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Abstract 

Database technology is one of the cornerstones for 
the new millennium’s IT landscape. However, 
database systems as a unit of code packaging and 
deployment are at a crossroad: commercial 
systems have been adding features for a long time 
and have now reached complexity that makes them 
a difficult choice, in terms of their "gain/pain 
ratio", as a central platform for value-added 
information services such as ERP or e-commerce. 
It is critical that database systems be easy to 
manage, predictable in their performance 
characteristics, and ultimately self-tuning. For this 
elusive goal, RISC-style simplification of server 
functionality and interfaces is absolutely crucial. 
We suggest a radical architectural departure in 
which database technology is packaged into much 
smaller RISC-style data managers with lean, 
specialized APIs, and with built-in self-assessment 
and auto-tuning capabilities 

 

1.  The Need for a New Departure 
Database technology has an extremely successful track 
record as a backbone of information technology (IT) 
throughout the last three decades. High-level declarative 
query languages like SQL and atomic transactions are key 
assets in the cost-effective development and maintenance 
of information systems. Furthermore, database technology 
continues to play a major role in the trends of our modern 
cyberspace society with applications ranging from web-
based applications/services, and digital libraries to 
information mining on business as well as scientific data. 
Thus, database technology has impressively proven its 
benefits and seems to remain crucially relevant in the new 
millennium as well.  
 

Success is a lousy teacher (to paraphrase Bill Gates), and 
therefore we should not conclude that the database 
system, as the unit of engineering, deploying, and 
operating packaged database technology, is in good 
shape.  A closer look at some important application areas 
and major trends in the software industry strongly 
indicates that database systems have an overly low 
“gain/pain ratio”. First, with the dramatic drop of 
hardware and software prices, the expenses due to human 
administration and tuning staff dominate the cost of 
ownership for a database system. The complexity and cost 
of these feed-and-care tasks is likely to prohibit database 
systems from further playing their traditionally prominent 
role in the future IT infrastructure. Next, database 
technology is more likely to be adopted in unbundled and 
dispersed form within higher-level application services.  
 
Both of the above problems stem from packaging all 
database technology into a single unit of development, 
maintenance, deployment, and operation. We argue that 
this architecture is no longer appropriate for the new age 
of cyberspace applications. The alternative approach that 
we envision and advocate in this paper is to provide 
RISC-style, functionally restricted, specialized data 
managers that have a narrow interface as well as a smaller 
footprint and are more amenable to automatic tuning.  
 

The rest of the paper is organized as follows. Section 2 
puts together some important observations indicating that 
database systems in their traditional form are in crisis. 
Section 3 briefly reviews earlier attempts for a new 
architectural departure along the lines of the current 
paper, and discusses why they did not catch on. Section 4 
outlines the envisioned architecture with emphasis on 
RISC-style simplification of data-management 
components and consequences for the viability of auto-
tuning. Section 5 outlines a possible research agenda 
towards our vision. 

2.  Crisis Indicators 
To begin our analysis, let us put together a few important 
observations on how database systems are perceived by 
customers, vendors, and the research community. 

Observation 1: Featurism drives products beyond 
manageability. Database systems offer more and more 
features, leading to extremely broad and thus complex 
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interfaces. Quite often novel features are more a 
marketing issue rather than a real application need or 
technological advance; for example, a database system 
vendor may decide to support a fancy type of join or 
spatial index in the next product release because the major 
competitors have already announced this feature. As a 
result, database systems become overloaded with 
functionality, increasing the complexity of maintaining 
the system’s code base as well as installing and managing 
the system. The irony of this trend lies in the fact that 
each individual customer (e.g., a small enterprise) only 
makes use of a tiny fraction of the system’s features and 
many high-end features are hardly ever exercised at all.  

 
Observation 2: SQL is painful. A big headache that comes 
with a database system is the SQL language. It is the 
union of all conceivable features (many of which are 
rarely used or should be discouraged to use anyway) and 
is way too complex for the typical application developer. 
Its core, say selection-projection-join queries and 
aggregation, is extremely useful, but we doubt that there 
is wide and wise use of all the bells and whistles.  
Understanding semantics of SQL (not even of SQL-92), 
covering all combinations of nested (and correlated) 
subqueries, null values, triggers, ADT functions, etc. is a 
nightmare. Teaching SQL typically focuses on the core, 
and leaves the featurism as a “learning-on-the-job” life 
experience. Some trade magazines occasionally pose SQL 
quizzes where the challenge is to express a complicated 
information request in a single SQL statement. Those 
statements run over several pages, and are hardly 
comprehensible. When programmers adopt this style in 
real applications and given the inherent difficulty of 
debugging a very high-level “declarative” statement, it is 
extremely hard if not impossible to gain high confidence 
that the query is correct in capturing the users’ 
information needs.  In fact, good SQL programming in 
many cases decomposes complex requests into a sequence 
of simpler SQL statements.  
 
Observation 3: Performance is unpredictable. 
Commercial database engines are among the most 
sophisticated pieces of software that have ever been built 
in the history of computer technology. Furthermore, as 
product releases have been driven by the time-to-market 
pressure for quite a few years, these systems have little 
leeway for redesigning major components so that adding 
features and enhancements usually increases the code size 
and complexity and, ultimately, the general “software 
entropy” of the system. The scary consequence is that 
database systems become inherently unpredictable in their 
exact behavior and, especially, performance. Individual 
components like query optimizers may already have 
crossed the critical complexity barrier. There is probably 
no single person in the world who fully understands all 
subtleties of the complex interplay of rewrite rules, 
approximate cost models, and search-space traversal 
heuristics that underlie the optimization of complex 
queries. Contrast this dilemma with the emerging need for 

performance and service quality guarantees in e-
commerce, digital libraries, and other Internet 
applications. The PTAC report has rightly emphasized: 
“our ability to analyze and predict the performance of the 
enormously complex software systems that lie at the core 
of our economy is painfully inadequate” [18]. 
 
Observation 4: Tuning is a nightmare and auto-tuning is 
wishful thinking at this stage. The wide diversity of 
applications for a given database system makes it 
impossible to provide universally good performance by 
solely having a well-engineered product. Rather all 
commercial database systems offer a variety of “tuning 
knobs” that allow the customer to adjust certain system 
parameters to the specific workload characteristics of the 
application. These knobs include index selection, data 
placement across parallel disks, and other aspects of 
physical database design, query optimizer hints, 
thresholds that govern the partitioning of memory or 
multiprogramming level in a multi-user environment. 
Reasonable settings for such critical parameters for a 
complex application often depend on the expertise and 
experience of highly skilled tuning gurus and/or time-
consuming trial-and-error experimentation; both ways are 
expensive and tend to dominate the cost of ownership for 
a database system. “Auto-tuning” capabilities and “zero-
admin” systems have been put on the research and 
development agenda as high priority topics for several 
years (see, e.g., [2]), but despite some advances on 
individual issues (e.g., [4,7,8,10,24]) progress on the big 
picture of self-tuning system architectures is slow and a 
breakthrough is not nearly in sight. Although commercial 
systems have admittedly improved on ease of use, many 
tuning knobs are merely disguised by introducing internal 
thresholds that still have to be carefully considered, e.g., 
at packaging or installation time to take into account the 
specific resources and the application environment. In our 
experience, robust, universally working default settings 
for complex tuning knobs are wishful thinking.  Despite 
the common myth is that a few rules of thumb could be 
sufficient for most tuning concerns, with complex, highly 
diverse workloads whose characteristics evolve over time 
it is quite a nightmare to find appropriate settings for 
physical design and the various run-time parameters of a 
database server to ensure at least decent performance. 
 
Observation 5: We are not alone in the universe. 
Database systems are not (or no longer) at the center of 
the IT universe. Mail servers, document servers, web 
application servers, media servers, workflow management 
servers, e-commerce servers, auction servers, ERP 
systems, etc. play an equally important role in modern 
cyberspace applications.  A good fraction of these higher-
level services have their own specialized storage engines 
and, to some extent, simple query engines, and even those 
that do make use of a database system utilize only a tiny 
fraction of the functionality up to the extreme point where 
the database system is essentially used as a luxurious 
BLOB manager. Thus, while we have been busy building 
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universal database management systems, many important 
applications have simply decided to go on their own. In 
particular, quite a few vendors of such generic 
applications view complex SQL and the underlying query 
optimizer as a burden rather than an opportunity and 
consequently ignore or circumvent most high-level 
database system features (e.g., see [17]). Of course, this 
approach often amounts to “re-inventing” certain query 
optimization techniques in the layer on top of the database 
systems, but the vendors of these “value-added” services 
consider the re-implementation as appropriate given that 
it can now be streamlined and tailored to a specific 
application class.  
 
Observation 6: System footprint considered harmful. The 
market for “classical” database installations may saturate 
in the near future. On the other hand, significant growth 
potential for the database system industry lies in 
embedded applications such as information services in 
cellular phones, cars, palm-pilots, etc.. These applications 
need even smaller fractions of the rich feature sets offered 
by a full-fledged database system. On the other hand, they 
face much tighter resource constraints in their embedded 
settings: neither the customer’s wallet nor the battery 
supply of a typical gizmo easily allows purchasing 
another 256 MB of memory. This implies that the 
footprint of a system (i.e., code-size and especially 
memory requirements) is a key issue for lightweight 
embedded applications. Also, brute-force solutions to 
performance problems (i.e., adding hardware) are often 
infeasible. Thus, the current generation of commercial 
database systems, despite some of them advertising 
lightweight versions, are not geared for these settings. 
 
Observation 7: System-oriented database research is 
frustrating. For the academic research (and teaching) 
community the ever-increasing complexity of commercial 
database systems makes it very hard to position its 
individual research efforts in the fast-moving IT world. 
On one hand, some of the traditional database-engine 
topics have been almost beaten to death, and the 
community leaders aim to steer researchers away from 
studying these seemingly myopic issues (although some 
of them are still far from a truly satisfactory solution). On 
the other hand, the success of research is more and more 
measured in terms of product impact, and for an academic 
idea to be intriguing to product developers, major 
prototype implementation and extensive experimentation 
is often required. With commercial database system being 
such a highly complex target, this kind of work becomes 
less and less rewarding and all too often exceeds the 
available resources in a university environment. Thus, it is 
no wonder that systems-oriented database research has 
become so scarce outside the labs of the major vendors. 
The personal consequence for many academic researchers 
is that they turn away from database systems and start 
working on different topics, often in conjunction with 
startup companies where again the “entrance fee” is much 
lower than for a new database system). Similar 

observations can be made about teaching: teaching 
interface standards is boring, and teaching database 
system internals is often unsatisfactory because of the 
lack of documented knowledge or the indigestibility of 
the collection of tricks and hacks found in some systems. 
 
All these observations together strongly indicate that 
database systems are in crisis: they have reached or even 
crossed a complexity barrier beyond which their lack of 
manageability and predictability will become so painful 
that information technology is likely to abandon database 
systems as a cornerstone of data-intensive applications. 
The bottom line is that database systems have become 
unattractive in terms of their ”gain/pain ratio”: the gain 
of using a database system versus going on your own is 
outweighed by the pain of having to cope with overly 
sophisticated features and a hardly manageable, 
humongous piece of software. 
 

3.  Explanations and Previous Attempts 

3.1 Explanations 
Database systems (and possibly software technology in 
general) are susceptible to several “traps”: principles that 
open up both opportunities and complexity (just like 
Pandora’s box in the Greek mythology) and have been 
overstressed in the evolution of database systems. 
 
Trap 1, the “universality trap”: Since a computer is   a 
universal tool, software developers strive for extremely 
versatile, general-purpose solutions. This attitude of 
trying to cover as much ground as possible is ambivalent 
and extremely delicate, however. After all, every good 
principle can be generalized to the point where it is no 
longer useful. In the case of database systems, this has led 
to extremely complex, and hard-to-manage software 
packages. Contrast this evolution with other fields of 
engineering: despite the fact that wheels or engines are 
universal components of cars, the automobile industry has 
not attempted to develop a universal car that unifies all 
features of a sports convertible, luxury limousine, 4WD, 
and economic as well as “ecologically correct” compact 
into a single product. 
 
Trap 2, the “cost trap”: Since software is inexpensive to 
“manufacture”, i.e., copy and distribute to customers, 
database systems tend to agglomerate too much into a 
single package of deployment. This approach disregards 
the cost of maintenance, system operation, and especially 
the “cost” of gaining confidence in the dependability of 
the product comprising both correct behavior in all 
situations and predictable, ideally guaranteed 
performance. The latter is, of course, more a problem for 
customers (and also developers of value-added services 
on top of database systems) than for the vendors. 
 
Trap 3, the “transparency trap”: A “transparency trap” 
arises from very high-level features that hide execution 
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costs. Historically, Algol 68 is a good historic example 
for this kind of pitfall. This was an extremely powerful 
language (for the standards of that period), and 
programmers could easily write code that would end up 
being a run-time nightmare. A similar phenomenon of 
hidden execution cost and thus careless programming can 
be observed with SQL. We teach our students that they 
can exploit its full expressiveness and rely on the query 
optimizer producing a miracle, but real life is pretty 
different. Efficiency should no longer be the main driving 
force in program designs and coding, but it should not be 
completely disregarded either. The concepts of a 
computer language should steer programmers towards 
reasonably efficient code rather than offering features for 
which there is little hope that their runtime is acceptable. 
 
Trap 4, the “resource sharing trap”: By putting as much 
functionality as possible into a single software box with 
certain underlying hardware resources (disks, memory, 
etc.), we can dynamically share these resources for 
different purposes. For example, by storing videos in a 
relational database, video streaming can exploit the space 
and performance capacity of disks that hold also 
conventional tables and indexes during daytimes when 
disks are lightly used for the OLTP or OLAP part of the 
business. Likewise, by running business-object-style 
application code, in the form of user-defined functions 
and abstract data types (ADTs), in the database server, the 
server’s memory and processors are dynamically shared 
between query and application processing. The flip side 
of this coin is that such resource sharing introduces 
interesting but horribly complex tuning problems. Disk 
configuration planning and disk scheduling for both video 
streaming and conventional data accesses are much harder 
than dealing with each of the two data categories 
separately on two disjoint disk pools. Query optimization 
in the presence of ADTs is an intriguing research 
problem, but seems like trying to solve a combined 
problem before we fully understand each of its 
constituents. 
 
Some people may argue that we should completely give 
up building complex software systems, and go back to the 
roots of programming with every line of code documented 
by its mathematical properties (e.g., invariants) and not 
release any software package whose correctness is not 
rigorously verified. But we should, of course, avoid this 
unrealistic attitude and the “humble programmer trap”, 
too. 
 

3.2   Previous Attempts 
We are surely not the first ones who have made similar 
observations, have drawn potential conclusions, and have 
toyed with possible departures from the beaten paths. In 
the following we briefly discuss some of the most 
prominent attempts and why we believe they did not 
achieve their goals. 
 

Attempt 1, database system generators: A common 
approach in computer science is to address problems by 
going to a meta level. In the specific case of database 
system architecture, [3] has proposed to generate 
customized database systems from a large library of 
primitive components (see also [13] for a related 
generator approach). The focus of this interesting but 
ultimately not so successful work was on storage and 
index management, but even in this limited context it 
seems impossible to implement such a generator approach 
in a practically viable form. Also, once such approaches 
take into account also cache management, concurrency 
control, recovery, query optimization, etc., they would 
inevitably realize the many subtle but critically important 
interdependencies among the primitive components, 
which makes the generation of correct and efficient 
system configurations awfully difficult. 
 
Attempt 2, extensible kernel systems: A related approach 
that avoids some of the pitfalls of the generator theme has 
been to put core functionality into a kernel system and 
provide means for extending the kernel’s functions as 
well as internal mechanisms [5,15,19,23]. This approach 
has led to the current generation of “data blades”, 
“cartridges”, and “extenders” in object-relational products 
[6]. The extensibility with regard to user-defined 
functions and ADTs is working reasonably well, but the 
extensibility with regard to internals, e.g., adding a new 
type of spatial index, is an engineering nightmare as it 
comes with all sorts of hardly manageable 
interdependencies with concurrency control, recovery, 
query optimization, etc. We would even claim that 
functional extensibility also creates major problems with 
respect to managing the overall system in the application 
environment; especially predicting and tuning the 
system’s performance becomes horribly complex. In fact, 
it seems that all data-blade-style extensions are written by 
the database system vendor (or some of their partners) 
anyway. So extensibility on a per application basis 
appears to remain wishful thinking, and vendor-provided 
extensions that are coupled with the “kernel” (actually, a 
full-fledged database system anyway) are just additional 
complexity from the customers’ viewpoint. 
 
Attempt 3, unbundled technology: More recently several 
senior researchers have proposed to view database 
technology, i.e., our know-how about storage 
management, transaction management, etc., as something 
that is independent from the packaging of this technology 
into the traditional form of database systems [1,12,22]. A 
practical consequence (not necessarily fostered by but 
fully in line with these positions) is that we see more and 
more mature, industrial-strength database technology in 
all sorts of non-database products such as mail servers, 
document servers, specialized main-memory servers for 
switching and billing in telecommunication. In contrast to 
the situation ten years ago, most of these products have 
state-of-the-art algorithms for recovery, caching, etc. 
With a broad variety of such services, building 
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applications that span multiple services becomes more 
difficult.  Identifying principles for federating services 
into value-added information systems is subject of 
ongoing and future research. 
 
The third approach, unbundling database technology and 
exploiting it in all sorts of services, is closest to our own 
position. However, the previous position papers have not 
said anything about the future role of database systems 
themselves as a package of installation and operation. We 
aim to redefine the scope and role of database servers, and 
outline also a possible path towards a world of 
composable “RISC”-style data management blocks. 
 

4.  Towards RISC-style Components 
In computer architecture, the paradigm shift to RISC 
microprocessors led to a substantial simplification of the 
hardware-software interface. We advocate a similarly 
radical simplification of database system interfaces. Our 
proposal calls for building database systems with 
components that are built with RISC philosophy in mind. 
The components need to be carefully designed so that 
they enable building of richer components on top of the 
simpler components while maintaining a clear separation 
among components. Thus, each RISC-style component 
will have a well defined and relatively narrow 
functionality (and API). There is a need for “universal 
glue” as well to enable components to cooperate and build 
value-added services. 
 
RISC data-management components appear attractive for 
us for three reasons. First, such components, with their 
relatively narrow functionality (and API), give us some 
new hope for predictable behavior and self-tuning 
capabilities. Second, the narrow functionality, coupled 
with the ability to build value-added services “on-top” 
makes such components far more attractive for varied 
information applications of today compared to a 
monolithic “universal” database management system. 
Third, even if we only build a monolithic database 
management system and no other data management 
services, building it using RISC data-management 
components will make it far more predictable and tunable 
than today’s database management systems. All these 
benefits apply equally to RISC-style componentization 
within a database system as well as across different kinds 
of data managers for IT systems in the large. 
 
RISC philosophy for database systems: 
 
We will illustrate our intuition on RISC data components 
by focusing on querying capabilities of the database 
system.  The simplest class of query engine is a single-
table selection processor, one that supports single-table 
selection processing and simple updates with B+-tree 
indexing built-in. Such a single-table engine can be used 
in many simple application contexts. Indeed, with 
transactional support, such a query engine provides an 

ideal platform that can be used by many applications. In 
fact, until recently, even SAP R/3 essentially used the 
underlying DBMS as a storage engine of this kind. 
Another advantage of such a selection processor is that it 
can be used with a programmer-friendly API, with little or 
no knowledge of SQL. Another class of query engine that 
is quite attractive is the Select-Project-Join (SPJ) query-
processing engine, suitable for OLTP and simple business 
applications. Such a RISC-component service can build 
on top of the simpler single table selection processor, 
much like how RDS was layered on RSS in System-R. 
The theory and performance of a SPJ query processor is 
much more clearly understood than that of a full-blown 
SQL query engine. In fact, the simplicity of the System-R 
optimizer has led to a deep understanding of how to 
process such queries efficiently, with join ordering, local 
choice of access methods, and interesting orders being the 
three central concepts. Adding support for aggregation to 
the SPJ engine, through sorting, data-stream partitioning 
(possibly hierarchical) capabilities, and more powerful 
local computation within a group (e.g., see [9]) brings it 
closer to requirements of decision support applications 
and specifically  OLAP. Furthermore, note that the 
support for aggregation needs to be stronger than what 
SQL supports today. Yet, layering enables us to view the 
optimization problem for SPJ+Aggregation query engine 
as the problem of moving (and replicating) the 
partitioning and aggregation functions on top of SPJ 
query sub-trees. The challenge in designing such a RISC-
component successfully is to identify optimization 
techniques that require us to enumerate only a few of all 
the SPJ query sub-trees. Finally, one could implement a 
full-fledged SQL processor that exploits the 
SPJ+Aggregation engine. Despite building the same old 
SQL engine, such an approach offers the hope of 
decomposing the optimization problem and thus the 
search complexity. Although in principle such a layered 
approach can result in inferior plans, it offers the hope of 
controlling the search space for each layered component 
much more tightly. Furthermore, the ad-hoc-ness in many 
of the commercial optimizer search techniques leave us 
far from being convinced that a global search would 
necessarily lead to better solutions in most cases. The 
above discussion illustrates how database technology may 
be re-packaged into layers of independently usable and 
manageable components. It should be noted that the 
vision that such “reduced-functionality” data managers 
will be available is implicit and anticipated in the OLE-
DB API. However, provisions in the API have not led to 
products with such components yet.  
 
In a similar vein, even the architecture of storage 
managers could be opened up for RISC-style redesign. A 
number of key mechanisms like disk management, 
caching, logging and recovery, and also concurrency 
control are undoubtedly core features in every kind of 
storage manager. But when we consider also the 
corresponding strategies that drive the run-time decisions 
of these mechanisms, we realize that different data or 

5



application classes could prefer tailored algorithms, for 
example, for cache replacement and prefetching, rather 
than universal algorithms that need more explicit tuning. 
For example, a media manager that stores video and audio 
files and needs to provide data-rate guarantees for smooth 
playback at clients would differ from the storage manager 
underneath a relational selection processor. Similarly, a 
semi-structured data storage manager that is geared for 
variances in record lengths and structures may choose 
implementation techniques that differ from those of 
schematic table storage. Finally, we could argue that even 
an index manager should be separated from the primary-
data storage. This would make immediate versus deferred 
index maintenance equal citizens, with the latter being the 
preferable choice for text or multimedia document 
management. The price for this extreme kind of 
specialization and separation would be in additional 
overhead for calls across components; in the extreme case 
we may need an explicit two-phase commit between the 
primary-data and the index storage manager. However, 
this price seems to be tolerable for the benefit of 
removing tuning options that a universal storage manager 
would typically have and a much better chance of 
automating the remaining fine-tuning issues because of 
the smaller variance in the per-component workload 
characteristics. 
 
The “RISC”-style componentization has some important 
ramifications. First, such componentization limits the 
interactions among components. For example, the SPJ 
query engine must use the “selection processor” as an 
encapsulated engine accessed through the specific APIs.  
The SPJ engine will have no knowledge of the internals of 
the selection processor except what can be gleaned via the 
API published for any consumer of the selection 
processor. Thus, the SPJ processor will know no more or 
no less than any other consumer of the “single-table 
selection” processor.  Second, the API provided by any 
such component must expose at least two classes of 
interfaces: functionality as well as import/export of meta-
information. For example, in the case of a selection 
processor, the functionality interface enables specification 
of a query request (table name and a filter on a column of 
the table). The import/export interface can expose to 
external components limited information that determines 
performance of the selection processor. In particular, the 
selection processor (specifically, the optimizer) should 
support an interface to return estimated selectivity of 
(predicates in) a query as well as the estimated run-time 
and resource consumption of executing the query. Note 
that obtaining reasonably accurate run-time estimates is 
important not only for query optimizers to choose an 
execution plan but also for deciding what priority a query 
should be given or whether it is worthwhile to submit it 
all (an issue that frequently arises in OLAP). Conversely, 
through an import interface, we can empower the 
application to specify parameters (e.g., response-time or 
throughput goals) that influence query execution.  
 

RISC philosophy for IT systems in the large: 
 
For building IT systems in the large, we obviously need 
more building blocks than the various database services 
discussed above. So we need to apply similar 
considerations also to web application servers, message 
queue managers, text document servers, video/audio 
media servers etc. Each of them should be constructed 
according to our RISC philosophy, and all of them 
together would form a library of RISC-style building 
blocks for composing higher-level, value-added 
information services. We have to make sure that the 
complexity that we aim to reduce by simplifying the 
components does not reappear at the global application 
level. Research into principles of service composability 
should thus be put high on our community’s agenda (a 
serious discussion of these issues is beyond the scope of 
this paper). 
 
The challenge in adopting a RISC-style architecture is to 
precisely identify and standardize the functionality and 
import/export interfaces for each component such that the 
following objectives are met:  (1) these interfaces can be 
exploited by a multitude of applications, (2) the 
performance loss due to the encapsulation via the API 
results is tolerable, and (3) each individual component is 
self-tuning and exhibits predictable performance. The last 
point is worth reemphasizing since it attempts to explain 
as to why RISC-style components are of great 
importance. It is only when we construct components that 
can be “locally” understood and explained, that we can 
hope to achieve predictability of performance and the 
ability to tune them as a component. As an example, we 
feel that it is much easier to understand the behavior (and 
indeed theory) of a single-table selection processor, or 
that of an SPJ processor that is built using only the narrow 
interfaces exposed by a selection processor. Of course, 
use of such narrow interfaces and creation of limited 
functionality can hamper performance, but as long as the 
degradation is marginal or even moderate, the need for 
predictable performance and self-tuning far outweighs 
such concerns given the cost point of today’s commodity 
hardware. We now describe some of the important 
ramifications of the architecture we are espousing. 
 

4.1 Notable Departures from Today’s Architectures 
The new departure that we advocate in this paper follows, 
in spirit, the earlier approaches of system generators and 
unbundling (referred to as Attempts 1 and 3 in Section 
3.2). However, in contrast to these earlier proposals, we 
consider the appropriate packaging as a vital aspect of the 
overall architecture. In comparison to the modules 
considered by a generator, our RISC-style components are 
much coarser and ready for self-contained installation, 
thus avoiding the pitfall of the many subtle inter-
dependencies among overly fine-grained modules. 
Similarly, we go beyond the unbundling theme by striving 
for components that are self-contained also in terms of 
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predictability and self-tuning, and we aim to reduce the 
complexity of components and are willing to lose some 
performance to this end. The following simplifications 
would be important steps in this direction. 
 
Support only for limited data types: The mantra in our 
new architecture is predictability and auto-tuning. This 
strongly argues against support for arbitrary data types. 
Instead, database systems should focus on the data types 
that they are best at, namely, tables with attributes of 
elementary type. Essentially this means going back to the 
roots of database systems, business data. There is no truly 
compelling reason for supporting the entire plethora of 
application-specific and multimedia data types. The initial 
motivation for adding all these features has been to ease 
data integration. But integration does not imply universal 
storage. In fact, what replaces the need for universal 
storage are data exchange protocols, advanced APIs, and 
component models that enable specialized storage/query 
systems to federate with traditional databases, e.g., OLE-
DB/COM, EJB, or emerging XML protocols. To reiterate, 
limiting the responsibilities of the database system to data 
in table format makes the system much more manageable 
and give us a significantly better handle on the, still 
remaining and all but trivial, (automated) tuning problem. 
 
No more SQL: As mentioned in Section 2, there is no 
demand for much of the complexity of full-fledged SQL, 
nor for the ”Select-From-Where” syntactic sugar that has 
outlived its original motivation. We advocate a 
streamlined API through which programs essentially 
submit operator trees to the database server modules. In 
the example above, a selection processor will accept 
operator trees that only contain scan and selection; an SPJ 
processor will be able to process requests for processing 
trees that contain selection, projection, and join operators. 
For convenience, these operator trees may be linearized. 
Moreover, they should avoid the complex forms of nested 
and correlated subqueries that make current SQL hard to 
master. However,  only changing the syntactic form of 
SQL is not enough. The language constructs themselves 
have to be simplified. Given that so many intelligent 
people have already argued for a simplification for the 
past two decades without success, we are convinced that 
the key for simplification lies in substantially limiting the 
functionality and expressiveness (which most of the 
previous attempts did not want to compromise).  
  
Disjoint, manageable resources: There should be no 
dynamic resource sharing among components. This 
simplifies performance tuning and also provides 
additional isolation with regard to software failures. For 
example, when building a news-on-demand service on top 
of a video server, a text document server, and an SPJ table 
manager (for simple business issues such as accounting), 
each of these servers should have its own, dedicated 
hardware for simpler tuning (although this rules out 
additional cost/performance gains via dynamic resource 
sharing). In the extreme this could imply, for example, 

that, within a table manager, data pages and index pages 
should always reside on disjoint disks (which is a 
commonly used rule of thumb anyway) for the sake of 
simplicity and at the modest cost of a few additional 
disks. 
 
Pre-configuration: Each RISC-style data management 
component could be pre-configured for say five or ten 
different  “power levels” with regard to feature-richness 
(e.g., "basic", "standard", "advanced", and "full") as well 
as performance and/or availability levels. Along the latter 
lines one could support a small spectrum of data server 
models such as "good for mostly-read workloads", "good 
for small to medium data volumes". This pre-
configuration approach promises a viable compromise 
between "one size fits all" and complete freedom for 
configuration and feature selection at the risk of facing a 
monstrous tuning problem. In many cases the need for 
customization and tuning could be completely eliminated, 
at least at installation times. Note that this trend towards 
pre-packaging can already be observed in the IT industry, 
definitely as far as marketing and sales  are concerned, 
but to some technical extent also in OS installation. 
However, database systems are still engineered mostly 
monolithically for the largest possible feature set. We 
advocate that the idea of supporting a limited number of 
different "models" should already be a major 
consideration in the design and engineering of data 
management software. 
 

4.2  Prerequisites of Success 
Need for “Universal Glue”: The problem of composing 
different data managers into value-added application 
services is, of course, much more difficult than for 
standard consumer electronics. As noted earlier, we have 
to make sure that the complexity that we aim to reduce by 
simplifying the components does not reappear at the 
application layer and may become even more monstrous 
than ever. Simple interfaces with limited functionality and 
standardized cross-talk protocols are a fundamental 
prerequisite for composability and manageability of 
composite systems. Thus, higher-level application servers 
do need some standardized form of middleware such as 
OLE-DB or EJB to be able to talk to each underlying data 
server in a uniform manner. Such “universal glue” is 
available today. In particular, it is now a standard exercise 
to coordinate distributed transactions across arbitrary sets 
of heterogeneous servers by means of standardized 2PC 
protocols. So one important historical reason for putting 
all mission-critical data into a centralized, “universal” 
database for consistency preservation has become 
obsolete. Even when the classical ACID properties are 
inadequate for the application at hand, workflow 
technology is about to become mature and can reliably 
orchestrate activities on arbitrary servers within long-
lived business processes. This is not to say that each and 
every technical aspect of how to combine arbitrary 
services into transactional federations is perfectly 

7



understood (e.g., see [1] for open issues), but most of the 
issues are settled and for the remaining ones research 
solutions are at least within reach.  
 
Apply Occam’s Razor: Following Occam’s philosophy, 
we should be extremely careful, even purists, in selecting 
which features a data manager should support and which 
internal mechanisms it needs to have to this end, aiming 
to minimize the complexity of both interfaces and 
internals. Often certain involved features can be 
implemented on top of a RISC data manager with a 
moderate loss of performance and a minor increase in 
programming efforts. So the gain from using a database 
system would be slightly reduced, but, at the same time, 
the pain of having to manage a feature-overloaded, 
complex system could be drastically alleviated. So the 
win is in improving the gain/pain ratio of database 
technology. For example, one could argue that null values 
with all their ramifications should be implemented by the 
application rather than the underlying data manager: the 
application understands its specific semantics of missing 
or undefined values much better, and this would also 
eliminate a multitude of null-related, often tricky rewrite 
rules in the data manager’s query optimizer.  
 
Likewise, we should avoid an unnecessarily broad 
repertoire of implementation mechanisms within a single-
table, SPJ, or SPJ+Aggregation processor. Often certain 
mechanisms improve performance by only moderate 
factors and only in special cases, but significantly add to 
the complexity of system tuning. For example, hash 
indexes and hash-based query processing (including the 
popular hash joins) are probably never better than a factor 
of two compared to nested-loop variants (including those 
with index support etc.) or sort-merge-based query 
processing [14]. Similar arguments could probably be 
made about pipelined query execution (especially on 
SMPs with very large memory where the performance 
impact of pipelining is noise compared to that of data 
parallelism and may even hamper processor-cache 
effectively), fancy notions of join indexes etc.. 
 
Need for a Self-Tuning Framework: A major incentive for 
moving towards RISC style data managers is to enable 
auto-tuning of database components. As explained earlier, 
tuning must consider the relationship between workload 
characteristics, knob settings, and the resulting 
performance in a quantitative manner. Therefore, it is not 
surprising that the most promising and, to some extent, 
successful approaches in the past decade have been based 
on mathematical models and/or feedback control methods 
(e.g., to dynamically adapt memory partitioning or 
multiprogramming levels to an evolving, multi-class 
workload). Unfortunately, these models work only in a 
limited context, i.e., when focusing on a particular knob 
(or a small set of inter-related knobs). Attempting to cover 
the full spectrum of tuning issues with a single, 
comprehensive model is bound to fail because of the lack 
of sufficiently accurate mathematical models or the 

intractability of advanced models.  This is why limiting 
ourselves to using only RISC data managers is so 
important: we no longer need to aim for the most 
comprehensive, elusive performance model, and there is 
hope that we can get a handle on how to auto-tune an 
individual data server component. It is much easier to 
tune a system with a less diverse workload and less 
dynamic resource sharing among different data and 
workload classes. Of course, the global tuning problem is 
now pushed one level above: how do we tune the 
interplay of several RISC data managers? Fortunately, a 
hierarchical approach to system tuning appears to be more 
in reach than trying to solve the entire complex problem 
in one shot. The main steps of such a hierarchical self-
tuning framework are: 1) identifying the need for tuning, 
2) identifying the bottleneck, 3) analyzing the bottleneck, 
4) estimating the performance impact of possible tuning 
options, and 5) adjusting the most cost-effective tuning 
knob. 
 
The hierarchical nature of such a self-tuning procedure is 
perfectly in line with good practice for manual, or we 
should better say intellectual, tuning (e.g., [16, 20, 21]). In 
particular, our approach also adopts a “think globally, fix 
locally” regime. Further note that mathematical models 
have been and remain to be key assets also in the practical 
system tuning community (e.g., [11]). The key to making 
the mathematics sufficiently simple and thus practical lies 
in the reduced complexity of the component systems and 
their interfaces and interplay. We believe that there is a 
virtue in engineering system components such that their 
real behavior can be better captured by existing 
mathematical modeling techniques, even if this may lead 
to some (tolerable) loss of high-end features and 
efficiency. The true gain lies in the better predictability 
and thus tunability and manageability of systems. 
 

5.  Towards a Research Agenda 

5.1 Evaluation of Success 
How should we evaluate the viability and success or 
failure of the advocated architecture? Actually evaluating 
an architectural framework would entail designing, 
building, and operating nontrivial IT systems, which 
obviously is way beyond the scope of a paper (especially 
a semi-technical vision paper like this one). So we merely 
give a rough sketch of how we as a research community 
may proceed along these lines. 
 
The best measure of success of a RISC-style database 
system architecture would be to demonstrate the 
usefulness of the components in a variety of data 
management scenarios. To start with, we should be able 
to develop data management components that work well 
as scalable traditional OLTP systems as well as the basis 
for OLAP-style data management services. Such systems 
are likely to use the SPJ query processor and the 
SPJ+Aggregation query processor, respectively.  
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Incidentally, recall that the first generation of OLAP 
services extensively used “multi-statement” SQL, i.e., 
they fed only simple queries (SPJ with aggregation) to 
backend servers to ensure that performance characteristics 
are predictable since database optimizers have been 
known to behave erratically for complex SQL queries 
(which should not really be a surprise given that a typical 
query optimizer is a large bag of tricks).  
 
Another interesting instance of services is metadata 
management. Such a service is distinguished from 
traditional OLTP and OLAP in requiring more elaborate 
conceptual data models, but with relatively simple needs 
for querying and scalability (for large data volumes).  Yet 
another popular class of services is management of e-mail 
data.  Mail servers require fast insertion of mail messages 
and “mostly fast” access when queried by attributes. A 
key characteristic of mail data is that it is sparse, i.e., not 
all attributes are present and records are of widely 
variable length. It would be intriguing to consider an SPJ 
query engine and a separate indexing engine as a mail 
server’s base components. In contrast to traditional 
relational system designs, however, there should be no 
limiting necessity of a schema in this setting.  Other data 
services of interest, whose architecture would be 
worthwhile to re-examine with this paper’s philosophy of 
RISC building blocks in mind, are marketplace data 
servers (e.g., in E-Bay) or large-scale multimedia 
information servers for news-on-demand etc. 
 

5.2 Research Opportunities  
We wish to encourage researchers to make the system 
architecture of database technology and the simplification 
of component interfaces as well as internals (again) a top-
priority item on their agenda. Although most of the 
problems with today’s architecture that we have identified 
refer to industrial products, we believe that the impetus 
for a new departure must come from academia as product 
architects and developers are way too busy in their time-
to-market issues. To be fair, the database system industry 
has a lot of stake in maintaining existing products and 
market shares, and has too little leeway for radical 
departures. For academic researchers we see ample 
opportunities of system-oriented exploration that can 
hopefully drive the community towards a better overall 
architecture. It is crucial, however, already for component 
prototyping and systematic experimentation that this 
research avenue heads for simpler, smaller-scale, RISC-
style building blocks.  
 
Along these lines, we propose making major efforts 
towards the following research (and, to some extent, 
sociological) challenges: 
 
��  Make viable an open, worldwide testbed for RISC-

style data-management components to which even 
small research teams can contribute.  

�� Work out lean APIs for each of the most important 
RISC-style components following our discussion of 
Section 4.1 on different kinds of query processors 
and storage managers. 

�� Encourage a worldwide competition for the “best” 
instantiation of each of these building blocks, for 
example, with regard to certain standard benchmarks 
or common test suites for data mining and Web 
applications. To make this a real challenge and avoid 
compromising our goal of simplified and auto-tuned 
components, the rules should limit the code size of 
each component, limit its footprint, and disallow any 
kinds of tuning knobs other than what the component 
does internally based on its own self-assessment. 

�� To ensure that individual components are not tailored 
to other components by the same team or even 
tailored to specific benchmarks, all components that 
are registered with the worldwide testbed must be 
able to correctly cooperate, through their official 
APIs, with all other components from all other teams. 

�� Identify more precisely the “universal glue” for the 
above kind of open test bed. Obviously this is already 
required for setting up the test bed. A bootstrap 
approach could be that one team provides an initial 
instantiation of the necessary middleware services 
and the most important components as a basis for 
other teams to contribute and plug in individual 
components or gradually replace some of the “glue” 
services (e.g., a two-phase commit protocol). 

 
Once the envisioned test bed is operational for database-
system components, its scope could and should be 
broadened to encompass different kinds of data managers 
for IT solutions in the large (e.g., a media server, a mail 
server each again built from several RISC-style 
components). So this worldwide test bed should be 
extensible beyond the narrow boundaries of what is 
commonly perceived as the “database community”. 
 

6.  Concluding Remarks 
Universal database systems grew out of our belief that 
database is the center of the universe and therefore the 
framework for integration. This is far from true in today’s 
world. Once we are liberated and can accept the fact that 
the database is one, certainly very important, component 
in the IT world, programmability and integration of 
database components with applications become a priority. 
In such a world, we need to build RISC-style data 
management components that have predictable 
performance and can be auto-tuned.  
 
When comparing our field to other areas of engineering 
that are building extremely complex artifacts such as 
aircrafts, high-speed trains, or space shuttles, we realize 
that such an architectural simplification is overdue and 
critical for the future success of database technology. 
Few, if any, understand the functions of a modern aircraft 
(e.g. Boeing 747) completely, but in contrast to the 
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situation with database systems, there is excellent 
understanding of local components and a good 
understanding of the interaction across components. 
 
The test for the advocated RISC-style database system 
architecture will be if it can be used broadly in many 
more contexts compared to today’s database systems. In 
this paper, we have hinted at some applications that can 
drive the design of such RISC data management 
components. These components can be “glued” together 
using narrow APIs to form powerful data services that 
have the hope of being effectively manageable. 
 
The bottom line of these challenges is to foster improving 
the “gain/pain ratio” of database technology with regard 
to modern cyberspace applications. The key to this goal is 
to tolerate a moderate degradation of  “gain”, for 
example, by tolerating certain overhead for more 
interface-crossing across components, and reduce the 
“pain” level by orders of magnitude by ensuring 
predictable performance and eliminating the need for 
manual tuning. 
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