
The 3W Model and Algebra for Uni�ed Data Mining

Theodore Johnson
AT&T Labs{Research

johnsont@research.att.com

Laks V. S. Lakshmanan
Concordia University and IIT{Bombay

laks@it.iitb.ernet.in

Raymond T. Ng
University of British Columbia

rng@cs.ubc.ca

Abstract

Real data mining/analysis applications call for a
framework which adequately supports knowledge
discovery as a multi-step process, where the in-
put of one mining operation can be the output of
another. Previous studies, primarily focusing on
fast computation of one speci�c mining task at a
time, ignore this vital issue.

Motivated by this observation, we develop a uni-
�ed model supporting all major mining and anal-
ysis tasks. Our model consists of three distinct
worlds, corresponding to intensional and exten-
sional dimensions, and to data sets. The notion of
dimension is a centerpiece of the model. Equipped
with hierarchies, dimensions integrate the output
of seemingly dissimilar mining and analysis oper-
ations in a clean manner.

We propose an algebra, called the dimension al-

gebra, for manipulating (intensional) dimensions,

as well as operators that serve as \bridges" be-

tween the worlds. We demonstrate by examples

that several real data mining processes can be cap-

tured using our model and algebra. We demon-

strate the naturality of the algebra by establishing

several identities. Finally, we discuss e�cient im-

plementation of the proposed framework.

1 Introduction

Data mining studies can be classi�ed broadly into two
\generations". Studies in the �rst generation have fo-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,

Cairo, Egypt, 2000.

cused primarily on which kinds of patterns to mine,
and how fast they can be computed. Examples in-
clude associations and variants [3, 4, 20, 14, 8, 22, 29],
clustering [24, 31, 2, 5], decision trees [27], and depth
contours [18]. Recognizing that mining would be far
more e�ective if not considered in isolation, studies
in the second generation have focused on how mining
can interact with other \components" in a more gen-
eral framework of knowledge discovery (KDD). One
component is the underlying DBMS. Studies such as
[9, 28, 30] explore how association mining can hand-
shake with the DBMS most e�ectively. Another com-
ponent is the human analyst. Some studies such as
[25, 10, 21], allow the user to express a focus for mining
via constraints. Other studies such as [15, 1] provide
the user with online feedback, and permit him to make
dynamic changes to the parameters of computation.

All previous studies are almost always geared to-
ward one mining task at a time. In real data min-
ing applications, KDD is rarely a one-shot activity.
Rather, it is a multi-step process involving di�erent
mining operations, data partitioning, aggregation, and
data transformations. Thus, previous work fails to ad-
dress the fundamental need of supporting KDD as a
multi-step process. In the following examples, we illus-
trate several multi-step scenarios, extracted from real
mining applications, which call for the ability to ma-
nipulate (e.g., analyze, query, transform) the results of
mining tasks, making the output of one mining oper-
ation the input to another.

Example 1 (Associations and Decision Trees)
Suppose an analyst analyzes the sales data of a chain
store to determine which items were co-purchased with
a certain promotional item p, generating a collection
of frequent sets. As part of his exploration, he de-
cides to roll up this collection of frequent sets from
speci�c items (e.g., speci�c brands of meat products)
to kinds of items (e.g., the general class of meat). He
then wishes to determine the \circumstances" (e.g.,
location, time, etc.) under which the frequent co-

21

purchases were made. He does so by constructing a
decision tree. The decision tree, when combined with
frequent sets, might reveal interesting patterns such
as \in northern New Jersey, meat products (not dairy
products) are often bought together with p, whereas in
southern New Jersey, dairy products (not meat prod-
ucts) are often bought together with p." This example
illustrates interesting observations/patterns that can
only be discovered by freely combining the outcomes
of di�erent mining tasks.

Example 2 (Stacking Decision Trees) Suppose
T1 is a decision tree that classi�es customers in New
Jersey into the categories of highRisk and lowRisk
for credit rating. Let T2 be a decision tree that pre-
dicts under what conditions people in New Jersey live
in cities vs. the countryside. The analyst may want to
combine the two decision trees so as to be able to pre-
dict under what conditions people have a certain credit
rating and tend to live in a certain neighborhood.1

One option is to take a cross product between T1 and
T2. An alternative is to \stack" T2 below T1, i.e. each
leaf of T1 is further classi�ed on the basis of T2 (see
Figure 1). Such a classi�cation may be further ana-
lyzed, e.g., used as a basis of a group-by.

Example 3 (Computing Special Regions) Con-
sider a sales data warehouse with measures like
revenue, profit, and dimensions2 such as part, time,
location. The dimensions may have associated hier-
archies. For example, a \region" such as location
= `quebec/montreal' may be a child of the region
location = `quebec'. Suppose the analyst wants to
�nd the minimal regions which satisfy some aggre-
gate property P , e.g., P � \the total sales exceeds
$100,000", where minimality means children of the re-
gion do not satisfy P . The analyst might similarly
want to �nd regions whose sales are signi�cantly dif-
ferent from their siblings.

A key aspect exhibited by the above examples
is that the data set/space is split by data min-
ing/analysis operations into (possibly overlapping)
subsets or \regions". While the above examples, cho-
sen for the familiarity of most readers, focus on associ-
ations, decision trees, and group-bys, similar examples
can be drawn based on most known mining tasks like
data cubes, data spheres, histograms, and clusters (Ta-
ble 1 has more details). The main point of the above
examples is that interesting and powerful applications
can be supported by allowing di�erent mining, analy-
sis, and aggregation tasks to be combined at will. This
is what a multi-step process for KDD is all about. And

1The training data that led to the two trees may be presently
unavailable to the analyst, or doing the combined classi�cation
from scratch may take too long for his purpose.

2As we will show later, the dimensions of warehouses can also
be naturally modeled using the notion of dimensions proposed
in this paper.

this is the kind of uni�ed environment in which an ana-
lyst would like to operate for real mining applications.

However, such an environment does not exist (yet!).
In fact, many of these tasks are supported in isola-
tion by di�erent software packages which may not even
share the same data format (ascii, binary, etc.). More
fundamentally, there is no common foundation for all
these tasks to be interfaced with one another, not to
mention the di�culty in feeding the output of one op-
eration as input to another. Our contributions, set in
this context, answer the following questions:

� What are the \right" structures for uni-
�ed mining?: To ensure the compositionality
and closure properties of mining operations, we
model and manipulate regions and their descrip-
tions as �rst-class objects. We call a set of related
regions a dimension. Our 3W model consists of
three di�erent worlds: the intensional dimension
world (I-World), the extensional dimension world
(E-World), and the data world (D-World). (See
Figure 2.) In the I-World, each region is repre-
sented in its intensional form, i.e., as a description
of its members (Section 2). In the E-World, each
region is represented in its extensional form, i.e.,
by an explicit enumeration of its member tuples
w.r.t. a given data set (Section 4). The D-World
consists of raw data, e.g., in the form of relations,
from which regions and dimensions can be created
as a result of mining.

� How to manipulate the structures?: In each
of the three worlds, the structures can be manipu-
lated with an algebra of choice. A signi�cant con-
tribution here is the dimension algebra that we
develop for the I-World. It forms the key tool for
linking various data mining tasks and for applying
them in cascade (Section 3). We illustrate the ex-
pressive power of the algebra by showing how the
key steps in Examples 2 and 3 can be captured
using expressions in the dimension algebra.

� How to move in and out of the worlds?:
Having created the three worlds, we establish the
following \bridges" between them: the mine (�),
populate (�), lookup (�) operators, and a \macro"
called refresh () (Section 5). We show how real
multi-step data mining and analysis tasks out-
lined in earlier examples can be fully captured us-
ing expressions involving operators of the dimen-
sion algebra, and the various operators mentioned
above.

� How good/natural is the model?: We estab-
lish numerous identities involving the dimension
algebra and the other operators, thus establishing
their naturality. Furthermore, we argue by exam-
ples that the model and the operators are expres-
sive enough to support multi-step mining activ-

22

Risk
high

low
Risk Risk

high low
Risk Risk

high

degree

yes no

city age

city country

age

<25 >50in
[25,45]
income income

high low high low

(a) (b)

<30 >=30

<25 >50in
[25,45]
income income

high low high low
deg.

deg. deg.deg. deg.

Risk
high

&
city

yes no

age

<30 >=30

Risk
high

Risk
high

& &
city country

yes no

Risk
high

&
city

(c)

age

Figure 1: Stacking Decision Trees

α (populate)

Relations

Intensional
Dimensions

Extensional
Dimensions

Relational

Extended
Relational
Algebra

Dimension

Algebra

Algebra

(lookup)λ

µ (mine)

(regionize)η

γ (refresh)

Figure 2: The Di�erent Worlds in the 3W Model, and
the Bridges

ities that could not be done before (Sections 3
and 5).

� How well can the model be implemented?:
Many of these identities enable optimization via
query rewriting. In addition, we show that incre-
mental computation is possible for certain oper-
ations. In many cases, existing spatial indexing
and processing techniques can be applied. (See
Section 6.)

2 Regions, Dimensions, and Hierarchi-
cal Domains: The I-World

We begin with the question of what the \right" struc-
tures should be in a uni�ed mining/analysis model.
Our proposed structures center around three key no-
tions { regions, dimensions and hierarchical domains.

2.1 Intuition and Signi�cance

As shown in Examples 1-3, decision trees, data cubes,
associations, etc. all serve to split a given data set into
a collection of (possibly overlapping) subsets of tuples,
i.e., points in the space spanned by the data, which we
call \regions". Indeed, most well-known mining and

Task Shape of Hierarchies
Regions

Dec. Trees Isothetic Tree
Freq. Sets Isothetic Powerset Lattice

Log-lin. Models Isothetic Range Hierarchy
Depth Contours Convex Range Hierarchy
Data Spheres Convex Range Hierarchy
Data Cubes Isothetic Categorical
Histograms Isothetic Range Hierarchy
Clusters can be Adjacent Neighbors

Non-convex

Table 1: Common Data Mining Tasks and the Nature
of Their Split Regions

analysis operations e�ectively do a data space split-
ting, and create regions to achieve their ends (see Ta-
ble 1). The regions created vary on their spatial shapes
and on whether they overlap. For a majority of the
tasks shown, the regions created are axis-parallel and
hyper-rectangular. Such regions are called isothetic,
and admit very e�cient manipulation and processing.

The cube operator proposed in [11] at once splits up
a data set according to all possible group-bys and com-
putes the required aggregate measure for each group
(in our terminology, region). However, for the purpose
here, by data cube, we mean the operation of splitting
the data set into regions. Computation of the aggre-
gate can always be done by an explicit invocation of
an aggregate operation.

Intuitively, a dimension is a set of related regions.
With dimensions, an analyst can manipulate sets of
regions, often creating new ones. In Example 1, the set
of itemsets with support exceeding a given threshold
forms a dimension. Furthermore, the set of itemsets
containing the promotional item p forms another. The
set of frequent sets sought in Example 1 is then the
intersection of the two dimensions above.

Example 3 shows that dimensions come with inter-
esting structure that relates their constituent regions
in the form of a hierarchy. Examples include categor-
ical hierarchies in data warehouses, set inclusion for
frequent sets, and more generally, constraint implica-
tion for dimensions produced by most mining tasks.

23

Queries comparing a region to its children, ancestors,
siblings, etc. can add signi�cant value to the min-
ing/analysis exercise. To support this, we include hi-
erarchies as an integral part of our 3W model. Table 1
shows the hierarchies associated with dimensions pro-
duced by popular mining/analysis tasks.

2.2 Formal De�nitions

We next formalize the above notions, �rst focusing on
the I-World (intensional dimensions). Some of these
notions assume a di�erent form in the E-World (Sec-
tion 4).

De�nition 1 (Hierarchial Domains) A hierarchi-
cal domain is any non-empty set H on which the fol-
lowing predicates are de�ned: (i) equality, interpreted
as syntactic identity as usual, and (ii) the predicates
< and � , interpreted as binary relations over H .
We require that the graph (H; <) form a DAG, and
that � be the transitive closure of < .

For x; y 2 H , whenever x < y (resp., x� y), we
say y is a child (resp., descendant) of x. We abbrevi-
ate x < y _ x = y as x <= y and x� y _ x = y as
x�= y. We say x is an upper bound of y; z whenever
x�= y and x�= z. In this paper, we shall assume
that hierarchies form either a tree or a lattice. The
notion of a least upper bound is well de�ned on such
hierarchies, in the sense that it exists and is unique. In
particular, there is a greatest element, denoted all. El-
ements of a hierarchical domain are called hierarchical
values. For an attribute A, dom(A) denotes its do-
main. Attributes whose domains are hierarchical are
called hierarchical attributes.

De�nition 1 makes precise the notion of a hierarchy
in an abstract sense. Here are some concrete and com-
mon examples of hierarchies. For the frequent set com-
putation of Example 1, the lattice of all possible sub-
sets of the set of items is a hierarchical domain. Simi-
larly, given a range [A;B] (for a numeric attribute), the
set of all subranges of [A;B] forms a hierarchy called
the range hierarchy, with range containment acting as
the �= predicate. For decision trees, conjunctions
of inequalities form a hierarchy (modulo equivalence)
with (reverse) implication acting as �= . A hierar-
chical domain is thus an abstraction of such concrete
hierarchies found in practice.

In the I-World, a region is represented in the form
of descriptions of its members, i.e., region membership
criteria. To capture this, we use constraints. The con-
straints could involve either the attributes of the data
sets to be analyzed, or attributes which are computed
from those of the given data sets. In this �rst paper,
we restrict attention to attributes of the base data set.
We sometimes refer to these attributes as coordinates,
to emphasize their spatial nature.

De�nition 2 (Constraints) Let ~A = fA1; :::; Ang
be the attributes of a given data set (e.g., a relation).

Then by linear(~A), we denote the class of linear in-
equalities with real coe�cients over the data set at-

tributes ~A.

Regions produced by most mining/analysis opera-
tions are convex, which can be modeled as a set of
linear inequalities. Non-convex regions can be mod-
eled as a \union" of multiple convex regions.

De�nition 3 (Constraint Attributes)
A constraint attribute, denoted as rdfi, is a spe-
cial hierarchical attribute, whose domain is a set of

constraints drawn from conjunctions over linear(~A),
~A being the data set attributes. Each constraint
in dom(rdfi) is a conjunction of constraints of the
form: linear(A1; : : : ; An) � c, where c is a constant,
and A1; : : : ; An are attributes of the given data set.
For a tuple t from the given data set, we say that
t satis�es linear(A1; : : : ; An) � c i� the inequality
linear(t[A1]; : : : ; t[An]) � c evaluates to true. Sat-
isfaction generalizes to a set/conjunction of of con-
straints as usual.3 A constraint C drawn from the
domain of a constraint attribute is called a region de-
scription formula (RDF).

As an example, for the decision tree of Figure 1(a)
and Example 2, the �rst highRisk region is de-
scribed by the constraint age < 25, and the second
highRisk region by the constraint (25 � age � 45)
& (income = low). Both of these regions are iso-
thetic. As shown in Table 1, there are some commonly
used mining tasks that produce regions that are more
complex than isothetic, and require their membership
criteria to be captured as general linear constraints
(e.g. depth contours, clusters, etc.).

De�nition 4 (Region Identi�ers) Let rdfi be a
constraint attribute. We say that a hierarchical at-
tribute ridi is the region identi�er (RID) attribute
associated with rdfi, provided the domains of rdfi
and ridi (together with the hierarchy predicates)
are isomorphic, i.e., there is a 1-1 onto function
desc : dom(ridi) ! dom(rdfi), such that 8h; h0 2
dom(ridi) : h�= h0 i� desc(h0)) desc(h). Fur-
thermore, for equivalent constraints C; C0, h�1(C) =
h�1(C0).

Note that for every constraint attribute rdf, we can
always postulate a corresponding RID attribute rid.
RID attributes are similar in spirit to the notion of hi-
erarchical attributes introduced by Jagadish et al. [17]
in a di�erent context. The intuition is that the ridi

attribute, associated with a given constraint attribute

3We denote the empty conjucntion as the formula true, while
false is a representative member of the equivalence class of un-
satis�able constraints, e.g., A < c ^ A � c.

24

rdfi, allows us to encode the hierarchy relationships
such as < ; � . For instance, constraints for frequent
sets could be of the form beer = 1 ^ diaper = 1,
and they could be encoded using bit vectors as RIDs.
The encoding via RIDs serves two purposes. First, in
the E-world (Section 4), RIDs will be used as group
identi�ers to encode the membership of data tuples in
speci�c regions. Second, as will be detailed in Sec-
tion 6, RIDs enable e�cient checking of hierarchy re-
lationships, o�ering a fast alternative to the expen-
sive implication checking of constraints. Thus, RID
attributes help quickly detect hierarchy relatives of
speci�ed regions, similar to indices. Below, V denotes
the set of all possible values { both hierarchical and
non-hierarchical.

De�nition 5 (Regions) A dimension schema is a
set of attributes A = (rid1; :::;ridm;rdf1; :::;
rdfm; P1; :::; Pl), where rdfi is a constraint attribute
and ridi is the corresponding RID attribute, 1 � i �
m. A region over A is a partial function r : A!V
such that: (i) whenever r(A) is de�ned, A 2 A, we
have r(A) 2 dom(A), and (ii) r(ridi) is de�ned i�
r(rdfi) is.

From now on, we represent the RID and RDF at-
tributes of a dimension schema as the vectors ~rid and
~rdf. For a region r, we call r[~rid] as its RID-value,

or simply the RID. A few important remarks are in
order.

� The key reason why multiple RDF attributes are
allowed is to simplify the process of factoring di-
mensions.

� There can be other attributes/properties associ-
ated with a region. We denote these by the Pi's
in the above de�nition, and refer to them as the
property attributes. For the decision tree example
in Figure 1(a), P1 may be the decision-label at-
tribute indicating whether the region is highRisk
or lowRisk.

� Whenever a region r is unde�ned over a con-
straint attribute rdfi, the intended semantics
is that r(rdfi) = true. This corresponds to
r(ridi) = all .

De�nition 6 (Intensional Dimension Instance)
An instance D of a dimension schema A is a set of re-
gions over A.

For the example in Figure 1(a), D consists of eight
regions, corresponding to the eight nodes of the tree,
i.e., 5 leaf nodes and 3 non-leaf nodes. Notice that the
above de�nition does not insist that all regions in an
instance be de�ned over the same set of attributes. For
instance, for the non-leaf regions, the decision-label
could be unde�ned. Thus, a dimension instance can
be a heterogeneous collection of regions.

3 The Dimension Algebra

Having de�ned regions and dimensions, we next ad-
dress their manipulation in the I-World. Examples 1-3
demonstrate how manipulations of dimensions could
add signi�cant value to data mining and analysis.
Thereto, we propose the dimension algebra. Some op-
erators in the algebra are similar to those in the re-
lational algebra, while others are very di�erent. We
start with the latter ones.

3.1 The Selection Operator

The basic idea is to allow selections that invoke var-
ious spatial predicates such as overlap, containment,
etc. between regions. Any set of predicates that is
closed under negation may be chosen for this purpose.
The choice will impact the computations expressible
in the algebra. For the sake of concreteness, we as-
sume the spatial predicates are overlap (k), contain-
ment (�), disjointness (6k), and non-containment (6�).
In addition, for a property attribute P , we let pred(P)
be any predicate such as P � v, where � is =;�, etc.
(Allowable predicates on P s could also include com-
parison of two property attributes. We suppress the
obvious detail here.)

De�nition 7 (Selection) Let D be a dimension in-
stance over the schema A, rdfa;rdfb be constraint
attributes, C be a constant constraint drawn from the
domain of rdfa, and � be one of the spatial selection
predicates mentioned above. Furthermore, let rida

and ridb be the corresponding RID attributes in A,
h 2 dom(rida), and 4 be any of the hierarchical pred-
icates introduced in De�nition 1. Finally, let P be a
property attribute in A, and pred(P) be a predicate
involving P . We de�ne:

�rdfa � C(D) = fr j r 2 D & r[rdfa] �C is true g:
�rdfa �rdfb(D) = fr j r 2 D & r[rdfa] � r[rdfb]

is true g:
�rida4ridb

(D) = fr j r 2 D & r[rida]4r[ridb]
is true g:

�rida4h(D) = fr j r 2 D & r[rida]4h is true g:
�pred(P)(D) = fr j r 2 D & pred(r[P]) is true g:

Let D be the dimension consisting of the eight
regions/nodes of the decision tree shown in Fig-
ure 1(a), with one RDF attribute rdfa. The ex-
pression �

rdfak(25�age)
(D) �nds all the regions that

overlap with the constant region 25 � age. Similarly,
�decision-label=highRisk(D) identi�es all highRisk
regions.

Selection involving boolean combination of condi-
tions should be obvious. A subtle point, however,
is that the selection operator as de�ned above, con-
strains individual constraint attributes. In practice,
we might be interested in constraining the region
\bounded" by several constraint attributes. Here, note

25

�
(rdfa&rdfb)krdfc

(D) = �
(rdfakrdfc) ^ (rdfbkrdfc)

(D):

�
(rdfa&rdfb)kC

(D) = �
(rdfakC) ^ (rdfbkC)

(D):

�(rdfa&rdfb)�rdfc
(D) = �(rdfa�rdfc) ^ (rdfb�rdfc)(D):

�(rdfa&rdfb)�C(D) = �(rdfa�C) ^ (rdfb�C)(D):
�
(rdfa&rdfb)6krdfc

(D) = �
(rdfa 6krdfc) _ (rdfb 6krdfc)

(D):

�
(rdfa&rdfb)6kC

(D) = �
(rdfa 6krdfc) _ (rdfb 6kC)

(D):

�(rdfa&rdfb)6�rdfc
(D) = �(rdfa 6�rdfc) _ (rdfb 6�rdfc)

(D):

�(rdfa&rdfb)6�C
(D) = �(rdfa 6�C) _ (rdfb 6�C)

(D):

Table 2: A Sample of Identities for the Selection Op-
erator. See Theorem 1 for Precise Assumptions.
that for two constraints C1; C2, the region bounded by
C1 and C2 is captured by their conjunction C1&C2.
(We will denote the conjunction of selection condi-
tions Cond1 and Cond2 as �Cond1 ^Cond2 to avoid

confusion.) More precisely, let rdfa;rdfb;rdfc be
any constraint attributes of a dimension schema A
with instance D. Then �(rdfa&rdfb) � C(D) and
�(rdfa&rdfb) �rdfc(D) are de�ned in the obvious
way. The following theorem shows under certain cir-
cumstances this complex selection reduces to the sim-
pler one de�ned above. Similar identities, for boolean
combination of selection conditions, are suppressed for
brevity.

Theorem 1 Let D be an instance of the dimension
schema A. Let rdfa;rdfb;rdfc be the constraint at-
tributes in A, and C be a constant constraint drawn
from some constraint attribute domain. Then iden-
tities (3)-(4) and (7)-(8) listed in Table 2 hold. Fur-
thermore, whenever all constraints are isothetic and
rdfakrdfb is true, identities (1)-(2) and (5)-(6) hold.

The identities are non-trivial: for instance, with-
out the isothetic requirement, identities (1)-(2) and
(5)-(6) do not always hold. Suppose rdfa;rdfb are
any overlapping axis-parallel rectangles. Unless rdfc
is also isothetic, it could easily overlap the regions
rdfa & :rdfb and rdfb & :rdfa, without overlap-
ping rdfa & rdfb. On the other hand, we can show
that when all three are isothetic, this cannot happen.

3.2 The Projection Operator

Elimination of property attributes is classical and triv-
ial. On the other hand, elimination of constraint at-
tributes must ensure a consistency property in that the
corresponding RID attributes should be automatically
eliminated.

De�nition 8 (Projection) Let A be a dimension
schema,
D an instance of A, and rdfi; :::;rdfj , Pk; :::; P` a
subset of A consisting of constraint attributes and
property attributes. Then �rdfi;:::;rdfj ;Pk;:::;P`(D) =
fr[ridi; :::;ridj ;rdfi; :::;rdfj ; Pk; :::; P`] j r 2 Dg.

Intuitively, eliminating a constraint attribute rdfi
amounts to setting this value to true in every region.

Similarly, the value of the eliminated RID attribute is
essentially all in every region.

3.3 The Purge Operator: Generalized Dupli-
cate Elimination

A region is inconsistent provided the conjunction of the
RDF formulas de�ning it (i.e., its description) cannot
be satis�ed by any data point. For instance, a region
r with r[rdf1] = \A � 2" and r[rdf2] = \A � 3" is
clearly inconsistent Starting with only consistent re-
gions, our operators can create an inconsistent region.
Cartesian product (Section 10) is an example of such
an operation, since each of two regions may be con-
sistent by themselves, but not their conjunction (e.g.,
the third leaf from the left in Figure 1 c). The purge
operator, de�ned next, removes inconsistent regions.

De�nition 9 (Purge) Let D be any dimension over
the schema A = (rid1; :::;ridm; rdf1; :::; rdfm;
P1; :::; P`). Then the purge of D is de�ned by �(D) =
fr j r 2 D &

V
1�i�m r[rdfi] is satis�able g.

3.4 Other Operators

The operators introduced so far deal with the spatial
aspect of regions and dimensions. Below we discuss
the remaining operators, analogous to their relational
counterparts, that deal with the set/relation aspect of
dimensions.

De�nition 10 (Cartesian product) Let D1;D2 be
instances of two dimension schemas A1;A2 respec-
tively. For simplicity, assume the attributes in the
schemas A1;A2 are distinct. Then D1 � D2 =
f(r1; r2) j ri 2 Di; i = 1; 2g, with schema A1 [A2.

From a spatial perspective, cartesian product cre-
ates new regions which are obtained by taking the
pairwise intersection of regions in the two dimension
instances. The next operator is union. The main dis-
tinction with classical union is the absence of a union-
compatibility requirement. This permits a fully het-
erogeneous union, and hence dimensions that are het-
erogeneous collections of regions. Recall, whenever a
region is not de�ned on a certain rid attribute, we
treat it as the top element all of dom(rid), whereas
when it is not de�ned on a certain rdf attribute, we
treat it as the true constraint in dom(rdf).

De�nition 11 (Union) Let A1;A2 be two dimen-
sion schemas and D1;D2 corresponding instances.
Then the union of these dimensions has the schema
A1 [A2. The instance is de�ned by D1 [D2 = fr j
r 2 D1 _ r 2 D2g.

We say that two regions r1; r2 are equivalent pro-
vided the conjunctions of the constraint formulas of
their rdf attributes are equivalent, i.e., r1[~rdf] �
rs[~rdf].

26

�Cond(�rdfi;:::;rdfj ;Pk;:::;P`(D)) =
�rdfi;:::;rdfj ;Pk;:::;P`(�Cond(D)); whenever Cond
involves only the attributes ridi; :::;ridj ;rdfi; :::;rdfj ;
Pk; :::; P`:

�Cond(D1 �D2) = �Cond(D1)�D2; whenever Cond does
not involve any of the attributes of D2:

�rdfp;:::;rdfq ;rdfi;:::;rdfj ;Pa;:::;Pb;Pc;:::;Pd(D1 �D2) =
�rdfp;:::;rdfq ;Pa;:::;Pb(D1)� �rdfi;:::;rdfj ;Pc;:::;Pd(D2);
where rdfp; :::;rdfq; Pa; :::; Pb are in A1 but not in A2

and rdfi; :::;rdfj ; Pc; :::; Pd are in A2 but not in A1:
� and � distribute over [:
� distributes over � :
�rdfp;:::;rdfq ;Pi;:::;Pj (D1)� �rdfp;:::;rdfq ;Pi;:::;Pj (D2) �

�rdfp;:::;rdfq ;Pi;:::;Pj (D1 �D2):
�Cond1&Cond2 (D) = �Cond1 (D) \ �Cond2(D):

�Cond1&:Cond2
(D) = �Cond1(D)� �Cond2(D):

�Cond1_Cond2 (D) = �Cond1 (D) [�Cond2(D):

Table 3: A Sample of Identities Satis�ed by the Oper-
ators
De�nition 12 (Minus) Let A1;A2 be any dimen-
sion schemas and D1;D2 corresponding instances.
Then D1 �D2 = fr j r 2 D1 &
6 9s 2 D2 : s is equivalent to rg.

Note that just like the union operator, minus does
not require union-compatibility between its operands.
The result of minus contains exactly those regions in
D1 for which no equivalent region exists in D2. Thus,
the schema of the result is A1. A natural question is
why the minus operator is de�ned in terms of region
equivalence, instead of, e.g., region containment. The
next lemma below settles this question, justifying our
choice of primitive operators.

Lemma 1 Let D1;D2 be dimension instances of

schemas A1;A2, where Ai = (~ridi; ~rdfi; ~P i). Let
	 be de�ned as D1 	 D2 = fr j r 2 D1 & 6 9s 2
D2 : r is contained in sg. Then 	 can be simulated
using the minus operator. Speci�cally, D1 	 D2 =
D1��

~rid1; ~rdf1;~P 1

(� ~rdf2� ~rdf1
(D1 �D2)). But the

minus operator cannot be simulated using 	 and the
remaining operators.

Finally, there is the rename operator, denoted as
�B A(D), that renames attribute A of dimension D to
attribute B, for any attributes A;B. Its de�nition is
similar to that in the relational algebra. We sometimes
use �A0

 A(D) as an abbreviation of the cascade of
rename operators which rename each attribute A 2 A
to its primed version A0.

3.5 Expressiveness and Naturality of the Op-
erators

Thus far, we have completed the presentation of the
operators in the dimension algebra. The theorem be-
low establishes a number of identities analogous to
those for the relational algebra. This theorem is signif-
icant in two ways. First, it shows that the de�nitions
of the operators are natural. Second, these identities

can be used for rewriting algebraic queries into equiv-
alent and more e�cient ones.

Theorem 2 The operators of the dimension algebra
satisfy the identities listed in Table 3, where D;D1;D2

are dimension instances of schemas A;A1;A2.

Example 4 (Revisiting Example 3) In Exam-
ple 3, the analyst seeks to �nd a minimal region
satisfying some property P , where minimality is de-
�ned as a region satisfying P without any of its
children satisfying P . Let D be a dimension in-
stance consisting of all the regions satisfying prop-
erty P . (D itself may be computed as an alge-
braic expression; but this is not the focus here.) Let
hasChild(D) denote those regions in D such that the
region has at least one child also in D. The expressionS
1�i�m �A(�rid1=rid

0

1
^���^ridi�1=rid

0

i�1
^ridi < rid0

i

^ridi+1=rid
0

i+1
^:::^ridm=rid0

m
(D��A0

 A(D))) pre-

cisely computes hasChild(D), where the schema A
contains m rid attributes. This is essentially a \self-
join", relying on the hierarchical predicate < de-
�ned in De�nition 1 to select out those regions with
a child in D. The minimal regions in D that the an-
alyst seeks are found by D � hasChild(D). It should
be obvious that other similar hierarchical relation-
ships can be captured as algebraic expressions, e.g.,
hasNoChild(D), hasNoPar(D), hasAnc(D).

Example 5 (Revisiting Example 2) In Exam-
ple 2, we motivate stacking decision tree T2 below
tree T1, i.e., each leaf of T1 is further classi�ed based
on T2. We leave it to the reader to verify that the
expression hasNoChild(T1) � T2 [hasChild(T1) �
hasNoPar(T2) indeed computes the stacking of T1 on
T2. To take full advantage of the fact that there is
no union-compatibility requirement, as shown in Def-
inition 11, we can simplify the above expression to
hasNoChild(T1) � T2 [hasChild(T1). The �rst
part deals with stacking T2 under each leaf node of
T1, whereas the second part simply includes the non-
leaf nodes of T1 in the �nal result.

4 The Other Two Worlds

So far, we have introduced regions and dimensions in
the I-World, and described how they can be manip-
ulated. In this section, we turn our attention to the
E-World and the D-World.

4.1 The E-World and Extensional Dimensions

In the I-world, regions in a dimension are represented
by descriptions of their members. However, often
times, an extensional representation of a dimension is
also valuable. By \extensional", we mean that for a
given data set E, the dimension is represented by an
explicit enumeration of the tuples belonging to each
region.

27

De�nition 13 (Extensional Dimension)
An extensional dimension schema is a set of attributes
A = (rid1; :::;ridm; A1; :::; An), where rids are hier-
archical attributes and the As are normal attributes.
An extensional dimension instance over A is a set of
tuples over it.

A region r 2 E is identi�ed by its RID-value r[~rid],
and its members are precisely those tuples whose RID
equals this value. Note that the As are classical at-
tributes. Thus, an extensional dimension is a gener-
alized partition of a data set (since regions can over-
lap). For the example illustrated in Figure 1(a), the
intensional dimension D consists of eight regions, cor-
responding to the eight nodes. For a given (training or
test) data set E, the analyst may want to \populate"
D to �nd out exactly which tuples in E are in each
region (based on which he may take further actions).
While we will formalize the \populate" operation in
Section 5, the result of this operation is an extensional
dimension E . Each tuple in E is assigned an appropri-
ate RID in E , which indicates which region in D (and
hence in E) it belongs to.

An intensional dimension schema and an exten-
sional dimension schema are compatible provided they
have the same set of RID (i.e. hierarchical) attributes.
Let D be an intensional dimension and E be an exten-
sional dimension such that their schemas are compati-
ble. We say that a tuple tr 2 E corresponds to a region
r 2 D provided that both of them agree on their RIDs,
i.e., tr[~rid] = r[~rid].

For the same reason that we allow intensional di-
mensions to be manipulated with the dimension al-
gebra, in the E-world, we provide an algebra for the
manipulation of extensional dimensions. Note that ex-
cept for the ~rid attributes, an extensional dimension is
really like an ordinary relation. Thus, an appropriate
algebra for the E-World is the relational algebra ex-
tended with aggregation and with some modi�cations.
For brevity, we only remark on the adaptations to the
extended (relational) algebra here.

Projection might involve any subset of the RID at-
tributes and/or the classical attributes. Intuitively,
eliminating an RID attribute via projection amounts
to setting the value of that attribute to the top ele-
ment all . Finally, selection might involve any conven-
tional selection predicate over the classical attributes.
In addition, as in De�nition 7, we also permit selec-
tion predicates of the form ridi 4 ridj over RID at-
tributes, where 4 is one of the hierarchical predicates.
Join can be simulated as usual via Cartesian product
and selection.

4.2 The D-World and Why

Finally, there is the D-World, which can be viewed
as consisting of a relational database (i.e., no RID or
RDF attribtues). Thus, the natural algebra of choice

for this world is the relational algebra (extended with
aggregation). The key di�erence between extensional
dimensions in the E-world and relations in the D-world
is that the former has a strong region identity, whereas
the latter is completely free of it. One may wonder
why the latter is worth included in the model after all.
From our empirical observation of how a real data min-
ing and analysis process works, an analyst often spends
considerable time operating in the D-World during the
entire process. At the beginning, time may be spent on
data integration and data preparation. But even af-
terwards, considerable time may again be spent in the
D-World for data transformation and renewed prepa-
ration. By including the D-World in the 3W model,
we can more faithfully model the interactions among
the worlds, the topic of the next section.

5 Moving In and Out of the Worlds

As discussed above, each of the three worlds has its
unique role to play. And the full power of the 3W
model is only realized when an analyst is allowed to
freely move between the worlds. In this section, we
propose the \bridging" operators to facilitate this.

5.1 The Bridging Operators

The �rst operation amounts to \populating" the re-
gions in an intensional dimension D with tuples from a
given data set E, producing an extensional dimension
E . Intuitively, for each region in D, there is a corre-
sponding \extensional" region in E which contains just
those tuples in E that satisfy the region description.

De�nition 14 (Populate) Let D be an intensional
dimension with dimension schema (rid1; : : : ; ridm;
rdf1; : : : ;rdfm; P1; : : : ; Pl) and E be a relation with
schema (A1; : : : ; An), such that the set of (coordi-
nate) attributes included in the constraints in the
domains of each rdfi is a subset of fA1; : : : ; Ang.
Then �(D; E) produces an extensional dimension with
schema (rid1; : : : ;ridm; A1; : : : ; An; P1; : : : ; Pl), and
instance �(D; E) = ft j 9r 2 D : 9tr 2 E :

t[~rid] = r[~rid] & t[~A] = tr[~A] & t[~P] = r[~P] &
tr satis�es r[~rdf]g, where satisfaction is in the sense
formalized in De�nition 3.

For instance, populating the decision tree of Fig-
ure 1(a) with a test relation would create an exten-
sional dimension, which can be used to evaluate the
accuracy of the decision tree. Similarly, populating a
collection of frequent sets with a transaction database
would give an extensional dimension with each region
containing the set of supporting transactions.

De�nition 15 (Mine) The mine operation, �, given
a parameter p, maps a relation E to an intensional
dimension D, i.e., D = �(E; p).

28

Typical data mining operations create intensional
dimensions. We abstract this in the form of the mine
operation. Examples of � include decision tree, fre-
quent sets, data cube, depth contour, etc. We may re-
gard p as a number that speci�es whether the desired
intensional dimension is a decision tree, a depth con-
tour, or any task mentioned in Table 1. For clarity, we
use short strings instead of numbers in our examples.
For example, �(E; dc) corresponds to the data cube
computation. De�nition 15 above only de�nes the type
of the mine operator at the level of the model. Its ex-
act de�nition and computation depend entirely on the
speci�c mining task invoked. In practice, invocation of
� would result in the running of a relevant (fast) min-
ing algorithm. When a mining operation is invoked,
we sometimes get both an intensional description of
regions and an enumeration of the region members. It
is convenient to separate these intensional and exten-
sional aspects of a dimension for purposes of algebraic
manipulation (as we have done). The extensional di-
mension E corresponding to an intensional dimension
mined from a relation E can then be captured via the
expression �(�(E; p); E).

Operation � allows us to relate a data set (D-world)
to an intensional dimension (I-world) and, as a result,
it lets us move to the E-world. The mine operator lets
us move from the D-world to the I-world. (See Fig-
ure 2.) Next, we focus on operators bridging the I-
and E-worlds. One important such situation is when
the analyst has already obtained an extensional di-
mension E = �(�(E; p); E), but may wish to \recall"
or \look up" which intensional dimension gave rise to
E . To capture this, we propose a lookup operator �.

De�nition 16 (Lookup) Let E be any exten-
sional dimension over the schema (rid1; : : : ;ridm;
A1; : : : ; An). Then �(E) = f(t[rid1]; : : : ; t[ridm];
desc(t[rid1]); : : : ; desc(t[ridm])) j t 2 Eg, where
desc(rid) is the function that represents the 1-1 corre-
spondence between RIDs and constraints (RDFs), as
de�ned in De�nition 4.

Whenever the analyst wants to �nd out the inten-
sional descriptions of regions in E , as opposed to enu-
merations of their member tuples, � is used to look
up the appropriate hierarchical domain and return the
corresponding region description formulas.

Finally, we de�ne the refresh macro, below, as a
matter of convenience:

De�nition 17 (Refresh) Let E be a data set and
D1; : : : ;Dn be intensional dimensions based on E. Let
Exp(D1; : : : ;Dn) be any expression in the dimension
algebra. Then the refresh of Exp w.r.t. the data set
E is de�ned as �(Exp(D1; : : : ;Dn); E).

5.2 Completing the Examples

The focus of this section is to show that the machinery
in this paper is rich enough to support multi-step min-

ing activities in a clean algebraic framework. We do
this by following through with the running examples
developed in the earlier sections.

Example 6 (Example 3{ The Full Story) Let
us return to the task set out in Example 3. To be-
gin, there is the data set E. By applying a data
cube operator, the analyst gets D = �(E; dc), from
which he also gets the corresponding extensional di-
mension as E = �(�(E; dc); E). Let agg(E) be an
expression in extended relational algebra that com-
putes total sales grouped by region ids. (The detail
of this standard expression is beside the point here.)
Then E 0 = �totSales�100000(agg(E)) gives an exten-

sional dimension, containing those regions in E that
grossed a sale over $100,000. To obtain the intensional
descriptions of the regions in E 0, the analyst performs
a lookup with D0 = �(E 0). D0 contains all regions sat-
isfying the predicate on sales. To obtain the minimal
regions satisfying this property, all the analyst has to
do is plug in D0 in place of the term D in the dimension
algebra expression for hasNoChild (D) given in Exam-
ple 4. This completes the task.

Example 7 (Example 1 { The Full Story) To
perform the task set out in Example 1 with the trans-
action data set E, the analyst begins with the fre-
quent set mining, with D = �(E; fs). To restrict the
computation to those frequent sets containing the pro-
motional item p, the analyst would instead use the ex-
pression D0 = �rdf�fpg(D), thus �nding constrained
frequent sets. He can do the rollup on frequent sets
(from items to class of items) by computing the par-
ents of the regions in D0 using Cartesian product and
selection based on hierarchy predicates. By populating
the resulting dimension w.r.t. E, he obtains an exten-
sional dimension, say E , which shows the transaction
sets corresponding to D0. By applying a decision tree
construction to E , he then obtains another intensional
dimension, say D". This completes the task.

A generic remark about our examples is that in or-
der to facilitate the development of the process within
the algebra, we have explained it step by step. In prac-
tice, however, an analyst who wishes to conduct such a
multi-step mining/analysis process, may wish to eval-
uate complex expressions in one shot. The system can
then exploit the properties of the operators involved,
in optimizing the computation e�ectively. A simple ex-
ample is the computation of constrained frequent sets
via �rdf�fpg(D) in Example 7. As pointed out in
Section 1, many optimized algorithms have been de-
veloped for computing constrained frequent patterns
in recent years, which can be leveraged. See Section 6
for more details on optimization.

5.3 Inter-World Interactions

Given the importance of the bridge operators in link-
ing the worlds, a natural question is how do the various

29

�((D1 [D2); E) = �(D1; E) [�(D2; E):
�(�Cond1 ^ Cond2 (D); E) =

�(�Cond1(D); E) \ �(�Cond2 (D); E):
�(�Cond1 ^ :Cond2(D); E) = �(�Cond1 (D); E) �

�(�Cond2(D); E): Similar identities hold for others
boolean combinations.

Let C be a constraint from the domain of rdfA and
C0 from the domain ofrdfB : Then:

(a) �C�rdfA
(�(E; dc)) = �(�C (E); dc):

(E.g., all regions contained in location = montreal.) A
similar identity holds for selection on RID attributes.

(b) �
(rdfA&rdfB)�(C&C0)(�(E; dc)) =

�(�A;B(�C&C0(E)); dc): (E.g., all regions containing
location = montreal & productClass = meat.) A
similar identity holds for selection on RID attributes.

�rdfAi ;:::;rdfAj
(�(E; dc)) = �(�Ai;:::;Aj (E);dc):

�(E1 [E2; dc) = �(E1;dc) [�(E2;dc); where E1; E2 are
any union-compatible data sets.

�(E1 � E2; dc) = �(E1;dc)� �(E2;dc):

Table 4: A Sample of Inter-World Identities
operators interact. The following theorem answers this
question. Identity (1) in Table 4 says the populate op-
erator respects the structure of the I- and E-worlds in
that populating the union of two dimensions coincides
with taking the union of the two populations. A sim-
ilar remark holds for product. Similarly, as shown in
identities (2) and (3), boolean combinations of selec-
tion conditions in the intensional world are faithfully
mapped by � to corresponding set-theoretic operations
in the extensional world.

Theorem 3 Let D1;D2 be any intensional dimen-
sions and E be a data set. Then identities (1)-(3)
in Table 4 hold.

On the one hand, the kinds of identities above attest
to the naturality of our de�nitions. On the other, they
are useful for query optimization via query rewriting.
Indeed, for some special cases, we can even go beyond
the above identities. For instance, consider the data
cube operator. Recall that in our framework, the cube
operator merely splits up a data set into regions cor-
responding to all possible group-bys. For cube, we
can consider that the attributes mentioned in the con-
straints (RDFs), as also those used to construct RIDs,
are a subset of the attributes of the given relation. To
emphasize this, let us use ridA (resp., rdfA) to denote
the RID (resp., RDF) attribute associated with at-
tribute A of the relation. The following theorem deals
with the data cube operator. Similar, but somewhat
di�erent, identities hold for the frequent sets operator,
but are omitted for lack of space.

Theorem 4 Let E;E1; E2 be data sets. Then for
data cube computation, identities (4)-(7) in Table 4
hold.

6 Implementation and Optimization
Issues

In previous sections, we showed that the framework
proposed here can e�ectively support multi-step min-

1. �((D1 [D2); E) = E1 [E2.

2. �(�Cond(D1); E) = ft 2 E1 j desc(t[~rid]) satis�es Cond g.

3. �(�rdfi;:::;rdfj ;Pk;:::;P`(D1); E) = �
ridi;:::;ridj ;

~A1

(E1).

4. �((D1 �D2); E) = E1 � E2.

5. �(�(D1); E) = ft j t 2 E1; desc(t[~rid]) is consistent g.

Table 5: E�cient Computation of the Refresh Opera-
tion

1. �(�Cond(E1)) = fr 2 D1 j 9t : t 2
�Cond(E1); desc(t[~rid]) = r[~rdf]; t[~rid] = r[~rid]g.

2. �(� ~X
(E1)) = �ridi;:::;ridj ;rdfi;:::;rdfj (D1), where ~X \

A1 = fridi; :::;ridjg.

3. �(E1 [E2) = D1 [D2.

4. �(E1 � E2)) = D1 �D2.

5. �(E1 � E2) = D1 �D2.

Table 6: E�cient Computation of the Lookup Opera-
tion
ing/analysis activities, that could not be done before
within one clean algebraic setting. The question we
address in this section is how e�ciently we can imple-
ment the proposed framework. Some evidence for the
possibility for e�cient implementation was provided
in earlier sections through identities. For space limita-
tions, our discussion here must remain at a somewhat
high level. As we argue below, the main reasons behind
e�cient implementability are: (1) certain key opera-
tions admit e�cient incremental processing; and (2)
many other key operations can bene�t from spatial
indexing and processing, a strength of the database
community.

6.1 Incremental Computation
Two main operations linking di�erent worlds are re-
fresh and lookup, since they help maintain extensional
(resp., intensional) dimensions in sync with manipula-
tions being done on the intensional (resp., extensional)
dimensions.

Theorem 5 Let D1;D2 be intensional dimensions, E
be any data set, and E1; E2 be the corresponding ex-
tensional dimensions based on E, i.e., E i = �(Di; E).

Suppose ~A1 is the set of non-RID attributes of E1.
Then the identities listed in Table 5 hold.

The above theorem shows that the refresh macro,
as de�ned in De�nition 17, admits e�cient incremen-
tal processing. Given that the extensional dimension
E i has been created based on the intensional counter-
part Di, refreshing E i w.r.t. an additional dimension
algebra operation (and hence a sequence of operations)
on Di, can be done solely by examining the content of
the existing E i.

The following result shows that lookup { another
key bridging operation { admits incremental process-
ing as well.

30

Theorem 6 Let E1; E2 be two extensional dimensions
andD1;D2 be their intensional counterparts, i.e., Di =
�(E i). Suppose also that the schema of Di isAi. Then
the identities listed in Table 6 hold.

6.2 Application of Spatial Techniques

So far, we have considered the optimization of the
bridging operations: refresh (which is essentially an
incremental version of populate) and lookup. In the
previous sections, we established similar identities for
other operators including (some special cases of) the
mine operator. Next, we turn our attention to e�cient
implementation of the dimension algebra.

The main problems involving constraints which di-
rectly impact the e�ciency of dimension algebra at
a logical level, are testing constraint implication (and
equivalence), consistency checking, and constraint sim-
pli�cation. It is important to note that, as shown in
Table 1, numerous existing data mining tasks produce
isothetic regions, for which all three problems can be
solved e�ciently. Speci�cally, in this case, the con-
straints are of the form Ai�c, � being � or �, and the
problems can be solved in linear time.

At a physical level, known spatial indexing tech-
niques can be e�ectively leveraged to help quickly
locate points in isothetic regions. Standard multi-
dimensional indexing techniques, such as R-trees and
its variants [12, 6], are directly applicable to the check-
ing of such spatial predicates as overlap, containment,
etc. Note that in traditional spatial processing, index-
ing structures like R-trees have proved useful for poly-
gons that are not even isothetic (e.g., convex), with
the addition of a re�nement phase. This suggests that
such index structures should prove equally e�ective in
the implementation of key dimension algebra opera-
tors, whether the regions are isothetic or not.

Finally, the RID attributes can often be encoded so
that the checking hierarchical predicates can be per-
formed e�ciently. For example, when the hierarchy
in question is a tree or can be factored into a prod-
uct of tree hierarchies, all hierarchy predicates can be
checked in linear time, using the ideas developed in
[17]. Examples include categorical hierarchies, e.g.,
location, product, as well as decision trees. A hi-
erarchy de�ned by a tuple of hierarchical attributes,
each of which has a tree hierarchy, is a natural exam-
ple of a hierarchy that can be factored into trees. For
range hierarchies (over total orders or partial orders),
merely encoding the endpoints of the ranges gives an
e�cient encoding, from which parents, children, an-
cestors, etc. can be easily enumerated. For instance,
the RID [2, 10] has [1,10] and [2,11] as parents, and
[2,9] and [3,10] as children. Finally, for lattices corre-
sponding to powersets (e.g., frequent sets), a number
of techniques exist. For instance, we could use a bit
vector (made suitably compact to save space) for e�-
cient checking of hierarchy predicates.

7 Related Work

Earlier, we have mentioned numerous data mining
studies and how they can be classi�ed into two genera-
tions. Below we discuss a few studies that are also very
related to the subject matter of this paper { namely,
the development of a model and algebra for data min-
ing. In [16], Mannila and Imielinski discussed their
vision of manipulating association rules algebraically.
The 3W model developed here is a concrete proposal,
and is more general, as it models not only association
rules, but also many well-known data mining and anal-
ysis operations, such as decision trees, data spheres,
etc. In [23], Meo et al. proposed adding an associa-
tion rule operator to SQL. Again, our proposed 3W
model is far more general and fundamental.

The dimension algebra developed here is related
to constraint query languages in general [19, 7] and
geometric query languages in particular [26, 13].
Paredaens et al. [26], and Gyssens et al. [13] con-
sider constraint languages that are in the FO[R] class,
i.e., �rst-order logic augmented with polynomial in-
equalities over reals, and relation variables with �xed
arities. This class of constraints are shown to have nice
properties, such as decidability for equivalence check-
ing. Our dimension algebra uses constraints restricted
to linear[R], and therefore enjoys at least the prop-
erties of FO[R].

The notion of hierarchical domains we use in this
paper was �rst proposed by Jagadish et al. [17]. How-
ever, they con�ne attention to categorical tree hier-
archies in data warehouses. By contrast, we use hi-
erarchies (via the notion of dimensions) as a central
unifying concept for disparate mining tasks and for
warehousing, and permit general lattice-based hiear-
rchies. Finally, the notion of constraint domains was
not considered by them, while this notion plays a piv-
otal role in the I-world. Besides, we propose an algebra
for manipulating dimensions (among other things).

8 Summary and Future Work

We have presented the 3W Model and an algebraic
framework for uni�ed data mining and analysis. It al-
lows the input of one operation to be the output of
another. We have shown via examples and numer-
ous operator identities that the proposed framework is
natural and is expressive enough to support multi-step
mining processes within one clean algebraic setting,
to our knowledge, for the �rst time in the literature.
Furthermore, we have also demonstrated and argued
that the proposed framework can be e�ciently imple-
mented.

This being the �rst paper on uni�ed mining and
analysis within a formal framework, it opens up sev-
eral important questions for future research. Mining-
query optimization needs to be thoroughly investi-
gated { both at the logical level of query rewriting

31

using identities and at the physical level of utilizing
spatial database techniques. It is very important to
develop a prototype system of the proposed frame-
work for extensive empirical evaluation, which may
lead to many interesting algorithmic and optimization
problems. A third issue is tight integration of data
warehousing and mining, for which we have taken a
�rst step by using dimensions as a unifying concept
for warehouses and the result of mining tasks. But
much more work remains to be done. Our ongoing
work addresses these questions.

References

[1] C. Aggarwal and P. Yu. Online Generation of Associ-
ation Rules. In Proc. 1998 ICDE, pp 402{411.

[2] R. Agrawal, J. Gehrke, D. Gunopolos and P. Ragha-
van. Automatic Subspace Clustering of High Dimen-
sional Data for Data Mining Applications. In Proc.
1998 SIGMOD, pp. 94{105.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. 1993 SIGMOD, pp 207{216.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 VLDB, pp 487{499.

[5] M. Ankerst, M. Breunig, H.P. Kriegel and J. Sander.
Optics: Ordering Points to Identify the Clustering
Structure. In Proc. 1999 SIGMOD, pp. 49{60.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger. newblock The R*-Tree: an E�cient and Ro-
bust Access Method for Points and Rectangles. In
Proc. 1990 SIGMOD, pp. 322{331.

[7] M. Benedikt, G. Dong, L. Libkin, and L. Wong. Re-
lational Expressive Power of Constraint Query Lan-
guages. Journal of the ACM, 45:1, 1998, pp. 1{34.

[8] S. Brin, R. Motwani, and C. Silverstein. Beyond mar-
ket basket: Generalizing association rules to correla-
tions. In Proc. 1997 SIGMOD, pp 265{276.

[9] S. Chaudhuri. Data mining and database systems:
Where is the intersection? Bulletin of the Technical
Committee on Data Engineering, 21:4{8, March 1998.

[10] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:
Sequential Pattern Mining with Regular Expression
Constraints, In Proc. 1999 VLDB, pp 223{234.

[11] J. Gray et al. Data Cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-
totals. Proc. 12th ICDE, 1996, pp. 152{159.

[12] R. Guttmann. A Dynamic Index Structure for Spatial
Searching. In Proc. 1984 SIGMOD, pp. 47{57.

[13] M. Gyssens, J. Van den Bussche, and D. Van Gucht.
Complete Geometric Query Languages. J. of Comput.
& Syst. Sciences 58:3(483-511) 1999.

[14] J. Han and Y. Fu. Discovery of multiple-level associa-
tion rules from large databases. In Proc. 1995 VLDB,
pp 420{431.

[15] C. Hidber. Online Association Rule Mining. In Proc.
1999 SIGMOD, pp 145{156.

[16] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. Communications of ACM,
39:58{64, 1996.

[17] H. Jagadish, L. Lakshmanan, and D. Srivastava.
What can Hierarchies do for Data Warehouses? In
Proc. 1999 VLDB, pp. 530{541.

[18] T. Johnson, I. Kwok, and R. Ng. Fast Computation of
2-Dimensional Depth Contours. In Proc. 1998 KDD,
pp. 224{228.

[19] P. Kannellakis, G. Kuper, and P. Revesz. Constraint
Query Languages. Journal of Computer and System
Sciences, 51:1, 1995, pp. 26{52.

[20] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivo-
nen, and A.I. Verkamo. Finding interesting rules from
large sets of discovered association rules. In Proc. 1994
CIKM, pp 401{408.

[21] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang.
Optimization of constrained frequent set queries with
2-variable constraints. In Proc. 1999 SIGMOD, pp.
157{168.

[22] H. Mannila, H Toivonen, and A. I. Verkamo. Dis-
covery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1, 1997, pp. 259-
289.

[23] R. Meo, G. Pasila, and S. Ceri. A New SQL-like Op-
erator for Mining Association Rules. In Proc. 1996
VLDB, pp. 122{133.

[24] R. Ng and J. Han. E�cient and E�ective Cluster-
ing Methods for Spatial Data Mining. In Proc. 1994
VLDB, pp. 144-155.

[25] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of con-
strained associations rules. In Proc. 1998 SIGMOD,
pp. 13{24.

[26] J. Paradaens, J. Van dn Bussche, and D. Van Gucht.
Towards a Theory of Spatial Database Queries. In
Proc. 1994 PODS, pp. 279{288.

[27] J. Quinlan. Induction of Decision Trees. Machine
Learning, 1, 1986, pp. 81{106.

[28] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database sys-
tems: Alternatives and implications. In Proc. 1998
SIGMOD, pp 343{354.

[29] C. Silverstein, S. Brin, R. Motwani, and J. Ullman.
Scalable techniques for mining causal structures. In
Proc. 1998 VLDB, pp 594{605.

[30] D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton,
R. Motwani, and S. Nestorov. Query ocks: A gen-
eralization of association-rule mining. In Proc. 1998
SIGMOD, pp 1{12.

[31] T. Zhang, R. Ramakrishnan and M. Livny. BIRCH:
an E�cient Data Clustering Method for Very Large
Databases. In Proc. 1996 SIGMOD, pp. 103{114.

32

	Am241.pdf
	eur240v2.pdf
	asia157.pdf
	Eur136V2.pdf

