
XML repository and Active Views Demonstration

J.C. Mamou, C. Souza

S. Abiteboul, V. Aguilera,
S. Ailleret, B. Amann,

S. Cluet, B. Hills,
F. Hubert, A. Marian,
L. Mignet, B. Tessier.

A.M. Vercoustre

T. Milo

ArdentSoftware
Denver, Colorado

INRIA/Verso
Rocquencourt, France

Computer Science Dept.
Univ. of Tel. Aviv

1 Overview

The goal of this demonstration is to present the main
features of (i) Axielle, an XML repository developed
by Ardent Software [3] on top of the O2 object-oriented
DBMS and (ii) the ActiveView system which has been
built by the Verso project at INRIA [1] on top of Ax-
ielle.

The demonstration is based on a simple electronic
commerce application which will be described in Sec-
tion 2. Electronic commerce is emerging as a ma-
jor Web-supported application. It involves handling
and exchange of data (e.g. product catalogs, yellow
pages, etc.) and must provide (i) database functional-
ities (query language, transactions, concurrency con-
trol, distribution and recovery) for the efficient man-
agement of large data volumes and hundreds of users
as well as (ii) standard data storage and exchange for-
mats (e.g. XML, SGML) for the easy integration of
existing software and data.

The ActiveView system combined with the Ax-
ielle XML repository enables a fast deployment of
electronic commerce applications based on a new
high-level declarative specification language (AVL),
advanced database technology (object-oriented data
model, XML query language, notifications), Web stan-
dards (HTTP, HTML) and other Internet compliant

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

technologies (Java, RMI).
The prime motivations for building on the emerging

XML technology are that XML will be a standard for
exchanging semi-/structured information over the In-
ternet and will be supported by many software compo-
nents in form of compilers, import/export filters, query
interfaces and sophisticated editors and browsers. Be-
sides the usage of an XML repository, the ActiveView
system integrates a number of other modern database
technology:

XML Views: Typically, in electronic commerce ap-
plication there exists different kinds of users who
access data with different points of view depend-
ing on their access rights and on the nature of
the activity they are presently involved in. These
aspects of ActiveViews are built on our experi-
ence with O2-Views [5], a system we developed at
INRIA. Roughly speaking, we modified O2Views
by (i) considering XML data and query languages
and (ii) adding sophisticated access and update
facilities.

Active databases: An active database is a database
that can respond to certain events according to
certain triggers. Very sophisticated active mecha-
nisms have been proposed with modest success in
industry. (Some database systems provide limited
triggering mechanisms.) Electronic commerce ap-
plications are, by nature, very active, e.g., when
a new order is received a number of actions may
have to be started. We introduce active features
in a somewhat minimal way based on a notifica-
tion mechanism and a rule manager.

Although we primarily target electronic commerce
applications, our approach can obviously be applied to

742



a wide range of other applications involving (i) shar-
ing of data and (ii) cooperation of a number of actors
connected via a network.

2 Demonstration

2.1 A Simple E-Commerce Application

The demonstrated electronic commerce application in-
volves several types of actors, i.e. a customer, a ven-
dor, a dispatcher. It also manages a significant amount
of data :

• a products catalog provided by CAMIF, a French
company specialized in mail-order business,

• a list of promotions information (typically viewed
by customers and updated by vendors),

• the list of current customers and available vendors
(used by the dispatcher).

Each of the actors view different parts of the data
(e.g. each of the customers can see only their own or-
ders and the promotions relevant to their class, while
vendors view all the orders and promotions), each may
perform different actions on the data, and have dif-
ferent access rights (e.g. promotions can be updated
only by certain vendors). Also, the ‘freshness’ of data
may differ, e.g. when promotions are updated, the cus-
tomers screen is immediately updated by the new data,
while refresh of catalog portions viewed by customers
are deferred until explicit requests.

The activity of each of the actors consists of several
sub-tasks, e.g. a customer can search the catalog, or-
der some selected item, change an existing order. Ob-
serve that each of these sub-tasks requires only part
of the data and actions available for the given actor,
and that the same piece of data can be used in several
not necessarily consecutive sub-tasks, e.g. the search
task queries catalog while the order and change order
activities use the orders list and add, or update, resp.,
elements to the list.

Finally, actions performed by an actor in a certain
task may initiate other tasks of the same actor (e.g. a
‘perform search’ action in the customer’s search sub-
task may query the catalog and then move the cus-
tomer to the order sub-task where he can view the
selected items and order them), or effect other actors
(e.g. when a vendor updates a promotion, the screen
of the relevant customers is refreshed). The system
may also want to log some of the actors operations,
providing a trace for later analysis.

2.2 Demonstration Architecture

The ActiveView system uses Ardent Software’s XML
repository that provides all the usual database fea-
tures such as persistency, versioning, concurrency con-
trol, etc. All data stored, exchanged and viewed by

users are XML data which are accessed by a standard
DOM [6] API. The system is based on a client/server
architecture. An Active View application consists
of several independent clients communicating among
themselves and with the repository server through no-
tifications. Clients are programmed in Java and com-
municate with the server using the DOM interface.

Figure 1 shows the various components of the
demonstrated application (obviously, several such ap-
plications may run simultaneously on the same server).

����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Active View

Active Rule Engine

local

remote

N
ot

if
ic

at
io

n 
bu

s

Persistent Java
Application
Objects and Methods

ActiveViews API

ActiveViews Server

ActiveViews API

DOM Server

XML Repository Java Client

 Java Client

Update Monitor
 Java Client

Java Client

Customer Server

Customer View

AViewer Applets

Vendor

AViewer Applers

Java RMI

Internet

Web browser

Figure 1: Demonstration Architecture

The active view application manager consists of a
set of modules managing: (i) connection and authen-
tication, (ii) tracing, (iii) update propagation and (iv)
active rules. More precisely:

1. The connection/authentication module is in
charge of authenticating users and giving them
the means to create1 or quit a view (via the net-
work). Whereas we currently use a simple internal
authentication mechanism, the integration of ex-
ternal authentication services is straightforward
and outside the scope of the demonstration.

2. The update monitor propagates update events
generated by the XML repository. Essentially, it
transforms primitive update events (modification
of a DOM node) into higher-level events concern-

1An active view is started from the Web using a particular
URL. The system provides a form asking for the name of the
system, the name of the view application, and the type of the
view.

743



ing the modification of query results (views) and
XML documents used by other components.

3. The tracing module keeps a log of specified events.
These events are generated by the application or
by some views.

4. The active rule module manages a programmer-
specified set of rules. These rules are fired ac-
cording to events and may have impact on the
repository and on some or all of the active views.
They form the essential components to specify a
business model.

The last two modules rely heavily on a stream of
notifications managed by the repository server that en-
ables the interaction between views at run time. These
notifications are generated according to the views spec-
ification (Section 2.3). Two kinds of events can be
notified: (i) events generated by the repository server
after the creation/deletion/update of objects and (ii)
user defined events generated by the clients. The sup-
port for this is provided by the O2 notifications mech-
anism.

An active view is basically an object of our applica-
tion. In the current version of the system, it is imple-
mented in Java. The object belongs to a (subclass of a)
particular class called ActiveView, which is an abstrac-
tion of the class we use in the actual implementation.
This class contains certain instance variables, includ-
ing in particular the owner instance variable that is
used for storing information on the user initiating the
view. The class also has some methods such as trans-
action/commit/abort to handle a transaction mode,
or init/quit/sleep/resume. An active view is related
to an actual Web browser opened by a user of the sys-
tem. Some views independent of any interface may
also be introduced, e.g., for bookkeeping. An active
view has access to the repository as well as to some
local data (the instance variables of the view object).
It reacts to user commands and may be refreshed ac-
cording to notifications sent by the server or the view
manager. The methods available on a view depend on
the users access rights and may allow him/her to read,
load, write, etc. part or the whole the data it sees.

The demonstrated user interfaces are implemented
as HTML documents with embedded Java applets (see
Figure 2). Our goal is to switch to XML as soon as
XML browser supports the needed dynamic features.
By default, for each activity and user there exists one
HTML page. The embedded applets are built on top
of an API generated by the system according to the
view specification. Although the system generates de-
fault interfaces, the application programmer may re-
define/customize them using the generated API that
captures the semantics of the application.

The repository server, the active views and the cor-
responding interfaces run on different machines. Typ-
ically, the interface corresponds actually to some Web

browser on any PC connected to the Internet. The
view data is obtained by check-in/check-out, so repos-
itory changes are not in general immediately propa-
gated to the view although they can be propagated, if
specified by the programmer. On the other hand, the
view and the interface see the same data.

2.3 Specification Language and Application
Generator

The above application can be specified in the high-level
ActiveView Language (AVL) [1] we have defined for
describing electronic commerce applications. Acting
as an application generator, the Active View system
can then generate an actual application that captures
the semantics of the above specification and allows the
different users to work interactively on the specified
data for performing the given set of controlled activi-
ties.

AVL specifications are given to a compiler that uses
information stored in the repository to generate: (i)
an Active View manager (unique per application), (ii)
a set of active views, and (iii) users interfaces. An
Active View specification is a declarative description of
applications of the above nature. It specifies, for each
of the actor types participating in the application,

1. the data and operations available to this particu-
lar actor and these with a sophisticate access con-
trol. The specification of the view is based on
AVQL, a query language for XML we have imple-
mented in the spirit of Lorel [2] and XML-QL [4].

2. the kinds of activities this actor may be engaged
in and the subset of data and operations available
in each;

3. some active rules that notably specify the se-
quencing of activities (a workflow component) but
also the events this actor wants to be notified of
(a subscription component) and those that have
to be logged (a tracing component).

References

[1] S. Abiteboul, B. Amann, S. Cluet, A. Eyal,
L. Mignet, and T. Milo. Active views for electronic
commerce. In Int. Conf. on Very Large DataBases
(VLDB), Edinburgh, Scotland, September 1999.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. L. Wiener. The Lorel query language for
semistructured data. International Journal on Dig-
ital Libraries, 1(1), April 1997.

[3] Ardent Software. http://www.ardentsoftware.com.

[4] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. Xml-ql: A query language for xml.
http://www.w3.org/TR/NOTE-xml-ql/.

744



Figure 2: Example: The client user interface

[5] C. Souza, S. Abiteboul, and C. Delobel. Virtual
schemas and bases. In Proc. EDBT, Cambridge,
1994.

[6] W3C. Document Object Model (DOM). http://-
www.w3.org/DOM.

745


