
Rethinking Database System Architecture:
Towards a Self-tuning RISC-style Database System

Surajit Chaudhuri Gerhard Weikum

 Microsoft Research University of the Saarland
 Redmond, WA 98052, USA D-66123 Saarbruecken, Germany

 surajitc@microsoft.com weikum@cs.uni-sb.de

Abstract

Database technology is one of the cornerstones for
the new millennium’s IT landscape. However,
database systems as a unit of code packaging and
deployment are at a crossroad: commercial
systems have been adding features for a long time
and have now reached complexity that makes them
a difficult choice, in terms of their "gain/pain
ratio", as a central platform for value-added
information services such as ERP or e-commerce.
It is critical that database systems be easy to
manage, predictable in their performance
characteristics, and ultimately self-tuning. For this
elusive goal, RISC-style simplification of server
functionality and interfaces is absolutely crucial.
We suggest a radical architectural departure in
which database technology is packaged into much
smaller RISC-style data managers with lean,
specialized APIs, and with built-in self-assessment
and auto-tuning capabilities

1. The Need for a New Departure
Database technology has an extremely successful track
record as a backbone of information technology (IT)
throughout the last three decades. High-level declarative
query languages like SQL and atomic transactions are key
assets in the cost-effective development and maintenance
of information systems. Furthermore, database technology
continues to play a major role in the trends of our modern
cyberspace society with applications ranging from web-
based applications/services, and digital libraries to
information mining on business as well as scientific data.
Thus, database technology has impressively proven its
benefits and seems to remain crucially relevant in the new
millennium as well.

Success is a lousy teacher (to paraphrase Bill Gates), and
therefore we should not conclude that the database
system, as the unit of engineering, deploying, and
operating packaged database technology, is in good
shape. A closer look at some important application areas
and major trends in the software industry strongly
indicates that database systems have an overly low
“gain/pain ratio”. First, with the dramatic drop of
hardware and software prices, the expenses due to human
administration and tuning staff dominate the cost of
ownership for a database system. The complexity and cost
of these feed-and-care tasks is likely to prohibit database
systems from further playing their traditionally prominent
role in the future IT infrastructure. Next, database
technology is more likely to be adopted in unbundled and
dispersed form within higher-level application services.

Both of the above problems stem from packaging all
database technology into a single unit of development,
maintenance, deployment, and operation. We argue that
this architecture is no longer appropriate for the new age
of cyberspace applications. The alternative approach that
we envision and advocate in this paper is to provide
RISC-style, functionally restricted, specialized data
managers that have a narrow interface as well as a smaller
footprint and are more amenable to automatic tuning.

The rest of the paper is organized as follows. Section 2
puts together some important observations indicating that
database systems in their traditional form are in crisis.
Section 3 briefly reviews earlier attempts for a new
architectural departure along the lines of the current
paper, and discusses why they did not catch on. Section 4
outlines the envisioned architecture with emphasis on
RISC-style simplification of data-management
components and consequences for the viability of auto-
tuning. Section 5 outlines a possible research agenda
towards our vision.

2. Crisis Indicators
To begin our analysis, let us put together a few important
observations on how database systems are perceived by
customers, vendors, and the research community.

Observation 1: Featurism drives products beyond
manageability. Database systems offer more and more
features, leading to extremely broad and thus complex

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

1

interfaces. Quite often novel features are more a
marketing issue rather than a real application need or
technological advance; for example, a database system
vendor may decide to support a fancy type of join or
spatial index in the next product release because the major
competitors have already announced this feature. As a
result, database systems become overloaded with
functionality, increasing the complexity of maintaining
the system’s code base as well as installing and managing
the system. The irony of this trend lies in the fact that
each individual customer (e.g., a small enterprise) only
makes use of a tiny fraction of the system’s features and
many high-end features are hardly ever exercised at all.

Observation 2: SQL is painful. A big headache that comes
with a database system is the SQL language. It is the
union of all conceivable features (many of which are
rarely used or should be discouraged to use anyway) and
is way too complex for the typical application developer.
Its core, say selection-projection-join queries and
aggregation, is extremely useful, but we doubt that there
is wide and wise use of all the bells and whistles.
Understanding semantics of SQL (not even of SQL-92),
covering all combinations of nested (and correlated)
subqueries, null values, triggers, ADT functions, etc. is a
nightmare. Teaching SQL typically focuses on the core,
and leaves the featurism as a “learning-on-the-job” life
experience. Some trade magazines occasionally pose SQL
quizzes where the challenge is to express a complicated
information request in a single SQL statement. Those
statements run over several pages, and are hardly
comprehensible. When programmers adopt this style in
real applications and given the inherent difficulty of
debugging a very high-level “declarative” statement, it is
extremely hard if not impossible to gain high confidence
that the query is correct in capturing the users’
information needs. In fact, good SQL programming in
many cases decomposes complex requests into a sequence
of simpler SQL statements.

Observation 3: Performance is unpredictable.
Commercial database engines are among the most
sophisticated pieces of software that have ever been built
in the history of computer technology. Furthermore, as
product releases have been driven by the time-to-market
pressure for quite a few years, these systems have little
leeway for redesigning major components so that adding
features and enhancements usually increases the code size
and complexity and, ultimately, the general “software
entropy” of the system. The scary consequence is that
database systems become inherently unpredictable in their
exact behavior and, especially, performance. Individual
components like query optimizers may already have
crossed the critical complexity barrier. There is probably
no single person in the world who fully understands all
subtleties of the complex interplay of rewrite rules,
approximate cost models, and search-space traversal
heuristics that underlie the optimization of complex
queries. Contrast this dilemma with the emerging need for

performance and service quality guarantees in e-
commerce, digital libraries, and other Internet
applications. The PTAC report has rightly emphasized:
“our ability to analyze and predict the performance of the
enormously complex software systems that lie at the core
of our economy is painfully inadequate” [18].

Observation 4: Tuning is a nightmare and auto-tuning is
wishful thinking at this stage. The wide diversity of
applications for a given database system makes it
impossible to provide universally good performance by
solely having a well-engineered product. Rather all
commercial database systems offer a variety of “tuning
knobs” that allow the customer to adjust certain system
parameters to the specific workload characteristics of the
application. These knobs include index selection, data
placement across parallel disks, and other aspects of
physical database design, query optimizer hints,
thresholds that govern the partitioning of memory or
multiprogramming level in a multi-user environment.
Reasonable settings for such critical parameters for a
complex application often depend on the expertise and
experience of highly skilled tuning gurus and/or time-
consuming trial-and-error experimentation; both ways are
expensive and tend to dominate the cost of ownership for
a database system. “Auto-tuning” capabilities and “zero-
admin” systems have been put on the research and
development agenda as high priority topics for several
years (see, e.g., [2]), but despite some advances on
individual issues (e.g., [4,7,8,10,24]) progress on the big
picture of self-tuning system architectures is slow and a
breakthrough is not nearly in sight. Although commercial
systems have admittedly improved on ease of use, many
tuning knobs are merely disguised by introducing internal
thresholds that still have to be carefully considered, e.g.,
at packaging or installation time to take into account the
specific resources and the application environment. In our
experience, robust, universally working default settings
for complex tuning knobs are wishful thinking. Despite
the common myth is that a few rules of thumb could be
sufficient for most tuning concerns, with complex, highly
diverse workloads whose characteristics evolve over time
it is quite a nightmare to find appropriate settings for
physical design and the various run-time parameters of a
database server to ensure at least decent performance.

Observation 5: We are not alone in the universe.
Database systems are not (or no longer) at the center of
the IT universe. Mail servers, document servers, web
application servers, media servers, workflow management
servers, e-commerce servers, auction servers, ERP
systems, etc. play an equally important role in modern
cyberspace applications. A good fraction of these higher-
level services have their own specialized storage engines
and, to some extent, simple query engines, and even those
that do make use of a database system utilize only a tiny
fraction of the functionality up to the extreme point where
the database system is essentially used as a luxurious
BLOB manager. Thus, while we have been busy building

2

universal database management systems, many important
applications have simply decided to go on their own. In
particular, quite a few vendors of such generic
applications view complex SQL and the underlying query
optimizer as a burden rather than an opportunity and
consequently ignore or circumvent most high-level
database system features (e.g., see [17]). Of course, this
approach often amounts to “re-inventing” certain query
optimization techniques in the layer on top of the database
systems, but the vendors of these “value-added” services
consider the re-implementation as appropriate given that
it can now be streamlined and tailored to a specific
application class.

Observation 6: System footprint considered harmful. The
market for “classical” database installations may saturate
in the near future. On the other hand, significant growth
potential for the database system industry lies in
embedded applications such as information services in
cellular phones, cars, palm-pilots, etc.. These applications
need even smaller fractions of the rich feature sets offered
by a full-fledged database system. On the other hand, they
face much tighter resource constraints in their embedded
settings: neither the customer’s wallet nor the battery
supply of a typical gizmo easily allows purchasing
another 256 MB of memory. This implies that the
footprint of a system (i.e., code-size and especially
memory requirements) is a key issue for lightweight
embedded applications. Also, brute-force solutions to
performance problems (i.e., adding hardware) are often
infeasible. Thus, the current generation of commercial
database systems, despite some of them advertising
lightweight versions, are not geared for these settings.

Observation 7: System-oriented database research is
frustrating. For the academic research (and teaching)
community the ever-increasing complexity of commercial
database systems makes it very hard to position its
individual research efforts in the fast-moving IT world.
On one hand, some of the traditional database-engine
topics have been almost beaten to death, and the
community leaders aim to steer researchers away from
studying these seemingly myopic issues (although some
of them are still far from a truly satisfactory solution). On
the other hand, the success of research is more and more
measured in terms of product impact, and for an academic
idea to be intriguing to product developers, major
prototype implementation and extensive experimentation
is often required. With commercial database system being
such a highly complex target, this kind of work becomes
less and less rewarding and all too often exceeds the
available resources in a university environment. Thus, it is
no wonder that systems-oriented database research has
become so scarce outside the labs of the major vendors.
The personal consequence for many academic researchers
is that they turn away from database systems and start
working on different topics, often in conjunction with
startup companies where again the “entrance fee” is much
lower than for a new database system). Similar

observations can be made about teaching: teaching
interface standards is boring, and teaching database
system internals is often unsatisfactory because of the
lack of documented knowledge or the indigestibility of
the collection of tricks and hacks found in some systems.

All these observations together strongly indicate that
database systems are in crisis: they have reached or even
crossed a complexity barrier beyond which their lack of
manageability and predictability will become so painful
that information technology is likely to abandon database
systems as a cornerstone of data-intensive applications.
The bottom line is that database systems have become
unattractive in terms of their ”gain/pain ratio”: the gain
of using a database system versus going on your own is
outweighed by the pain of having to cope with overly
sophisticated features and a hardly manageable,
humongous piece of software.

3. Explanations and Previous Attempts

3.1 Explanations
Database systems (and possibly software technology in
general) are susceptible to several “traps”: principles that
open up both opportunities and complexity (just like
Pandora’s box in the Greek mythology) and have been
overstressed in the evolution of database systems.

Trap 1, the “universality trap”: Since a computer is a
universal tool, software developers strive for extremely
versatile, general-purpose solutions. This attitude of
trying to cover as much ground as possible is ambivalent
and extremely delicate, however. After all, every good
principle can be generalized to the point where it is no
longer useful. In the case of database systems, this has led
to extremely complex, and hard-to-manage software
packages. Contrast this evolution with other fields of
engineering: despite the fact that wheels or engines are
universal components of cars, the automobile industry has
not attempted to develop a universal car that unifies all
features of a sports convertible, luxury limousine, 4WD,
and economic as well as “ecologically correct” compact
into a single product.

Trap 2, the “cost trap”: Since software is inexpensive to
“manufacture”, i.e., copy and distribute to customers,
database systems tend to agglomerate too much into a
single package of deployment. This approach disregards
the cost of maintenance, system operation, and especially
the “cost” of gaining confidence in the dependability of
the product comprising both correct behavior in all
situations and predictable, ideally guaranteed
performance. The latter is, of course, more a problem for
customers (and also developers of value-added services
on top of database systems) than for the vendors.

Trap 3, the “transparency trap”: A “transparency trap”
arises from very high-level features that hide execution

3

costs. Historically, Algol 68 is a good historic example
for this kind of pitfall. This was an extremely powerful
language (for the standards of that period), and
programmers could easily write code that would end up
being a run-time nightmare. A similar phenomenon of
hidden execution cost and thus careless programming can
be observed with SQL. We teach our students that they
can exploit its full expressiveness and rely on the query
optimizer producing a miracle, but real life is pretty
different. Efficiency should no longer be the main driving
force in program designs and coding, but it should not be
completely disregarded either. The concepts of a
computer language should steer programmers towards
reasonably efficient code rather than offering features for
which there is little hope that their runtime is acceptable.

Trap 4, the “resource sharing trap”: By putting as much
functionality as possible into a single software box with
certain underlying hardware resources (disks, memory,
etc.), we can dynamically share these resources for
different purposes. For example, by storing videos in a
relational database, video streaming can exploit the space
and performance capacity of disks that hold also
conventional tables and indexes during daytimes when
disks are lightly used for the OLTP or OLAP part of the
business. Likewise, by running business-object-style
application code, in the form of user-defined functions
and abstract data types (ADTs), in the database server, the
server’s memory and processors are dynamically shared
between query and application processing. The flip side
of this coin is that such resource sharing introduces
interesting but horribly complex tuning problems. Disk
configuration planning and disk scheduling for both video
streaming and conventional data accesses are much harder
than dealing with each of the two data categories
separately on two disjoint disk pools. Query optimization
in the presence of ADTs is an intriguing research
problem, but seems like trying to solve a combined
problem before we fully understand each of its
constituents.

Some people may argue that we should completely give
up building complex software systems, and go back to the
roots of programming with every line of code documented
by its mathematical properties (e.g., invariants) and not
release any software package whose correctness is not
rigorously verified. But we should, of course, avoid this
unrealistic attitude and the “humble programmer trap”,
too.

3.2 Previous Attempts
We are surely not the first ones who have made similar
observations, have drawn potential conclusions, and have
toyed with possible departures from the beaten paths. In
the following we briefly discuss some of the most
prominent attempts and why we believe they did not
achieve their goals.

Attempt 1, database system generators: A common
approach in computer science is to address problems by
going to a meta level. In the specific case of database
system architecture, [3] has proposed to generate
customized database systems from a large library of
primitive components (see also [13] for a related
generator approach). The focus of this interesting but
ultimately not so successful work was on storage and
index management, but even in this limited context it
seems impossible to implement such a generator approach
in a practically viable form. Also, once such approaches
take into account also cache management, concurrency
control, recovery, query optimization, etc., they would
inevitably realize the many subtle but critically important
interdependencies among the primitive components,
which makes the generation of correct and efficient
system configurations awfully difficult.

Attempt 2, extensible kernel systems: A related approach
that avoids some of the pitfalls of the generator theme has
been to put core functionality into a kernel system and
provide means for extending the kernel’s functions as
well as internal mechanisms [5,15,19,23]. This approach
has led to the current generation of “data blades”,
“cartridges”, and “extenders” in object-relational products
[6]. The extensibility with regard to user-defined
functions and ADTs is working reasonably well, but the
extensibility with regard to internals, e.g., adding a new
type of spatial index, is an engineering nightmare as it
comes with all sorts of hardly manageable
interdependencies with concurrency control, recovery,
query optimization, etc. We would even claim that
functional extensibility also creates major problems with
respect to managing the overall system in the application
environment; especially predicting and tuning the
system’s performance becomes horribly complex. In fact,
it seems that all data-blade-style extensions are written by
the database system vendor (or some of their partners)
anyway. So extensibility on a per application basis
appears to remain wishful thinking, and vendor-provided
extensions that are coupled with the “kernel” (actually, a
full-fledged database system anyway) are just additional
complexity from the customers’ viewpoint.

Attempt 3, unbundled technology: More recently several
senior researchers have proposed to view database
technology, i.e., our know-how about storage
management, transaction management, etc., as something
that is independent from the packaging of this technology
into the traditional form of database systems [1,12,22]. A
practical consequence (not necessarily fostered by but
fully in line with these positions) is that we see more and
more mature, industrial-strength database technology in
all sorts of non-database products such as mail servers,
document servers, specialized main-memory servers for
switching and billing in telecommunication. In contrast to
the situation ten years ago, most of these products have
state-of-the-art algorithms for recovery, caching, etc.
With a broad variety of such services, building

4

applications that span multiple services becomes more
difficult. Identifying principles for federating services
into value-added information systems is subject of
ongoing and future research.

The third approach, unbundling database technology and
exploiting it in all sorts of services, is closest to our own
position. However, the previous position papers have not
said anything about the future role of database systems
themselves as a package of installation and operation. We
aim to redefine the scope and role of database servers, and
outline also a possible path towards a world of
composable “RISC”-style data management blocks.

4. Towards RISC-style Components
In computer architecture, the paradigm shift to RISC
microprocessors led to a substantial simplification of the
hardware-software interface. We advocate a similarly
radical simplification of database system interfaces. Our
proposal calls for building database systems with
components that are built with RISC philosophy in mind.
The components need to be carefully designed so that
they enable building of richer components on top of the
simpler components while maintaining a clear separation
among components. Thus, each RISC-style component
will have a well defined and relatively narrow
functionality (and API). There is a need for “universal
glue” as well to enable components to cooperate and build
value-added services.

RISC data-management components appear attractive for
us for three reasons. First, such components, with their
relatively narrow functionality (and API), give us some
new hope for predictable behavior and self-tuning
capabilities. Second, the narrow functionality, coupled
with the ability to build value-added services “on-top”
makes such components far more attractive for varied
information applications of today compared to a
monolithic “universal” database management system.
Third, even if we only build a monolithic database
management system and no other data management
services, building it using RISC data-management
components will make it far more predictable and tunable
than today’s database management systems. All these
benefits apply equally to RISC-style componentization
within a database system as well as across different kinds
of data managers for IT systems in the large.

RISC philosophy for database systems:

We will illustrate our intuition on RISC data components
by focusing on querying capabilities of the database
system. The simplest class of query engine is a single-
table selection processor, one that supports single-table
selection processing and simple updates with B+-tree
indexing built-in. Such a single-table engine can be used
in many simple application contexts. Indeed, with
transactional support, such a query engine provides an

ideal platform that can be used by many applications. In
fact, until recently, even SAP R/3 essentially used the
underlying DBMS as a storage engine of this kind.
Another advantage of such a selection processor is that it
can be used with a programmer-friendly API, with little or
no knowledge of SQL. Another class of query engine that
is quite attractive is the Select-Project-Join (SPJ) query-
processing engine, suitable for OLTP and simple business
applications. Such a RISC-component service can build
on top of the simpler single table selection processor,
much like how RDS was layered on RSS in System-R.
The theory and performance of a SPJ query processor is
much more clearly understood than that of a full-blown
SQL query engine. In fact, the simplicity of the System-R
optimizer has led to a deep understanding of how to
process such queries efficiently, with join ordering, local
choice of access methods, and interesting orders being the
three central concepts. Adding support for aggregation to
the SPJ engine, through sorting, data-stream partitioning
(possibly hierarchical) capabilities, and more powerful
local computation within a group (e.g., see [9]) brings it
closer to requirements of decision support applications
and specifically OLAP. Furthermore, note that the
support for aggregation needs to be stronger than what
SQL supports today. Yet, layering enables us to view the
optimization problem for SPJ+Aggregation query engine
as the problem of moving (and replicating) the
partitioning and aggregation functions on top of SPJ
query sub-trees. The challenge in designing such a RISC-
component successfully is to identify optimization
techniques that require us to enumerate only a few of all
the SPJ query sub-trees. Finally, one could implement a
full-fledged SQL processor that exploits the
SPJ+Aggregation engine. Despite building the same old
SQL engine, such an approach offers the hope of
decomposing the optimization problem and thus the
search complexity. Although in principle such a layered
approach can result in inferior plans, it offers the hope of
controlling the search space for each layered component
much more tightly. Furthermore, the ad-hoc-ness in many
of the commercial optimizer search techniques leave us
far from being convinced that a global search would
necessarily lead to better solutions in most cases. The
above discussion illustrates how database technology may
be re-packaged into layers of independently usable and
manageable components. It should be noted that the
vision that such “reduced-functionality” data managers
will be available is implicit and anticipated in the OLE-
DB API. However, provisions in the API have not led to
products with such components yet.

In a similar vein, even the architecture of storage
managers could be opened up for RISC-style redesign. A
number of key mechanisms like disk management,
caching, logging and recovery, and also concurrency
control are undoubtedly core features in every kind of
storage manager. But when we consider also the
corresponding strategies that drive the run-time decisions
of these mechanisms, we realize that different data or

5

application classes could prefer tailored algorithms, for
example, for cache replacement and prefetching, rather
than universal algorithms that need more explicit tuning.
For example, a media manager that stores video and audio
files and needs to provide data-rate guarantees for smooth
playback at clients would differ from the storage manager
underneath a relational selection processor. Similarly, a
semi-structured data storage manager that is geared for
variances in record lengths and structures may choose
implementation techniques that differ from those of
schematic table storage. Finally, we could argue that even
an index manager should be separated from the primary-
data storage. This would make immediate versus deferred
index maintenance equal citizens, with the latter being the
preferable choice for text or multimedia document
management. The price for this extreme kind of
specialization and separation would be in additional
overhead for calls across components; in the extreme case
we may need an explicit two-phase commit between the
primary-data and the index storage manager. However,
this price seems to be tolerable for the benefit of
removing tuning options that a universal storage manager
would typically have and a much better chance of
automating the remaining fine-tuning issues because of
the smaller variance in the per-component workload
characteristics.

The “RISC”-style componentization has some important
ramifications. First, such componentization limits the
interactions among components. For example, the SPJ
query engine must use the “selection processor” as an
encapsulated engine accessed through the specific APIs.
The SPJ engine will have no knowledge of the internals of
the selection processor except what can be gleaned via the
API published for any consumer of the selection
processor. Thus, the SPJ processor will know no more or
no less than any other consumer of the “single-table
selection” processor. Second, the API provided by any
such component must expose at least two classes of
interfaces: functionality as well as import/export of meta-
information. For example, in the case of a selection
processor, the functionality interface enables specification
of a query request (table name and a filter on a column of
the table). The import/export interface can expose to
external components limited information that determines
performance of the selection processor. In particular, the
selection processor (specifically, the optimizer) should
support an interface to return estimated selectivity of
(predicates in) a query as well as the estimated run-time
and resource consumption of executing the query. Note
that obtaining reasonably accurate run-time estimates is
important not only for query optimizers to choose an
execution plan but also for deciding what priority a query
should be given or whether it is worthwhile to submit it
all (an issue that frequently arises in OLAP). Conversely,
through an import interface, we can empower the
application to specify parameters (e.g., response-time or
throughput goals) that influence query execution.

RISC philosophy for IT systems in the large:

For building IT systems in the large, we obviously need
more building blocks than the various database services
discussed above. So we need to apply similar
considerations also to web application servers, message
queue managers, text document servers, video/audio
media servers etc. Each of them should be constructed
according to our RISC philosophy, and all of them
together would form a library of RISC-style building
blocks for composing higher-level, value-added
information services. We have to make sure that the
complexity that we aim to reduce by simplifying the
components does not reappear at the global application
level. Research into principles of service composability
should thus be put high on our community’s agenda (a
serious discussion of these issues is beyond the scope of
this paper).

The challenge in adopting a RISC-style architecture is to
precisely identify and standardize the functionality and
import/export interfaces for each component such that the
following objectives are met: (1) these interfaces can be
exploited by a multitude of applications, (2) the
performance loss due to the encapsulation via the API
results is tolerable, and (3) each individual component is
self-tuning and exhibits predictable performance. The last
point is worth reemphasizing since it attempts to explain
as to why RISC-style components are of great
importance. It is only when we construct components that
can be “locally” understood and explained, that we can
hope to achieve predictability of performance and the
ability to tune them as a component. As an example, we
feel that it is much easier to understand the behavior (and
indeed theory) of a single-table selection processor, or
that of an SPJ processor that is built using only the narrow
interfaces exposed by a selection processor. Of course,
use of such narrow interfaces and creation of limited
functionality can hamper performance, but as long as the
degradation is marginal or even moderate, the need for
predictable performance and self-tuning far outweighs
such concerns given the cost point of today’s commodity
hardware. We now describe some of the important
ramifications of the architecture we are espousing.

4.1 Notable Departures from Today’s Architectures
The new departure that we advocate in this paper follows,
in spirit, the earlier approaches of system generators and
unbundling (referred to as Attempts 1 and 3 in Section
3.2). However, in contrast to these earlier proposals, we
consider the appropriate packaging as a vital aspect of the
overall architecture. In comparison to the modules
considered by a generator, our RISC-style components are
much coarser and ready for self-contained installation,
thus avoiding the pitfall of the many subtle inter-
dependencies among overly fine-grained modules.
Similarly, we go beyond the unbundling theme by striving
for components that are self-contained also in terms of

6

predictability and self-tuning, and we aim to reduce the
complexity of components and are willing to lose some
performance to this end. The following simplifications
would be important steps in this direction.

Support only for limited data types: The mantra in our
new architecture is predictability and auto-tuning. This
strongly argues against support for arbitrary data types.
Instead, database systems should focus on the data types
that they are best at, namely, tables with attributes of
elementary type. Essentially this means going back to the
roots of database systems, business data. There is no truly
compelling reason for supporting the entire plethora of
application-specific and multimedia data types. The initial
motivation for adding all these features has been to ease
data integration. But integration does not imply universal
storage. In fact, what replaces the need for universal
storage are data exchange protocols, advanced APIs, and
component models that enable specialized storage/query
systems to federate with traditional databases, e.g., OLE-
DB/COM, EJB, or emerging XML protocols. To reiterate,
limiting the responsibilities of the database system to data
in table format makes the system much more manageable
and give us a significantly better handle on the, still
remaining and all but trivial, (automated) tuning problem.

No more SQL: As mentioned in Section 2, there is no
demand for much of the complexity of full-fledged SQL,
nor for the ”Select-From-Where” syntactic sugar that has
outlived its original motivation. We advocate a
streamlined API through which programs essentially
submit operator trees to the database server modules. In
the example above, a selection processor will accept
operator trees that only contain scan and selection; an SPJ
processor will be able to process requests for processing
trees that contain selection, projection, and join operators.
For convenience, these operator trees may be linearized.
Moreover, they should avoid the complex forms of nested
and correlated subqueries that make current SQL hard to
master. However, only changing the syntactic form of
SQL is not enough. The language constructs themselves
have to be simplified. Given that so many intelligent
people have already argued for a simplification for the
past two decades without success, we are convinced that
the key for simplification lies in substantially limiting the
functionality and expressiveness (which most of the
previous attempts did not want to compromise).

Disjoint, manageable resources: There should be no
dynamic resource sharing among components. This
simplifies performance tuning and also provides
additional isolation with regard to software failures. For
example, when building a news-on-demand service on top
of a video server, a text document server, and an SPJ table
manager (for simple business issues such as accounting),
each of these servers should have its own, dedicated
hardware for simpler tuning (although this rules out
additional cost/performance gains via dynamic resource
sharing). In the extreme this could imply, for example,

that, within a table manager, data pages and index pages
should always reside on disjoint disks (which is a
commonly used rule of thumb anyway) for the sake of
simplicity and at the modest cost of a few additional
disks.

Pre-configuration: Each RISC-style data management
component could be pre-configured for say five or ten
different “power levels” with regard to feature-richness
(e.g., "basic", "standard", "advanced", and "full") as well
as performance and/or availability levels. Along the latter
lines one could support a small spectrum of data server
models such as "good for mostly-read workloads", "good
for small to medium data volumes". This pre-
configuration approach promises a viable compromise
between "one size fits all" and complete freedom for
configuration and feature selection at the risk of facing a
monstrous tuning problem. In many cases the need for
customization and tuning could be completely eliminated,
at least at installation times. Note that this trend towards
pre-packaging can already be observed in the IT industry,
definitely as far as marketing and sales are concerned,
but to some technical extent also in OS installation.
However, database systems are still engineered mostly
monolithically for the largest possible feature set. We
advocate that the idea of supporting a limited number of
different "models" should already be a major
consideration in the design and engineering of data
management software.

4.2 Prerequisites of Success
Need for “Universal Glue”: The problem of composing
different data managers into value-added application
services is, of course, much more difficult than for
standard consumer electronics. As noted earlier, we have
to make sure that the complexity that we aim to reduce by
simplifying the components does not reappear at the
application layer and may become even more monstrous
than ever. Simple interfaces with limited functionality and
standardized cross-talk protocols are a fundamental
prerequisite for composability and manageability of
composite systems. Thus, higher-level application servers
do need some standardized form of middleware such as
OLE-DB or EJB to be able to talk to each underlying data
server in a uniform manner. Such “universal glue” is
available today. In particular, it is now a standard exercise
to coordinate distributed transactions across arbitrary sets
of heterogeneous servers by means of standardized 2PC
protocols. So one important historical reason for putting
all mission-critical data into a centralized, “universal”
database for consistency preservation has become
obsolete. Even when the classical ACID properties are
inadequate for the application at hand, workflow
technology is about to become mature and can reliably
orchestrate activities on arbitrary servers within long-
lived business processes. This is not to say that each and
every technical aspect of how to combine arbitrary
services into transactional federations is perfectly

7

understood (e.g., see [1] for open issues), but most of the
issues are settled and for the remaining ones research
solutions are at least within reach.

Apply Occam’s Razor: Following Occam’s philosophy,
we should be extremely careful, even purists, in selecting
which features a data manager should support and which
internal mechanisms it needs to have to this end, aiming
to minimize the complexity of both interfaces and
internals. Often certain involved features can be
implemented on top of a RISC data manager with a
moderate loss of performance and a minor increase in
programming efforts. So the gain from using a database
system would be slightly reduced, but, at the same time,
the pain of having to manage a feature-overloaded,
complex system could be drastically alleviated. So the
win is in improving the gain/pain ratio of database
technology. For example, one could argue that null values
with all their ramifications should be implemented by the
application rather than the underlying data manager: the
application understands its specific semantics of missing
or undefined values much better, and this would also
eliminate a multitude of null-related, often tricky rewrite
rules in the data manager’s query optimizer.

Likewise, we should avoid an unnecessarily broad
repertoire of implementation mechanisms within a single-
table, SPJ, or SPJ+Aggregation processor. Often certain
mechanisms improve performance by only moderate
factors and only in special cases, but significantly add to
the complexity of system tuning. For example, hash
indexes and hash-based query processing (including the
popular hash joins) are probably never better than a factor
of two compared to nested-loop variants (including those
with index support etc.) or sort-merge-based query
processing [14]. Similar arguments could probably be
made about pipelined query execution (especially on
SMPs with very large memory where the performance
impact of pipelining is noise compared to that of data
parallelism and may even hamper processor-cache
effectively), fancy notions of join indexes etc..

Need for a Self-Tuning Framework: A major incentive for
moving towards RISC style data managers is to enable
auto-tuning of database components. As explained earlier,
tuning must consider the relationship between workload
characteristics, knob settings, and the resulting
performance in a quantitative manner. Therefore, it is not
surprising that the most promising and, to some extent,
successful approaches in the past decade have been based
on mathematical models and/or feedback control methods
(e.g., to dynamically adapt memory partitioning or
multiprogramming levels to an evolving, multi-class
workload). Unfortunately, these models work only in a
limited context, i.e., when focusing on a particular knob
(or a small set of inter-related knobs). Attempting to cover
the full spectrum of tuning issues with a single,
comprehensive model is bound to fail because of the lack
of sufficiently accurate mathematical models or the

intractability of advanced models. This is why limiting
ourselves to using only RISC data managers is so
important: we no longer need to aim for the most
comprehensive, elusive performance model, and there is
hope that we can get a handle on how to auto-tune an
individual data server component. It is much easier to
tune a system with a less diverse workload and less
dynamic resource sharing among different data and
workload classes. Of course, the global tuning problem is
now pushed one level above: how do we tune the
interplay of several RISC data managers? Fortunately, a
hierarchical approach to system tuning appears to be more
in reach than trying to solve the entire complex problem
in one shot. The main steps of such a hierarchical self-
tuning framework are: 1) identifying the need for tuning,
2) identifying the bottleneck, 3) analyzing the bottleneck,
4) estimating the performance impact of possible tuning
options, and 5) adjusting the most cost-effective tuning
knob.

The hierarchical nature of such a self-tuning procedure is
perfectly in line with good practice for manual, or we
should better say intellectual, tuning (e.g., [16, 20, 21]). In
particular, our approach also adopts a “think globally, fix
locally” regime. Further note that mathematical models
have been and remain to be key assets also in the practical
system tuning community (e.g., [11]). The key to making
the mathematics sufficiently simple and thus practical lies
in the reduced complexity of the component systems and
their interfaces and interplay. We believe that there is a
virtue in engineering system components such that their
real behavior can be better captured by existing
mathematical modeling techniques, even if this may lead
to some (tolerable) loss of high-end features and
efficiency. The true gain lies in the better predictability
and thus tunability and manageability of systems.

5. Towards a Research Agenda

5.1 Evaluation of Success
How should we evaluate the viability and success or
failure of the advocated architecture? Actually evaluating
an architectural framework would entail designing,
building, and operating nontrivial IT systems, which
obviously is way beyond the scope of a paper (especially
a semi-technical vision paper like this one). So we merely
give a rough sketch of how we as a research community
may proceed along these lines.

The best measure of success of a RISC-style database
system architecture would be to demonstrate the
usefulness of the components in a variety of data
management scenarios. To start with, we should be able
to develop data management components that work well
as scalable traditional OLTP systems as well as the basis
for OLAP-style data management services. Such systems
are likely to use the SPJ query processor and the
SPJ+Aggregation query processor, respectively.

8

Incidentally, recall that the first generation of OLAP
services extensively used “multi-statement” SQL, i.e.,
they fed only simple queries (SPJ with aggregation) to
backend servers to ensure that performance characteristics
are predictable since database optimizers have been
known to behave erratically for complex SQL queries
(which should not really be a surprise given that a typical
query optimizer is a large bag of tricks).

Another interesting instance of services is metadata
management. Such a service is distinguished from
traditional OLTP and OLAP in requiring more elaborate
conceptual data models, but with relatively simple needs
for querying and scalability (for large data volumes). Yet
another popular class of services is management of e-mail
data. Mail servers require fast insertion of mail messages
and “mostly fast” access when queried by attributes. A
key characteristic of mail data is that it is sparse, i.e., not
all attributes are present and records are of widely
variable length. It would be intriguing to consider an SPJ
query engine and a separate indexing engine as a mail
server’s base components. In contrast to traditional
relational system designs, however, there should be no
limiting necessity of a schema in this setting. Other data
services of interest, whose architecture would be
worthwhile to re-examine with this paper’s philosophy of
RISC building blocks in mind, are marketplace data
servers (e.g., in E-Bay) or large-scale multimedia
information servers for news-on-demand etc.

5.2 Research Opportunities
We wish to encourage researchers to make the system
architecture of database technology and the simplification
of component interfaces as well as internals (again) a top-
priority item on their agenda. Although most of the
problems with today’s architecture that we have identified
refer to industrial products, we believe that the impetus
for a new departure must come from academia as product
architects and developers are way too busy in their time-
to-market issues. To be fair, the database system industry
has a lot of stake in maintaining existing products and
market shares, and has too little leeway for radical
departures. For academic researchers we see ample
opportunities of system-oriented exploration that can
hopefully drive the community towards a better overall
architecture. It is crucial, however, already for component
prototyping and systematic experimentation that this
research avenue heads for simpler, smaller-scale, RISC-
style building blocks.

Along these lines, we propose making major efforts
towards the following research (and, to some extent,
sociological) challenges:

�� Make viable an open, worldwide testbed for RISC-

style data-management components to which even
small research teams can contribute.

�� Work out lean APIs for each of the most important
RISC-style components following our discussion of
Section 4.1 on different kinds of query processors
and storage managers.

�� Encourage a worldwide competition for the “best”
instantiation of each of these building blocks, for
example, with regard to certain standard benchmarks
or common test suites for data mining and Web
applications. To make this a real challenge and avoid
compromising our goal of simplified and auto-tuned
components, the rules should limit the code size of
each component, limit its footprint, and disallow any
kinds of tuning knobs other than what the component
does internally based on its own self-assessment.

�� To ensure that individual components are not tailored
to other components by the same team or even
tailored to specific benchmarks, all components that
are registered with the worldwide testbed must be
able to correctly cooperate, through their official
APIs, with all other components from all other teams.

�� Identify more precisely the “universal glue” for the
above kind of open test bed. Obviously this is already
required for setting up the test bed. A bootstrap
approach could be that one team provides an initial
instantiation of the necessary middleware services
and the most important components as a basis for
other teams to contribute and plug in individual
components or gradually replace some of the “glue”
services (e.g., a two-phase commit protocol).

Once the envisioned test bed is operational for database-
system components, its scope could and should be
broadened to encompass different kinds of data managers
for IT solutions in the large (e.g., a media server, a mail
server each again built from several RISC-style
components). So this worldwide test bed should be
extensible beyond the narrow boundaries of what is
commonly perceived as the “database community”.

6. Concluding Remarks
Universal database systems grew out of our belief that
database is the center of the universe and therefore the
framework for integration. This is far from true in today’s
world. Once we are liberated and can accept the fact that
the database is one, certainly very important, component
in the IT world, programmability and integration of
database components with applications become a priority.
In such a world, we need to build RISC-style data
management components that have predictable
performance and can be auto-tuned.

When comparing our field to other areas of engineering
that are building extremely complex artifacts such as
aircrafts, high-speed trains, or space shuttles, we realize
that such an architectural simplification is overdue and
critical for the future success of database technology.
Few, if any, understand the functions of a modern aircraft
(e.g. Boeing 747) completely, but in contrast to the

9

situation with database systems, there is excellent
understanding of local components and a good
understanding of the interaction across components.

The test for the advocated RISC-style database system
architecture will be if it can be used broadly in many
more contexts compared to today’s database systems. In
this paper, we have hinted at some applications that can
drive the design of such RISC data management
components. These components can be “glued” together
using narrow APIs to form powerful data services that
have the hope of being effectively manageable.

The bottom line of these challenges is to foster improving
the “gain/pain ratio” of database technology with regard
to modern cyberspace applications. The key to this goal is
to tolerate a moderate degradation of “gain”, for
example, by tolerating certain overhead for more
interface-crossing across components, and reduce the
“pain” level by orders of magnitude by ensuring
predictable performance and eliminating the need for
manual tuning.

References
[1] G. Alonso, C. Hagen, H.-J. Schek, M. Tresch: Distributed
Processing Over Stand-alone Systems and Applications, 23rd
International Conference on Very Large Data Bases, Athens,
Greece, 1997.

[2] P. Bernstein et al. : The Asilomar Report on Database
Research, ACM SIGMOD Record Vol.27 No.4, Decemer 1998.

[3] D.S. Batory, T.Y. Leung, T.E. Wise: Implementation
Concepts for an Extensible Data Model and Data Language,
ACM Transactions on Database Systems Vol.13 No.3, 1988.

[44] K.P. Brown, M. Mehta, M.J. Carey, M. Livny: Towards
Automated Performance Tuning for Complex Workloads, 20th
International Conference on Very Large Data Bases, Santiago,
Chile, 1994.

[5] M.J. Carey, D.J. DeWitt, D. Frank, G. Graefe, M.
Muralikrishna, J.E. Richardson, E.J. Shekita: The Architecture
of the EXODUS Extensible DBMS, in: K.R. Dittrich, U. Dayal
(Eds.), International Workshop on Object-Oriented Database
Systems, Pacific Grove, 1986.

[6] M.J. Carey, D.J. DeWitt: Of Objects and Databases: A
Decade of Turmoil, 22nd International Conference on Very
Large Data Bases, Bombay, India, 1996.

[7] S. Chaudhuri, V. Narasayya : An Efficient, Cost-driven
Index Tuning Wizard for Microsoft SQL Server, 23rd
International Conference on Very Large Data Bases, Athens,
Greece, 1997.

[8] S. Agrawal, S, Chaudhuri, V. Narasayya: Automated
Selection of Materialized Views and Indexes, 26th International
Conference on Very Large Data Bases, Cairo, Egypt (this
proceedings).

[9] D. Chatziantoniou, K.A. Ross: Querying Multiple Features
of Groups in Relational Databases, 22nd International
Conference on Very Large Data Bases, Bombay, India, 1996.

[10] S. Chaudhuri (Editor): IEEE CS Data Engineering Bulletin,
Special Issue on Self-Tuning Databases and Application Tuning,
Vol.22 No.2, June 1999.

[11] Computer Measurement Group, Inc., http://www.11.org

[12] A. Geppert, K.R. Dittrich: Bundling: Towards a New
Construction Paradigm for Persistent Systems, Networking and
Information Systems Journal Vol.1 No.1, 1998.

[13] G. Graefe, D.J. DeWitt: The EXODUS Optimizer
Generator, ACM SIGMOD International Conference on
Management of Data, San Francisco, 1987.

[14] G. Graefe: The Value of Merge-Join and Hash-Join in SQL
Server. 25th International Conference on Very Large Data
Bases, Edinburgh, UK, 1999.

 [15] L. Haas et al.: Starburst Midflight: As the Dust Clears,
IEEE Transactions on Knowledge and Data Engineering Vol.2
No.1, 1990.

[16] D.A. Menasce, V.A.F. Almeida: Capacity Planning for
Web Performance – Metrics, Models, and Methods, Prentice
Hall, 1998.

[17] R. Munz: Usage Scenarios of DBMS, Keynote, 25th
International Conference on Very Large Data Bases, Edinburgh,
UK, 1999, http://www.dcs.napier.ac.uk/~vldb99/Industrial
SpeakerSlides/SAPVLDB.pdf

[18] US President’s Information Technology Advisory
Committee Interim Report to the President, August 1998,
http://www.ccic.gov/ac/interim

[19] H.-J. Schek, H.-B. Paul, M.H. Scholl, G. Weikum: The
DASDBS Project: Objectives, Experiences, and Future
Prospects, IEEE Transactions on Knowledge and Data
Engineering Vol.2 No.1, 1990.

[20] T. Schneider, SAP R/3 Performance Optimization: The
Official SAP Guide, Sybex, 1999.

[21] D.E. Shasha: Database Tuning: A Principled Approach,
Prentice Hall, 1992.

[22] A. Silberschatz, S. Zdonik, et al.: Strategic Directions in
Database Systems - Breaking Out of the Box, ACM Computing
Surveys Vol.28 No.4, December 1996.

[23] M. Stonebraker, L.A. Rowe, M. Hirohama: The
Implementation of Postgres, IEEE Transactions on Knowledge
and Data Engineering Vol.2 No.1, 1990.

[24] G. Weikum, C. Hasse, A. Moenkeberg, P. Zabback: The
COMFORT Automatic Tuning Project, Information Systems
Vol.19 No.5, 1994.

10

	Am241.pdf
	eur240v2.pdf
	asia157.pdf
	Eur136V2.pdf

