
Efficiently Publishing Relational Data as XML Documents 
Jayavel Shanmugasundaram*  Eugene Shekita Rimon Barr

+
 

Michael Careyθ Bruce Lindsay  Hamid Pirahesh Berthold Reinwald 

IBM Almaden Research Center 
650 Harry Road 

San Jose, CA 95139 
jai@cs.wisc.edu, shekita@almaden.ibm.com, barr@cs.cornell.edu, 

carey@acm.org, bgl@almaden.ibm.com, pirahesh@almaden.ibm.com, reinwald@almaden.ibm.com 
 

Abstract 

XML is rapidly emerging as a standard for 
exchanging business data on the World Wide 
Web. For the foreseeable future, however, most 
business data will continue to be stored in 
relational database systems. Consequently, if 
XML is to fulfill its potential, some mechanism is 
needed to publish relational data as XML 
documents. Towards that goal, one of the major 
challenges is finding a way to efficiently structure 
and tag data from one or more tables as a 
hierarchical XML document. Different 
alternatives are possible depending on when this 
processing takes place and how much of it is done 
inside the relational engine. In this paper, we 
characterize and study the performance of these 
alternatives. Among other things, we explore the 
use of new scalar and aggregate functions in SQL 
for constructing complex XML documents 
directly in the relational engine. We also explore 
different execution plans for generating the 
content of an XML document. The results of an 
experimental study show that constructing XML 
documents inside the relational engine can have a 
significant performance benefit. Our results also 
show the superiority of having the relational 
engine use what we call an "outer union plan" to 
generate the content of an XML document. 

1.  Introduction 

XML is rapidly emerging as a standard for exchanging 
business data on the World Wide Web. Its nested, self-
describing structure provides a simple yet flexible means 
for applications to exchange data. In fact, there are 
already several industry proposals to standardize 
Document Type Descriptors (DTDs) [1], which are 
essentially schemas for XML documents. These DTDs are 
being developed for domains as diverse as electronic 
commerce [3] and real estate [10]. Despite the excitement 
surrounding XML, it is important to note that most 
operational business data, even for new web-based 
applications, continues to be stored in relational database 
systems. This is unlikely to change in the foreseeable 
future because of the reliability, scalability, tools, and 
performance associated with relational database systems. 
Consequently, if XML is to fulfil its potential, some 
mechanism is needed to publish relational data in the 
form of XML documents.  

There are two main requirements for publishing 
relational data as XML documents. The first is the need 
for a language to specify the conversion from relational 
data to XML documents. The second is the need for an 
implementation to efficiently carry out the conversion. 
The language specification describes how to structure and 
tag data from one or more tables as a hierarchical XML 
document. One of this paper’s contributions is a language 
specification based on SQL, with minor scalar and 
aggregate function extensions for XML construction. 
These extensions can be easily added to existing relational 
systems without departing from existing SQL semantics. 
Also, as a result of extending SQL in this manner, 
standard APIs like ODBC can be used to query and 
retrieve XML documents. This allows existing tools and 
applications to easily integrate relational data and XML 
documents. Other recent proposals, based on a 
combination of SQL and XML query languages [8], do 
not share these advantages.  

Given a language specification for converting 
relational tables to XML documents, an implementation 
to carry out the conversion raises many challenges. 
Relational tables are flat, while XML documents are 
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tagged, hierarchical and graph-structured. What is the best 
way to go from the former to the latter? In order to answer 
this question, we characterize the space of alternatives 
based on whether tagging and structuring are done early 
or late in query processing. We then refine this space 
based on how much processing is done inside the 
relational engine and explore various alternatives within 
this space. Our performance comparison of the 
alternatives using a commercial database system (DB2) 
shows that an “unsorted outer union”  approach – based on 
late tagging and late structuring – is attractive when the 
resulting XML document fits in main memory, while a 
“sorted outer union”  approach – based on late tagging and 
early structuring – performs well otherwise. Our results 
also show that constructing an XML document inside a 
relational engine is far more efficient than doing so 
outside the engine. Thus, constructing an XML document 
inside the relational engine has a two-fold advantage – not 
only does it allow existing SQL APIs to be reused for 
XML documents, but it is also much more efficient. 

1.1  Relationship to Related Work 

There has been significant recent interest in using 
relational database systems to store and query XML 
documents [6][9][13]. The focus of this paper, however, 
is on efficiently publishing existing relational data as 
XML documents and addressing several of the key 
difficulties [13] in that conversion. 

As mentioned earlier, there are other language 
proposals for specifying the construction of relational data 
as XML documents [8]. A distinguishing feature of our 
approach is that it extends SQL naturally, thus allowing 
the existing APIs and processing infrastructure of 
relational database systems to be reused. For example, the 
relational engine can be used to perform all join/merge 
operations during the construction of XML documents. 

The content of this paper is related to work on set-
valued attributes in object-relational databases [15] and 
nested non-first normal form data models [11]. They each 
deal with nested structures, much like we deal with nested 
XML elements. There are, however, some key 
differences. First, much of that work has been on special-
purpose engines to process nested structures. In contrast, 
our goal is to ride on an underlying relational DBMS. 
Second, tagging adds an extra dimension to the XML 
problem that is not present in the O-R set world. Finally, 
our output is a static XML document rather than a 
structure accessible through nested cursors. This allows 
more optimizations to be performed inside the RDBMS. 

1.2  Roadmap 

The rest of this paper is organized as follows. In Section 2 
we provide a brief overview of XML, and in Section 3 we 
present our SQL-based language approach for publishing 
relational data as XML. In Section 4 we explore a range 
of implementation alternatives and in Section 5 we 

evaluate the performance of the alternatives. We present 
our conclusions and ideas for future work in Section 6. 

2  An XML Primer 

Extensible Markup Language (XML) [2] is a hierarchical 
format for information exchange in the World Wide Web. 
An XML document consists of nested element structures 
starting with the root element. Each element has a tag 
associated with it. In addition to nested elements, an 
element can have attributes and values or sub-elements. 
Figure 1 shows an XML document representing a 
customer in a simple e-commerce application, where each 
customer has a set of accounts and a set of purchase 
orders, and each purchase order in turn has a set of items 
and a set of payments. The customer is represented by the 
<customer> element, which appears at the root of the 
document. The customer has an id attribute, which is a 
special kind of attribute that uniquely identifies an 
element in an XML document. Each customer has a 
name, represented by the <name> sub-element nested 
under customer. A customer element also has nested sub-
elements representing the accounts and purchase orders 
associated with the customer. Each of these has other 
attributes and sub-elements. 

An interesting feature to note in Figure 1 is that the 
purchase order elements have an attribute called “acct” . 
This is a field that is of type IDREF (such typing 
information is specified in a Document Type Descriptor 
[1] – not shown here – associated with an XML 
document), and it logically points to an element having 
the same value as its ID. Thus, the first purchase order 
points to the second account, while the second purchase 

<customer id=”C1”> 
    <name> John Doe </name> 
    <accounts> 
        <account id=”A1”> 1894654 </account> 
        <account id=”A2”> 3849342 </account> 
    </accounts>       
    <porders> 
        <porder id=”PO1”  acct=”A1”>  // first purchase order 
            <date>1 Jan 2000</date> 
            <items> 
                <item id=” I1”> Shoes </item> 
                <item id=” I2”> Bungee Ropes </item> 
            </items> 
            <payments> 
                <payment id=”P1”> due January 15 </payment> 
                <payment id=”P2”> due January 20 </payment> 
                <payment id=”P3”> due February 15 </payment> 
            </payments> 
        </porder> 
        <porder id=”PO2”  acct=”A2”>  // second purchase order  
             … 
        </porder>                   
    </porders> 
</customer> 

Figure 1: An XML Document Describing a Customer 
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order points to the first account. Another key feature of 
the XML model is that elements can be ordered. For 
example, purchase orders could be ordered by date to 
make the most recent purchases appear first in the 
document. More details on XML can be found in [2]. 

3  A SQL-Based Language Specification 

A key requirement for converting relational data to XML 
documents is a language to specify the conversion. While 
one approach is to invent a new language specifically for 
this purpose [8], our approach is to harness and extend the 
power of SQL to specify the conversion of relational data 
to XML documents. Nested SQL statements are used to 
specify nesting, and SQL functions are used to specify 
XML element construction. 

Consider the relational schema shown in Figure 2, 
which models the customer information of Figure 1 in 
relational form. As shown, there are customer, account, 
purchase order, item and payment tables. Each table has 
an id and other attributes associated with it, and there are 
foreign key relationships (shown by means of arrows) 
relating the tables. To convert data in this relational 
schema to the XML document in Figure 1, we can write a 
SQL query that follows the nested structure of the 
document, as shown in Figure 3. 

The query in Figure 3 produces both SQL and XML 
data – each result tuple contains a customer’s name 
together with the XML representation of the customer. 
The overall query consists of several correlated sub-
queries. The easiest way to understand the query is to 
look at it from the top down. The top-level query retrieves 
each customer from the customer table. For each 
customer, a correlated sub-query is used to retrieve the 
customer’s accounts (lines 2-4) and purchase orders (lines 
5-13). Assume for the moment that each correlated sub-
query returns an XML document fragment. The next step 
then is to create the customer XML elements. This is done 
by calling the CUST XML constructor (lines 1-13), which 
takes a customer name, account information (in XML 
form), and purchase order information (in XML form) as 
input and produces a customer XML element as output. 
The definition of the CUST XML constructor is shown in 
Figure 4. Conceptually, it should be viewed as a scalar 
function returning XML. For each input tuple, CUST tags 
the columns as specified and produces an XML fragment. 

The correlated sub-queries can be interpreted 
similarly, with the ACCT, PORDER, ITEM and 
PAYMENT constructors defined much like CUST. Each 
nested query finally has to return one XML fragment. 
This is done using the aggregate function XMLAGG, 
which concatenates the XML fragments (e.g., ITEM 
fragments) produced by XML constructors. To order 

Customer (id      integer,
name  varchar(20))

A ccount (id    varchar(20),
custId     integer,
acctnum integer)

PurchOrder (id           integer,
custid integer,
acctId   varchar(20),
date varchar(10))

Item (id          integer,
poId     integer,
desc     varchar(10))

Payment (id          integer,
poId     integer,
desc    varchar(10))

Figure 2: Customer Relational Schema 

01. Select  cust.name, CUST(cust.id, cust.name, 
02.                                           (Select  XMLAGG(ACCT(acct.id, acct.acctnum)) 
03.                                            From   Account acct 
04.                                            Where acct.custId = cust.id), 
05.                                           (Select   XMLAGG(PORDER(porder.id, porder.acct, porder.date, 
06.                                                                                              (Select   XMLAGG(ITEM(item.id, item.desc)) 
07.                                                                                               From   Item item 
08.                                                                                               Where item.poId = porder.id), 
09.                                                                                              (Select  XMLAGG(PAYMENT(pay.id, pay.desc)) 
10.                                                                                                From   Payment pay 
11.                                                                                                Where pay.poId = porder.id))) 
12.                                            From    PurchOrder porder 
13.                                            Where  porder.custId = cust.id)) 
14. From  Customer cust 

Figure 3: SQL Query to Construct XML Documents from Relational Data 

Define XML Constructor CUST (custId: integer, 
                                                       custName: varchar(20), 
                                                       acctList: xml, 
                                                       porderList: xml) AS {  
 <customer id=$custId> 
  <name> $custName </name> 
  <accounts> $acctList </accounts> 
  <porders> $porderList </porders> 
 </customer> 
}  

Figure 4: Definition of an XML Constructor 
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XML fragments, the XMLAGG aggregate function needs 
to work on ordered inputs. Since ordered inputs to 
aggregate functions are not currently supported in SQL, 
extensions similar to recent SQL amendments [4] would 
be necessary to make this possible. 

This section has presented one possible language 
specification for converting relational data to XML 
documents. The rest of the paper is more general in scope 
– it examines different implementations to carry out the 
conversion, independent of the specification language. 

4  Implementation Alternatives 

In order to understand the various alternatives for 
publishing relational data as XML documents, we 
characterize the solution space based on the main 
differences between relational tables and XML 
documents, namely, XML documents have tags and 
nested structure, while relational tables do not. Thus, in 
converting from relational tables to XML documents, tags 
and structure have to be added somewhere along the way. 
One approach is to do tagging as the final step of query 
processing (late tagging), while another approach is to do 
it earlier in the process (early tagging). Similarly, 
structuring can be done as the final step of query 
processing (late structuring) or it can be done earlier 
(early structuring). These two dimensions of tagging and 
structuring give rise to a space of alternatives shown 
pictorially in Figure 5. Each alternative in this space has 
variants depending on how much work is done inside the 
relational engine. Note that “ inside the engine”  means that 
tagging and structuring are done completely inside the 
relational engine, whereas “outside the engine”  means 
that part, though not necessarily all, of that work is done 
outside the relational engine. Also note that early tagging 
with late structuring is not a viable alternative because 
physically tagging an XML document without having its 
structure makes no sense. We now explore the space of 
alternatives in detail by means of concrete examples. 

4.1  Early Tagging, Early Structuring 

In this class of alternatives, tagging and structuring are 
both done early in query processing. We first describe an 
“outside the engine”  approach, where a significant 
amount of processing is done as a stored procedure, and 
then we describe two approaches where more processing 
is done inside the relational engine. 

4.1.1  The Stored Procedure Approach 

Perhaps the simplest technique for structuring relational 
data as an XML document is for an application or stored 
procedure to explicitly (iteratively) issue a nested set of 
queries that matches the structure of the desired XML 
document. Consider the example shown in Figure 1. First 
a query can be issued to retrieve root level elements 
(customers). Information about a customer such as their 

customer ID and customer name are retrieved, tagged, and 
output. Then, using the customer’s ID, a query is issued to 
retrieve the customer’s account information, which is then 
tagged and output. Next, while still on the same customer, 
a query is issued to retrieve the customer’s purchase 
orders. Then, for each purchase order retrieved, a separate 
query is issued for the purchase order’s items and the 
purchase order’s payment information. Once this is done, 
the processing for one customer is complete. The same 
procedure is repeated for the next customer until the 
entire XML document has been constructed. Note that 
nested structures in the XML document can be ordered 
using an “order by”  clause in the issued SQL queries. 

The Stored Procedure approach essentially performs a 
nested-loop join outside the engine by issuing queries for 
each nested structure within the desired XML document. 
It falls under the category of early structuring because the 
queries that are issued mimic the structure of the result. 
Also, since tagging is done as soon as each nested 
structure becomes available, this approach falls under the 
category of early tagging.  

Although the Stored Procedure approach is commonly 
used today, a major problem with it is that one or more 
SQL queries are issued per tuple for tables that have 
nested structures in the resulting XML document. The 
overhead of issuing so many queries can cause serious 
inefficiencies, as will be confirmed by the performance 
study in Section 5. Another significant problem with this 
approach is that it dictates a particular join order and the 
nested-loop join method, even when other join orders 
and/or join methods might be superior. 

4.1.2  The Correlated CLOB Approach 

One way to eliminate the overhead of issuing many 
queries SQL to the relational engine is to move 
processing inside the relational engine so that one large 
query with sub-queries, rather than many top-level 
queries, is executed. The challenge is then to have the 
relational engine tag and build up the nested structures so 
that the processing that was previously performed in a 
stored procedure now occurs inside the engine. This can 
be accomplished by adding engine support for the XML 
constructors and XMLAGG function that we described in 
Section 3. The query to produce the XML result can then 

Figure 5: Space of Alternatives for Publishing XML 

Outside Engine 

Late Tagging Early Tagging 

Late 
Structuring 

Early 
Structuring 

Inside Engine 

Outside Engine 

Inside Engine 

Outside Engine 
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be executed as a nested SQL query. The query’s 
execution would basically follow the language 
specification shown in Figure 3 by executing correlated 
sub-queries for nested queries. Since the XML document 
fragments created by the constructors can be of arbitrary 
size, the obvious choice is to represent them as large 
objects, such as Character Large Objects (CLOBs), inside 
the relational engine. 

Because of correlation during execution, the 
Correlated CLOB approach still performs a nested-loop 
join. It is likely to out-perform the Stored Procedure 
approach, however, because a single query is issued to the 
relational engine. Nonetheless, the fact that intermediate 
XML structures are represented as CLOBs can lead to 
performance problems. This is because large objects are 
typically stored separately from the tuples they belong to. 
Thus, in parallel environments, fetching these objects 
(scattered around different nodes) can lead to significant 
performance degradation. Further, CLOBs may need to be 
written to a separate storage area on disk during sorts. 
Finally, each invocation of an XML constructor copies its 
inputs, which may include CLOBs, to a new CLOB. This 
repeated creation and copying of CLOBs can be costly. 

4.1.3  The De-Correlated CLOB Approach 

One disadvantage of the Correlated CLOB approach is 
that, because of its correlated sub-queries, it naturally 
implies a nested-loop join strategy. This can be avoided 
by performing query de-correlation [12] inside the 
relational engine to give the relational optimizer more 
flexibility. A de-correlated query execution plan for the 
correlated query of Figure 3 is shown in Figure 6. Though 
the Item and Payment tables are ignored for clarity, it is 
easy to see how this approach generalizes to arbitrary 
depths. First, each path from the root-level table to a leaf-
level table is computed by joining the tables along the 
path (Customer joined with Account, Customer joined 
with Purchase Order). Outer joins are used because the 

information about a parent has to be preserved even if it 
has no children. The set of leaf-level XML elements 
corresponding to each leaf-level table is then built up 
(using aggregation) by grouping on the id columns of the 
parent tables on the path from the root-level table to the 
leaf-level table (e.g., custId). Higher-level structures are 
built up by joining on these id fields and using an XML 
constructor. This is done till the root level is reached. 

Despite the fact that this approach is more flexible in 
allowing the engine to explore join strategies, it shares the 
same problems as the Correlated CLOB approach with 
respect to repeated copying, parallelism and 
materialization of CLOBs. This is because tagging and 
structuring are done early, thus creating opaque 
intermediate objects. Is it possible to defer tagging and 
structuring to arrive at a more efficient alternative? We 
explore this class of alternatives next. 

4.2  Late Tagging, Late Structuring 

In the class of alternatives that defer tagging and 
structuring, both tagging and structuring are done as the 
final step of constructing an XML document. The 
construction of an XML document is therefore logically 
split into two phases: (a) content creation, where 
relational data is produced, and (b) tagging and 
structuring, where the relational data is structured and 
tagged to produce the XML document. We first deal with 
content creation. We consider only “ inside the engine”  
approaches so that database functionality, such as joins, 
can be exploited. 

4.2.1  Content Creation: Redundant Relation Approach 

One simple way to produce the needed content is to join 
all of the source tables. In our example, this would be 
done by joining the Customer, Accounts, Purchase Order, 
Item and Payment tables, as shown in Figure 7. Note that 
the join predicates relate parents to their children.  

This approach has the advantage of using regular, set-
oriented relational processing, but it also has a serious 
pitfall – it has both content and processing redundancy. 
To see this, consider what the result of the query in Figure 
7 would look like. Each customer’s account information 
would be repeated PO × IT × PA times, where PO is the 
number of purchase orders associated with the customer, 
IT is the number of items per purchase order, and PA is 
the number of payments per purchase order. The problem 
here is that multi-valued data dependencies [7] are created 
when we try to represent a hierarchical structure as a 

Figure 6: De-Correlated SQL Query with Aggregations 

Figure 7: Query for Redundant Relation Content 

Select cust.* , acct.* , porder.* , pay.* , item.*  
From  Customer cust  
            left join Account acct on cust.id = acct.custId 
            left join PurchOrder porder on cust.id = porder.custId 
            left join Item item on porder.id = item.poId 
            left join Payment pay on porder.id = pay.poId 

PurchaseOrder Customer Account 

Left Outer Join 
cust.id = porder.custId 

Group By: cust.id 
XMLAGG(PORDER()) 

Group By: cust.id 
XMLAGG(ACCT()) 

Right Outer Join 
acct.custId = cust.id

Join: cust.id = cust.id 

CUST() 
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Outer Union

(CustId, CustInfo, AcctId, AcctInfo, POId, POInfo, ItemId, I temInfo, PaymentId, PaymentInfo, Type)

CustomerAccount

Right Outer Join

(CustId, CustInfo, AcctId, AcctInfo)

PurchaseOrder

Left Outer Join

Left Outer JoinRight Outer Join

PaymentItem

(CustId, CustInfo, POId, POInfo)

(CustId, CustInfo, POId, POInfo,
ItemId, I temInfo)

(CustId, CustInfo, POId, POInfo,
PaymentId, PaymentInfo)

single table. This increases both the 
size of the result and the amount of 
processing to produce it, both of 
which are likely to severely impact 
performance. 

4.2.2  Content Creation: (Unsorted) 
Outer Union Approach 

The basic problem with the 
Redundant Relation approach is that 
the number of tuples in the relational 
result grows as the product of the 
number of children per parent. If we 
could limit the result’s size to be the 
sum of the number of children per 
parent, redundancy could be reduced. 
To do this, we need to separate the 
representation of a given child of a 
parent from the representation of the 
other children of the same parent. For 
example, one tuple of the relational 
result should represent either an 
account or a purchase order 
associated with the customer, not both. 

Figure 8 shows a query execution plan that reduces 
content redundancy for the query of Figure 3. First, as in 
the De-Correlated CLOB approach of Section 4.1.3, each 
path from the root-level table to a leaf-level table is 
computed by means of joins. In our example query, there 
are three such paths – Customer-Account, Customer-
PurchaseOrder-Item and Customer-PurchaseOrder-
Payment. Thus, Customers are joined with Accounts (one 
path), Customers are joined with Purchase Orders which 
are in turn joined with Items (another path) and 
Customers are joined with Purchase Orders which are in 
turn joined with Payments (final path). This computation 
is shown in Figure 8 (see everything below the outer 
union). Where possible, common sub-expressions are 
used so that redundant computation is avoided. Thus, in 
Figure 8, the join between Customers and Purchase 
Orders is shared between two path computations. 

Each path computation produces one tuple per data 
item in the leaf level of the XML tree. Each tuple 
describing a leaf level data item includes the information 
about all of its ancestors (see the lists of columns above 
each join box in Figure 8). A separate tuple describing an 
ancestor needs to be present only if the ancestor has no 
children. The use of outer joins to relate a parent with its 
children ensures this semantics. 

The final step in the process of creating the relational 
content is to glue together all the tuples representing leaf 
level elements in the XML tree (via the outer union in 
Figure 8) into a single relation. The obvious way to do 
this is to union the content corresponding to each leaf 
level element. There are, however, some complications 
with this strategy since the tuples corresponding to 

different leaf level elements need not have the same 
number or types of columns. For example, tuples 
representing accounts need only four columns, while 
tuples representing items have six columns. In order to 
handle this heterogeneity, a separate column is allocated 
in the result of the union for each distinct column in the 
union’s input. For each tuple representing a particular leaf 
level element and its ancestors, only a subset of these 
columns will be used and the rest will be set to null 
(hence the name outer union by analogy to outer join). 

To keep track of the origin of each tuple, e.g. to 
distinguish an account tuple from an item tuple, a type 
column is added to the result of the outer union as well. 
We call the approach exemplified by Figure 8 the Path 
Outer Union approach because it computes each path 
from the root-level table to a leaf-level table and outer 
unions them. 

The Path Outer Union approach eliminates much of 
the data redundancy (and associated computation 
redundancy) of the Redundant Relation approach. This is 
because children of the same parent are represented in 
separate tuples.  However, there is still some data 
redundancy present. In particular, parent information is 
replicated with every child of the parent (e.g., customer 
information is replicated with every account). One way to 
get around this is to feed the parent information directly 
into the outer union operator and to carry only parent ids 
along with the children. This reduces data redundancy, 
but it increases the number of tuples in the result because 
each parent is now represented by a separate tuple. We 
refer to this option as the Node Outer Union approach to 
distinguish it from the earlier Path Outer Union approach. 

One concern with the Outer Union approaches is that 
the number of columns in the result increases with the 

Figure 8:  The Outer Union Plan 
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depth and width of the XML document. Though only a 
subset of the columns in a given tuple will have data 
values, with the remaining columns being null, in the 
absence of null value compression, this may lead to 
increased processing overhead due to larger tuple widths. 

4.2.3  Structuring/Tagging: Hash-based Tagger 

In the previous two sections, we discussed techniques to 
produce the relational content necessary for creating an 
XML document. The final step in the Late Structuring-
Late Tagging alternatives is to tag and structure the 
results. This can be done either inside or outside the 
relational engine. If it is performed inside the relational 
engine, it can be implemented as an aggregate function. 
Such a function would be invoked as the last processing 
step, after the relational content has been produced, and 
this (single) aggregate function would logically perform 
the function of all the XML constructors and XMLAGGs 
in the user query. This ensures that large objects are not 
carried around during processing, which was one of the 
potential disadvantages of the CLOB approaches. 

In order to tag and structure the results, either inside or 
outside the engine, we need to do two things: (a) group all 
siblings in the desired XML document under the same 
parent (and eliminate duplicates in the case of the 
Redundant Relation approach) and (b) extract the 
information from each tuple and tag it to produce the 
XML result. An efficient way to group siblings is to use a 
main-memory hash table to look up the parent of a node, 
given the parent’s type and id information (including the 
ids of ancestors of the parent). Thus, whenever a tuple 
containing information about an XML element is seen, it 
is hashed on the element’s type and the ids of its ancestors 
in order to determine whether its parent is already present 
in the hash table. If the parent is present, a new XML 
element is created and added as a child of the parent. If 
the parent is not present, then a hash is performed on the 
type and ids of all ancestors except that of the parent. This 
is to determine if the grandparent exists. If the 
grandparent is present, the parent is created and then the 
child is created. If the grandparent is also not present, the 
procedure is repeated until an ancestor is present in the 
hash table or the root of the document is reached. 

After all the input tuples have been hashed, the entire 
tagged structured can be written out as an XML file. If a 
specific order is required for the elements of the resulting 
XML document, then that order can either be maintained 
as children are added to a parent or it can be enforced by a 
final sort before writing out the XML document. 

The main limitation of using a hash-based tagger is 
that performance can degrade rapidly when there is 
insufficient memory to hold the hash table and the 
intermediate result. However, it may be possible to 
partition the data into memory-sized chunks, much like in 
a hash join [14]. Exactly how to do this partitioning (and 
merging) is left for future work. 

4.3  Late Tagging, Early Structuring 

The main problem with the Late Tagging-Late Structuring 
approaches we just considered is that complex memory 
management needs to be performed in the hash-based 
tagger when memory is scarce. To eliminate this problem, 
the relational engine can be used to produce “structured 
content” , which can then be tagged using a constant space 
tagger. We first explore a technique to produce structured 
content before describing the constant space tagger. 

4.3.1  Structured Content Creation: Sorted Outer 
Union Approach 

The key to structuring relational content is to order it the 
same way that it needs to appear in the result XML 
document. This can be achieved by ensuring that: 
1) All of the information about a node X in the XML 

tree occurs either before or along with the 
information about the children of X in the XML tree. 
This essentially says that parent information occurs 
before, or with, child information. 

2) All tuples representing information about a node X 
and its descendants in an XML tree occur together. 
This ensures that information about a particular node 
and its descendants is not mixed in with information 
about non-descendant nodes.  

3) The relative order of the tuples matches that of any 
user-specified order. This is to handle user defined 
ordering requests. 

We now show that performing a single final relational 
sort of the unstructured relational content is sufficient to 
ensure these properties. Our discussion here will be based 
on the Node (Unsorted) Outer Union approach for 
constructing unstructured relational content. The solution 
for the Path Outer Union Approach is actually simpler 
because it always satisfies condition 1. It is also easy to 
see how the technique generalizes to the Redundant 
Relation approach. In the interest of space, we only 
illustrate how the approach works when there is no user-
specified ordering requirement (i.e., considering only 
conditions 1 and 2) 

To ensure conditions 1 and 2, all that is required is to 
sort the result of the Node Outer Union on its id fields, 
with the ids of parent nodes occurring higher in the sort 
order than the ids of children nodes. Thus, in Figure 8, 
sorting the result on the composite key (CustId, AcctId, 
POId, ItemId, PaymentId) will ensure that result is in 
document order. It is also important that tuples having 
null values in the sort fields occur before tuples having 
non-null values (i.e., nulls must sort low). Condition 1 is 
then satisfied because a tuple corresponding to a parent 
node (say, customer) will have null values for the child id 
columns (say, account id). Since we ensure that tuples 
with null values in sort columns occur first, parent tuples 
(customers) will always occur before child tuples 
(accounts). Also, because the parent’s id (customer id) 
occurs before a child’s id (account id) in the sort order, 
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Classification Approach Short Name 
Outside Engine Stored Procedure Stored Proc 
Inside Engine Correlated CLOB CLOB-Corr 

Early Tag 
Early Structure 

Inside Engine De-Correlated CLOB CLOB-DeCorr 
Inside or Outside Engine Redundant Relation Redundant R (In/Out) 
Inside or Outside Engine Unsorted Path Outer Union Unsorted OU (In/Out) 

Late Tag 
Late Structure 

Inside or Outside Engine Unsorted Node Outer Union Unsorted NOU (In/Out) 
Inside or Outside Engine Sorted Path Outer Union Sorted OU (In/Out) Late Tag 

Early Structure Inside or Outside Engine Sorted Node Outer Union Sorted NOU (In/Out) 

 

the children of a parent 
node are grouped together 
after the parent, thus 
satisfying condition 2. 

The Sorted Outer 
Union approach has the 
advantage of scaling to 
large data volumes because 
relational database sorting 
is disk-friendly. The 
approach can also ensure 
user-specified orderings with little additional cost. 
However, it does do more work than necessary, since a 
total order is produced when only a partial order is 
needed. This is because we only require children to occur 
together with parents and the ordering among siblings is 
immaterial (without user-specified ordering 
requirements). 

4.3.2  Tagging Sorted Data: Constant Space Tagger 

Once structured content is created, as described in the 
previous two sections, the next step is to tag and construct 
the result XML document. Since tuples arrive in 
document order, they can be immediately tagged and 
written out as they are seen. The tagger only requires 
memory to remember the parent ids of the last tuple seen. 
These ids are used to detect when all the children of a 
particular parent node have been seen so that the closing 
tag associated with the parent can be written out. For 
example, after all the items and payments of a purchase 
order have been seen, the closing tag for purchase order 
(</porder>) has to be written out. To detect this, the 
tagger stores the id of the current purchase order and 
compares it with that of the next tuple. It should be clear 
that the storage required by the constant space tagger is 
proportional only to the level of nesting and is 
independent of the size of the XML document. 

5.  Performance Comparison of Alternatives 
for Publishing XML 

We have now outlined a number of alternatives for 
creating XML documents from a relational database, 
which are summarized in Figure 9. Our qualitative 
assessments indicate that every alternative has some 
potential disadvantage. In this section, we will conduct a 
performance evaluation of the alternatives to determine 
which ones are likely to win in practice (and in what 
situations). Our focus in this preliminary performance 
evaluation is to study the effects of nesting flat relational 
tables as nested XML documents. Towards this end, we 
will first identify a set of parameters that are simple and 
yet can model a wide range of relational to XML 
conversions. In the experiments reported below, we do 
not consider queries with user-defined sort orders. 

5.1  Modeling Relational to XML Transformations 

In order to study the effects of nesting relational data as 
XML documents, we will vary the nesting of the queries 
specifying the construction of XML documents (see 
Figure 3 for an example query). In our experiments, the 
nesting of queries is characterized by two parameters. The 
first parameter is the query fan out. This corresponds to 
the maximum number of sub-queries directly nested 
under a parent (sub) query. For example, the query in 
Figure 3 has a query fan out of two because the (sub) 
queries in lines 1-15 and lines 5-13 each have two directly 
nested sub-queries (lines 2-4, 5-13 and lines 6-8, 9-12, 
respectively) while the other sub-queries (lines 2-4, 6-8, 
9-12) have no directly nested sub-queries. The second 
parameter used to characterize nesting is query depth. 
This corresponds to the maximum nesting level of sub-
queries. In our example in Figure 3, the query depth is 
three because there are three levels of query nesting – the 
first being the top level query (lines 1-15), the second 
being queries in lines 2-4 and 5-13 and the third being 
queries in lines 6-8 and 9-12. 

In our experiments, we only consider “balanced”  
queries, where 1) each non-leaf (sub) query has the same 
number of directly nested sub-queries and 2) all leaf (sub) 
queries are at the same depth. This results in a simple set 
of parameters, each of which can be studied in isolation. 
Note that the query in Figure 3 is not balanced because it 
satisfies condition 1 but not condition 2. It is important to 
note that the query fan out and query depth do not directly 
specify the fan out or the depth of the result XML 
document. Even at low values of query fan out and query 
depth, the result XML document can be wide/deep 
depending on the XML constructors used (see Figure 4). 
The query fan out and query depth only specify the 
structure of the repeating “set”  sub-elements, such as the 
accounts associated with a customer.  

Our goal here is to study the effects of nesting 
relational data as XML documents, and not the 
complexity of the SQL used to create data for an XML 
element. Hence, for this performance study, the relational 
schema we use will reflect the nesting of the SQL query 
specifying the construction (e.g., like Figure 3 and Figure 
2) and each relation in the schema will be a base table (it 
is, however, important to note that each relation could, in 

Figure 9: Summary of Approaches for Publishing XML 
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general, be an arbitrarily complex view). Each table has 
an ID field, which is its primary key. It also has a PJID 
(parent join id) field that serves as a foreign key for its 
parent. To match parents with their children, a join is 
specified between the ID and PJID field of the parent and 
child tables, respectively. In addition to these two fields, 
each table has two data fields of different types. The first 
is an integer field (IntVal) while the second is a 20 
character long string field (CharVal). 

We now identify two additional parameters that, given 
a schema, suffice to describe a specific database instance. 
The first parameter is number of roots, which specifies the 
number of tuples present in the table at the root level. The 
second parameter is the number of leaf tuples, which 
specifies the total number of tuples present in all the leaf-
level tables combined. The number of tuples in each leaf-
level table is thus the number of leaf tuples divided by the 
number of leaf-level tables. These two parameters 
together determine another important derivative 
parameter, the instance fan out, which specifies the 
number of children tuples of each type that a parent tuple 
has (under the assumption that every parent tuple has the 
same number of child tuples of a given type). 

We have chosen to use the number of leaf tuples as the 
primary parameter and the instance fan out as a derivative 
parameter because the number of leaf tuples (where the 
bulk of the data resides) is directly related to the size of 
the XML document produced. Thus, holding the number 
of leaf tuples constant allows us to study how the different 
approaches behave when (essentially) the same amount of 
data is structured differently. 

We now characterize the result XML document 
created for a given relational database instance. The 
integer and character column values of each tuple in the 
relational database instance are tagged as XML elements 
having a tag name that is 3 characters long. The XML 
fragments of child tuples are nested under the XML 
representation of the parent tuples. The result is always a 
single XML document. This was done to make the 
experimental results easy to interpret. Note that we do not 
explicitly consider selections on tables since the same 
performance effect can be explored by varying the 
number of roots and the number of leaf tuples. 

5.2  Experimental Setup 

To conduct our performance comparison, we 
implemented the various alternatives discussed in Section 
4 in the code base of the DB2 Universal Database system. 
The XML constructors and XMLAGG were implemented 
as new built-in functions. The Stored Procedure approach 
was implemented as an “unfenced”  stored procedure, i.e., 
it ran in the same address space as the relational database 
engine, to maximize performance. The other “outside the 
engine”  approaches were implemented as local 
embedded-SQL programs, running on the same machine 
as the database server, to avoid unpredictable network 

delays. (We implemented “outside the engine”  
approaches as stored procedures as well, but since this did 
not significantly change their performance, these results 
are not included here.) A driver program, implemented as 
a local embedded-SQL program, was used to time the 
results on a warm DB2 cache. The XML result was 
always written out as an NT file. All experiments were 
performed on a Pentium 366 MHz processor with 256 
MB of main memory running Windows NT 4.0. 

For the experiments, we varied the parameters 
discussed in Section 5.1 as shown in Figure 10. For each 
experiment, we varied one of these parameters and used 
default values for the rest. This enabled us to determine 
the effect of each parameter on performance. Indexes 
were created on the ID and PJID fields for all the tables in 
the relational schema. Detailed optimizer statistics were 
collected for each table and index before any queries were 
run. For most experiments, the sort heap and buffer pool 
sizes were set so that all processing would be done in 
main memory; the one exception is the experiments in 
Section 5.7, where the effect of reduced memory is 
considered. Since the Node and Path Outer Union 
approaches behave similarly in a wide range of situations, 
we only show the performance for the Path Outer Union 
for most of the studies. The relative performance of the 
Node and Path Outer Union approaches is discussed 
separately in Section 5.8. 

5.3  Testing the Waters: Inside the Engine vs. Outside 
the Engine Approaches 

To get an initial feel for the results, we first explore the 
effects of varying query fan out while holding the other 
parameters constant. The resulting time taken to construct 
the XML document for the “ inside the engine”  and the 
“outside the engine”  approaches is shown in Figure 11 
and Figure 12, respectively. The Redundant Relation 
approach is not shown in these graphs because it performs 
very badly with increasing fan out due to large data 
redundancy. In fact, the time for just executing the 
associated relational query, ignoring the time for tagging 
and writing the XML result to disk, at a query fan out of 4 
was about 155 seconds. The performance of the 
Redundant Relation approach was also among the worst 
of all possible approaches throughout our experiments, so 
will not examine it further in our evaluation results. 

The interesting thing to note in Figure 11 and Figure 
12 is that while the Stored Procedure approach incurs a 
significant overhead because it issues many queries to the 
relational engine; the Correlated CLOB approach, its 

Figure 10: Parameter Settings for Experiments 

Parameter Range of Values Default 
Query Fan Out 2, 3, 4 2 
Query Depth 2, 3, 4 2 
# Roots 1, 50, 500, 5000, 40000 5000 
#  Leaf Tuples 160000, 320000, 480000 320000 
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“ inside the engine”  counterpart, takes less than one third 
of the time. This actually points to a more general trend. 
For the Unsorted and Sorted Outer Union approaches as 
well, the “ inside the engine”  versions take less than half 
the time to execute than the corresponding “outside the 
engine”  versions. In order to explain these results, we 
broke down the time for creating XML document results.  

For the “outside the engine”  approaches, there are four 
components to generating the XML result: 1) the time to 
produce the relational content, either structured or 
unstructured, 2) the time to bind out the relational content 
to host variables outside the engine, 3) the time to tag and 
possibly structure the relational result, and 4) the time to 
write the XML result out to a file. For the “ inside the 
engine”  approaches, there are the same components 
except that there is no time spent in binding out the 
results. We measured each of these components 
independently for the various approaches. The tagging 
time for the CLOB approaches was not separated out 
because it forms an integral part of the computation. 

Figure 13 shows this time break down and it is easy to 
see that the time to bind out (copy) tuples to host 
variables from the relational engine dominates the cost of 
the “outside the engine”  approaches. These results were 
found to be true regardless of whether the bind out was 
done in a local client or in an unfenced stored procedure. 
Moreover, increasing the size of the communication 
buffer between the client application and the database 

server so that larger portions of the result could be copied 
over to the client address space in one chunk did not 
significantly reduce the bind-out cost. On the other hand, 
the “ inside the engine”  approaches eliminate the host 
variable bind-out cost for every tuple; their only bind-out 
is done for the final (single) result document. 
Consequently, the “ inside the engine”  approaches give 
rise to much better performance. This points to our first 
firm conclusion – constructing an XML document should 
be done inside the engine to maximize performance. 

Since “ inside the engine”  approaches consistently 
outperform the “outside the engine”  approaches, the rest 
of our experimental results will consider these approaches 
separately. Note that despite their poor relative 
performance, “outside the engine”  approaches are 
valuable because they can be used with relational 
database systems that do not have support for the new 
XML scalar/aggregate functions mentioned in this paper. 

5.4  Effect of Query Fan Out 

We now re-examine the effect of varying the query fan 
out. For the “ inside the engine”  techniques, increasing the 
query fan out increases the time for producing the XML 
result, as shown in Figure 11. This is not surprising since 
increasing the query fan out increases the number of joins 
that need to be performed. What is more interesting is the 
relative performance of the different approaches. The 
Correlated CLOB approach, which utilizes many 
correlated sub-queries, performs worse than the other set-
oriented plans. This is because the relational optimizer 
has no choice but to use the nested loop join strategy. 
Among the Outer Union based plans, the Unsorted Outer 
Union approach is more efficient than the Sorted Outer 
Union approach. This implies that the cost of sorting (and 
using a simple constant space tagger) is more expensive 
than avoiding the sort and using a more complex hash-
based tagger (given sufficient main memory). 

A rather surprising result is that the De-Correlated 
CLOB approach, despite having to repeatedly copy 
information and carry CLOBs during computation, 
performs fairly well and in fact, is the best strategy for 
low query fan outs. This is because the DB2 optimizer 
picked a plan whereby CLOBs could be retained in main 
memory without having to be materialized. Also, since 

Figure 11: Varying Query Fan Out (Inside the Engine) Figure 12: Varying Query Fan Out (Outside the Engine) 

Figure 13: Break Down of XML Construction Time 
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the query depth is low, the overhead of repeatedly 
copying CLOBs is not significant. 

Figure 12 shows the effects of query fan out on the 
“outside the engine”  approaches. The Stored Procedure 
approach performs much worse than the Outer Union 
approaches because of the overhead of issuing many 
separate queries and using a fixed join strategy. 
Surprisingly, unlike for the “ inside the engine”  case, the 
execution times for the Sorted and Unsorted Outer Union 
approaches are approximately the same here. This is 
because the constant space tagger is a streaming operator; 
i.e., it produces a part of the XML document as soon as it 
sees a tuple. It can thus overlap tagging with writing the 
XML document to disk while the hash-based tagger has to 
process all input tuples before writing anything to disk. 

5.5  Effect of Query Depth 

We now turn our attention to the next parameter – query 
depth. Figure 14 shows the effect of varying the query 
depth parameter for the “ inside the engine”  approaches. 
While the execution time for all the approaches increases 
with query depth, it is interesting to note the dramatic 
increase for the De-Correlated CLOB approach. This is 
because, not surprisingly, the relational query optimizer 
makes mistakes when dealing with very complex queries 
at higher values of query depth. For instance, the query 
for a producing an XML document of query depth 4 has 
15 aggregations (XMLAGGs) and 12 joins! In these 
cases, the optimizer makes some wrong decisions such as 
choosing to sort after an aggregation. This requires 
CLOBs to be written to a temporary space and 
materialized again later. This problem is compounded by 
the fact that the XMLAGG aggregate function is opaque 
to a traditional relational database optimizer and it thus 
has no good way to estimate the size of the CLOB result. 

The effects of varying query depth for “outside the 
engine”  approaches (not shown) are not very surprising, 
and essentially have the same form as Figure 12. 

5.6  Effect of Number of Roots 

The next parameter of interest is the number of roots. 
When the number of root elements is decreased for the 
“ inside the engine”  approaches, the performance of the 

Correlated CLOB approach improves dramatically, 
relative to the other approaches (see Figure 15). This 
happens because only two correlated sub-queries have to 
be issued for constructing the XML document with one 
root element. A similar effect occurs (for similar reasons) 
with the Stored Procedure approach, the “outside the 
engine”  counterpart of the Correlated CLOB approach 
(not shown). The relative performance of the outer union 
approaches remains unchanged. 

5.7  Effects of Number of Leaf Tuples, Memory Size 

For the next set of experiments, we varied the size of the 
data set by varying the number of leaf tuples. When there 
was sufficient memory, the relative performance of the 
various approaches did not change. However, when the 
amount of memory available for processing was reduced 
so that the XML document construction could not be 
performed entirely in main memory, the Unsorted Outer 
Union approaches were unable to proceed because our 
hash-based tagger cannot (currently) handle overflows. In 
contrast, the Sorted Outer Union approaches, based on the 
highly scalable relational sort, adapted gracefully. 

5.8  Path Outer Unions vs. Node Outer Unions 

We now compare the performance of the Node and Path 
Outer Union approaches. As mentioned earlier, their 
performance is nearly identical when there is sufficient 
main memory. In fact, despite its data redundancy, the 
Path Outer Union approach performs slightly better (by 
less than a second) because there are fewer tuples to 
process (and thus to bind out in case of the “outside the 
engine”  approaches). The main difference between the 
two outer union approaches occurs when memory is 
scarce. In this case, for bushy trees (having high instance 
fan out) the Node Outer Union approaches perform better 
– a difference of up to three seconds – while for non-
bushy trees (having low instance fan out), the Path Outer 
Union approaches perform better. This is because there is 
greater data redundancy in the Path Outer Union approach 
for bushy trees, and the overhead of spilling the extra data 
to disk exceeds the advantage of processing fewer tuples. 

Figure 14: Varying Query Depth (Inside the Engine) Figure 15: Varying Number of Roots (Inside the Engine) 
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5.9  Summary of Experimental Results 

To summarize, our performance comparison of the 
alternatives for publishing XML documents points to the 
following conclusions: 
1) Constructing an XML document inside the relational 

engine is far more efficient that doing so outside the 
engine, mainly because of the high cost of binding out 
tuples to host variables. 

2) When processing can be done in main memory, a 
stable approach that is always among the very best 
(both inside and outside the engine), is the Unsorted 
Outer Union approach. 

3) When processing cannot be done in main memory, 
the Sorted Outer Union approach is the approach of 
choice (both inside and outside the engine). This is 
because the relational sort operator scales well.  

6.  Conclusion and Future Work 

XML is rapidly emerging as the dominant standard for 
exchanging data on the World Wide Web, making the 
ability to publish data as XML increasingly important. In 
this paper, we have studied ways to publish relational data 
in the form of structured XML documents. We proposed a 
SQL language extension (the XML constructor) to specify 
the construction of XML documents from relational data. 
By extending SQL in this manner, applications can reuse 
the existing infrastructure and APIs for SQL to extract 
XML documents from relational sources. 

The bulk of this paper was devoted to exploring 
efficient mechanisms for publishing relational data as 
XML documents, independent of the actual language used 
to specify this mapping. Towards this end, we first 
characterized the solution space based on the main 
differences between XML documents and relational 
tables, namely tags and nested structure. We then 
explored various alternatives in this space, paying special 
attention to the amount of processing that can be done 
inside the relational engine. Our experimental results 
showed that moving all processing inside the relational 
engine can provide a significant performance benefit. This 
is because the high cost of binding out tuples to host 
variables is eliminated. Our study also showed that the 
outer union approaches proposed in this paper provide an 
efficient and robust way to retrieve the relational data 
needed to construct an XML document. 

Possibilities for future work include studying the 
impact of parallelism, new runtime operators inside the 
relational engine to enhance the performance of outer 
union plans, and techniques for efficient memory 
management to extend the useful range of the Unsorted 
Outer Union approach. In addition, we believe that the 
approaches outlined in this paper can be extended to 
handle the construction of recursive XML documents, 
such as part hierarchies and bill of material documents. 
Specifically, this requires modifications to the tagger 

algorithms so that nested structures of arbitrary depth can 
be handled and also to the outer union approaches so that 
information about the unbounded hierarchy can be 
captured using key columns. 
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