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Abstract

Many emerging application domains require database
systems to support efficient access over highly multi-
dimensional datasets. The current state-of-the-art tech-
nique to indexing high dimensional data is to first re-
duce the dimensionality of the data using Principal
Component Analysis and then indexing the reduced-
dimensionality space using a multidimensional index
structure. The above technique, referred to as global
dimensionality reduction (GDR), works well when the
data set is globally correlated, i.e. most of the varia-
tion in the data can be captured by a few dimensions.
In practice, datasets are often not globally correlated.
In such cases, reducing the data dimensionality using
GDR causes significant loss of distance information re-
sulting in a large number of false positives and hence a
high query cost. Even when a global correlation does
not exist, there may exist subsets of data that are locally
correlated. In this paper, we propose a technique called
Local Dimensionality Reduction (LDR) that tries to
find local correlations in the data and performs dimen-
sionality reduction on the locally correlated clusters of
data individually. We develop an index structure that
exploits the correlated clusters to efficiently support
point, range and k-nearest neighbor queries over high
dimensional datasets. Our experiments on synthetic as
well as real-life datasets show that our technique (1) re-
duces the dimensionality of the data with significantly
lower loss in distance information compared to GDR
and (2) significantly outperforms the GDR, original
space indexing and linear scan techniques in terms of
the query cost for both synthetic and real-life datasets.
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1 Introduction

With an increasing number of new database applications dealing
with highly multidimensional datasets, techniques to support ef-
ficient query processing over such data sets has emerged as an
important research area. These applications include multimedia
content-based retrieval, exploratory data analysis/data mining,
scientific databases, medical applications and time-series match-
ing. To provide efficient access over high dimensional feature
spaces (HDFS), many indexing techniques have been proposed
in the literature. One class of techniques comprises of high di-
mensional index trees [3, 15, 16, 5]. Although these index struc-
tures work well in low to medium dimensionality spaces (upto
20-30 dimensions), a simple sequential scan usually performs
better at higher dimensionalities [4, 20].

To scale to higher dimensionalities, a commonly used ap-
proach is dimensionality reduction [9]. This technique has been
proposed for both multimedia retrieval and data mining appli-
cations. The idea is to first reduce the dimensionality of the
data and then index the reduced space using a multidimensional
index structure [7]. Most of the information in the dataset is
condensed to a few dimensions (the first few principal com-
ponents (PCs)) by using principal component analysis (PCA).
The PCs can be arbitrarily oriented with respect to the original
axes [9]. The remaining dimensions (i.e. the later components)
are eliminated and the index is built on the reduced space. To
answer queries, the query is first mapped to the reduced space
and then executed on the index structure. Since the distance in
the reduced-dimensional space lower bounds the distance in the
original space, the query processing algorithm can guarantee no
false dismissals [7]. The answer set returned can have false pos-
itives (i.e. false admissions) which are eliminated before it is
returned to the user. We refer to this technique as global dimen-
sionality reduction (GDR) i.e. dimensionality reduction over the
entire dataset taken together.

GDR works well when the dataset is globally correlated i.e.
most of the variation in the data can be captured by a few or-
thonormal dimensions (the first few PCs). Such a case is il-
lustrated in Figure 1(a) where a single dimension (the first PC)
captures the variation of data in the 2-d space. In such cases, it
is possible to eliminate most of the dimensions (the later PCs)
with little or no loss of distance information. However, in prac-
tice, the dataset may not be globally correlated (see Figure 1(b)).
In such cases, reducing the data dimensionality using GDR will
cause a significant loss of distance information. Loss in distance
information is manifested by a large number of false positives
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Figure 1: Global and Local Dimensionality Reduction Tech-
niques (a) GDR(from 2-d to 1-d) on globally correlated data (b)
GDR (from 2-d to 1-d) on globally non-correlated (but locally
correlated) data (c) LDR (from 2-d to 1-d) on the same data as
in (b)

and is measured by precision [14] (cf. Section 5). More the
loss, larger the number of false positives, lower the precision.
False positives increase the cost of the query by (1) causing the
query to make unnecessary accesses to nodes of the index struc-
ture and (2) adding to the post-processing cost of the query, that
of checking the objects returned by the index and eliminating
the false positives. The cost increases with the increase in the
number of false positives. Note that false positives do not affect
the quality the answers as they are not returned to the user.

Even when a global correlation does not exist, there may ex-
ist subsets of data that are locally correlated (e.g., the data in
Figure 1(b) is not globally correlated but is locally correlated as
shown in Figure 1(c)). Obviously, the correlation structure (the
PCs) differ from one subset to another as otherwise they would
be globally correlated. We refer to these subsets as correlated
clusters or simply clusters. 1 In such cases, GDR would not be
able to obtain a single reduced space of desired dimensionality
for the entire dataset without significant loss of query accuracy.
If we perform dimensionality reduction on each cluster individu-
ally (assuming we can find the clusters) rather than on the entire
dataset, we can obtain a set of different reduced spaces of de-
sired dimensionality (as shown in Figure 1(c)) which together
cover the entire dataset 2 but achieves it with minimal loss of
query precision and hence significantly lower query cost. We
refer to this approach as local dimensionality reduction (LDR).

Contributions: In this paper, we propose LDR as an ap-
proach to high dimensional indexing. Our contributions can be
summarized as follows:

We develop an algorithm to discover correlated clusters in
the dataset. Like any clustering problem, the problem, in
general, is NP-Hard. Hence, our algorithm is heuristic-
based. Our algorithm performs dimensionality reduction
of each cluster individually to obtain the reduced space (re-
ferred to as subspace) for each cluster. The data items that
do not belong to any cluster are outputted as outliers. The
algorithm allows the user to control the amount of informa-
tion loss incurred by dimensionality reduction and hence
the query precision/cost.
We present a technique to index the subspaces individually.
We present query processing algorithms for point, range
and k-nearest neighbor (k-NN) queries that execute on the

1Note that correlated clusters (formally defined in Section 3) differ from the
usual definition of clusters i.e. a set of spatially close points. To avoid confusion,
we refer to the latter as spatial clusters in this paper.

2The set of reduced spaces may not necessarily cover the entire dataset as
there may be outliers. We account for outliers in our algorithm.

index structure. Unlike many previous techniques [14, 19],
our algorithms guarantee correctness of the result i.e. re-
turns exactly the same answers as if the query executed on
the original space. In other words, the answer set returned
to the user has no false positives or false negatives.
We perform extensive experiments on synthetic as well as
real-life datasets to evaluate the effectiveness of LDR as an
indexing technique and compare it with other techniques,
namely, GDR, index structure on the original HDFS (re-
ferred to as the original space indexing (OSI) technique)
and linear scan. Our experiments show that (1) LDR can re-
duce dimensionality with significantly lower loss in query
precision as compared to GDR technique. For the same
reduced dimensionality, LDR outperforms GDR by almost
an order of magnitude in terms of precision. and (2) LDR
performs significantly better than other techniques, namely
GDR, original space indexing and sequential scan, in terms
of query cost for both synthetic and real-life datasets.

Roadmap: The rest of the paper is organized as follows. In
Section 2, we provide an overview of related work. In Section
3, we present the algorithm to discover the correlated clusters in
the data. Section 4 discusses techniques to index the subspaces
and support similarity queries on top of the index structure. In
Section 5, we present the performance results. Section 6 offers
the final concluding remarks.

2 Related Work
Previous work on high dimensional indexing techniques in-
cludes development of high dimensional index structures (e.g.,
X-tree[3], SR-tree [15], TV-tree [16], Hybrid-tree [5]) and
global dimensionality reduction techniques [9, 7, 8, 14]. The
techniques proposed in this paper build on the above work.
Our work is also related to the clustering algorithms that have
been developed recently for database mining (e.g., BIRCH,
CLARANS, CURE algorithms) [21, 18, 12]. The algorithms
most related to this paper are those that discover patterns in low
dimensional subspaces [1, 2]. In [1], Agarwal et. al. present
an algorithm, called CLIQUE, to discover“dense” regions in all
subspaces of the original data space. The algorithm works from
lower to higher dimensionality subspaces: it starts by discover-
ing 1-d dense units and iteratively discovers all dense units in
each k-d subspace by building from the dense units in (k-1)-d
subspaces. In [2], Aggarwal et. al. present an algorithm, called
PROCLUS, that clusters the data based on their correlation i.e.
partitions the data into disjoint groups of correlated points. The
authors use the hill climbing technique, popular in spatial cluster
analysis, to determine the projected clusters. Neither CLIQUE,
nor PROCLUS can be used as an LDR technique since they can-
not discover clusters when the principal components are arbitrar-
ily oriented. They can discover only those clusters that are cor-
related along one or more of the original dimensions. The above
techniques are meant for discovering interesting patterns in the
data; since correlation along arbitrarily oriented components is
usually not that interesting to the user, they do not attempt to
discover such correlation. On the contrary, the goal of LDR is
efficient indexing; it must be able to discover such correlation
in order to minimize the loss of information and make indexing
efficient. Also, since the motivation of their work is pattern dis-
covery and not indexing, they do not address the indexing and
query processing issues which we have addressed in this paper.
To the best of our knowledge, this is the first paper that pro-
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Symbols Definitions

N Number of objects in the database
M Maximum number of clusters desired
K Actual number of clusters found ( )
D Dimensionality of the original feature space

The th cluster
Centroid of
Size of (number of objects)
Set of points in
The principal components of
The th principal component of
Subspace dimensionality of
Neighborhood range
Maximum Reconstruction distance
Permissible fraction of outliers
Minimum Size of a cluster
Maximum subspace dimensionality of a cluster
Set of outliers

Table 1: Summary of symbols and definitions

poses to exploit the local correlations in data for the purpose of
indexing.

3 Identifying Correlated Clusters

In this section, we formally define the notion of correlated clus-
ters and present an algorithm to discover such clusters in the
data.

3.1 Definitions

In developing the algorithm to identify the correlated clusters,
we will need the following definitions.

Definition 1 (Cluster and Subspace) Given a set of
points in a -dimensional feature space, we define a cluster
as a set ( ) of locally correlated points. Each cluster

is defined by where:

are the principal components of the cluster, de-
noting the th principal component.

is the reduced dimensionality i.e. the number of di-
mensions retained. Obviously, the retained dimensions cor-
respond to the first principal components

while the eliminated dimensions correspond to the next
components. Hence we use the terms (principal)

components and dimensions interchangeably in the context
of the transformed space.

is the centroid, that stores, for
each eliminated dimension , a single
constant which is “representative” of the position of every
point in the cluster along this unrepresented dimension (as
we are not storing their unique positions along these di-
mensions).

is the set of points in the cluster
The reduced dimensionality space defined by
is called the subspace of . is called the subspace dimen-
sionality of .

S
(2)

S
(1)  

Point Q

Projection
of Q on
eliminated 
dimension

Cluster S

(Q,S)
ReconDist

(retained dimension)

  First Principal Component 

Centroid CS

  eliminated dimension)

Second Principal 
Component

(eliminated dimension)

Mean Value E{Q}

(projection of E{Q} on

of points in S

Figure 2: Centroid and Reconstruction Distance.

Definition 2 (Reconstruction Vector) Given a cluster
, we define the reconstruction vec-

tor of a point from as follows:

(1)

where denotes vector addition and denotes scalar product
(i.e. is the projection of on as shown in Figure

2). is the (scalar) distance of from the cen-
troid along each eliminated dimension and
is the vector of these distances.

Definition 3 (Reconstruction Distance) Given a cluster
, we now define the reconstruction distance

(scalar) of a point from . is the dis-
tance function used to define the similarity between points in the
HDFS. Let be an metric i.e.

. We define 3

as follows:

(2)

(3)

(4)

Note that for any point mapped to the -dimensional sub-
space of , (and ) repre-
sent the error in the representation i.e. the vector (and scalar)
distance between the exact -dimensional representation of
and its approximate representation in the -dimensional sub-
space of . Higher the error, more the amount of distance infor-
mation lost.

3.2 Constraints on Correlated Clusters

Our objective in defining clusters is to identify low dimensional
subspaces, one for each cluster, that can be indexed separately.

3Assuming that is a fixed metric, we usually omit the in
for simplicity of notation.
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We desire each subspace to have as low dimensionality as pos-
sible without losing too much distance information. In order to
achieve the desired goal, each cluster must satisfy the following
constraints:

1. Reconstruction Distance Bound: In order to restrict the
maximum representation error of any point in the low di-
mensional subspace, we enforce the reconstruction dis-
tance of any point to satisfy the following
condition: where

is a parameter specified by the user. This
condition restricts the amount of information lost within
each cluster and hence guarantees a high precision which
in turn implies lower query cost.

2. Dimensionality Bound: For efficient indexing, we want
the subspace dimensionality to be as low as possible while
still maintaining high query precision. A cluster must
not retain any more dimensions that necessary. In other
words, it must retain the minimum number of dimen-
sions required to accommodate the points in the dataset.
Note than a cluster can accommodate a point only
if . To ensure that
the subspace dimensionality is below the critical di-
mensionality of the multidimensional index structure (i.e.
the dimensionality above which a sequential scan is bet-
ter), we enforce the following condition:
where is specified by the user.

3. Choice of Centroid: For each cluster , we use PCA to
determine the subspace i.e. is the set of eigenvectors
of the covariance matrix of sorted based on their eigen-
values. [9] shows that for a given choice of reduced di-
mensionality , the representation error is minimized by
choosing the first components among and choos-
ing to be the mean value of the points (i.e. the cen-
troid) projected on the eliminated dimensions. To minimize
the information loss, we choose

(see Figure 2).

4. Size Bound: Finally, we desire each cluster to have a min-
imum cardinality (number of points) :
where is user-specified. The clusters that are too
small are considered to be outliers.

The goal of the LDR algorithm described below is to discover
the set of clusters (where ,
being the maximum number of clusters desired) that exists in
the data and that satisfy the above constraints. The remaining
points, that do not belong to any of the clusters, are placed in the
outlier set .

3.3 The Clustering Algorithm

Since the LDR algorithm needs to perform local correlation
analysis (i.e. PCA on subsets of points in the dataset rather than
the whole dataset), we need to first identify the right subsets to
perform the analysis on. This poses a cyclic problem: how do
we identify the right subsets without doing the correlation anal-
ysis and how do we do the analysis without knowing the sub-
sets. We break the cycle by using spatial clusters as an initial
guess of the right subsets. Then we perform PCA on each spa-
tial cluster individually. Finally, we ‘recluster’ the points based

Clustering Algorithm
Input: Set of Points , Set of clusters (each cluster is either
empty or complete)
Output: Some empty clusters are completed, the remaining
points form the set of outliers
FindClusters( )
FC1: For each empty cluster, select a random point such

that is sufficiently far from all completed and valid clus-
ters. If found, make the centroid and mark valid.

FC2: For each point , add to the closest valid cluster
(i.e. ) if lies in the

-neighborhood of i.e. .

FC3: For each valid cluster , compute the principal components
using PCA. Remove all points from .

FC4: For each point , find the valid cluster that,
among all the valid clusters requires the minimum subspace
dimensionality to satisfy

(break ties arbitrarily). If
, increment for to

and .

FC5: For each valid cluster , compute the subspace dimension-
ality as: and

where .

FC6: For each point , add to the first valid cluster
such that . If no
such exists, add P to .

FC7: If a valid cluster violates the size constraint i.e.
, mark it empty. Remove each point

from and add it to the first succeeding cluster that
satisfies or to
if there is no such cluster. Mark the other valid clus-
ters complete. For each complete cluster , map each
point to the subspace and store it along with

.

Table 2: Clustering Algorithm

on the correlation information (i.e. principal components) to ob-
tain the correlated clusters. The clustering algorithm is shown
in Table 2. It takes a set of points and a set of clusters
as input. When it is invoked for the first time, is the entire
dataset and each cluster in is marked ‘empty’. At the end,
each identified cluster is marked ‘complete’ indicating a com-
pletely constructed cluster (no further change); the remaining
clusters remain marked ‘empty’. The points that do not belong
to any of the clusters are placed to the outlier set . The details
of each step is described below:

Construct Spatial Clusters(Steps FC1 and FC2): The al-
gorithm starts by constructing spatial clusters where

is the maximum number of clusters desired. We use
a simple single-pass partitioning-based spatial clustering
algorithm to determine the spatial clusters [18]. We first
choose a set of of well-scattered points as the cen-
troids such that points that belong to the same spatial clus-
ter are not chosen to serve as centroids to different clus-
ters. Such a set is called a piercing set [2]. We achieve
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Figure 4: Splitting of correlated clusters due to initial spatial
clustering.

this by ensuring that each point in the set is suf-
ficiently far from any already chosen point i.e.

for a user-defined threshold. 4

This technique, proposed by Gonzalez [10], is guaranteed
to return a piercing if no outliers are present. To avoid scan-
ning though the whole database to choose the centroids, we
first construct a random sample of the dataset and choose
the centroids from the sample [2, 12]. We choose the sam-
ple to be large enough (using Chernoff bounds [17]) such
that the probability of missing clusters due to sampling is
low i.e. there is at least one point from each cluster present
in the sample with a high probability [12]. Once the cen-
troids are chosen, we group each point with the
closest centroid if and
update the centroid to reflect the mean position of its group.
If , we ignore . The restriction
of the neighborhood range to makes the correlation anal-
ysis localized. Smaller the value of , the more localized
the analysis. At the same time, has to be large enough
so that we get a sufficiently large number of points in the
cluster which is necessary for the correlation analysis to be
robust.

Compute PCs(Step FC3): Once we have the spatial clus-
ters, we perform PCA on each spatial cluster individ-
ually to obtain the principal components .
We do not eliminate any components yet. We compute the
mean value of the points in so that we can compute

in Steps FC4 and FC5 for any choice of
subspace dimensionality . Finally, we remove the points
from the spatial clusters so that they can be reclustered as
described in Step FC6.

Determine Subspace Dimensionality(Steps FC4 and
FC5): For each cluster , we must retain no more di-
mensions than necessary to accommodate the points in the
dataset (except the outliers). To determine the number of
dimensions to be retained for each cluster , we first
determine, for each point , the best cluster, if one
exists, for placing . Let denote the the least di-
mensionality needed for the cluster to represent with

4For subsequent invocations of FindClusters procedure during the iterative
algorithm (Step 2 in Table 3), there may exist already completed clusters (does
not exist during the initial invocation). Hence must also be sufficiently far
from all complete clusters formed so far i.e.
for each complete cluster S.

. Formally,

if

and otherwise
(5)

In other words, the first PCs are just enough to
satisfy the above constraint. Note that such a
always exists for a non-negative . Let

is a valid cluster . If
, there exists a cluster that can ac-

commodate without violating the dimensionality bound.
Let (if there are multiple such clus-
ters , break ties arbitrarily). We say is the “best”
cluster for placing since is the cluster that, among
all the valid clusters, needs to retain the minimum num-
ber of dimensions to accommodate . would satisfy the

bound if the sub-
space dimensionality of is such that

and would violate it if
. For each cluster , we maintain this infor-

mation as a count array where
is the number of points that, among the points chosen

to be placed in , would violate the
constraint if the subspace dimensionality

is : so in this case (for point ), we must increment
for to and the total count

of points chosen to be placed in . ( and is
initialized to 0 before FC4 begins). On the other hand, if

, there exists no cluster in which
can be placed without violating the dimensionality bound;
so we do nothing.

At the end of the pass over the dataset, for each cluster ,
we have computed and . We
use this to compute where is
the fraction of points that, among those chosen to be placed
in (during FC4), would violate the

constraint if the subspace dimensionality
is i.e. . An example of from one of the

experiments conducted on the real life dataset (cf. Section
5.3) is shown in Figure 3. We choose to be as low as pos-
sible without too many points violating the reconstruction
distance bound i.e. not more than fraction
of points in where is specified by the
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user. In other words, is the minimum number of dimen-
sions that must be retained so that the fraction of points that
violate the con-
straint is no more that i.e.

and . In
Figure 3, is 21 for , 16 for

and 14 for .
We now have all the subspaces formed. In the next step,
we assign the points to the clusters.

Recluster Points(Step FC6): In the reclustering step, we
reassign each point to a cluster that covers i.e.

. If there exists no
such cluster, is added to the outlier set . If there exists
just one cluster that covers , is assigned to that cluster.
Now we consider the interesting case of multiple clusters
covering . In this case, there is a possibility that some of
these clusters are actually parts of the same correlated clus-
ter but has been split due to the initial spatial clustering.
This is illustrated in Figure 4. Since points in a correlated
cluster can be spatially distant from each other (e.g., form
an elongated cluster in Figure 4) and spatial clustering only
clusters spatially close points, it may end up putting cor-
related points in different spatial clusters, thus breaking up
a single correlated cluster into two or more clusters. Al-
though such ‘splitting’ does not affect the indexing cost
of our technique for range queries and k-NN queries, it
increases the cost of point search and deletion as multi-
ple clusters may need to searched in contrast to just one
when there is no ‘splitting’. (cf. Section 4.2.1). Hence, we
must detect these ‘broken’ clusters and merge them back
together. We achieve this by maintaining the clusters in
some fixed order (e.g., order in which they were created).
For each point , we check each cluster sequentially
in that order and assign it to the first cluster that covers

. If two (or more) clusters are part of the same corre-
lated cluster, most points will be covered by all of them but
will always be assigned to only one them, whichever ap-
pears first in the order. This effectively merges the clusters
into one since only the first one will remain while the oth-
ers will end up being almost empty and will be discarded
due to the violation of size bound in FC7. Note that the

bound in Step FC5 still holds i.e. besides
the points for which , no more that

fraction of points can become outliers.

Map Points(Step FC7): In the final step of the algo-
rithm, we eliminate clusters that violate the size con-
straint. We remove each point from these clusters and
add it to the first succeeding valid cluster that satisfies
the bound or to

otherwise. For the remaining clusters , we map each
point to the subspace by projecting to

and refer it as the ( -d) image of :

for (6)

We refer to as the ( -d) original
of its image .

We store the image of each point along with the recon-
struction distance .

Since FindClusters chooses the initial centroids from a ran-
dom sample, there is a risk of missing out some clusters. One
way to reduce this risk is to choose a large number of initial cen-
troids but at the cost of slowing down the clustering algorithm.
We reduce the risk of missing clusters by trying to discover more
clusters, if there exists, among the points returned as outliers by
the initial invocation of FindClusters. We iterate the above pro-
cess as long as new clusters are still being discovered as shown
below:

Iterative Clustering
(1) FindClusters( , , ); /* initial invocation */
(2) Let be an empty set. Invoke FindClusters( , , ).

Make the new outlier set i.e. . If new clusters
found, go to (2). Else return.

Table 3: Iterative Clustering Algorithm

The above iterative clustering algorithm is somewhat similar
to the hill climbing technique, commonly used in spatial clus-
tering algorithms (especially in partitioning-based clustering al-
gorithms like k-means, k-medoids and CLARANS [18]). In this
technique, the “bad quality” clusters (the ones that violate the
size bound) are discarded (Step FC7) and is replaced, if possible,
by better quality clusters. However, unlike the hill climbing ap-
proach where all the points are reassigned to the clusters, we do
not reassign the points already assigned to the ‘complete’ clus-
ters. Alternatively, we can follow the hill climbing approach but
it is computationally more expensive and requires more scans of
the database [18].

Cost Analysis: The above algorithm requires three passes
through the dataset (FC2, FC4 and FC6) and a time complexity
of . The detailed analysis can be found in [6].

4 Indexing Correlated Clusters
Having developed the technique to find the correlated clusters,
we now shift our attention to how to use them for indexing. Our
objective is to develop a data structure that exploits the corre-
lated clusters to efficiently support range and k-NN queries over
HDFSs. The developed data structure must also be able to han-
dle insertions and deletions.

4.1 Data Structure

The data structure, referred to as the global index structure (GI)
(i.e. index on entire dataset), consists of separate multidimen-
sional indices for each cluster, connected to a single root node.
The global index structure is shown in Figure 5. We explain the
various components in details below:

The Root Node of GI contains the following informa-
tion for each cluster : (1) a pointer to the root node
(i.e. the address of disk block containing ) of the cluster
index (the multidimensional index on ), (2) the princi-
pal components (3) the subspace dimensionality and
(4) the centroid . It also contains an access pointer to
the outlier cluster . If there is an index on (discussed
later), points to the root node of that index; otherwise,
it points to the start of the set of blocks on which the out-
lier set resides on disk. may occupy one or more disk
blocks depending on the number of clusters and original
dimensionality .
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Figure 5: The global index structure

The Cluster Indices: We maintain a multidimensional in-
dex for each cluster in which we store the reduced
dimensional representation of the points in . However,
instead of building the index on the -d subspace of

defined by , we build on the
-d space, the first dimensions of which are de-

fined by as above while the
th dimension is defined by the reconstruction distance

. Including reconstruction distance
as a dimension helps to improve query precision (as ex-
plained later). We redefine the image
of a point as a -d point (rather than a -
d point), incorporating the reconstruction distance as the

th dimension:

for

for (7)

The -d cluster index is constructed by inserting
the -d images (i.e. ) of each
point into the multidimensional index structure
using the insertion algorithm of the index structure. Any
disk-based multidimensional index structure (e.g., R-tree
[13], X-tree [3], SR-tree [15], Hybrid Tree [5]) can be used
for this purpose. We used the hybrid tree in our experi-
ments since it is a space partitioning index structure (i.e.
has “dimensionality-independent” fanout), is more scalable
to high dimensionalities in terms of query cost and can sup-
port arbitrary distance metrics [5].
The Outlier Index: For the outlier set , we may or may
not build an index depending on whether the original di-
mensionality is below or above the critical dimension-
ality. In this paper, we assume that is above the critical
dimensionality of the index structure and hence choose not
to index the outlier set (i.e. use sequential scan for it).

Like other database index trees (e.g., B-tree, R-tree), the
global index (GI) shown in Figure 5 is disk-based. But it may
not be perfectly height balanced i.e. all paths from to leaf may
not be of exactly equal length. The reason is that the sizes and
the dimensionalities may differ from one cluster to another caus-
ing the cluster indices to have different heights. We found that
GI is almost height balanced (i.e. the difference in the lengths
of any two paths from to leaf is never more than 1 or 2) due
to the size bound on the clusters (see [6] for details). Also, its
height cannot exceed the height of the original space index by
more than 1 (see [6] for details).

To guarantee the correctness of our query algorithms (i.e. to
ensure no false dismissals), we need to show that the cluster
index distances lower bounds the actual distances in the origi-
nal -d space [7]. In other words, for any two -d points
and , ( (P, ), (Q, )) must always
lower bound .

Lemma 1 (Lower Bounding Lemma)
always lower

bounds . (Proof in [6]).

Note that instead of incorporating reconstruction distance as
the th dimension, we could have simply constructed GI
with each cluster index defined on the corresponding -d sub-
space . Since the lower bounding lemma holds
for the -d subspaces (as shown in [7]), the query processing al-
gorithms described below would have been correct. The reason
we use -d subspace is that the distances in the -d
subspace upper bounds the distances in the -d subspace and
hence provides a tighter lower bound to distances in the original
D-d space:

(8)

Furthermore, the difference between the two (i.e.
( , and
( , is usually significant

when computing the distance of the query from a point in the
cluster: Say, is a point in and is the query point. Due
to the reconstruction distance bound, is
always a small number ( ). On the other
hand, can have any arbitrary value
and is usually much larger than ), thus
making the difference quite significant. This makes the distance
computations in the -d more optimistic than that in the

-d index and hence a better estimate of the distances in the
original D-d space. For example, for a range query, the range
condition ( )
is more optimistic (i.e. satisfies fewer objects) than the range
condition ( ), leading to
fewer false positives. The same is true for k-NN queries. Fewer
false positives imply lower query cost. At the same time, adding
a new dimension also increases the cost of the query. Our
experiments show that decrease in the query cost from fewer
false positives offsets the increase of the cost of the adding a
dimension, reducing the overall cost of the query significantly
(cf. Section 5, Figure 12).

4.2 Query Processing over the Global Index

In this section, we discuss how to execute similarity queries effi-
ciently using the index structure described above (cf. Figure 5).
We describe the query processing algorithm for point, range and
k-NN queries. For correctness, the query processing algorithm
must guarantee that it always returns exactly the same answer as
the query on the original space [7]. Often dimensionality reduc-
tion techniques do not satisfy the correctness criteria [14, 19].
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We show that all our query processing algorithms satisfy the
above criteria.

4.2.1 Point Search

To find an object , we first find the cluster that contains . It
is the first cluster (in the order mentioned in Step FC6) for
which the reconstruction distance bound is satisfied. If such a
cluster exists, we compute and find it in
the corresponding index by invoking the point search algorithm
of the index structure. The point search returns the object if it
exists in the cluster, otherwise it returns null. If no such cluster

exists, must be, if at all, in . So we sequentially search
through and return it if it exists in .

4.2.2 Range Queries

A range query retrieves all objects in the
database that satisfies the range condition . The al-
gorithm proceeds as follows (see [6] for pseudocode). For each
cluster , we map the query anchor to its -d image
(using the principal components and subspace dimensional-
ity stored in the root node of GI) and execute a range query
(with the same range ) on the corresponding cluster index by
invoking the procedure RangeSearchOnClusterIndex on the root
node of . RangeSearchOnClusterIndex is the standard R-
tree-style recursive range search procedure that starts from the
root node and explores the tree in a depth-first fashion. It exam-
ines the current node : if is a non-leaf node, it recursively
searches each child node of that satisfies the condition

(where de-
notes the minimum distance of the -d image of query
point to the -d bounding rectangle of based on dis-
tance function ); if is a leaf node, it retrieves each data item

stored in (which is the of the original -d
object) 5 that satisfies the range condition in the

-d space, accesses the full -dimensional tuple on disk
to determine whether it is a false positive and adds it to the re-
sult set if it is not a false positive (i.e. it also satisfies the range
condition in the original -d space). After all
the cluster indices are searched, we add all the qualifying points
from among the outliers to the result by performing a sequential
scan on . Since the distance in the index space lower bounds
the distance in the original space (cf. Lemma 1), the above al-
gorithm cannot have any false dismissals. The algorithm can-
not have any false positives either as they are filtered out before
adding to the result set. The above algorithm thus returns exactly
the same answer as the query on the original space.

4.2.3 k Nearest Neighbor Queries

A k-NN query retrieves a set of objects such
that for any two objects , .
The algorithm for k-NN queries is shown in Table 4. Like the ba-
sic k-NN algorithm, the algorithm uses a priority queue to
navigate the nodes/objects in the database in increasing order of
their distances from . Note that we use a single queue to navi-
gate the entire global index i.e. we explore the nodes/objects of
all the cluster indices in an intermixed fashion and do not require

5Note that instead of storing the ‘NewImage’s, we could have stored the
original -d points in the leaf pages of the cluster indices (in both cases, the
index is built on the reduced space). Our choice of the former option is explained
in [6].

k-NNSearch(Query )

1 for (i=1; i ; i++)
2 NewImage(Q, );
3 .push( );
4 Add to the closest neighbors of among (lin. scan)
5 while (not .IsEmpty())
6 top=queue.Top();
7 for each object O in such that
8 ;
9 = O;
10 retrieved++;
11 if (retrieved = k) return ;
12 queue.Pop();
13 if is an object
14 ;
15 = ;
16 else if is a leaf node
17 for each object in
18 .push(top.S, O, );
19 else /* is an index node */
20 for each child of
21 .push(top.S, , );

Table 4: k-NN Query.

separate queues to navigate the different clusters. Each entry in
is either a node or an object and stores 3 fields: the id of

the node/object it corresponds to, the cluster it belongs to
and its distance from the query anchor . The items (i.e.
nodes/objects) are prioritized based on i.e. the smallest item
appears at the top of the queue (min-priority queue). For nodes,
the distance is defined by while for objects, it is the
the point-to-point distance. Initially, for each cluster, we map the
query anchor to its -d image using the information
stored in the root node of GI (Line 2). Then, for each cluster
index , we compute the distance of

from the root node of and push into along
with the distance and the id of the cluster to which it belongs
(Line 3). We also fill the set with the closest neigh-
bors of among the outliers by sequentially scanning through

(Line 4).
After these initialization steps, we start navigating the in-

dex by popping the item from the top of at each step
(Line 11). If the popped item is an object, we compute the
distance of the original D-d object (by accessing the full tu-
ple on disk) from and append it to (Lines 12-14). If
it a node, we compute the distance of each of its children to
the appropriate query image (where denotes the
cluster which belongs to) and push them into the queue
(Lines 15-20). Note that the image for each cluster is com-
puted just once (in Step 2) and is reused here. We move an
object from to only when we are sure that
it is among the nearest neighbors of i.e. there exists
no object such that and

. The second condition is ensured by the exit con-
dition in Line 11. The condition in Line
7 ensures that there exists no unexplored object such that

. The proof is simple:
implies
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for any unexplored object in a cluster (by the prop-
erty of min-priority queue) which in turn implies

(since
lower bounds , see Lemma 1). By inserting the objects
in (i.e. already explored items) into in increasing
order of their distances in the original D-d space (by keeping

sorted), we also ensure there exists no explored object
such that . This shows that the algorithm
returns the correct answer i.e. the exact set of objects as the
query in the original D-d space. It is also easy to show that the
algorithm is I/O optimal.

Lemma 2 (Optimality of k-NN algorithm) The k-NN algo-
rithm is optimal i.e. it does not explore any object outside the
range of th nearest neighbor. (Proof in [6]).

4.3 Modifications

We assume that the data is static in order to build the index.
However, we must support subsequent insertions/deletions of
the objects to/from the index efficiently. We do not describe
the insertion and deletion algorithms in this paper due to space
limitations but they can be found in [6].

5 Experiments
In this section, we present the results of an extensive empiri-
cal study we have conducted to (1) evaluate the effectiveness of
LDR as a high dimensional indexing technique and (2) compare
it with other techniques, namely, GDR, original space indexing
(OSI) and linear scan. We conducted our experiments on both
synthetic and real-life datasets. The major findings of our study
can be summarized as follows:

High Precision: LDR provides up to an order of magni-
tude improvement in precision over the GDR technique at
the same reduced dimensionality. This indicates that LDR
can achieve the same reduction as GDR with significantly
lower loss of distance information.
Low Query Cost: LDR consistently outperforms other in-
dexing techniques, namely GDR, original space indexing
and sequential scan, in terms of query cost (combined I/O
and CPU costs) for both synthetic and real-life datasets.

Thus, our experimental results validate the thesis of this pa-
per that LDR is an effective indexing technique for high dimen-
sional datasets. All experiments reported in this section were
conducted on a Sun Ultra Enterprise 450 machine with 1 GB of
physical memory and several GB of secondary storage, running
Solaris 2.5.

5.1 Experimental Methodology

We conduct the following two sets of experiments to evaluate the
LDR technique and compare it with other indexing techniques.

Precision Experiments

Due to dimensionality reduction, both GDR and LDR, cause
loss of distance information. More the number of dimensions
eliminated, more the amount of information lost. We measure
this loss by precision defined as where

and are the sets of answers returned by the
range query on the reduced dimensional space and the original
HDFS respectively [14]. We repeat that since our algorithms

guarantee that the user always gets back the correct set
of answers (as if the query executed in the original HDFS), pre-
cision does not measure the quality of the answers returned to
the user but just the information loss incurred by the DR tech-
nique and hence the query cost. For a DR technique, if we fix
the reduced dimensionality, the higher the precision, the lower
the cost of the query, the more efficient the technique. We com-
pare the GDR and LDR techniques based on precision at fixed
reduced dimensionalities.

Cost Experiments

We conducted experiments to measure the query cost (I/O and
CPU costs) for each of the following four indexing techniques.
We describe how we compute the I/O and CPU costs of the tech-
niques below.

Linear Scan: In this technique, we perform a sim-
ple linear scan on the original high dimensional dataset.
The I/O cost in terms of sequential disk accesses is

. Since
, we will ignore the hence-

forth. Assuming sequential I/O is 10 times faster than
random I/O, the cost in terms of the random accesses is

. The CPU cost is the cost of computing
the distance of the query from each point in the database.
Original Space Indexing (OSI): In this technique, we build
the index on the original HDFS itself using a multidimen-
sional index structure. We use the hybrid tree as the index
structure. The I/O cost (in terms of random disk accesses)
of the query is the number of nodes of the index structure
accessed. The CPU cost is the CPU time (excluding I/O
wait) required to navigate the index and return the answers.
GDR: In this technique, we peform PCA on the origi-
nal dataset, retain the first few principal components (de-
pending on the desired reduced dimensionality) and in-
dex the reduced dimensional space using the hybrid tree
index structure. In this case, the I/O cost has 2 compo-
nents: index page accesses (discussed in OSI) and access-
ing the full tuples in the relation for false positive elimina-
tion (post processing cost). The post processing cost can
be one I/O per false positives in the worst case. However,
as observed in [11], this assumption is overly pessimistic
(and is confirmed by our experiments). We, therefore, as-
sume the postprocessing I/O cost to be .
The total I/O cost (in number of random disk accesses) is

. The CPU
cost is the sum of the index CPU cost and the post pro-
cessing CPU cost i.e. cost of computing the distance of the
query from each of the false positives.
LDR: In this technique, we index each cluster using the
hybrid tree multidimensional index structure and used a
linear scan for the outlier set. For LDR, the I/O cost
of a query has 3 components: index page accesses for
each cluster index, linear scan on the outlier set and ac-
cessing the full tuples in the relation (post processing
cost). The total index page access cost is the total num-
ber of nodes accessed of all the cluster indices com-
bined. The number of sequential disk accesses for the
outlier scan is . The cost of outlier

scan in terms of random accesses is .
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Figure 6: Sensitivity of precision to skew.
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Figure 7: Sensitivity of precision to number of
clusters.
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Figure 8: Sensitivity of precision to degree of
correlation.
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Figure 10: Comparison of LDR, GDR, Origi-
nal Space Indexing and Linear Scan in terms of
I/O cost. For linear scan, the cost is computed
as: .
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Figure 11: Comparison of LDR, GDR, Origi-
nal Space Indexing and Linear Scan in terms of
CPU cost.

The postprocessing I/O cost is (as
discussed above). The total I/O cost (in number of
random disk accesses) is

. Similarly, the
CPU cost is the sum of the index CPU cost, outlier scan
CPU cost (i.e. cost of computing the distance of the query
from each of the outliers) and the post processing cost (i.e.
cost of computing the distance of the query from each of
the false positives).

We chose the hybrid tree as the index structure for our
experiments since it is a space partitioning index structure
(“dimensionality-independent” fanout) and has been shown to
scale to high dimensionalities [5]. 6 We use a page size of 4KB
for all our experiments.

5.2 Experimental Results - Synthetic Data Sets

Synthetic Data Sets and Queries

In order to generate the synthetic data, we use a method similar
to that discussed in [21] but appropriately modified so that we
can generate the different clusters in subspaces of different ori-
entations and dimensionalities. The synthetic dataset generator
is described in Appendix A. The dataset generated has original
dimensionality of 64 and consists of 100,000 points. The in-
put parameters to the data generator and their default values are

6The performance gap between our technique and the other techniques was
even greater with SR-tree [15] as the index structure due to higher dimension-
ality curse [5]. We do not report those results here but can be found in the full
version of the paper [6].

shown in Table 5 (Appendix A).
We generated 100 range queries by selecting their query an-

chors randomly from the dataset and choosing a range value
such that the average query selectivity is about 2%. We tested
with only range queries since the k-NN algorithm, being opti-
mal, is identical to the range query with the range equal to the
distance of the th nearest neighbor from the query (Lemma 3).
We use distance (Euclidean) as the distance metric. All our
measurements are averaged over the 100 queries.

Precision Experiments

In our first set of experiments, we carry out a sensitivity analysis
of the GDR and LDR techniques to parameters like skew in the
size of the clusters ( ), number of clusters ( ) and degree of
correlation ( ). In each experiment, we vary the parameter of
interest while the remaining parameters are fixed at their default
values. We fix the reduced dimensionality of the GDR tech-
nique to 15. We fix the average subspace dimensionality of the
clusters (i.e. ) also to 15 by choosing
and appropriately ( and

). Figure 6 compares the precision of
the LDR technique with that of GDR for various value of .
LDR achieves about 3 times higher precision compared to GDR
i.e. the latter has more than three times the number of false pos-
itives as the former. The precision of neither technique changes
significantly with the skew. Figure 7 compares the precision of
the two techniques for various values of . As expected, for
one cluster, the two techniques are identical. As increases,
the precision of GDR deteriorates while that of LDR is indepen-
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Figure 12: Effect of adding the extra dimen-
sion.
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I/O cost. For linear scan, the cost is computed
as: .
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Figure 14: Comparison of LDR, GDR, Origi-
nal Space Indexing and Linear Scan in terms of
CPU cost.

dent of the number of clusters. For , LDR is almost an
order of magnitude better compared to GDR in terms of preci-
sion. Figure 8 compares the two techniques for various values
of . As the degree of correlation decreases (i.e. the value of
increases), the precision of both techniques drop but LDR out-
performs GDR for all values . Figure 9 shows the variation
of the precision with the reduced dimensionality. For the GDR
technique, we vary the reduced dimensionality from 15 to 60.
For the LDR technique, we vary the from 0.2 to
0.01 (0.2, 0.15, 0.1, 0.05, 0.02, 0.01) causing the average sub-
space dimensionality to vary from 7 to 42 (7, 10, 12, 14, 23 and
42) ( was 64). The precision of both techniques in-
crease with the increase in reduced dimensionality. Once again,
LDR consistently outperforms GDR at all dimensionalities. The
above experiments show that LDR is a more effective dimen-
sionality reduction technique as it can achieve the same reduc-
tion as GDR with significantly lower loss of information (i.e.
high precision) and hence significantly lower cost as confirmed
in the cost experiments described next.

Cost Experiments

We compare the 4 techniques, namely LDR, GDR, OSI and Lin-
ear Scan, in terms of query cost for the synthetic dataset. Figure
10 compares the I/O cost of the 4 techniques. Both the LDR and
GDR techniques have U-shaped cost curves: when the reduced
dimensionality is too low, there is a high degree of information
loss leading to a large number of false positives and hence a
high post-processing cost; when it is too high, the index page
access cost becomes too high due to dimensionality curse. The
optimum points lies somewhere in the middle: it is at dimen-
sionality 14 (about 250 random disk accesses) for LDR and at
40 (about 1200 random disk accesses) for GDR. The I/O cost
of OSI and Linear Scan is obviously independent of the reduced
dimensionality. LDR significantly outperforms all the other 3
techniques in terms of I/O cost. The only technique that comes
close to LDR in terms of I/O cost is the linear scan (but LDR is
2.5 times better as the latter performs 6274 sequential accesses

627 random accesses). However, linear scan loses out mainly
due to its high CPU cost shown in Figure 11. While LDR, GDR
and OSI techniques have similar CPU cost (at their respective
optimum points), the CPU cost linear scan is almost two orders
of magnitude higher that the rest. LDR has slightly higher CPU
cost compared to GDR and OSI since it uses linear scan for the
outlier set: however, the savings in the I/O cost over GDR and

OSI (by a factor of 5-6) far offsets the slightly higher CPU cost.

5.3 Experimental Results - Real-Life Data Sets

Description of Dataset

Our real-life data set (COLHIST dataset [5]) com-
prises of color histograms (64-d data) extracted
from about 70,000 color images obtained from the
Corel Database (http://corel.digitalriver.com/) and is
available online at the UCI KDD Archive web site
(http://kdd.ics.uci.edu/databases/CorelFeatures). We gen-
erated 100 range queries by selecting their query anchors
randomly from the dataset and choosing a range value such
that the average query selectivity is about 0.5%. All our
measurements are averaged over the 100 queries.

Cost Experiments

First, we evaluate the impact of adding as an addi-
tional dimension of each cluster in the LDR technique. Figure
12 shows that the additional dimension reduces the cost of the
query significantly. We performed the above experiment on the
synthetic dataset as well and observed a similar result. 7 Fig-
ure 13 compares the 4 techniques, namely LDR, GDR, OSI and
Linear Scan, in terms of I/O cost. LDR outperforms all other
techniques significantly. Again, the only technique that come
close to LDR in I/O cost (i.e. number of random disk accesses)
is the linear scan. However, again, linear scan turns out to sig-
nificantly worse compared to LDR in terms of the overall cost
due to its high CPU cost as shown in Figure 14.

6 Conclusion
With numerous emerging applications requiring efficient access
to high dimensional datasets, there is a need for scalable tech-
niques to indexing high dimensional data. In this paper, we pro-
posed local dimensionality reduction (LDR) as an approach to
indexing high dimensional spaces. We developed an algorithm
to discover the locally correlated clusters in the dataset and per-
form dimensionality reduction on each of them individually. We
presented an index structure that exploits the correlated clusters
to efficiently support similarity queries over high dimensional
datasets. We have shown that our query processing algorithms

7We also analyzed the sensitivity of the LDR technique to the
parameter. The results can be found in [6].
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are correct and optimal. We conducted an extensive experimen-
tal study with synthetic as well as real-life datasets to evalu-
ate the effectiveness of our technique and compare it to GDR,
original space indexing and linear scan techniques. Our results
demonstrate that our technique (1) reduces the dimensionality
of the data with significantly lower loss in distance information
compared to GDR, outperforming GDR by almost an order of
magnitude in terms of query precision (for the same reduced
dimensionality) and (2) significantly outperforms all the other
3 techniques (namely, GDR, original space indexing and linear
scan) in terms of the query cost for both synthetic and real-life
datasets.
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A Synthetic Data Generation

Param. Description Default Value
Total number of points 100000
Original dimensionality 64

Number of clusters 5
Avg. subspace dimensionality 10

Skew in subspace dim. across clusters 0.5
Skew in size across clusters 0.5

Number of spatial cluster per cluster 10
Extent (from centroid) along subspace dim 0.5
Max displacement along non-subspace dim 0.1

Fraction outliers 0.05

Table 5: Input parameters to Synthetic Data Generator

The generator generates clusters with a total of
points distributed among them using a Zipfian distribution with
value . The subspace dimensionality of each cluster also
follows a Zipfian distribution with value , the average sub-
space dimensionality being . Each cluster is generated as fol-
lows. For a cluster with size and subspace dimensionality

(computed using the Zipfian distributions described above),
we randomly choose dimensions among the dimensions
as the subspace dimensions and generate points in that -
d plane. Along each of the remaining non-subspace
dimensions, we assign a randomly chosen coordinate to all the

points in the cluster. Let be the randomly chosen coordi-
nate along the th non-subspace dimension. In the subspace, the
points are spatially clustered into several regions ( regions on
average) with each region having a randomly chosen centroid
and an extent of from the centroid along each of the dimen-
sions. After all the points in the cluster are generated, each point
is displaced by a distance of at most in either direction along
each non-subspace dimension i.e. the point is randomly placed
somewhere between and along the th non-
subspace dimension. The amount of displacement (i.e. value of

) determines the degree of correlation (since is fixed). Lower
the value, more the correlation. To make the subspaces arbitrar-
ily oriented, we generate a random orthonormal rotation matrix
(generated using MATLAB) and rotate the cluster by multiply-
ing the data matrix with the rotation matrix. After all the clusters
are generated, we randomly generate points (with random
values along all dimensions) as the outliers. The default val-
ues of the various parameters is shown in Table 5.
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