
Building light-weight wrappers for legacy Web

data-sources using W4F

Arnaud Sahuguet
Department of Computer and Information Science

University of Pennsylvania

sahuguet@saul.cis.upenn.edu

Fabien Azavant
�Ecole Nationale Sup�erieure des T�el�ecommunications

Paris, France

fabien.azavant@enst.fr

1 Introduction

The Web has become a major conduit to information
repositories of all kinds. Today, more than 80% of
information published on the Web is generated by un-
derlying databases (however access is granted through
a Web gateway using forms as a query language and
HTML as a display vehicle) and this proportion keeps
increasing. But Web data sources also consist of stand-
alone HTML pages hand-coded by individuals, that
provide very useful information such as reviews, di-
gests, links, etc. As for the information that also exists
in underlying databases, the HTML interface is often
the only one available for many would-be clients.

1.1 A need for HTML wrappers

As soon as we want to go beyond the basic mode
of a browsing human, for example to achieve Web-
awareness among services (services taking advantage
of one another) or inter-operability (between Web
sources and legacy databases or among Web sources
themselves), we need software applications and these
need to access HTML data. HTML was really designed
to display information to a human user, so applications
need HTML wrappers that can make the content of
HTML pages directly available to them.

The purpose of the World-Wide Web Wrapper Fac-
tory (W4F) toolkit that we propose to demonstrate
here is the rapid design, generation, and integration
in applications of such wrappers. Speci�cally, W4F's
key features are: fully declarative speci�cations, light-
weight components, rapid development, robustness,
direct integration into Java programs and re-usability.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,

Edinburgh, Scotland, 1999.

This work is presented at an interesting time be-
cause of the on-going emergence of XML as a more
application-friendly standard for Web pages. Some
people have already argued that there is no more
need for HTML wrappers because data sources will
soon serve XML documents. In fact, there already
are countless HTML pages on the Web and the in-
formation that many of them contain will have to be
displayed in XML in a relatively near future. This
demonstration will show that our W4F toolkit, among
other things, is an e�cient instrument for facilitating
the migration from HTML to XML.

More generally, we believe light-weight HTML
wrappers are currently indispensable for Web inter-
operation and Web information integration. In par-
ticular, such wrappers turn out to be also an excellent
testbed for the construction of smarter customized ap-
plications for e-commerce, digital libraries, etc.

1.2 Outline of the demonstration

To keep our demonstration focused, we will show how
to build a wrapper for the the Internet Movie Database

(IMDb) and create a gateway to serve these HTML
pages as XML documents. First we will explain how
to specify what information to extract from HTML
pages using our wysiwyg extraction wizard and our
extraction language. Then we will display and test
the wrapper using our visual interface. The next step
will be to de�ne an XML mapping for the extracted
information. Finally, we will deploy the wrapper as a
standard CGI-based Web interface that serves trans-
parently and on-the-y HTML pages as XML docu-
ments with their corresponding DTD.

However, we hope that the demonstration will argue
for the e�ectiveness of the toolkit on any Web data
source and for a broader range of applications.

2 The W4F toolkit in a nutshell

W4F (World-Wide Web Wrapper Factory) is a toolkit
to generate Web wrappers. Our wrappers consist of

738

three independent layers: retrieval, extraction and
mapping. The retrieval layer is in charge of fetch-
ing the HTML content from a Web data source. From
the user's point of view it means to provide the loca-
tion of the document. The extraction layer extracts
the information from the document. It is important
here to note that we can extract complex structures
and not just atomic elements from the page. The user
provides extraction rules to identify relevant pieces of
information. The mapping layer's role is to specify
how to export the data.

A wrapper processes a Web source in the following
way, as presented in Figure 1. An HTML document is
�rst retrieved from the Web according to one or more
retrieval rules. Once retrieved, the document is fed
to an HTML parser that constructs a corresponding
parse tree. Extraction rules are then applied on the
parse tree and the extracted information is stored in
our internal format.
Finally, information is mapped to structures exported
by the wrapper to the upper-level application, accord-
ing to mapping rules.

16/

16/

16/

5HWULHYDO�5XOHV

([WUDFWLRQ�5XOHV

3DUVHU

16/

16/

16/

6WULQJ

6WULQJ>@

$FWRU>@

'20 WUHH

+70/ SDJH

title

genre

cast

�029,(!

�7,7/(!&DVDEODQFD��7,7/(!
�*(15(!'UDPD� :DU� 5RPDQFH��*(15(!
�&$67!

�$&725!+XPSKUH\ %RJDUW��$&725!
�$&725!,QJULG %HUJPDQ��$&725!
���

0DSSLQJ�WR�-DYD�REMHFWV

0DSSLQJ�WR�;0/

7KH�-DYD�REMHFWV�FDQ�QRZ�EH
XVHG�E\�DQ\�-DYD�DSSOLFDWLRQ�

5HWULHYDO
ZL]DUG

([WUDFWLRQ
ZL]DUG

0DSSLQJ
ZL]DUG

0DSSLQJ�5XOHV

([WUDFWLRQ
(QJLQH

5HWULHYDO�$JHQW

0DSSHU

:RUOG
:LGH
:HE

;0/�GRFXPHQW

Figure 1: W4F information ow.

For the construction of the wrapper per-se, the
toolkit provides a compiler that generates Java classes
from a speci�cation �le, as well as some wizard appli-
cations to assist in the design of the wrapper layers.

2.1 HEL: HTML Extraction Language

A key feature of the toolkit is the HTML Extraction
Language (HEL[11]) that permits a declarative spec-
i�cation of information extraction. HEL is a DOM-
centric [13] language where an HTML document is
represented as a labeled graph. It comes with two
ways to navigate the tree. The �rst one follows the
hierarchy of the document, implied by tags. This nav-
igation is extremely useful in table-based documents
for instance. The second one follows the ow of the
document, i.e. a depth-�rst traversal of the document
tree which corresponds to the way a document is read
by a human. Using both navigation styles, most struc-
tures can be easily identi�ed as extraction paths. To

the best of our knowledge, HEL is the only language
that captures both dimensions of a document.

The language also o�ers conditions and extraction
features based on regular expressions �a la Perl (like
match and split). The �rst allow the de�nition of ro-
bust extraction rules where conditions are resolved at
run-time, on a per document basis. The second permit
to capture a �ner granularity inside the document.

Moreover, the language has been designed to ex-
tract complex structures from HTML documents and
not just isolated pieces. For instance, the language can
extract as a whole a movie with its title, genre and cast
(see Figure 3, using the "#" operator, a record con-
structor in a sense). The implicit structure of the doc-
ument does not have to be reconstructed from scratch
but is extracted as is.

2.2 NSL, our internal data-model

Another interesting aspect is that the extracted in-
formation is stored using an anonymous and language
neutral representation called NSL nested string lists
(NSL), the data-type de�ned by NSL = null+string+
listof (NSL). NSL can represent complex structures
(unlimited level of nesting) and then be mapped easily
to the desired data structure. The user can take ad-
vantage of an automatic mapping to Java base types
(String, int, float, etc. and their array exten-
sions); he can also provide his own Java classes by writ-
ing a valid constructor that consumes the NSL; �nally
he can specify XML mappings using the XML declar-
ative speci�cation. Some new mapping extensions are
to be included in future releases of the toolkit.

3 The demonstration

The demonstration will go through the various steps
of the building and deployment of a wrapper. As ad-
vertised in the introduction, we want to "wrap" the
Internet Movie Database. IMDb is the biggest infor-
mation repository about movies and is freely available.
Its underlying information system is a big �le system1

that serves HTML pages.

3.1 Building a wrapper, step by step

Building a wrapper consists of the following steps:
1. de�ne each layer (retrieval, extraction, mapping)
2. test
3. re�ne
4. compile the wrapper into a Java class
5. include the Java class as part of an application

The toolkit provides wizards to help the user write,
test and re�ne the de�nition of the wrapper.

1See http://www.imdb.com/interfaces#plain for more details.

739

3.2 De�ning extraction rules using the extrac-
tion wizard

The most critical part of the design of the wrapper
is the de�nition of extraction rules. The role of the
extraction wizard (see Figure 2) is to help the user
write such rules. Instead of forcing the user to mess
up with the HTML code, W4F adopts an annotation
approach.
For a given HTML document, the wizard feeds it into
W4F and returns the document to the user with some
invisible annotations (the document appears exactly
as the original).

Figure 2: the extraction wizard.

On Figure 2, when the user points to "Bruce
Willis", the corresponding text element gets high-
lighted and the canonical2 extraction rules pops-up.
Even if the wizard is not capable of providing the best
extraction rule, it is always a good start. Compare
what is returned by the wizard and what we actually
use in our wrapper (�gures 2 and 4).

3.3 Testing

Figure 3 presents the wizard (a Java applet here) that
assists the user when writing and testing the wrapper.
The applet layout represents the 3-layer architecture
of the wrapper.

Figure 3: a visual view of a wrapper with its 3 layers.

The top layer (not presented on the screen shot)
represents the location of the Web source.

2By canonical we mean that it uses only hierarchy based
navigation.

The middle layer displays the extraction rule { ex-
pressed in the HEL language { to be applied on the
retrieved HTML page. In this example, the rule will
extract the title, the year and the cast of the movie
(list of actors).
The bottom layer represents the structure of the in-
formation extracted as an NSL data-structure. This is
the default mapping exported by the toolkit.

3.4 Re�ning with a mapping to XML

The NSL structure extracted from the HTML pages
can be used as is { the toolkit provides printing meth-
ods { or can be mapped to other data structures. For
our target application, we can take advantage of a
declarative speci�cation for an XML mapping (see �g-
ure 4). This XML mapping is very close to the corre-
sponding extraction rule (it can be seen as an annota-
tion of the extraction or a template). Strings indicate
tag or attributes names; dots indicate tag nesting; "#"
indicate concatenation; "*" indicates lists; "^" indi-
cates that the value as to be used as an attribute of
the parent tag. The full details of the XML mapping
can be found in [12].
The bene�t of this approach is two-fold: (1) the se-
mantics of the mapping from the extraction-rule to
XML are straight-forward; (2) the DTD of the corre-
sponding XML document can be generated.

3.5 The �nal wrapper as a self-contained �le

The wrapper itself is self described by a single �le pre-
sented in Figure 4. For a full description of the ex-
traction and mapping syntax, refer to [11]. Such �les
can later be copied, modi�ed and re-used. Moreover,
since each layer is independent, it can be developed
separately and replaced later on.

EXTRACTION_RULES ::
movie = html.body(
->h1.txt, match/(.*?) [(]/ // title

->h1.txt, match/.*?[(]([0-9]+)[)]/ // year
->td[i:0].a[*].txt // list of genre
->table[ii:0].tr[jj:*].td[0].txt, match/(\S+)\s(.*)/ // first, last name

)
where html.body->td[i].b[0].txt = "Genre"
and html.body->table[ii].tr[0].td[0].txt =~ "Cast"
and html.body->table[ii].tr[jj].getNumberOf(td) = 3;
}

XML_MAPPING ::
movie_XML_template = .Movie (.TITLE^

.YEAR^
.CATEGORIES*.Genre
.ACTORS*.Actor (.FN # .LN)

);

Figure 4: IMDB.w4f, the wrapper description �le.

The wrapper description �le IMDB.w4f is then com-
piled into a Java class IMDB.class (less than 5 kb)3

that can be used as a stand-alone application or inte-
grated into another Java application.

For the XML-Gateway service, the only thing we
have to do is to make the wrapper available as a CGI

3The footprint of the entire W4F package is less than 200kb.

740

script. The result of the migration from HTML to
XML is presented in Figure 5.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE W4F_DOC [
<!ELEMENT W4F_DOC (MOVIE)>
<!ELEMENT MOVIE (CATEGORIES,ACTORS)>
<!ATTLIST MOVIE

TITLE CDATA #IMPLIED
YEAR CDATA #IMPLIED>

<!ELEMENT CATEGORIES (GENRE)*>
<!ELEMENT GENRE (#PCDATA)>
<!ELEMENT ACTORS (ACTOR)*>
<!ELEMENT ACTOR (FN,LN)>
<!ELEMENT FN (#PCDATA)>
<!ELEMENT LN (#PCDATA)>

]>
<W4F_DOC>
<MOVIE TITLE="Armageddon" YEAR="1998">
<CATEGORIES>

<GENRE>Action</GENRE>
<GENRE>Sci-Fi</GENRE>
<GENRE>Thriller</GENRE>

</CATEGORIES>
<ACTORS>

<ACTOR> <FN>Bruce</FN> <LN>Willis</LN> </ACTOR>
<ACTOR> <FN>Billy</FN> <LN>Bob Thornton</LN>

...

Figure 5: the XML document generated on-the-y.

4 Conclusion

Wrapper construction is a key issue in the implementa-
tion of mediator-based architectures. And with more
and more data sources being available on the Web, it
is important to have a convenient framework to build,
test and deploy such wrappers in order to make the
content of Web sources directly available to applica-
tions.

In this demonstration, by using the W4F toolkit
we have managed to build quickly a wrapper for a
large HTML-based Web data source and deploy it as
a gateway that serves on-the-y these pages as XML
documents.

The main contributions of W4F are: (1) Wrappers
are split into 3 separate layers. (2) The description of
a wrapper is fully declarative. (3) Entire structures
can be extracted from HTML pages and not just sin-
gle "atomic" pieces. (4) The toolkit comes with visual
wizards to help the user de�ne extraction rules and
test the wrapper before deployment. (5) Generated
wrappers are ready to be integrated in any Java appli-
cation.

Compared to other approaches [8, 9], we do not use
a grammar-based approach for extraction but rely on
the DOM object-model, which gives us for free some
wysiwyg visual tools like [1].

With rich features like hierarchical and ow-based
navigations, conditions and nested constructs, our
extraction language is more expressive and robust
than [6, 2]. Unlike [3], we do not try to query the
Web but simply extract structure from Web informa-
tion sources: querying is the concern of the applica-
tion.

In W4F, we do not address problems that are spe-
ci�c to mediators but we believe that our wrappers can
be easily included into existing integration systems like
TSIMMIS [7], Kleisli [5], Garlic [10], etc. W4F is al-
ready used by the K2 [4] mediation system.

The toolkit is freely available from the Penn
Database Research Group web site 4. On-line exam-
ples of W4F applications (including the wrapper pre-
sented here) can be found at the same location.

References

[1] Brad Adelberg. NoDoSE { A Tool for Semi-
Automatically Extracting Semi-Structured Data from
Text. In Proc. of the SIGMOD Conference, Seattle,
June 1998.

[2] Charles Allen. WIDL: Application Integration with
XML. World Wide Web Journal, 2(4), November
1997.

[3] Gustavo Arocena and Alberto Mendelzon. WebOQL:
Restructuring Documents, Databases, and Webs. In
Proc. ICDE'98, Orlando, February 1998.

[4] Johnatan Crabtree, Scott Harker, and Val Tannen.
K2.
http://www.cbil.upenn.edu:8089/K2/k2web?page=home.

[5] Susan Davidson, Christian Overton, Val Tannen, and
Limsoon Wong. Biokleisli: A digital library for
biomedical researchers. Journal of Digital Libraries,
1(1):36{53, November 1996.

[6] Jean-Robert Gruser, Louiqa Raschid, M. E. Vidal,
and L. Bright. Wrapper Generation for Web Accessi-
ble Data Sources. In COOPIS, 1998.

[7] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting Semistructured Informa-
tion from the Web. In Proceedings of the Workshop
on Management of Semistructured Data. Tucson, Ari-
zona, May 1997.

[8] Gerald Huck, Peter Fankhauser, Karl Aberer, and
Erich J. Neuhold. JEDI: Extracting and Synthesizing
Information from the Web. In COOPIS, New-York,
1998.

[9] G. Mecca, P. Atzeni, P. Merialdo, A. Masci, and
G. Sindoni. From Databases to Web-Bases: The
ARANEUS Experience. Technical Report RT-DIA-
34-1998, Universita Degli Studi Di Roma Tre, May
1998.

[10] Mary Tork Roth and Peter Schwartz. A Wrapper Ar-
chitecture for Legacy Data Sources. Technical Report
RJ10077, IBM Almaden Research Center, 1997.

[11] Arnaud Sahuguet and Fabien Azavant. W4F, 1998.
http://db.cis.upenn.edu/W4F.

[12] Arnaud Sahuguet and Fabien Azavant. Web Ecol-
ogy: Recycling HTML pages as XML documents us-
ing W4F. In WebDB'99, 1999.

[13] World Wide Web Consortium (W3C). The Document
Object Model, 1998.
http://www.w3.org/DOM.

4http://db.cis.upenn.edu/W4F

741

