

Hierarchical Compact Cube for Range-Max Queries

 Sin Yeung Lee Tok Wang Ling HuaGang Li

School of Computing
National University of Singapore

{jlee,lingtw,lihuagan}@comp.nus.edu.sg

Abstract

A range-max query finds the maximum value
over all selected cells of an on-line analytical
processing (OLAP) data cube where the
selection is specified by ranges of contiguous
values for each dimension. One of the
approaches to process such queries is to pre-
compute a prefix cube (PC), which is a cube of
the same dimensionality and size as the original
data cube, but with some pre-computed results
stored in each cell.

In this paper, we propose a new cube
representation called Hierarchical Compact
Cube, which is an hierarchical structure that
stores not only the maximum value of all the
children sub-cubes, but also stores one of the
locations of the maximum values among the
children sub-cubes. The storage requirement is
much less than the prefix cube methods.
Furthermore, both of our analysis and
experiment results show that the average query
time using our method is bounded by a constant
independent on the number of data in the data
cube, N. For a fixed dimension, the average
update cost of our new structure in the worst
case is also relatively low. It is only O(log N).

1 Introduction
 Aggregation is a common and computation-intensive
operation in on-line analytical processing systems

 Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th Internal Conference on Very
Large Databases, Cario, Egypt, 2000.

(OLAP) [3, 4, 7], where the data is usually modelled as a
multidimensional data cube [5, 6, 10], and queries
typically involve aggregations across various cube
dimensions. Formally, an n-dimensional data cube is
derived from a projection of n+1 attributes from some
relation R, where one of these attributes is classified as a
measure attribute and the remaining n attributes are used
as dimensional attributes. Each dimension of the data
cube corresponds to a dimensional attribute, and the value
in each cube cell is an aggregation of the measure
attribute value of all records in R having the same
dimensional attribute values. For instance, consider the
database which stores the sales of each item in each day
for each outlets, the data can be stored in a cube having
three dimension --- item, date and outlets. The value in
each cube will be the actual sales.

Using the data cube model, we can answer many OLAP
range queries [11] efficiently. In particular, we propose a
new pre-computation technique for a class of OLAP
queries called range-max queries. A range-max query
finds the maximum value over all selected cells of an
OLAP data cube where the selection is specified by a
range of contiguous values for each dimension [6]. For
example, finding the maximum sales of stationary items
(each has an item code ranging from 1200 to 1258)
between day 130 and day 136 in all the western outlets
(branch-no ranging from 45 to 89) is a range-max query.
It can be realized using the following SQL statement:

 SELECT MAX(amount) FROM sales WHERE
 ((item>=1200) AND (item <= 1258)) AND
 ((day>=130) AND (day<=136)) AND
 ((branch>=45) AND (branch<=89));

The most direct approach is a naïve approach. We
evaluate a range-max query by accessing each individual
cell from the data cube itself and find the maximum
value. However, the cost of access is proportional to the
size of the sub-cube specified by the range. To illustrate,
given a 10-dimension data cube, if we double the size of
each dimension in the range, we will increase the total
access cost by 1024 times. This is clearly unacceptable.

232

Note that this naïve method can be applied to other
aggregate functions such as SUM.

To improve the range query for the aggregate function
SUM, considerable research has been done in the
database community [8, 9, 11, 12, 13]. One of the
foundation stones for efficient range-sum query algorithm
is to pre-compute a set of summary results [9] which will
be used to speed up the processing of an OLAP query of
arbitrary range. The most commonly found ideas is the
Prefix Sum Method. In this method, a prefix cube PC, of
the same size as the data cube DC, stores various pre-
computed prefix aggregation. In particular, PC<x1,… ,xd>
stores the sum of all the data in DC ranging from <0,… ,0>
to <x1,… ,xd>. With the use of PC, any range-sum query on
d dimension can be answered with a constant (2d) cell
accesses. To illustrate, the sum of all the data in DC
ranging from <2,4> to <6,9> can be computed with only
four cell accesses of the PC by using the formula:

sum(<2,4>, <6,9>) =
sum(<0,0>, <6,9>) – sum(<0,0>, <6,3>) –
sum(<0,0>, <1,9>) + sum(<0,0>, <1,3>)

or alternatively,
 sum(<2,4>, <6,9>) = PC<6,9> – PC<6,3> –

PC<1,9> + PC<1,3>

Although the Prefix Sum Method has a very good
constant time query cost, it is very expensive to update
the prefix sum cube. A single update on the data at
DC<0,… ,0> requires to update every cell in the PC. Other
methods try to correct this weakness. For example, the
Relative Prefix Sum method [12] has a constant query
cost and a much reduced O(nd/2) update cost. This
achieves a better overall effect for frequently updated data
cube. The Hierarchical Cubes method [13] further
improves [12] to allow a dynamic fine-tuning between the
query cost and update cost.

Despite all these works on range-sum query, they cannot
be directly applied to the range-max query. In particular,
most of the existing range-SUM methods explore the idea
that, given two disjointed regions A and B,
 sum(B) = sum(A+B) – sum(A)
where A + B is the union of the two regions. This equality
is exactly the corner stone to make prefix sum works.
However, for the case of range-max query, even if we
know the maximum value of both regions A and A+B, we
still cannot decide the maximum value of the region B.

Fortunately, there are many other aspects that we can
explore to speed up the range-max query that the range-
sum query does not process:

1. In a range-sum query, it is possible to prune some
processes in the search for the maximum. In
particular, given three regions A, B and C. If it is

known that max(A+B) is not more than max(C),
then both max(A) and max(B) are smaller than
max(C). Therefore, we do not need to explore
regions A nor B to find the exact value of max(A)
nor max(B). Generalising this idea, if a requested
range is covered by regions A1,… ,An, we can prune
off any further investigation on Ai if the maximum
value of Ai is not more than the current computed
maximum value. This type of pruning allows a
great reduction of the IO cost on cube accesses.

2. While the order of the sub-cube visitation for the
range-sum query is not very important in terms of
IO accesses, it is no longer true in the case of
range-max query. Due to the possibility of pruning
some searching processes, it is highly beneficial to
find a correct order of the evaluation of the sub-
range queries so as to increase the probability that
a sub-range can be pruned.

3. A maximum data is not just a result of an
aggregation function, it is also a data that appears
in the data cube. As a result, a maximum data can
associate with the location of the data cube cell
where the maximum appears. Using the location,
some of the range-max query can be done much
faster. For example, if we know that the overall
maximum is at location <3,8,4>, then any range-
max query that includes <3,8,4> can be answered
in just one cube access --- the access of the cell
<3,8,4> itself. In this paper, we shall formulate our
algorithm to use this location to further decrease
the access cost of range-max query.

2 Hierarchical Compact Cube
Definition 2.2 A data cube DC of d dimension, is a d-
dimensional array. For each dimension, the index can be
ranged from 0 till si-1 inclusively. We will denote si as the
size of the ith dimension. In this paper, a cell in the data
cube can be expressed in the following form,
 DC<x1 ,… , xn> where 0 ≤ ji < si

Example 2.1 Figure 2.1 shows a data cube of 2
dimension. The size of the first dimension (represented as
row in this paper) is 5, and the size of the second
dimension (represented as column) is 7.

0 1 2 3 4 5 6

0 5 24 17 32 9 21 34

1 30 11 2 20 25 8 14

2 16 26 1 13 15 3 28

3 31 4 29 6 33 18 28

4 23 22 12 19 10 27 35

Figure 2.1 A data cube

233

Definition 2.2 Given a data cube DC of d dimension,
and d integers m1 ,… , md, the compact cube of DC,
denoted as CC, is another data cube such that

1. it has the same dimension d, and
2. if the size of the ith dimension in DC is si, i.e., it

ranges from 0 to si-1, then the dimension i in CC

will be ranged from 0 to

 −

i

i

m
s 1

.

3. Each cell CC<x1,… ,xd> in CC stores two items
• The maximum of all the cells DC< j1 ,… , jd >

where m xi ≤ ji < min(mi(xi+1), si) and
• the position of one of the cells that holds

this maximum value.
In this paper, we shall denote the maximum value stored
in CC<x1,… ,xd> simply as CC<x1,… ,xd>.value, and the
maximum location as CC<x1,… ,xd>.location. For
simplicity’s sake, we assume m1 = … = md = m, and we
shall call this integer m the compact factor of the
compact cube. However, our algorithm is equally
applicable when mi are not the same.

Example 2.2 Figure 2.2 shows a compact cube of the
data cube shown in Figure 2.1. The compact factor is set
to 2. Note that among the data in DC<i, j> where 0 ≤ i, j
≤ 1, the maximum value is 30, and it appears in location
<1,0>. This information is stored in CC<0,0> of the
compact cube. Note that for CC<1,3>, the maximum value
28, can be derived from DC<2,6> and DC<3,6>. Our
compact cube just randomly picks one of these locations
and stores it. Note also that CC<2,3> only summarises the
maximum of only one cell in the data cube: DC<4,6> and
thus CC<2,3>.value is exactly equal to DC<4,6>.

1 0 0 3 1 4 0 6

3 0 3 2 3 4 2 6

4 0 4 3 4 5 4 6
Figure 2.2 A Compact Cube

29 33 28

23 19 27 35

1 2 3
30 32 25 340

1

2

0

31

Definition 2.3 Given a compact cube CC of dimension
d, and d integers m1 ,… , md, its compact cube, CC2, is
another compact cube such that

1. it has the same dimension d, and
2. if the dimension i in CC is ranged from 0 to si-1,

then the dimension i in CC2 will be ranged from 0

to

 −

i

i

m
s 1

.

3. Each cell CC2<x1,… ,xd> in CC2 stores two items

• The maximum of CC< j1 ,… , jd >.value
where m xi ≤ ji < min(m(xi+1), si) and

• the location attribute of one of the cells
which holds this maximum value.

To simplify the discussion in this paper, we shall again
assume that all mi are the same, and likewise refer it as
the compact factor.

Example 2.4 With the compact cube CC as shown in
Figure 2.2, we can compact to generate another compact
cube CC2. With compact factor to be 2, CC2<0,0> contains
the maximum value among CC<0,0>, CC<0,1>, CC<1,0>
and CC<1,1>. From Figure 2.2, we can conclude that the
maximum value is 32, and it is at CC<0,1>. Hence,
CC2<0,0>.value will be 32. CC2<0,0>.location will be
equal to the location attribute of CC<0,1>, i.e., <0,3>. The
completed CC2 is shown in Figure 2.3.

0 3 0 6

4 0 4 6

A rank 2 compact cube

1
32 34

Figure 2.3

35

0

1

0

23

Definition 2.4 Given a data cube DC and an integer m, an
Hierarchical Compact Cube denoted by HC, is a
sequence of compact cubes CC0 ,… , CCh such that

1. CC0 is the data cube DC itself.
2. CCk (k ≥ 1) is the compact cube of CCk-1 with

compact factor m.
3. CCh is the only compact cube which contains

only one single cell.
We shall call the integer m the compact factor of the
hierarchical compact cube HC, h the height of the HC. We
shall refer CCi as the rank i compact cube of HC and CCh
also as the topmost compact cube of HC.

Example 2.4 With the data cube as shown in Figure 2.1,
we can construct a hierarchical compact cube HC. The
rank 0 compact cube is the data cube itself. The rank 1
compact cube is shown in Figure 2.2, and the rank 2
compact cube is shown in Figure 2.3. Lastly, Figure 2.4
shows the rank 3, the topmost compact cube, which
results from compacting the rank 2 compact cube.

4 6

A rank 3 compact cube

35

Figure 2.4

0

0

234

Definition 2.5 A max-range query with respect to a
data cube DC of dimension d can be specified as

[< L1 ,… , Ld > , <H1 ,… , Hd >]

such that for each dimension i, 0 ≤ Li < Hi ≤ si where si
is the size of the ith dimension of DC. The query returns
the maximum value among all the data in < x1 ,… , xd >
with Li ≤ xi < Hi.

Example 2.5 In Figure 2.5, the shadowed area
represents the range [<1,1>, <4,5>].

0 1 2 3 4 5 6

0 5 24 17 32 9 21 34

1 30 11 2 20 25 8 14

2 16 26 1 13 15 3 28

3 31 4 29 6 33 18 28

4 23 22 12 19 10 27 35

Figure 2.5 The range [<1,1>, <4,5>]

Definition 2.6 Given a cell CCr<x1 ,… , xd> of a rth rank
compact cube with compacting factor m, a region R =
[<L1 ,… , Ld > , <H1 ,… , Hd >] is said to be contained in
the cell if and only if for each i (1 ≤ i ≤ d),

1. mr xi ≤ Li and
2. Hi ≤ min(mr(xi+1), si).

where si is the size of the ith dimension of the compact
cube CCr. The region R is said to be a full region with
respect to the cell CCr<x1 ,… , xd> if all the equality signs
in both conditions hold. Otherwise, R is called a partial
region with respect to the cell CCr<x1 ,… , xd>.

Example 2.6 Refer to the hierarchical compact cube
HC as described in Example 2.4. The region
[<0,0>,<4,4>] is contained in CC2[0,0] as 22*0 ≤ 0 and 4
≤ 22*1. Indeed, as both the equality signs hold, the
region is also a full region. The same region is also
contained in CC3<0,0> as 23*0 ≤ 0 and 4 ≤ 23*1.
However, the region is only a partial region with respect
to CC3<0,0> as the second equality does not hold. Finally,
the region is not contained in CC1<0,0> as the second
condition “4 ≤ 21*1” fails.

3 Using the Hierarchical Compact
Cube for range query

Before we present the algorithm to handle range-max
query, we shall illustrate the idea behind using the
following example:

Example 3.1 Refer to the data cube as described in
Example 2.1, we want to find the maximum value in the
range R = [<1,1>, <5,5>]. This range is shown in the
shadow area of Figure 3.1.

0 1 2 3 4 5 6

0 5 24 17 32 9 21 34

1 30 11 2 20 25 8 14

2 16 26 1 13 15 3 28

3 31 4 29 6 33 18 28

4 23 22 12 19 10 27 35

Figure 3.1 A sample query

Instead of accessing the data cube directly to find the
maximum, we will first look at the topmost rank of the
hierarchical compact cube, the rank 3 compact cube. This
compact cube is shown in Figure 3.2. The dotted
rectangle represents the region R (ranged [<1,1>, <5,5>])
wrt the Rank 3 compact cube (ranged [<0,0>, <5,7>]).

4 6
350

0

Figure 3.2 Rank 3 compact cube

R

This compact cube cell reveals that the maximum within
the region [<0,0>, <5,7>] is 35 and it is in the location
<4,6>. Given any region R that is contained in CC3<0,0>,
there are three possibilities,

1. R is a full region with respect to CC3<0,0>,
2. R is a partial region, but the maximum cell

DC<4,6> is inside R,
3. R is a partial region, and the maximum cell

DC<4,6> is not inside R.
In either case 1 or case 2, as the maximum element in the
cell DC<4,6> is also inside R, the region R contains the
maximum value. We can then return 35 as the answer
immediately and do not need to do any further
investigation. Only in case 3 do we need to investigate
further. In this example, R belongs to case 3.

235

We now apply the bound and branch [1] and the divide
and conquer idea [2] to subdivide the region R into md
sub-regions. In this example, it is divided into R1, R2, R3
and R4 so that each sub-region is contained in exactly one
rank 2 compact cube cell. This is shown in Figure 3.3.
The original query can now be transformed into four sub-
queries to find the maximum values of region R1, R2, R3
and R4, and the final result is the largest of these four
maximums.

0 3 0 6

4 0 4 6

A rank 2 compact cube

1
32 34

Figure 3.3

35

0

1

0

23 R1

R2

R3

R4

While the final answer is independent of which four sub-
queries is evaluated first, however, if we compute R1 and
discovers that the maximum is indeed 35, then we can
immediately prune the query on R2, as its maximum is at
best 34. We therefore propose to compute the sub-queries
in the following order:

1. All the regions that are full regions first, then
2. All the partial regions with the largest maximum

evaluated first and the smallest maximum
evaluated last.

The full regions can be computed without any further
subdivision. Hence, they should be evaluated first. On the
other hand, a partial region may need to investigate
furthermore if the maximum location is not inside the
partial region. Hence, they are evaluated later. In order to
compute the largest maximum first, we need to maintain
some sorted order of these partial regions. A complete
sorting is quite expensive. For instance, in our example, if
35 is found to be the answer, it is a waste of resources to
pre-sort the regions R2, R3 and R4. Consequently, a
priority queue implemented using implicit heap is
introduced to keep those “to-be-investigated” regions
such that the largest cell-maximum can be immediately
available in the front of the queue. Note that as we are
using heap structure, we do not need all the elements in
the queue completely sorted.

In this example, none of the regions R1, R2, R3 or R4 is a
full region, we therefore proceed to examine the four
partial regions. The first region to be investigated is
region R1. It is contained in the compact cube CC2<1,1>
that also holds the largest possible maximum, 35.
However, as 35 is at position <4,6>, it is outside the
region R1. Hence, we cannot immediately conclude the
maximum of R1. R1 is now inserted into the priority
queue Q for further analysis. Similarly, regions R2, R3
and R4 are all partial regions and their respective
maximums do not fall in their corresponding regions.

Hence, they are all inserted into Q. As Q always ensures
that the largest element is in the front of the queue, hence,
the elements contained in Q are regions R1, R2, R3 and
R4, with R1 being in the front of the queue.

Now we further investigate the largest element in Q, R1.
The region can be further sub-divided into only one
region R1a in the rank 1 compact cube, as shown in
Figure 3.4.

4 5 4 6

In a rank 1 compact cube

3

Figure 3.4

352

2
27

R1a

Now R1a is still just a partial region, and its maximum,
27, is at position <4,5>, which is outside the region R1a.
Hence, we again cannot conclude the maximum value of
R1a yet and hence R1. We need to insert the region R1a
into the queue for further processing. Now, the queue Q
contains the regions R2(max=34), R3(max=32),
R1a(max=27) and R4(max=23) with R2 being in the front
of the queue.

The next region dequeued from Q is region R2. It can be
subdivided into R2a and R2b, as shown in Figure 3.5.

1 4 0 6

3 4 2 6

In a rank 1 compact cube

3
25 34

Figure 3.5

28

0

1

2

33 R2b

R2a

None of them is a full region. However, as the maximum
value stored in CC1<1,2>, 33, is within the region R2b, we
can conclude that the maximum of region R2b is 33. In
other words, the overall maximum of the original query is
at least 33. Now R2a has a maximum value of 25, which
is less than the current maximum, 33. Therefore, we can
skip this region. At this moment, the current maximum is
33, and the queue Q contains regions R3, R1a and R4.

The next region R3 has only a maximum of 32, which is
smaller than the current maximum, 33. We can skip
region R3. But since the queue Q always removes the
largest element from the queue, the remaining elements in
Q are even smaller and can never improve the current
maximum, 33. As a result, we can stop our algorithm and
conclude that the current maximum is 33.

The following summarizes our algorithm:

236

Algorithm 3.1 [Maximum Query]

Let DC be a given data cube and let θ be the smallest
domain value of the measure attribute. Let HC be the
hierarchical compact cube of DC with compacting factor
m and height h. We find the result of a range-max query
R0 by the following steps:
1. Let Q be an empty priority queue, which stores tuples

of the form [R, maxguess , ht] where R is a range,
maxguess is an estimated maximum of the range R, and
ht is the smallest height of all the compact cubes in
HC that range R has investigated.

2. To start with, if R0 covers the entire the data cube,
then the topmost compact cube, CCh, is exactly R0.
We return the maximum value stored in CCh<0,… ,0>
as the query result and exit the algorithm.

3. Otherwise, we insert [R0 , θ , h] inside the priority
queue Q. The queue is inserted in a way that a larger
maxguess will be dequeued first, and the smaller
maxguess will be dequeued later. We also initialise the
current maximum maxcur as θ – 1. We now perform
the following processes:

4. If Q is empty, then stop the algorithm, and report
maxcur as the actual maximum.

5. Otherwise, dequeue the largest item [R , maxguess , ht]
from the priority queue Q. If the maxguess is not more
than maxcur, stop the algorithm, and report maxcur as
the actual maximum.

6. Let {Cj} be the minimum set of rank (ht – 1)th
compact cubes such that U jC covers R. For each

j, we denote Rj as the subregion of R that Cj overlaps.
In other words, φ≠= I jj CRR .

7. For each Rj such that Rj is a full region with respect
to the compact cube Cj, we query the maximum value
stored in the corresponding (ht – 1)th compact cube
Cj, which is exactly the maximum of Rj. If the
returned value is more than the current maximum
maxcur, we update maxcur to be the returned value.

8. For the rest of Rj that is only a partial region with
respect to the compact cube Cj, we query the (ht–1)th
compact cube to find the maximum of Cj, maxquery.
This value gives the upper bound of the maximum of
Rj. We have three cases:
a. If the returned value maxquery is not more than the

current maximum maxcur, then the actual
maximum of Rj cannot be more than maxcur and
we can skip this region. We repeat step 8 for
another region Rj’.

b. On the other hand, if the returned value is more
than the current maximum and if the maximum
location is inside Rj, then we confirm that the
maximum value of Rj is indeed maxquery. We
update maxcur to be maxquery and continue step 8
with another region Rj’.

c. Finally, if the returned value is more than the
current maximum, and the maximum location is
outside Rj, we need to do further investigation on
Rj to confirm its actual maximum. We insert the
item [Rj , maxquery , ht –1] into Q.

9. After all Rj have been processed, we repeat step 4 of
the algorithm until Q is empty.

4 The constant-time average access
cost of our method

In this section, we shall first formulate a recurring
equation on the average number of compact cube
accesses. We then prove that the average number of cube
accesses is bounded by a constant that is independent of
the size of the compact cube. To start with, we note that
during the searching of the maximum value at the rth rank
compact cube, the total cost costr can be divided into two
parts:

1. The query of the maximum values of all the
immediate children of the rth rank compact cube, as
required in step 7 and step 8 of the Algorithm 3.1.
We can assume that there are N such (r – 1)th rank
children.

2. The possible further query on these N children as
described in step 8, part (c) of the Algorithm 3.1.

If kr is the expected number of children that are required
to perform further query, then

 costr = N + kr costr-1

To estimate N, we assume that during the query R on the
rth rank compact cube, the rth rank compact cube covers
exactly wi (r – 1)

th rank compact cubes in the i th
dimension where 1 ≤wi ≤m. Clearly, the r

th rank compact
cube covers exactly

∏
=

=
d

i
iwN

1

(r – 1)
th rank compact cubes. We denote the sub-regions

that these compact cubes cover to be R1 ,… , RN. Note that
according to Algorithm 3.1, during the processing of any
region R of the rth rank cube, we need to access the
maximum value stored inside all the sub-cubes Rj in step
7 and 8 of the algorithm. Hence, our algorithm needs to
access exactly N compact cubes of rank (r – 1).

Given that the compact factor is m, each wi will be ranged
between 1 and m. Thus, the value of N, in the worst case,
is at most md, which is a constant. Note that in average,
the expected value of N is much smaller. If either the
starting value or the ending value for the ith dimension of
the given range is a random variables, then expected
value of each wi can be shown to be only about m/2. Thus,

237

the expected value of N is 1/2d smaller than the worst
case. In conclusion, the number of the (r – 1)th rank
compact cubes needed to be investigated from a rth rank
compact is bounded by the constant md in the worst case.

To estimate exactly the value of kr is much more
complex. However, we can show that the value of kr
approaches to 0 for lower rank compact cube as the data
cube size increases. According to the step 8 of our
algorithm, it is required that a sub-region Rp will be
inserted into the queue Q for further investigation only if
the following conditions are satisfied:

1. The children Rp is a partial region, and
2. the returned maximum on query of Rp is more

than the current maximum, and
3. the location of the maximum is not inside Rp.

There can be plenty of compact cubes can do not satisfy
the first condition. As illustrated in Figure 4.1, given a
region R in the d-dimension rth compact cube, in the worst

case, there are only at most ∏∏
==

−−
d

i
i

d

i
i ww

11

)2(

partial regions in the (r – 1)th compact cube where wi is
the length of the ith dimension that R overlaps with the (r-
1)th compact cube. The proportion of partial regions is
even smaller when the compact factor m increases, as
well as when some dimension ranges falls exactly at the
division mark (as shown on the row 5 in figure 4.1) which
frequently occurs in lower rank compact cubes.

Figure 4.1
Illustration on the numbers of full sub-regions.

(5-2)*
(3-1) =
6 full sub
regions.

Region R

To satisfy the second condition, we note that Algorithm
3.1 will first compute the maximum of all the full regions
first in step 7. The probability that a partial block Rp has a
maximum more than the current maximum is the
probability that among all the “explored” regions and the
partial block, the largest value is at that partial block.
Now, when we start our algorithm by first investigating
the topmost rank h compact cube, there are at least

∏
=

−
d

i
iw

1

)2(sub-regions covered by some rank (h-1)th

compact cube being investigated. Each such rank (h-1)th

compact cube contains about m(h–1)d data. As a result, we

can assume that at least

 −∏

=

d

i
iw

1

)2(m(h–1)d data has

been explored during the visit of these full regions
covered by these rank (h-1)th compact cubes.
Subsequently, for the remaining partial regions, some full
regions of lower rank cubes will also be explored. This
further increases the “explored” area and thus decreases
the chance that the maximum is found in Rp. However, for
simplicity sake, we shall ignore these surpluses in this
analysis. In other words, we only assume that at least

 −∏

=

d

i
iw

1

)2(m (h–1)d

data has been explored before accessing the partial block
Rp. The size of the partial block of rth rank compact cube
is about mrd. Consequently, the probability that the first Rp
contains a larger maximum than the current maximum is
not more than

dh
d

i
i

rd

mw

m

)1(

1

)2(−

=

 −∏

Finally, even if the second condition is satisfied --- Rp has
a cell maximum that is greater than the current maximum,
as long as this maximum is in the region Rp, it does not
fulfil the third condition. In this case, we need not do any
further investigation. To estimate this probability, we first
illustrate the computation using d=3 case. For a partial
region in a compact cube of size m, it can fall into three
different cases:

1. The region is on the surface. There

are 21)2(2
1
3

−

m such regions. The

probability that a chosen point is in the region is
½.

2. The region is on the edge of the cube. There

are 12)2(2
2
3

−

m such regions. The

probability that a chosen point is in the region is
¼.

3. Finally, the region can be on the corner of the

cube. There are 03)2(2
3
3

−

m such regions.

The probability that a chosen point is in the
region is 1/8.

238

We can generalise the sum for any dimension d, the
probability that a particular point is in a partial region is

d

d

k

kdk

d

k

kd

m
m

k
d

m
k
d

 −≈

−

−

∑

∑

=

−

=

−

11
)2(2

)2(

1

1

Hence, we can deduce that the expected value of kr is not
more than

d

dh
d

i
i

rdd

i
i

d

i
i m

mw

mww

 −

 −

 −−

−

=

== ∏
∏∏ 11

)2(
)2(

)1(

1

11

Since the value of m, wi, and d are all independent on the
size of the original data cube, we can simply rewrite the
above expression as,
 cm(r+1–h) d
where the expected value of the constant c only depends
on the value of d and m. With the bound of kr, we have

1
)1(costcost −

−++< r
dhrd

r cmm
Expanding the sum, and putting r = h, we have,

 ++++++< Ldd

ddd
h m

c
m
c

cmccmmt 5

5

2

4
321cos

Note that the sum at the right hand infinite sum converges
to a fix number. In other words, for any arbitrary large
data cube, the total number of cell accesses, costh is
bounded by a constant, which is independent on the size
of the data cube.

4.1 Experiment Result
The following figures show some of our experiment
results.

HC with Dimension=2
against different compact factor (m)

0

5
10

15
20

25
30
35

0 200 400 600 800 1000 1200

Size of each dimension

A
ve

ra
ge

 c
el

l a
cc

es
se

s

m=2

m=3
m=10

Figure 4.1 Impact of cube size for

different compact factor for 2-D Cube

We generated a set of hierarchical compact cubes by
varying the data size, compact factor and dimension
independently. For simplicity, we consider data cubes

with equal sized dimension. We then generate about
100,000 queries of random size and measure the average
cell accesses required. The experiment is run in Linux
Red hat 6.0 and several observations can be concluded:

HC with Dimension=3

0

20

40

60

80

100

120

0 20 40 60 80 100

Size of each dimension
A

ve
ra

ge
 c

el
l a

cc
es

se
s

m=2
m=3
m=5

Figure 4.2 Impact of cube size for

different compact factor for 3-D Cube

1. From Figure 4,1 and Figure 4.2, there are strong
evidences that the average number of cell accesses
does converge to a constant when the size of the data
cube increases. For large set of data, the performance
is not dependent on the number of data in the data
cube. This coincides with our analysis. Furthermore,
the convergent rate is faster for smaller compact
factor and lower dimension.

2. The performance also improves when the compact
factor decreases. The best compact factor, as shown
in both Figure 4.1 and 4.2, is 2.

As shown in Figure 4.3, the average number of cell
accesses grows exponentially as the dimension increases.
This also coincides with the factor md shown in the
analysis result.

Figure 4.3
Impact of dimension on the overall performance

Experiment on different
dimensions, with each
dimension size=8, m=2

0

20

40

60

80

2 3 4 5 6

Dimension

A
ve

ra
ge

nu

m
be

r o
f c

el
l

ac
ce

ss
es

239

5 Updates and storage costs of the
hierarchical compact cube

When we update a data in the data cube, we may need to
update also the hierarchical compact cube. As mentioned
in [6,13], our hierarchical compact cube is imperfect if it
incurs a huge update cost. Likewise, our method should
not incur too much extra storage costs. In this section, we
shall show that the maintenance cost of the hierarchical
compact cube containing N data is only O(logm N).
Furthermore, the extra storage cost is a factor smaller as
compared to range-sum query methods. [9,13]

There are two types of update to the data cube. We can
either increase a value or to decrease a value of a data
cube cell. These two updates require a different average
update cost analysis on the hierarchical compact cube.

5.1 Maintenance cost for increment
In the case of increment of a cell c in a rth rank compact
cube, if the increased value does not exceed the overall
maximum of the (r+1)th rank compact cube that c belongs
to, then no further update is required. The total update
cost is to access the cell c itself, and to query the overall
maximum by accessing one cell of the (r+1)th rank
compact cube. On the other hand, if the increment affects
the overall maximum (for instance, the update is to
increase the actual largest value), then the cell of the
(r+1)th rank compact cube which contains the overall
maximum needed to be updated also. This propagates the
update to the (r+1)th rank compact cube, and we now
need to query the (r+2)th rank compact cube recursively.
The propagation will stop when the update does not affect
the maximum stored in its parents or in the worst case, r
is the height of the hierarchical compact cube. In other
words, in the worst case, the update cost is h. Given that
m is the compact factor of the hierarchical compact cube,
and d is its dimension, the total number of data in the data
cube N, is about mhd. Hence, the update cost h is about

 N
d mlog1

In other words, for a fixed dimension, the worst case
increment cost is only O(logmN). The average update
case, however, is only a constant. An update of cell c is
propagated only when the updated value overtakes the
overall maximum. Given that the cell being increased is
the kth largest cell, we can assume that with only
probability 1/k, the value of this kth largest cell is
increased to overtake the maximum. By summing k from
1 to md, and assuming that each cell is updated with the
same probability 1/md, the probability that a cell is
increased to overtake the overall maximum, and thus
propagation to its parent is required, is about

 dm
md γ+ln

where γ is the Euler’s constant (=0.5771..).

As this probability is independent of the rank, hence, an
update of a cell in the data cube (a rank 0 cell) can be
propagated to a rank 1 parents cell has the same
probability that this update will be further propagated to
rank 2. It is a geometric progress, and the expected
number of cells that requires update is

<

 ++++×+×

− 1
lnln

211
h

dd m
md

h
m
md γγ

L

())ln(1

ln
22

2

dd

d

m
mdO

mdm

m +=
−− γ

In other words, the average increment cost is bounded by
a constant, regardless of the size of the data cube.
Furthermore, for data cube with high dimension, the
average number of cells that needed to be updated
triggered by an increment operation is very closed to 1.

5.2 Maintenance cost for decrement
In the case of decrement of a data cube cell, there are two
different cases. If the decrement cell does not appear as a
maximum value in some of the compact cubes, then no
update on the hierarchical compact cube is required. The
total update cost is to access the cell c itself, and to verify
that it indeed does not appear as maximum in any
compact cube query by an one-cell access of its parent
rank 1 compact cube. On the other hand, if the decrement
cell appears to be a maximum of its parent compact cube,
then the cell c itself may not necessarily remain to be the
overall maximum. We need to access all the siblings cells
of c in the rank 0 compact cube to elect the new overall
maximum. This requires an additional md queries. As the
value of the overall maximum is changed, the update
always needs to propagate to the higher level compact
cube. The propagation is done recursively until the
updated cell is not the maximum cell held by its parents,
or in the worst case, when we reach the topmost compact
cube. This gives us the average cost to be h cell accesses
and the worst cost to be h md cell accesses. Both the
average and worst case decrement costs are O(logmN).

5.3 Extra Storage cost
Finally, although our method needs to store a set of
compact cubes of different levels, the overall storage cost
is still acceptable. For an hierarchical compact cube such
that d dimensions are compacted with compacting factor
m, the overall number of extra compact cube cells is only

1
1
−dm

of the number of data in the data cube. As

compared to the prefix sum method where the prefix sum
cube is as big as the underlying data cube, our method has
a far small extra storage cost then many existing methods
[9,12,13,14].

240

6 Conclusion
Due to an increasing demand for OLAP and data cube
applications, efficient calculation of range queries such as
the range-max queries has become more important in
recent years. Several pre-computations and indexing
techniques have been developed to answer the range-sum
queries efficiently, but these methods may not be able to
apply to the case of range-max. In this paper, we propose
the hierarchical compact cube method for processing the
range-max queries. We have explored and incorporated
the following ideas into our method:
1. We employ an hierarchical structure that, applying

bound-and-branch as well as divide-and-conquer
techniques in multidimensional data, allows an
efficient incremental refinement to query the
maximum value of any arbitrary range-max query.

2. Different from the range-sum query, we observe that
order of the sub-ranges investigation has a huge
impact on the overall performance of the query. We
propose to use a priority queue implemented using
heap to store unprocessed regions. This partial
ordering process is proven to greatly improve the
performance of our algorithm.

3. We introduce the maximum-location attribute to
further improve the performance of a range-max
query. This location allows many early pruning of
unnecessary searches.

Both the analysis and experiment results show that our
method provides in average a constant time evaluation of
range-max queries, and yet incurs only a low O(logm N)
update cost. Finally, the extra storage requirement for the
hierarchical compact cube is also much smaller as
compared to the prefix cube used in many efficient range-
sum queries algorithms.

References
[1] L. Mitten. “Branch and bound methods: General

formulation and properties” in Operations Research,
18:24-34, 1970.

[2] Jon Louis Bentley. “Multidimensional divide and
conquer”. in Comm. ACM, 23(4):214-229,1980

[3] E.F. Codd, “Providing OLAP (on-line analytical
processing) to user-analysts: an IT mandate”.
Technical report, E.F. Codd and Associates, 1993.

[4] Ashish Gupta, Venky Harinarayan, Dallan Quass,
“Aggregate-query processing in data warehousing
environments”. In Proceedings of the 18th
Inernational Conference on Very Large Databases,
pages 358-369, Zurich, Switzerland, September
1995.

 [5] Venky Harinarayan, Anand Rajaraman. Jeffrey D.
Ullman. “Implementing Data Cubes Effieciently”.
In Proceedings of ACM SIGMOD 1996
International Conference on Management of Data,
Montreal, Canda, June 1996 pages205-216.

[6] Jim Gray, Adam Bosworth, Andrew Layman,
Hamid Pirahesh. “Data cube: A relational
aggregation operator generating group-by, cross-
tabs and sub-totals”. In Proceedings of the 12th
International Conference on Data Engineering,
pages 152-159, 1996

[7] The OLAP Concil. “MD-API the OLAP
Application Program Interface Version 0.5
Specification”, September 1996.

[8] Sameet Agarwal, Rakesh Agrawal, Prasad M.
Deshpande and Ashish Gupta, “On the Computation
of Multidimensional Aggregates”, In Proceedings of
the 22nd VLDB Conference, Bombay, India,
September 1996, pages 506-521.

[9] Inderpal Singh Mumick, Dallan Quass, Barinderpal
Singh Mumick, “Maintenance of Data Cubes and
Summary Tables in a Warehouse”, In Proceedings
of ACM SIGMOD 1996 International Conference
on Management of Data, June 1997, pages 100-111.

[10] Rakesh Agrawal, Ashish Gupta. Sunita Sarawagi.
“Modeling multidimensional databases”. In Proc. of
the 13th International Conference on Data
Engineering, Birmingham, U.K., April 1997.

[11] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo,
Ramakrishnan Srikant. “Range Queries in OLAP
Data Cubes”. In Proceedings of the ACM SIGMOD
Conference on the Management of Data, pages 73-
88,1997.

 [12] Steven Geffner, Divyakant Agrawal, Amr El
Abbadi, Terence R. Smith. “Relative Prefix Sum:
An Efficient Approach for Querying Dynamic
OLAP Data Cubes”. In Proceedings of the 15th
International Conference on Data Engineering,
pages 328-335, 1999

[13] Chee Yong Chan, Yannis E. Ioannidis.
“Hierarchical Cubes for Range-Sum Queries”.
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999 pages 675-686.

[14] Hua-gang Li, Tok Wang Ling, Sin Yeung Lee,
“Range-Max/Min Query in OLAP Data Cube”.
Appear in Proceedings of the 11th DEXA
Conference, Greenwich, 2000.

241

