
Practical Applications of Triggers and Constraints:
Successes and Lingering Issues

Stefano Ceri� Roberta J. Cochrane Jennifer Widomy

Politecnico di Milano IBM Almaden Research Center Stanford University
ceri@ipmel2.elet.polimi.it bobbiec@almaden.ibm.com widom@cs.stanford.edu

1 Introduction

From about the mid-1980's to the mid-1990's there was
a flurry of research activity in the area of database trig-
gers and constraints, seeing the development of numerous
research proposals and prototypes. Soon thereafter, most
mainstream database products ramped up their support for
constraints and triggers, with expressive constraint speci-
fications appearing in the SQL-92 standard, and both con-
straints and triggers in the SQL-99 standard.

We briefly review the emergence of research in con-
straints and triggers, and we briefly describe standards and
current commercial support. We then focus on practical ap-
plications of triggers. We describe a variety of interesting
and significant ways in which triggers have been put into
practice, and we classify trigger applications along two di-
mensions:handcraftedversusgenerated, andkernel DBMS
versusDBMS servicesversusexternal applications. We
also argue that a significant portion of these trigger applica-
tions are in fact nothing more thanconstraint-maintainers
for various classes of integrity constraints, indicating that
our work a decade ago [CW90]—if not itself put into prac-
tice directly—was not far off the mark. Finally, we ana-
lyze the evolution of trigger applications and discuss some
lingering shortcomings in database constraint and trigger
systems.

2 Brief Research History

We begin with a very brief description of the emergence
and development of constraints and triggers as research
topics within the database field.

�Supported in part by the EC under grant P28771 W3I3
ySupported in part by the NSF undergrant IIS-9811947

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyrightnotice and the title of thepublicationand
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

2.1 Constraints

The idea ofintegrity constraintsin relational databases ap-
peared not long after the relational model itself, with sev-
eral foundational papers in 1975 (the year of the first VLDB
conference, incidentally) [EC75, HM75, Sto75]. After this
initial work within the research community, database prod-
ucts have steadily provided increasing support for con-
straints, as discussed in Section 3.1 below.

Integrityconstraints also have provided tremendous fod-
der for database research—we will certainly not attempt to
provide a survey here. Suffice it to say that because con-
straints are theoretically well-grounded (as Boolean pred-
icates), and at the same time are of great practical sig-
nificance (as preservers of database integrity), researchers
from all corners of the database field have made contribu-
tions ranging from deep theorems to significant systems.

2.2 Triggers

Shortly after researchers recognized the importance of
database integrity constraints, including automatic “re-
actions” to constraint violations, the idea expanded to
the more general concept oftriggers [Esw76], also now
known asevent-condition-action(ECA) rules or active
rules. However, triggers as a research field—or as a feature
of commercial database systems for that matter—did not
take off nearly as quickly as constraints. One can speculate
as to the underlying reasons for the delay; our hunch is that
triggers were not as in demand by database users, and as
a research topic triggers are not nearly as well-defined or
easily grounded as integrity constraints.

It was not until the mid-to-late 1980's that the area of
triggers, by then referred to asactive database systems,
truly came alive, and it did so with gusto. A number of
significant research efforts were launched, and in the early
1990's there was little doubt that active databases were con-
sidered one of the “hot topics” in database research. In-
terest remained high for several years: products launched
simple trigger systems while researchers prototyped more
elaborate and expressive ones, and some theoretical work
emerged as well. Again, we will not attempt to provide a
survey, but we refer the reader to [WC96] for a snapshot of
the field in the mid-1990's.

254



3 Standards and Products

Let us now briefly examine how constraints and triggers
have developed in commercial database products, and dis-
cuss their standardization. We will go into a bit more depth
than in Section 2 since the core topic of this paper is appli-
cations built within or upon commercial support, but again,
we are not attempting to provide a comprehensive survey
or tutorial.

3.1 Constraints

The SQL-92 (and subsequent SQL-99) standard provides
several mechanisms for specifying integrity constraints.
The most common kinds of constraints—keys, non-null
constraints, andreferential integrity—each have their own
syntax and enforcement mechanisms [UW97]. Of interest
in relationship to triggers is the fact that referential integrity
constraints can be specified with particular actions to be
taken upon violations, such ascascaded deleteor set null.

The more generalcheckconstraints are associated with
a given database table. SQL-like syntax is used to specify
conditions that must hold for each tuple of the table, and the
conditions are checked on inserts and updates to the table.
Although the SQL-92 standard permits subqueries within
checkconstraints, thereby enablingcheckconstraints to be
used for multi-tuple and multi-table constraints, most prod-
ucts do not support this feature. General constraints that are
not specific to a single table can be specified by SQL-92as-
sertions, although again many products do not support this
level of generality. Finally,domainconstraints can be spec-
ified to constrain all values in all columns of the domain, or
any value cast to the domain.

Although constraints are specified declaratively, every
constraint implicitly specifies:

� A set ofeventsafter which the constraint is checked—
generally any database operation that could cause the
constraint to become violated.

� An action to be taken if the constraint is violated—
usually raising an error and/or generating a rollback,
with some more interesting cases such as referential
integrity as described above.

When a constraint is first defined or when new data is
loaded, the system verifies the constraint against the data.
Thereafter theeventsare monitored andactionsexecuted to
ensure that the database state always satisfies the constraint
as specified.

3.2 Triggers

Although trigger support was not included as part of the
SQL-92 standard, triggers were supported by some prod-
ucts already in the early to mid-1990's. The SQL-99 stan-
dard has extensive coverage of triggers, and today all major
relational DBMS vendors have some support for triggers.

Unfortunately, because the standard was influenced by pre-
existing product support, and many products do not do a
good job integrating constraints and triggers, most prod-
ucts support only a subset of the SQL-99 trigger standard
and most do not adhere to some of the more subtle details
of the execution model [CPM96]. Furthermore, some trig-
ger implementations rely on proprietary programming lan-
guages for specifying parts of their triggers, which makes
portability across different DBMS's difficult.1

In contrast to declarative constraints, triggers are explic-
itly procedural. A trigger is activated whenever a specified
eventoccurs, usually aninsert, delete, or updateon a par-
ticular table. Once activated, an optional specifiedcondi-
tion is checked and, if the condition is true (or omitted),
an action is executed. There are a number of important
details to the specification and execution semantics of trig-
gers, only a few of which are covered here.

Triggers have anactivation time(eitherbefore, after, or
instead ofthe triggering event), and agranularity (either
row-level or statement-level). There are some obvious as
well as some subtle distinctions in the way triggers behave
depending on which settings are selected. Each trigger
has access to the old and new values of the row or state-
ment affected by the event, by means oftransition vari-
ables(OLDand NEW) and transition tables(OLDTABLE
andNEWTABLE). Conditions can be arbitrary predicates,
and actions are stored procedures which may include SQL
statements, control constructs, and calls to user-defined
functions. Note that user-defined functions invoked by a
trigger action may have side effects that fall outside of
DBMS control (including possibly calling the DBMS it-
self).

Trigger support in DBMS products is variable, with typ-
ical deviations from the standard including, e.g., restric-
tions on predicates in trigger conditions, restrictions on ref-
erences to transition variables or tables, raising exceptions
after a certain number of trigger activations, and trigger
actions specified using proprietary languages as discussed
above.

3.3 Constraints and Triggers in Products

Products also vary considerably in terms of their integra-
tion of constraint and trigger facilities. Historically, some
products (e.g., Sybase) offered only triggers, relying on
applications to implement any declarative constraints they
needed using triggers (perhaps following the methodology
of [CW90]). Eventually built-in constraints were added to
these products for performance, usability, and to conform
to the SQL standard. At the same time, other products (e.g.,
IBM DB2) initially supported constraints only. Although
very expressive declarative constraints were allowed, trig-

1We expect this last issue to dissolve if thePersistent Stored Modules
(SQL-PSM) languagebecomes standardized,or if a languagesuch as Java
becomes adopted widely for databaseprocedures.

255



Embedded in DBMS Kernel DBMS Services External Applications

Handcrafted Metadata management, Business rules, Scheduling,
Internal audit trails N/A Supply chain management

Web applications
Generated Referential integrity, Replication, Extenders, Workflow management

Materialized views Audit trails, Migration, Alerters

Figure 1: Classification and examples of trigger applications

gers were added to these products eventually based on ap-
plication needs, and again to conform to the standard.

The important point to note is that the marketplace has
dictated that separate support for both constraints and trig-
gers is appropriate.

4 Trigger Applications

Now that we have reviewed triggers and constraints briefly,
both from a research and commercial standpoint, let us take
a look at how the functionality has been deployed in real
applications.

In Figure 1 we characterize trigger applications along
two dimensions. The vertical dimension distinguishes be-
tween those triggers that are written by hand for a specific
application (handcrafted), versus “generic” trigger sets that
are produced automatically for a specific purpose, usu-
ally parameterized for a given application (generated). In
the horizontal dimension, on the far right are applications
that reside entirely outside of the DBMS, creating triggers
and (possibly) responding to trigger actions through the
database system's client API. The middle column repre-
sents trigger applications that are constructed by the DBMS
vendor or a third-party, generally to provide a service or to
enhance a specific database functionality. The far left col-
umn represents trigger-like behavior built into the kernel
of the DBMS. For the last class of applications, the trigger
system of the DBMS may be used to prototype the desired
functionality, but eventually the behavior is hard-coded
into the kernel, in order to circumvent security restrictions,
achieve higher performance, or to program declarative be-
havior that procedural triggers cannot simulate with com-
plete accuracy.

Although not perfect, the dimensions in Figure 1 enable
us to classify trigger applications as well as to characterize
their evolution. In Sections 5 and 6 we discuss generated
and handcrafted trigger applications, respectively. Then in
Section 7 we discuss the general evolution of trigger ap-
plications, and in Section 8 we attempt to provide a more
fine-grained classification than in Figure 1.

5 Generated Triggers

Our own early work established that triggers can be gen-
erated automatically for a wide class of applications, in-
cluding constraint maintenance [CW90], materialized view

maintenance [CW91], and managing semantic heterogene-
ity [CW93]. An entire database design framework based
on trigger generation is presented in [CF97]. The primary
idea behind all of this work is that in many cases the desired
end result of trigger behavior can be specified declaratively
(e.g.,maintain this constraint, or keep this view consistent
with the base data), and a set of procedural triggers can
be generated automatically from the declarative specifica-
tions. This approach can guarantee correctness (which is
no minor matter when it comes to triggers), and it frees the
user from the detailed and error-prone task of construct-
ing a trigger set by hand. We will argue that a large frac-
tion of useful trigger applications can be approached in this
manner—in fact many of them fall into the more specific
constraint-maintaining category—even if such triggers are
hard-coded today.

5.1 Internal Generated Triggers

As pointed out by Figure 1, two classic instances where
triggers can be used to support kernel database function-
ality are referential integrityand materialized views. As
discussed in Section 3.1, referential integrity is the only
built-in constraint type that allows a variety of different ac-
tions to occur when the constraint is violated, with the de-
sired actions specified declaratively by the user. Generat-
ing a set of triggers to support a single referential integrity
constraint with any of the available actions is a straight-
forward exercise (one that we often assign in our introduc-
tory database courses), although there are some subtleties
to maintaining multiple referential integrity constraints us-
ing triggers [Hor92]. It also is possible to generate a set
of triggers that will keep a materialized view consistent
with the base data—either naive triggers that recompute the
view, or more complicated ones that maintain it incremen-
tally [BDD+98, CW91, LSPC00].

For both referential integrity and materialized views,
triggers are a natural and easy mechanism for implement-
ing the desired functionality: with a trigger system in hand,
one can provide referential integrity and materialized view
support in no time. However, these features also are very
intrinsic to database performance, and they are tied up with
authorization and transactional issues as well. As a result,
most DBMS's will select to implement separate, special-
purpose, highly-tuned components for referential integrity
and materialized views. It would certainly be nice if trigger

256



systems were fast, scalable, and flexible enough to be used
for kernel activities instead of hard-coding them, with no
loss of performance or functionality. In the meantime, trig-
gers still provide an excellent means of rapidly prototyping
functionality that may end up hard-coded within the kernel
of the DBMS.

5.2 Generated Triggers for Services

Moving away from the database kernel, we come to one
of the widest and most useful classes of trigger applica-
tions: those that can be generated automatically to sup-
port a feature or service that enhances the functional-
ity of a database system (second row, middle column
of Figure 1). In fact, some purveyors of early “exten-
sible” database systems, which led to today's prevalent
object-relational DBMSs, suggested that two of the main
features comprising extensibility were objects and active
rules [LLPS91, SK91, SRL+90]. Trigger-based services in
this class can be designed and implemented by the database
system vendor, or provided by third-parties.

Three example applications in this class noted in Fig-
ure 1 but not discussed beyond this paragraph areau-
dit trails, migration, and alerters. It should be clear
that automatically-generated triggers can easily be used
to maintain logs that capture database activity for audit-
ing purposes. In fact, audit trails were one of the earliest
suggested applications of triggers, and the ability to gener-
ate audit trails still remains a “benchmark” for trigger lan-
guages and systems.2 Triggers also can be used during the
process of migrating data from one table or schema (or even
DBMS) to another, to ensure consistency when updates oc-
cur during the migration process. This application is sim-
ilar to replication, discussed momentarily in Section 5.2.1.
Finally,alertersallow users to register for certain database
conditions to become true, in which case the user is noti-
fied and data may be sent along with the notification, but no
action on the database itself is usually taken. Note that in
some ways alerters are very similar to integrity constraints,
except in the case of alerters a condition becoming true re-
sults only in a message being sent, rather than in an error
and/or rollback. Furthermore, we expect that alerters may
generate orders of magnitude more trigger instances on a
given table, as discussed in Section 9 below.

5.2.1 Replication

Most database systems include features for replicating data
automatically between tables in a given database schema,
across schemas within the same database server, or across
servers and even vendors. Tables may be replicated exactly,
or the replicated tables may be specified as more compli-
cated expressions (views, essentially) over the source tables

2The main issue here is that if one is interested in a complete audit trail
(includingactions that may ultimately be rolled back), triggers must have
the ability to be activated by uncommitted events.

[Tho97]. In all cases, the fundamental operation is to cap-
ture changes at source tables and propagate them to repli-
cas. This application shares many obvious similarities with
materialized views and can similarly rely on automatically-
generated triggers, but it requires interactions outside of the
kernel DBMS while materialized views are primarily inter-
nal.

Triggers are widely used for the “capture” phase of
replication services at a minimum. Triggers also may be
used for the “propagate” phase, although because propa-
gation may be decoupled from the transactional semantics
of the underlying database systems, in some cases triggers
may not be expressive or flexible enough to achieve the de-
sired behavior. For example, in many systems the propaga-
tion of updates to replicas is purely time-driven, and most
trigger systems currently do not support time-based events.

5.2.2 Extenders

Another widely deployed service supported by triggers is
maintaining data structures stored either internally or exter-
nally to the database (e.g., specialized indexes) that need to
stay consistent with base data stored in the database. Trig-
gers capture changes to the base data and propagate them
to the specialized structures. More generally, triggers can
provide the “glue” for applying any specialized functions,
both internal and external to the DBMS, to specialized data
stored in the DBMS. There are numerousextendersof this
form relyingon triggers today, for example we immediately
counted eleven that we know of developed by outside ven-
dors to run on IBM's DB2. A few examples are discussed
briefly in the next paragraph.

Extenders for multimedia data (image, audio, video,
etc.) all use automatically-generated triggers. Triggers are
used on insertions to validate multimedia input and gener-
ate useful metadata. Other triggers are used subsequently
to keep data and metadata synchronized. Triggers are also
used heavily in text extenders: When a row is inserted con-
taining a text attribute, a trigger will automatically create a
handle for the text, place the text in a specialized external
index, and place the handle in the actual base row. Other
triggers will ensure that the level of indirection is followed,
and will keep the external text index consistent when text
data is modified. XML extenders behave similarly, al-
though the trigger actions are more complex. XML doc-
uments can be parsed and validated automatically by trig-
gers; document components are then separated and stored
in specialized indexes to enable structural searches.

5.3 External Generated Triggers

Generating triggers from declarative specifications is a nat-
ural approach to take for DBMS services as discussed in
the previous section, since such services tend to be param-
eterized, only moderately configurable, and relatively sim-
ple to specify. For trigger applications that are completely

257



external to the DBMS, automatic trigger generation is less
prevalent, although one important example in this class is
workflow management.3

It is interesting to note that workflow management was
one of the earliest suggested applications of expressive
triggers [DHL90], although initial work did not propose
automatic trigger generation. In recent developments in
the commercial sector, Oracle'sWorkflow Builder[Ora00]
and Informix'sMedia360package [Inf00] both provide
tools that generate triggers automatically from higher-
level workflow specifications, an approach also suggested
in [BBC+97].

6 Handcrafted Triggers

Handcrafted triggers generally support logic that is very
specific to the application at hand. In many cases, hand-
crafted trigger applications cannot be expressed declara-
tively. In some cases, even if a declarative specification is
possible, it simply may not be worthwhile to write a “trig-
ger generator” if the trigger set will be instantiated only a
small number of times. We have found that most hand-
crafted trigger applications reside entirely outside of the
DBMS, i.e., the upper-right entry in Figure 1, and we were
unable to uncover any handcrafted trigger applications pro-
viding a DBMS service (the upper-middle entry)—by na-
ture, services tend to be parameterized and simple enough
that they can be specified declaratively.

6.1 Internal Handcrafted Triggers

Two uses for handcrafted triggers within the kernel of a
DBMS are formetadata management, and to maintain cus-
tomizedinternal audit trailsfor system administrators. As
an example of using internal triggers for metadata manage-
ment, we are familiar with the details of system catalogs
in IBM's DB2 product. For performance, DB2 maintains
complex, optimized internal data structures (descriptors)
that are used during query compilation. These descriptors
are derived from the values of other catalog attributes, and
they encode (among other things) table statistics. When
table statistics are updated, triggers propagate the new sta-
tistical values to keep the descriptors consistent. While the
function of these triggers is to maintain integrity constraints
among catalog data, the details of the data structures are
complex, low-level, and subject to adjustments, so it made
sense to handcraft a set of triggers to propagate updates in
an efficient and correct manner.

6.2 External Handcrafted Triggers

Handcrafted, external triggers are in some sense the most
straightforward deployment of triggers, although these ap-

3Admittedly, business rulesandschedulingare similar applications
that might use automatic trigger generation, but to date these applications
havenot done so to the extentof workflow, so we leave business rules and
schedulingin the “handcrafted”category.

plications also can be the most error-prone. Each trigger or
set of triggers is written by an application developer to sup-
port application-specific logic that can be managed in part
by the DBMS. Often, such triggers are used simply to in-
voke functions that perform actions external to the DBMS.
However, external handcrafted triggers also may be used to
maintain auxiliary information within the database that is
dependent on the application and may not be easy to spec-
ify declaratively. For example, triggers might compute de-
rived columns for each tuple in a table using application-
defined “black box” computations, or they might tag in-
serted and updated rows with a timestamp and/or operation
type.

There are a number of broad classes of external hand-
crafted trigger applications worth noting, as shown in Fig-
ure 1: business rules, scheduling, supply chain manage-
ment, andWeb applications. In each of these classes, al-
though the overall goal may be the same across applica-
tions, the specifics of a given application—e.g., the busi-
ness logic of a particular enterprise, the constraints of a
particular scheduling problem—vary enough that a generic
system for generating triggers from a declarative specifica-
tion does not seem feasible.

The fact that handcrafting triggers is difficult has been
recognized for quite some time with no broadly applicable
solution to date. There is clearly room for trigger program-
ming “wizards” that:

1. Allow the application developer to specify an external
trigger-based application in a higher-level language.

2. Translate the specification into triggers.

3. Provide some analysis tools for identifying how the
generated triggers will interact.

This approach follows the general approach of [CW90,
CW91, CW93], but we are suggesting its use for applica-
tions that are somewhat less declarative than the applica-
tions discussed in those papers, i.e., the tools would tar-
get applications that are nearly always handcrafted today.
Some headway has been made in this direction for busi-
ness rules [Ros97], but primarily applying to business rules
that effectively enforce integrity constraints.

We attempted to quantify the number of triggers that are
typical in a handcrafted external application, in part to de-
termine whether weak points in trigger scalability are rele-
vant. In one scheduling application that we studied, there
were a total of 25 triggers defined over 6 tables. About half
of the triggers were defined over two auxiliary tables that
were needed to encode the application logic and control the
firing of other triggers. Even with this relatively modest
number of triggers, they were difficult to write and cum-
bersome to maintain, and inadvertently contained avoid-
able recursive logic. By contrast, in a Web application we

258



studied there were over 100 triggers. However, the trig-
gers were spread across nearly 30 tables and served largely
to log relevant updates, so trigger interactions were not a
serious problem.

7 Evolution of Trigger Applications

Early trigger applications tended to be external and hand-
crafted. Trigger systems were touted as the mechanism
that would allow databases to become “knowledge bases,”
with built-in rule-based reasoning capabilities. This claim
turned out to be too strong for at least two reasons: trig-
ger performance was not adequate for the large number of
rules anticipated in deployed knowledge bases, and trigger
interactions were cumbersome and difficult to debug or for-
mally verify.

Our work in the early 1990's [CW90, CW91, CW93]
showed that declarative specifications could be used to gen-
erate triggers for several useful applications. With this ap-
proach, correctness is guaranteed, regardless of the number
of (generated) triggers in the application. As trigger ap-
plications have “settled out”, we see the general trend re-
flected in Figure 1. Outside of the DBMS kernel, many
applications fall into one of two categories: either the trig-
gers are generated automatically for a parameterized ser-
vice provided in conjunctionwith the database system (e.g.,
replication), or the triggers are written by hand for a spe-
cific application-dependent task (e.g., scheduling).

Anecdotal evidence suggests that even though triggers
have been used to great success for a wide variety of ap-
plications as discussed above and shown in Figure 1, it is
still the case that a preponderance of trigger applications
are simply maintaining relatively straightforward integrity
constraints. As a result, scalability in number of triggers
has not been a significant concern, with performance ef-
forts devoted instead to scalability in the amount of data
that (a small set of) triggers operates over. As triggers be-
come more widely deployed for alerting systems, complex
scheduling tasks, and other applications requiring numer-
ous and/or complex triggers, scalability is likely to become
a significant concern [BBC+97].

8 Further Classification

We now propose a classification of triggers that is based
largely on function and behavior, rather than on the dimen-
sions in Figure 1. The first 8 of these categories are usually
generated triggers, while the last are typically handcrafted.

1. Constraint-preserving triggers: Signal integrity
constraint violations and force rollbacks of the violat-
ing transactions.

2. Constraint-restoring triggers: Detect integrity con-
straint violations and modify the database contents in
order to restore integrity.

3. Invalidating triggers: Signal and mark integrity con-
straint violations, allowing applications to respond ap-
propriately.

4. Materializing triggers: Compute materialized de-
rived information, from simple scaler values to aggre-
gate values to complex views, either by incremental
modifications or complete refresh.

5. Metadata triggers: Maintain consistency across sys-
tem catalogs or other metadata (recall Section 6.1).

6. Replication triggers: Replicate, migrate, or log in-
formation and/or modifications from one table or
database (theprimary copy) to another one (thesec-
ondary copy).

7. Extenders: Manage new types of data (e.g., validate
input) and keep specialized external structures consis-
tent with the base data.

8. Alerters: Notify or push information to users in
the form of messages, typically based on a pub-
lish/subscribe model.

9. Ad-hoc triggers: Implement business rules, schedul-
ing, workflow, supply-chain management, or other
application-specific logic.

We can see that types 5, 6, and 7 are clearly derivatives
of type 4, and type 4 itself can be thought of as a specific
instance of type 2. In other words, for many trigger applica-
tions, the primary purpose is to monitor and maintain some
kind of constraint. Furthermore, if we stretch our imagi-
nation a bit, other trigger types also can be thought of as
constraint maintainers. For example, alerting triggers (type
8) are responding to the abstract constraint thateach user
must be aware of the information for which he subscribed,
perhaps within a certain amount of time.

Once a trigger application can be expressed in the
context of maintaining constraints, a framework based
on [CW90] may be applicable. In such a framework, trig-
ger generation must enumerate the events that can cause
the constraint to be violated, then associate a corrective ac-
tion for each event. Correctness of the approach is guar-
anteed if all possible sources of inconsistency are cov-
ered. Once triggers for each class of constraints are gen-
erated, we might integrate the different types of constraint-
maintaining triggers into a coherent framework. For exam-
ple, we might want to first restore integrity constraints on
base data, then update materialized views, then restore in-
tegrity constraints on views, then perform replication, and
finally execute alerters.

9 Lingering Issues

The 1995 paper by Simon and Kotz-Dittrich [SKD95],
which was based on the author's practical experience de-

259



ploying trigger-based applications, did a good job of sum-
marizing both the benefits and pitfalls of database triggers.
To a large extent, the positive and negative aspects brought
forth in that paper remain true today. The main recognized
advantages of trigger-based applications are still the abil-
ity to move shared application logic and business rules into
the database (rather than hard-coding the behavior into all
applications), and the ability to specify integrity constraints
that go beyond the specific types of built-in constraints sup-
ported by SQL.

On the negative side, among the problems cited by
[SKD95] based on their application-building experience
are:

1. Lack of expressiveevents in the SQL standard, e.g., no
event predicates, user-defined events, or conjunction.

2. Product limitations, such as a maximum number of
triggers per event type.

3. Lack of uniformity across products—syntactic, se-
mantic, and transactional—resulting in confusion and
a lack of portability.

4. Subtle behavior, particularly when mixing different
types of triggers, or mixing triggers and built-in con-
straints.

5. Lack of structuring mechanisms and debugging tools
for triggers, making it very difficult to specify and
understand how a large number of triggers interact
among themselves and with transactions.

6. Performance penalty when compared against hard-
coding and optimizing the desired effect.

Let us examine how each of these problem areas has
evolved since 1995.

Expressive events

Events are no more expressive, and the now-established
SQL-99 standard with only the simplest of event types (in-
sert, delete, or updateon one table, possibly restricted to
certain columns) virtually guarantees that events will re-
main simple. However, richer event types as suggested in
[SKD95] can largely be encoded using SQL-99 triggers by
making trigger conditions more complicated. At that point
the issue becomes one of optimization: the triggers are
expressible, but they execute inefficiently because of lack
of sophistication in the trigger processor. Thus, one im-
portant challenge becomes efficient monitoring of triggers
with complex conditions. There has been only a smattering
initial work in the research community along these lines,
e.g., [Han92].

Another class of trigger events not yet supported in
products—despite their prominence in several research

prototypes—istime-based events. Although there are nu-
merous interfaces for specifying and scheduling activities
based on time, including database activities, to date we
have not seen time-based events incorporated directly into
a commercial DBMS trigger system.

Product limitations

Product limitations are being lifted, slowly. The limit on
number of triggers per event type has been eliminated in
most products, since the limitation was an obstacle even
to simple trigger-based services. However, most DBMS's
still do not integrate their trigger and constraint systems
well [CPM96]. Furthermore, run-time behavior may be
unnecessarily restricted (e.g., limits on number of rule ac-
tivations), and many systems still lack a means of prior-
itizing when multiple triggers are activated at the same
time [ACL91]. All of these issues have been addressed in
some detail in the research community [WC96], but not yet
adopted in all products.

Uniformity

We expect lack of uniformity to improve somewhat as the
SQL-99 standard settles in, although standards never seem
to solve uniformity problems fully. For example, the dif-
ferent transactional models supported by different DBMS
products can have subtle but significant effects on trigger
behavior, even if the semantics of the triggers themselves
appear identical.

Subtle behavior

There has been little improvement since 1995, except per-
haps in understanding the extent of the subtleties [CPM96].
Even in the presence of well-defined trigger semantics, be-
havior can be surprising. For example, row-level triggers
are activated once for each modified (inserted, deleted, or
updated) tuple, but no triggers are activated until the mod-
ification statement is complete. Thus, the execution of a
row-level trigger effectively enumerates through the mod-
ified rows in an undefined order, possibly invoking com-
plex procedural logic (and even database updates) foreach
row. As another example, if triggers invoke external ac-
tions, there is no way for the external actions to know if
the triggering transaction committed. Thus, an external ac-
tion may be invoked multiple times for restarted transac-
tions, and it may perform actions based on changes that do
not commit. “Deferred” or “commit” triggers are not sup-
ported by most DBMS trigger systems, so programming
correct deferred behavior requires a significant amount of
effort.

These issues are just examples, but they serve to further
underscore the importance of the application development
and trigger analysis tools, mentioned next.

260



Development support

Lack of a support environment for developing handcrafted
trigger applications is still a significant problem. Although
the research community has produced a number of nice
theoretical results and prototype implementations in this
area, commercial database systems are void of trigger de-
sign support, and introducing such tools may never reach
the radar screen for database vendors. Thus, instead of
the emergence of fully general trigger analysis and design
tools, we see the growth in:

� Automatic generation of trigger sets from declarative
specifications, as discussed throughout this paper, and
already used in a surprising number of trigger appli-
cations (second row of Figure 1).

� An intermediate approach between fully automatic
trigger generation and completely handcrafted trigger
sets: trigger programming “wizards” as described in
Section 6.2 that assist in developing correct trigger
sets for a particular application.

Performance

Trigger performance can certainly be a problem, although
not uniformly across all applications. There are many cases
when a small number of triggers embedded in the DBMS
clearly outperforms an approach that hard-codes the same
functionality into multiple applications. However, when
an application permits a very large number of triggers on
the same table (e.g., an alerting system), or when trigger
conditions are complex as discussed earlier, performance
quickly deteriorates in all deployed trigger systems that we
know of. (For example, as mentioned earlier, implement-
ing a rule-based inferencing system using database triggers
is infeasible at this time given existing trigger implemen-
tations.) Again, there has been some work in the research
community, particularly in terms of scaling the number of
triggers while maintaining good performance, that has not
yet found its way into products.

10 Conclusions

Triggers are being used in a variety of significant ways in
today's database systems and applications. The primary
use of triggers is still to enforce various integrity con-
straints driven by the application, and we have argued that
more uses of triggers than one might think are in fact main-
taining constraints of one sort or another. Meanwhile, there
is still work to do in trigger processing for researchers and
developers alike, particularly to address performance issues
and the lack of application development tools.

Acknowledgements

We are grateful to Jim Gray and Ron Soukop for some ini-
tial information on trigger applications to get this paper

rolling, to Mike Stonebraker for a useful discussion near
the finish line, to Richard Sidle for comments on a draft,
and to the following folks at IBM for helpful answers to
numerous questions: Qi Cheng, Patrick Dantressangle, Ste-
fan Dessloch, Jing-Song Jang, Beth Hamel, Madhu Kochar,
Nelson Mattos, and Calisto Zuzarte.

Stefano and Jennifer are grateful to IBM Almaden for
providing a stimulating environment for their joint work in
active databases, and to Bruce Lindsay, Hamid Pirahesh,
and especially Bobbie Cochrane for all their great work in
making constraints and triggers a reality in practice (and in
helping us assemble this paper).

References
[ACL91] R. Agrawal, R.J. Cochrane, and B. Lindsay. On

maintaining priorities in a production rule system. In
Proceedings of the Seventeenth International Con-
ference on Very Large Data Bases, pages 479–487,
Barcelona, Spain, September 1991.

[BBC+97] P. Bernstein, M. Brodie, S. Ceri, et al. The Asilo-
mar report on database research.SIGMOD Record,
27(4):74–80, December 1997.

[BDD+98] R. Bello, K. Dias, A. Downing, et al. Materialized
views in Oracle. InProceedings of the Twenty-Fourth
International Conference on Very Large Data Bases,
pages 659–664, New York, New York, August 1998.

[CF97] S. Ceri and P. Fraternali.Designing Database Appli-
cations with Objects and Rules: The IDEA Method-
ology. Addison-Wesley, 1997.

[CPM96] R.J. Cochrane, H. Pirahesh, and N.M. Mattos. In-
tegrating triggers and declarative constraints in SQL
database sytems. InProceedings of the Twenty-
Second International Conferenceon Very Large Data
Bases, pages 567–578, Mumbai, India, September
1996.

[CW90] S. Ceri and J. Widom. Deriving production rules for
constraint maintenance. InProceedings of the Six-
teenth International Conference on Very Large Data
Bases, pages 566–577, Brisbane, Australia, August
1990.

[CW91] S. Ceri and J. Widom. Deriving production rules
for incremental view maintenance. InProceedings
of the Seventeenth International Conference on Very
Large Data Bases, pages 577–589, Barcelona, Spain,
September 1991.

[CW93] S. Ceri and J. Widom. Managing semantic hetero-
geneity with production rules and persistent queues.
In Proceedings of the Nineteenth International Con-
ference on Very Large Data Bases, pages 108–119,
Dublin, Ireland, August 1993.

[DHL90] U. Dayal, M. Hsu, and R. Ladin. Organizing
long-running activities with triggers and transactions.
In Proceedings of the ACM SIGMOD International
Conferenceon Managementof Data, pages 204–214,
Atlantic City, New Jersey, May 1990.

261



[EC75] K.P. Eswaran and D.D. Chamberlin. Functional spec-
ifications of a subsystem for data base integrity. In
Proceedings of the First International Conference on
Very Large Data Bases, pages 48–67, Framingham,
Massachusetts, September 1975.

[Esw76] K.P. Eswaran. Specifications, implementations and
interactions of a trigger subsystem in an integrated
database system. IBM Research Report RJ 1820,
IBM San Jose Research Laboratory, San Jose, Cal-
ifornia, August 1976.

[Han92] E.N. Hanson. Rule condition testing and action exe-
cution in Ariel. InProceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 49–58, San Diego, California, June 1992.

[HM75] M. Hammer and D. McLeod. Semantic integrity in
a relational data base system. InProceedings of the
First International Conference on Very Large Data
Bases, pages 25–47, Framingham, Massachusetts,
September 1975.

[Hor92] B. Horowitz. A run-time execution model for ref-
erential integrity maintenance. InProceedings of
the Eighth International Conference on Data Engi-
neering, pages 548–556, Phoenix, Arizona, February
1992.

[Inf00] Informix Software.Informix Media360, 2000. Avail-
able at http://www.informix.com/media360.

[LLPS91] G.M. Lohman, B. Lindsay, H. Pirahesh, and K.B.
Schiefer. Extensions to Starburst: Objects, types,
functions, and rules.Communications of the ACM,
34(10):94–109, October 1991.

[LSPC00] W. Lehner, R. Sidle, H. Pirahesh, and R.J. Cochrane.
Maintenance of automatic summary tables. InPro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 512–513, Dal-
las, Texas, May 2000.

[Ora00] Oracle Corporation. Oracle Workflow Technical
Configuration in Oracle Applications Release 11,
2000. Available at http://www.oracle.com/sup-
port/library/supportnews/html/workflow.html.

[Ros97] R.G. Ross.The Business Rule Book: Classifying,
Defining and Modeling Rules. Business Rule Solu-
tions Inc., February 1997.

[SK91] M. Stonebraker and G. Kemnitz. The POSTGRES
next-generation database management system.Com-
munications of the ACM, 34(10):78–92, October
1991.

[SKD95] E. Simon and A. Kotz-Dittrich. Promises and re-
alities of active database systems. InProceedings
of the Twenty-First International Conferenceon Very
Large Data Bases, pages 642–653, Z¨urich, Switzer-
land, September 1995.

[SRL+90] M. Stonebraker, L.A. Rowe, B.G. Lindsay, J. Gray,
M.J. Carey, M.L. Brodie, P.A. Bernstein, and
D. Beech. Third-generation database system mani-
festo – The committee for advanced DBMS function.
SIGMOD Record, 19(3):31–44, September 1990.

[Sto75] M. Stonebraker. Implementation of integrity con-
straints and views by query modification. InProceed-
ings of the ACM SIGMOD International Conference
on Managementof Data, pages 65–78, San Jose, Cal-
ifornia, May 1975.

[Tho97] C. Thompson. Database replication.DBMS Maga-
zine, 10(5), May 1997.

[UW97] J.D. Ullman and J. Widom. A First Course in
Database Systems. Prentice Hall, Upper Saddle
River, New Jersey, 1997.

[WC96] J. Widom and S. Ceri.Active Database Systems:
Triggers and Rules for Advanced Database Process-
ing. Morgan Kaufmann, San Francisco, California,
1996.

262


