial similarity with a large body of
related work, this system is unique at the following
aspects:

• Unlike information retrieval systems or intelligent
agents that return URLs or Web pages as query results,
our system returns segments of documents as the
query answer (correspondingly in relational databases
if a field is the answer, the field but not the whole
table is returned).

• The system does not require a prior knowledge about
users such as user profiles.  Moreover, it does not
require preprocessing of Web pages such as generating
wrappers either. As a consequence, the system is well
suited to processing ad hoc queries that can hardly be
handled by static hypertext analysis [5, 6], agents or
system using wrappers.

• The system exploits the page formatting and the
linkage information simultaneously to automate query
processing. Recently there has been a surge of
research work either on hyperlinks to help Web search
[4, 11, 17] or on internal structure of HTML pages for
wrapper generation and Information Extraction [7, 8].
However, combining these two in the context of a
query processing system is new and poses great
challenges.
We call our approach a learning-based approach

because the system learns about the exact query
requirements and the efficient way to locate the
information during a query process. As a result of the
learning, the system is able to deliver to users the results
that better match users’  needs in a more concise form.
The learning approach brings the following advantages to
our query processing system.
• Users can still express their queries in keywords,

which is the easiest way for casual Web users. If a user
is not familiar with the vocabulary of information
suppliers, the query specification may even be vague.
To bridge the gap between the issued keywords and
the real user requirements, the system learns the
precise requirements from users.

• The system has the capability of navigating in the
neighborhood of the page where the specified
keywords occur. Often the result is not in the page that
contains the keywords but is one link or two away.
This is especially true when the specified keywords
are not very precise. Learning to navigate enables the
system to find results that keyword search fails to find.

• Although the learned knowledge is useful to one
query, it helps to make 100% use of the hit list
returned by a search engine. Users are relieved from
browsing dozens or hundreds of Web pages in order to
obtain all the required information.

• As a background process of a browser, learning is
nearly imperceptible to users and only minimal effort
such as clicking and marking in the first few sites is
required from them.
A prototype system has been implemented using the

approach. The preliminary results are encouraging.   User
query requirements and navigation heuristics can be
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Figure 1: System Architecture

Session
Controller

Locator

Search Engine

Web

Use Interface
 Inter

Knowledge
Base

Learner

Query
Analyzer

Retriever
& Parser

User

Knowledge
Base

User
Actions

Query
Results Checking

Session Controller

Training
Strategies

Segment
Graph

Result
Buffer

URL

Locating Process

LocatorQuery Result
Presenter

Learning Process

LearnerBrowser
Scripts

Figure 2: A Query Session

reasonably well captured and stored in a rather simple
form. Given a set of about 100 URLs, users need to
browse no more than 10 of them to make the system
capable of locating the queried segments or denying the
Web sites with the correctness rate higher than 80%.

The remainder of the paper is organized as follows.
Section 2 describes the learning based Web query
processing approach in detail. The knowledge to be
learned, its representation and the acquisition process are
described in Section 3. Section 4 describes how a user
query is processed using the learned knowledge.
Experiments conducted to evaluate the approach are
presented in Section 5. Section 6 concludes the paper with
some discussions on future work.

2.  Learning-Based Web Query Processing

In this section, we describe the architecture of a learning-
based Web query processing system and explain how a
user query is processed.

2.1  A Learning-Based  Query Processing System

Figure 1 depicts the reference architecture of a learning-
based Web query processing system. It consists of seven
major components: User Interface, Session Controller,
Query Analyzer, Learner, Locator, Retriever & Parser,
and Knowledge Base. The User Interface provides users
with a friendly environment to work with the system. It
accepts user queries and presents results to them. A
browser with extended capability to capture user actions
is also an important component of it. When a user is
browsing Web pages, it records three types of user
actions:
• following a hyperlink to browse another page;
• marking a segment that contains the required

information; or
• rejecting a site that does not contain the required

information.
Query Analyzer analyzes a user query and converts it

into a search condition according to the requirement of

the search engine that is employed to return URLs from
the Web. The set of URLs is passed to Session Controller
as the input of the other components in the system.

As a learning-based system, the system can work in
two different modes, the learning mode and the
processing mode. When the system works in the learning
mode, Learner is activated by Session Controller to
generate knowledge from those captured actions and
located query results. The learned knowledge is stored in
Knowledge Base. When the system works in the
processing mode, Locator is activated to apply the
knowledge and locate the segment that contains the
required information. The two working modes are
switched back and forth based on training strategies. The
main task of Session Controller is to coordinate the
interaction among various components of the system.

Since the result from the search engine is a set of
URLs, a Retriever is integrated into the system to retrieve
Web pages. The Parser parses each retrieved page and
generates an internal data structure that is used later for
presentation, learning and query processing.

2.2  A Query Session

To have better understanding of how a query is processed,
we describe a query session in detail.  As described
above, after Session Controller receives the URLs, the
system works in either the learning mode or the
processing mode. Corresponding to these two modes,
there are two types of processes: the browsing process
and the locating process. Figure 2 depicts the details of
the processes and associated data flow (Query Analyzer,
and Retriever & Parser are omitted in this figure).

Session Controller activates the processes according to
a training strategy stored in its Training Strategies
Module. A training strategy defines when the learning
process should be invoked and how the learning mode
and processing mode are interleaved. Three strategies
supported by the system are:

Sequential training. It partitions the URLs returned
from the search engine into two sets in the original order.
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For the first set, the system works in the learning mode.
After training, the system processes the second set in the
processing mode until the query session is completed.

Random training. Similar to sequential training, the
system first works in the learning mode and then turns to
the processing mode. But it randomly picks a number of
sites from the returned URLs for training. The rationale is
that the randomly picked sites may be more representative
than those on the top of the returned list.

Interleaved training. When interleaved training is
used, the system switches back and forth between the
learning mode and the processing mode before a stopping
criterion is met. It works as follows. At the beginning of a
query session, the system is in the learning mode. After a
few sites are browsed, the system tries to locate results in
the processing mode. As long as the user confirms the
results are correct, it remains in the processing mode.
When the user finds an incorrect result, the system
switches to the learning mode and learns from the
incorrectly processed site. This process goes until a
stopping criterion for interleaved training (a certain
number of browsing processes or an accuracy threshold)
is met. After that, the system remains in the processing
mode until all sites are processed.

During a browsing process, given a URL, Session
Controller first asks Retriever & Parser to retrieve the
page and transform it to a segment tree. It adds the tree to
the segment graph, an internal data structure maintained
by the Segment Graph Module (segment tree and segment
graph are defined in the next section). Then the controller
sends the tree to Browser where the tree is presented for
browsing. If the user chooses a link, the system goes to
process a new page. The process is repeated until the user
marks a query segment or rejects the site. User behaviors,
either choosing a link or marking a segment, are recorded
on the segment graph. For a successfully located site, the
controller generates intermediate files, knowledge scripts
from the segment graph. The scripts are finally sent to
Learner for knowledge generation.

In a locating process, given a URL, Session Controller
receives a segment tree from Retriever & Parser and adds
the tree to the segment graph. Then it sends the tree to
Locator. Locator returns a decision of choosing a link,
finding a segment or rejecting the site. If a link is chosen,
the system goes to process the new page and asks Locator
to make another decision. The process ends when Locator
finds a query segment or rejects the site. The located
segment is sent to the Result Buffer Module that
communicates with Query Result Presenter in the
interface to present the result. When Interleaved training
is used and the stopping criteria for training is not met,
Query Result Presenter asks the user to check results. If
the system returned a wrong result, a browsing process is
activated for the current site. The only difference from a
normal browsing process is that some pages can be
fetched directly from the segment graph.

A query session terminates when all the URLs
returned from the search engine are either browsed or
processed. If there are too many URLs returned, heuristics
can be used to terminate a session.

3.  Learning from Users for Query Processing

To facilitate Web query processing, the data on the Web
should be properly modeled.  Moreover, the system must
have the knowledge about how to navigate through the
Web to locate information in a page. The most efficient
way to obtain such knowledge is to learn from users. This
section presents our approaches to these two major issues.

3.1  Modeling A Web Site

The Web consists of a number of Web pages connected
by hyperlinks. In order to obtain queried information from
a large number of Web pages, both the internal structure
of a Web page and the linkage between Web pages need
to be captured. We begin with the modeling of a single
Web page.

Usually a Web page is an HTML document that
contains a sequence of tag delimited data elements. As an
atomic element, one that does not contain other elements
in it, may not contain enough information to meet the
query requirements, segment that is a group of elements is
used as the unit in our model. In other words, we partition
documents into segments each of which serves as a
candidate of the answer to a query. Four major segment
types are paragraph, table, list and heading. Segments
can be nested, that is, a segment can include a number of
sub-segments. An HTML document is the largest
segment. Each segment has one attribute, content, which
consists of all textual data in the scope delimited by the
start tag and the end tag of the segment, thus including the
content of its sub-segments. Content is used to check if a
segment meets the query requirements. To facilitate
navigation, another attribute, description, is designed for
each segment (more discussion in 3.2). It is summarized
from the content using certain heuristics. For example, the
description of a table segment can be the table caption or
the title row. Hyperlinks, a special type of elements in
HTML pages, can be represented in the same way as
segments. The anchor is its description and the URL is its
content. To take advantage of the hierarchical structure,
each hyperlink is associated with its parent segment, i.e.
the smallest segment that contains it1.

With the notation of segments, a Web page can be
modeled as a segment tree: The root is the Web page
itself; the internal nodes are segments that contain sub-
segments; the leaves are atomic segments, the minimal
units in this model. Each node has two attributes and is

                                                          �
Whether anchor should be included in the parent segment is a

technical issue. Currently we include it in if the parent segment
contains other text.
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Figure 3: An HTML Document and the Corresponding Segment Tree

<html><head><title> … Hotel </title></head>
<body><p>1999 Room Rates</p>
<table><tr><td><ul>
<li><a href="ac01a.html">Guest Room</a></li>
<li><a href="ac02a.html">Executive Suite</a></li>
</ul></td>
<td> Special Promotion <br><table>
<tr><td>Room Type</td>
<td>Single/Double (HK$)</td></tr>
<tr><td>Standard</td><td>1000</td></tr>
<tr><td>Excutive Suite</td><td>2750</td></tr>
</table></td></tr></table>
</body></html> 1. ac01a.html

2. ac02a.html
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associated with hyperlinks it contains. An example of
HTML page and the corresponding segment tree is shown
in Figure 3 (the attribute, description, is omitted).

Externally, Web pages are connected through
hyperlinks. If we view a Web page as a node in a graph
and a hyperlink as a directed edge from the page
containing it to the pointed page, then Web pages in a site
can be represented by a directed graph. If we further
ignore backward links, links pointing to one part of the
same page, and links pointing to pages outside the current
site, a Web site can be modeled as hyperlink-connected
segment trees, called Segment Graph. The entering page,
one pointed by a URL returned form the search engine, is
the root of the graph. With such a model, site, which will
be used very often later in this paper, refers to the
collection of Web pages that are reachable from the root
and of the same base URL as the root. We define the
depth of a segment is the number of hyperlinks followed
to reach the Web page that contains the segment. Note
that segments on the same Web page may have different
depths along different paths. Segments on the root page
have depth 1. The Level of a segment is the minimal depth
among all hyperlink paths in the segment graph.

We would like to emphasize that it is not our intention
to provide a complete and sound model for Web pages
and the Web.  The sole objective of the above model is to

facilitate the retrieval of meaningful query results in the
form of segment that is small in size but carries sufficient
semantics.  The segment graph that combines the intra-
document structure with the inter-document linkage can
well serve the purpose. An example of such a graph is
presented in Figure 4.

3.2  Knowledge for Locating Queried Segments

Let us consider the task of Web query processing. If our
system could exhaustively search the segment graph and
choose the most relevant segment from all in the graph,
the problem would be simplified as hypertext
classification. Unfortunately it is not feasible for an on
line query processor because a segment graph can be very
large. To restrict the search scope, navigation from the
root should be terminated if the system finds a segment on
a page that meets query requirements well enough or
concludes the page is not relevant and will not lead to a
relevant document. In other words, on each page, a
decision of choosing a link, finding a segment, or giving
up this page should be made. Though hyperlinks and
internal page structure have been extensively studied by
others, they made a decision either among all links or
among all segments. A decision made between links and
segments is something new and requires these two types
of data structures are comparable.

One observation concerns the conventions of
composing hypertext documents. Hyperlinks usually
convey descriptive information of the pointed documents
while segments that meet the query requirements contain
both the descriptive information and the query result. For
example, we would like to retrieve admission
requirements of graduate applicants. The anchor
"Admissions" only tells the link points to a page related to
admission requirements. The queried segment contains
both the descriptive information of admissions and the
concrete requirements such as GPA or test scores. Links
and segments, two structures presenting different
information are hardly comparable by one mechanism.

Definition:
Sijk: Segment
Lm: Hyperlink

  S1

S11 S12
S13    S131

  S2S21
  S3

  S31   S32

   S4  S41

  L1   L2
  L3

   L4

Figure 4: A Segment Graph
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To make the query system workable, two types of
knowledge are designed. One is Navigation Knowledge
that only concerns descriptive information and helps find
a path from a given URL to the queried segment on a
Web page. The other type of knowledge examines
whether a segment meets the query requirements on both
the descriptive information and the result. It is referred to
as Classification Knowledge because it is in fact used to
classify a segment into one of the two classes, containing
or not containing the query result.

Attribute content and attribute description are
designed for navigation knowledge and classification
knowledge, respectively. Note that lengths of links and
segments may differ remarkably. We assume the
description of a segment can summarize the semantics of
the segment and use it in navigation to avoid bias that
element lengths bring. Another rationale of using
description is that in self-describing languages like
Extensible Markup Language, element names serve
naturally as element descriptions so that our model carries
over directly to them.

3.2.1  Navigation Knowledge

Navigation knowledge is generated from user actions of
following hyperlinks to locate query results. A path that
starts from the entering page of a site and ends at the
queried segment is called a navigational path, represented
as (link→)* segment, where * means any number of
occurrences. For example, if segment S41 in Figure 4 is a
queried segment, one possible navigational path is
L2→L4→S41. A hyperlink usually occurs in some
segments in a document. Information of those segments
also helps determine whether a link should be followed.
To capture such information, we extend the navigational
path with all segments that contain the links on the path,
which is called extended navigational path.  In our
example, the extended navigational path to locate S41 is
(S1→S11→L2) → (S3→S31→L4) → (S4→S41). A segment
or a link appearing on the extended navigational path is
called a component of it, e.g. S11, L4, S41, etc. Extended
navigational paths can  be easily obtained from segment
graphs in browsing processes.

To generate navigation knowledge from an extended
navigational path, the first step is to assign a weight,
denoted as W(component), to each component on the path.
This weight tells how closely a component is related to
the query result. One intuition is that the closer to the
queried segment, the higher weight the component gets.
Then the issue is at what rate the weight of a component
decays along the extended navigational path. Instead of
hypothesizing the rate, we assume the queried segment is
the most closely related to itself (its weight is 1) and let
the path length determine the rate. Suppose D to be the
depth of a queried segment. On the i th page along the path,
Ni is the number of components appearing on the path.

The weight of j th component (j <= Ni) on the i th page is
given by:

iij NjDDicomponentW /*/1/)1()( +−= . (1)

The weighting scheme guarantees (i-1)/D < i/D, i.e.
the weight of a component on the i-1th page is less than
that on the i th page. The second term of the formula, 1/D *
j/Ni, ensures with the same depth the more specific
information a segment conveys, the more weight it gets.
In other words, a child segment gets more weight than its
parent. A link gets more weight than all segments
containing it.  Continue with the example in Figure 4.
Some components on the path are assigned weights as
follows:
Depth: Depth 1 Depth 2 Depth 3
Path: S1→S11→L2 S3→S31→L4 S4→S41

W(S11) =0/3+1/3∗2/3=2/9 the 2nd component at depth 1
W(L4)  =1/3+1/3∗3/3=2/3 the 3rd component at depth 2
W(S41) =2/3+1/3∗2/2=1 the 2nd component at depth 3

The next step is to assign weights to terms that
describe a component on the path. Since the attribute,
description, provides such descriptive information, we
choose it to represent a component. Then for each
component, only words that are in the description and
consist of alphabetic letters are selected. A stop list and
stemming are further applied to them. The derived words
are called terms. In our algorithm, each term in the
description of a component is assigned a weight, w(term),
which is equal to the weight of the component divided by
the number of terms in the description.

The weight of a term tells the term’s importance in
leading to the queried segment. By our weighting scheme,
it is determined by the position of the component that
contains the term as well as the number of terms in the
component’s description. Term weight is accumulated
through all browsing processes. The navigation
knowledge, represented as a set of (term, weight) pairs, is
stored in the navigation knowledge base.

3.2.2  Classification Knowledge

The task of examining whether a segment meets query
requirements is cast in the Bayesian learning framework
because it has provided good performance in text and
hypertext applications [5, 6]. Two different models, the
multi-variate Bernoulli model and the multinomial model
in this framework are reported in [19]. By their report, the
multinomial model usually outperforms the multi-variate
Bernoulli model. Therefore we adopt the multinomial
model. The classification knowledge is the knowledge
that will be used by the Bayesian classifier.

Classification knowledge takes the form of a set of
triplets, (featurei, Ni1, Ni2), where Ni1 is the number of
occurrences of featurei in the content of queried segments,
and Ni2 is the number of occurrences of featurei in the
content of segments that do not meet query requirements.
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Knowledge generation involves two issues, feature
generation and selection of training samples.

Features are extracted from the content of a segment.
Unlike most IR systems that only consider English words
as features, we also consider values and complex data
types. We define five basic feature types, float, integer,
English word (consisting of alphabetic letters), special
word (consisting of alphanumeric letters) and special
character,  and four complex feature types, date, time,
email address, and telephone number. A lexical program
using regular expressions extracts all these features.

To train the classifier, the user-marked segments are
treated as positive samples. As for negative samples, only
those segments on the same page as the marked segments
are selected. Those pages without marked segments are
discarded to avoid excessive negative samples. Then the
generation of classification knowledge is straightforward.
During the browsing process, when the user marks a
queried segment, the system collects featurei in its content
together with the number of occurrences Ni1, and featurej

in other segments on the same page together with the
number of occurrences Nj2. For each feature, numbers of
occurrences in both classes are accumulative through all
browsing processes.

Since both types of knowledge involve terms, they are
organized by Tries for efficient access.

4.  Query Processing Using Learned
Knowledge

In this section, we describe how the learned knowledge is
used to locate queried segments in the locating processes.

4.1  Algorithm for Locating Queried Segments

A locating process takes one URL returned from the
search engine as the entrance to a site. Then it traverses
the segment graph built on the fly. As an online Web
query processor, the system will perform badly if general
graph searching approaches like breadth-first or depth-
first search are used. Considering hyperlinks and
segments on a page simultaneously further complicates
the search process. The learned knowledge helps the
system locate query results efficiently and effectively.

By our approach, the choice between hyperlinks and
segments on each page determines the navigation in a site.
If a hyperlink is chosen, the locating process goes to the
pointed page. If it fails to find a queried segment by
following the link, it makes another choice between
unvisited hyperlinks and unprocessed segments. If a
segment is chosen, classification knowledge is applied to
check if it meets the query requirements. If it does, it is
returned as the query result and navigation terminates.
Otherwise another choice is made between unvisited
hyperlinks and not processed segments. If no result is
found after all links and segments are processed, the
locating process backtracks. The process is running in a
recursive fashion.

The key issue is how to make a choice between
hyperlinks and segments on a Web page. Navigation
knowledge is used. It analyzes the descriptive information
of links and segments on the same Web page, and assigns
a weight to each of them. This weight uniformly tells how
closely one element, either a link or a segment, is related
to the query result. Then links and segments, the two
different types of data, are sorted by the assigned weights.
The element with the highest weight will be chosen for
further processing.

Figure 5 presents the locating algorithm. The URL is
first passed to Retriever&Parser that retrieves the Web
page and parses it into a segment tree (line 7). Function
Separate stores links and segments in LinkStack and
SegmentStack, respectively (line 8). It pushes both atomic
segments and segments that contain other segments into
the stack. The classifier decides which segment answers
the query best. The ApplyNavigation function assigns
weights to segments and links using the navigation
knowledge and sorts them in a decreasing order of the
weights in SegmentStack and LinkStack, respectively (line
11). Each pass inside the while loop makes a choice
between the link with the highest weight and the segment
with the highest weight (line 13-15) as described above.
The only change here is that if the weight of the segment
is higher, function ApplyClassification applies
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Figure 5: The Locating Algorithm

323



classification knowledge to all segments on this page and
determines if one of them meets the query requirements
(line 16). It is because retrieving a new page on the
Internet takes far more time than processing a number of
segments on the local machine. Besides, it is reasonable
to assume if one segment provides best information about
the query result among all links and segments on a page,
it is more likely to find the result on this page instead of
following a hyperlink. Function StopNavigation
terminates the navigation if the locating process has
already visited a certain number of pages and is still
trying to visit more.

4.2  Application of Navigation Knowledge

Function ApplyNavigation first assigns weights to
segments and links using the navigation knowledge
learned during training, and then sorts them by the
weights in a descending order.

To assign a weight, W, to a segment or a link, terms
are extracted from its description in the way as described
in  3.2.1. Let the terms be t1, t2 … tn, and their weights
be w1, w2 … wn. W is computed as:

W = max (topJ (w1, w2 , … , wn)) .         (2)
Function topJ in the equation returns a set of term weights
that are top J% highest in the navigation knowledge base.
By considering top J% of terms only, those segments and
links that are remotely related to the query result will be
filtered out. When J is reasonably low, topJ  returns an
empty set for segments and links consisting of only terms
with low weights. With an empty weight set, W is equal to
0. Those segments will be removed from the stacks later
in the sorting process.

Function max, is used to keep the most descriptive
information in segments and links. Rather than using an
average or other function of the weights returned by topJ,
we choose the max function because the relevance of a
segment or a link is often conveyed by very few words.
The convention of HTML pages is using short
informative sentence fragments [7], which is especially
true in lists, headings, hyperlinks, etc. As a result of this
function, each segment or link is assigned a weight that is
expected to best represent its relevance.

4.3  Application of Classification Knowledge

Function ApplyClassification calls a naïve Bayesian
classifier to apply classification knowledge to one or
multiple segments. The classifier used is adopted from
[19] with some modification.

We begin with classification of one segment. For each
segment, features are extracted from its content as
described in  3.2.2. The class label C (queried segment,
or not in this application) of the segment D’, is given by:

)()|’(maxarg)’|(maxarg kkkkk CPCDPDCPC ==
    )()|()...|(maxarg 1 kknkk CPCFPCFP= , (3)

where Ck is a class label (k = 2 in this application) and Fi

is a feature in the segment.
The estimation of the probability of feature Fi on

condition of class k and each class prior are computed
using the classification knowledge as follows:
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where Nik comes from the  triple (Fi , Ni1 , Ni2 ) with k=1,2

and ∑ = =||
1

1)|(
V

t kt CFP . To handle the probability of

features that do not occur in training samples, smoothing
of add-by-one is used. |V| is the vocabulary size of the
classification knowledge.

To find the queried segment from all segments on a
page, the function estimates the confidence of a segment
being classified to certain class k, denoted by αk,
where∑ =k k 1α . For a given segment, αk (k=1,2,…,K) is

calculated from the following equations:
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where Ek = P(F1|Ck)P(F2|Ck)…P(Fn|Ck) P(Ck). Let C1

denotes the class of queried segments. Given a set of
segments D1, D2, …, Dm , function ApplyClassification
filters segments whose classification confidence α1 is
lower than a threshold and chooses a segment D with the
largest α1 from all kept segments:

D = arg max j{ αj1 |αj1 >Threshold, j = 1, …m} , (7)
where αj1 is the classification confidence α1 with which
class label C1 is assigned to segment Dj . If all segments
have α1 lower than the threshold, ApplyClassification
returns no result and the locating process goes on.

5. Performance Evaluation

A prototype of the system has been implemented based on
the proposed approach. The system is implemented in
Visual C++. Yahoo! is used as the external engine. The
URLs of Web page matches are used in processing.   A
series of experiments were conducted to evaluate the
proposed approach and study the related issues. In this
section, we describe these tests and discuss the results.

5.1  Evaluation Metrics

For a given query and a URL returned from the search
engine, the system either returns a segment or a
conclusion that no result is found from the related Web
site. We label the first case as Found and the latter one
Not Found. For both cases, we use Right or Wrong to
indicate whether the system makes a correct decision.
Using the four terms, a query result belongs to one of the
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four categories. A queried segment is a segment that
satisfies user query requirements.
Right
Found:

The queried segment is found.

Wrong
Found:

A segment other than the queried segment
or from an irrelevant site is returned.

Right Not
Found:

No segment is returned from an irrelevant
site.

Wrong Not
Found:

The system fails to locate the queried
segment that the site contains.

To evaluate effectiveness, the following metrics are
defined:

Precision = # Right Found / # Found ,
Recall = # Right Found / # Sites Containing

      Queried Segments ,
Correctness = # Right Sites / # Sites Processed .

In the definition of correctness, # right sites is the number
of the sites for which the system makes correct decisions.
That is, it either locates a queried segment, or indicates
correctly that a site does not contain a queried segment.

To evaluate efficiency, we take visited pages as the
measure because the time of processing a page is
insignificant compared to retrieving the page through the
Internet. Two measurements are defined. The absolute
path length is the number of visited pages to locate a
queried segment or to conclude that no queried segment
can be found for the site. The relative path length to
locate a queried segment is the ratio between the absolute
path length and the level of the queried segment (i.e. the
length of the shortest path to locate this segment). The
two metrics are presented as:

Absolute Path length = # Visited pages ,

Relative Path Length = # Visited pages / Level of
       the Queried Segment.

5.2  The System Capability

Before quantitative analysis of the system performance,
we first present sample query results that indicate the
capability of the system. A user posted a query consisting
of 3 words, Hong Kong hotel, with the intention of
finding hotel room rates in Hong Kong.  The query was
passed to Yahoo! and a set of URLs was returned, which
is shown in the left frame of Figure 6, a snapshot of the
system output. The right frame shows the query results
after seven successful browsing processes during which
the system learned the knowledge about the query.
Currently the right frame presents the results located for
Site 34 and 35. From the results we can see some of the
novel features of the system.
• In addition to URLs and page titles that ordinary

search engines can return, our system returns segments
of the Web pages that contain queried information.
The result of site 34 is a list and of site 35 is a table.

• The query results contain exactly the information that
the user is looking for. Note that the segments from
site 34 and 35 do not contain any input keyword but
meet the requirement of room rates that are not
specified in the keyword query. It indicates that the
system learned the query requirement from the user.

• Both segments are from pages whose URLs are not
directly returned by Yahoo!. It indicates that the
system learned how to follow hyperlinks to the page
that contains a queried segment.

Figure 6: A Sample Output
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5.3  The Effectiveness of the System

In this subsection, we present the results of two queries to
illustrate the effectiveness of the system. Two queries
used are:

Q1: Hong Kong hotel room rate,
Q2: Hong Kong hotel.
The intention of the user was to locate the room rates

of hotels in Hong Kong. Processing and usage of the
URLs returned from Yahoo! is summarized in Table 1.
Only 100 top-ranked URLs were chosen for processing.
Among them, some URLs were removed. Examples of
removed URLs include non-accessible ones, duplicates,
URLs pointing to non-HTML documents2, URLs pointing
to non-English documents, etc. The sequential training
strategy was used and the number of URLs used for
training is shown in column Training. The relevancy of a
site was determined by examining page contents
manually.

The results of the experiments are summarized in
Table 2. It can be observed that, with sequential training,
the correctness for both queries reaches about 80%.
Considering the big discrepancy between the keywords
expressed in a user query and the exact requirement, the
results are really encouraging. It justifies the basic
approach described in the previous sections.

To understand why the system failed to locate some
queried segments, we examined the cases where the
system chose segments that did not meet query
requirements. The major reason is that those returned
segments contain much noise, namely the words that are
very close to those used to locate queried segments. One
returned segment is as follows:

“QUEEN ELIZABETH 2. Standby fares for the six day
transatlantic crossings on this famous ship are available
on Nov. 21 (New York to Southampton) for $1,199 per
person, double occupancy and on the Dec. 14 sailing
(Southampton to New York) for $1,099. The single
supplement is $350.”

This segment contains words “single”  and “double” ,
symbol $ and numbers that are important clues to locate
segments for room rates of hotels.

                                                          %
Processing dynamic Web pages is still under development.

There are a number of reasons that the system failed to
locate a queried segment.  Among four such cases of Q1,
three of them were caused by the low confidence of being
classified as queried segments, which indicates there is
deficiency in the generated classification knowledge.
Another such case resulted from deprecated use of HTML
tags in the original document: A hyperlink uses an image
element as the content but leaves the attribute ALT of tag
IMG blank. As a result, the system could not find any
descriptive information about the link and thus ignored
the path that leads to the queried segment.

5.4  Effectiveness of the Knowledge

To verify the effectiveness of using the two types of
knowledge, navigation and classification, we modified the
system so that it can be configured to apply only one type
of knowledge in the process of learning and locating.

Two queries and the testing environment are the same
as Table 1. The results are summarized in Table 3.  The
results of using both types of knowledge are also included
for easy comparison.

It can be clearly seen that, the system employing both
types of knowledge performs much better than those that
employ only one type of knowledge. To analyze the
reason for the poor performance of using only one type of
knowledge, we classified sites by the level of the queried
segment. In Table 4, the title cells specifies the level
distribution and the fraction stands for among all test
sites, how many of them belong to the level. Usually the
coarser the query, the more sites belong to the level above
one.  The correctness of each group is reported in table
cells.

One finding is that the system with one type of
knowledge works reasonably only when the queried
segment occurs on the first page. Its ability to filter
irrelevant sites and to navigate through hyperlinks is very
limited. In contrast, employing two types of knowledge
manifests good performance of irrelevance filtering and
navigation. Even if the queried segment is on the first

Table 3: Effects of Using Different Types of Knowledge

Table 4: Analysis of Different Types of Knowledge

Table 1: URLs Used for Query Processing

Table 2: Basic Performance of the System

C P R C P R

Both Types of Knowledge 81.7% 76.7% 79.3% 79.0% 87.5% 73.7%

Bayesian Only 58.3% 51.2% 69.0% 38.7% 34.0% 42.1%

Navigation Only 36.7% 28.8% 55.6% 29.0% 26.8% 39.5%

Accuracy
Query 2Query 1

*  C for correctness, P for precision and R for recall

I 1 2 I 1 2

31/60 27/60 2/60 24/62 12/62 26/62

Both Types of Knowledge 0.838 0.815 0.5 0.875 0.917 0.654

Bayesian Only 0.484 0.704 0.5 0.333 0.75 0.269

Navigation Only 0.212 0.6 0 0.125 0.583 0.308

Correctness

Query 1: Level= Query 2: Level=

*  I means irrelevant

Query
URL 

Selected
URL 
Used

Train-
ing

Test-
ing

Irrele
-vant 

Rele-
vant

Q1 100 69 9 60 31 29

Q2 100 71 9 62 24 38

R W R W
Q1 23 7 26 4 81.7% 76.7% 79.3%

Q2 28 4 21 9 79.0% 87.5% 73.7%

RecallNot FoundFoundQuery
Correct-

ness
Precision
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page, using one type of knowledge is still less accurate
then using two types of knowledge. The coordination of
navigation knowledge and classification knowledge
provides a good way to process Web queries.

5.5  Effects of Training Strategies

Our system supports three training strategies, sequential
training, random training and interleaved training. This
group of experiments was designed to find out which
training strategy provides best performance in terms of
both accuracy and efficiency. Besides the training
strategies, the training size was another focus of this part.
In an online query system, asking users to browse many
sites is impractical. In our tests, we varied the training
size from 3 to 10 for each training method. For
interleaved training, the stopping criterion of training was
a pre-defined number of browsed sites, i.e. the training
size. The two queries of hotel room rates were used again.
Observations are reported as follows. Figures are omitted
in the interest of space.
• Random training performs badly in terms of

effectiveness and efficiency. Assumption that
randomly picked sites are more representative than
those on the top of the returned list is not true.

• As the training size increases, the difference between
sequential training and interleaved training is enlarged.
With 10 training sites, interleaved training beats
sequential training by 10% in all effectiveness metrics.
The better performance of interleaved training comes
from its way of updating knowledge -- updating it
when the system makes a mistake.

• In terms of efficiency, interleaved training strategy is
also the best. Relative path length for a right “Found”
segment is in the range of 1.0 to 1.2. That means the
system almost always navigates through the shorted
path to locate a result. The absolute path length for a
right “Not Found”  is from 1 to 1.5 pages.
A final note is that, when interleaved training strategy

was used with 10 training sites, the number of wrong
decisions of Q1 was reduced from 11 to 4 (refer to Table
2). Obviously the knowledge learned by using interleaved
training improved greatly.

5.6  Experiments on a Range of Queries

We made some observations of issues related to
implementing a Web query processor from two queries
concerning room rates of hotels. To better evaluate the
effectiveness and efficiency of such a processor, we tested
a range of queries on it. Three query requirements with
distinct characteristics were selected.

QR1: room rates of Hong Kong hotels (included for
comparison). It targets at prices, which is well defined
and easy to identify by a user during the browsing
process. The system is expected to extract the price
information during the locating process.

QR2: admission requirements. A user may not know
the exact query requirements when she/he issues the
keyword query. During the browsing process, she/he
makes it clear that the requirements concern concrete
items such as degree, GPA, GRE, TOEFL, etc. The
system is expected to extract these items as query results.
Compared to QR 1, the query results have larger variance
because they may contain different sets of items as the
need is.

QR3: data mining researcher. The query target is in
fact a concept. The user wants to extract segments of
pages as evidence that a person is a data mining
researcher. It is even hard for human readers to tell what
these segments should contain and such decision is very
subjective. During the browsing process, the user gets to
know a data mining researcher can be reflected by
research interests, research projects, professional activity,
etc. The system is expected to recognize the pieces of the
evidence and return the correct segments.

For the first two query requirements, we issued two
keyword queries with different precision. All five
keyword queries are listed in Table 5. For each keyword
query, from the URLs returned by Yahoo!, we collected
the top 100 and cleaned them for later tests3. The
interleaved training strategy was used with training size of
10.

The quantitative results are presented in Table 6. Our
system works well for the first 4 queries. Accuracy is
above 80% and in some queries it reaches 90%. For the
last query, precision and recall are not as high as those are
in other queries. Fortunately the system is still capable of
filtering out irrelevant sites, thus to make the correctness
reasonably good. The relative path length to locate a
queried segment is close to 1. The absolute path length in
an irrelevant site is no more than 2.5 pages.

                                                          &
Manual check of each site in the test prevented us from

enlarging the URL list. We assume the system will process other
URLs with the same performance as it does with the first 100.

Table 6: Results of A Range of Queries

Table 5: Query Requirements and Keyword Queries

QR3

KQ11 KQ12 KQ21 KQ22 KQ3

Correctness 0.93 0.9 0.84 0.91 0.83

Precis ion 0.92 0.92 0.85 0.88 0.64

Recall 0.88 0.94 0.94 0.91 0.67

Relative Path Length (Found) 1 1.21 1.08 1.1 1

Absolute Path Length (Not Found) 1.3 1.57 2.5 1.76 1.67

QR2QR1
Performance

Query Requirement (QR) Keyword Query (KQ)

KQ11: “ Hong Kong hotel room rate”

KQ12: " Hong Kong hotel"

KQ21: “ requirements graduate applicant”

KQ22: “ graduate applicant”

QR3: data mining researcher KQ3: “ data mining researcher”

QR1: room rates of Hong 
Kong hotels

QR2: admission requirements 
on graduate applicants
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Another observation is that the performance of our
system is not affected much by how precise the keyword
query is. Thus users do not need to worry about the exact
words when they issue the queries. In the browsing
process they can tell the requirements by their actions.
The system will learn them and use them in the locating
process.

6.  Conclusion

In this paper, we proposed a novel approach for
processing queries on the Web. Taking such approach, a
user can issue queries in free text sentences and get the
results in the form of segments containing the required
information. Minimum involvement is required from the
user to train the system. To process a query, a general-
purpose search engine is employed to get the initial
relevant URLs, which are taken as the input of a series of
browsing and locating processes. During the browsing
processes, the system learns user requirements and the
way he navigates through the hyperlinks to locate the
segments that meet query requirements.  During the
locating processes, such learned knowledge is applied to
locate the queried segments from a large number of Web
pages without interaction of the user. Our preliminary
experiments produced encouraging results, which shows
that the proposed approach is able to tackle the difficult
problem of queries on the Web.

A prototype system has been developed based on the
proposed approach. More comprehensive experiments are
being conducted. Our future work includes better
knowledge representation and more sophisticated
algorithms for learning and applying knowledge. To
process a wide range of Web queries, HTML page
segmentation is another issue that deserves further study.
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