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Abstract

We study indexing techniques for main
memory, including hash indexes, binary
search trees, T-trees, B+-trees, interpola-
tion search, and binary search on arrays.
In a decision-support context, our primary
concerns are the lookup time, and the space
occupied by the index structure.

Our goal is to provide faster lookup times
than binary search by paying attention to
reference locality and cache behavior, with-
out using substantial extra space. We
propose a new indexing technique called
“Cache-Sensitive Search Trees” (CSS-trees).
Our technique stores a directory structure
on top of a sorted array. Nodes in this
directory have size matching the cache-line
size of the machine. We store the directory
in an array and do not store internal-node
pointers; child nodes can be found by per-
forming arithmetic on array offsets.

We compare the algorithms based on their
time and space requirements. We have im-
plemented all of the techniques, and present
a performance study on two popular mod-
ern machines. We demonstrate that with
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a small space overhead, we can reduce the
cost of binary search on the array by more
than a factor of two. We also show that our
technique dominates B+-trees, T-trees, and
binary search trees in terms of both space
and time. A cache simulation verifies that
the gap is due largely to cache misses.

1 Introduction

As random access memory gets cheaper, it becomes
increasingly affordable to build computers with large
main memories. The recent “Asilomar Report”
([BBC+98]) predicts “Within ten years, it will be
common to have a terabyte of main memory serving
as a buffer pool for a hundred-terabyte database.
All but the largest database tables will be resident
in main memory.” But main memory data process-
ing is not as simple as increasing the buffer pool
size. An important issue is cache behavior. The
traditional assumption that memory references have
uniform cost is no longer valid given the current
speed gap between cache access and main memory
access. So, improving cache behavior is going to be
an imperative task in main memory data processing.
In this paper, we focus on how to make indexes cache
conscious.
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Figure 1: Processor-memory performance imbalance
Index structures are important even in main

memory database systems. Although there are no
disk accesses, indexes can be used to reduce overall
computation time without using too much extra
space. With a large amount of RAM, most of
the indexes can be memory resident. Past work
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Figure 2: Space/time Tradeoffs

on measuring the performance of indexing in main-
memory databases includes [LC86b, WK90], with
[LC86b] being the most comprehensive on the spe-
cific issue of indexing. In the thirteen years since
[LC86b] was published, there have been substantial
changes in the architecture of computer chips. The
most relevant change is that CPU speeds have been
increasing at a much faster rate (60% per year) than
memory speeds (10% per year) as shown in Figure 1
(borrowed from [CLH98]). Thus, the relative cost of
a cache miss has increased by two orders of magni-
tude since 1986. As a result, we cannot assume that
the ranking of indexing algorithms given in [LC86b]
would be valid on today’s architectures. In fact, our
experimental results indicate very different relative
outcomes from [LC86b] for lookup speed.

Another recent development has been the explo-
sion of interest in On-Line Analytical Processing
(OLAP). [Fre95, Fre97] contrasts the requirements
of OLAP with OLTP systems and contends that the
real performance gains can be obtained by separat-
ing the two systems. A dedicated OLAP system
can have a much better query performance if we
are willing to sacrifice update performance. Com-
mercial systems such as Sybase IQ [Syb97] were
designed for such purposes. Thus, typical OLAP
workloads are query-intensive, and have infrequent
batch updates. For example, a data warehouse for
a university, containing all the student records, is
probably updated once per day. Census data sets
are collected periodically and will remain static for
a relatively long period of time. These systems are
in the scale of several gigabytes and can already
fit in RAM today. Given the current trend, we
expect more and more disk-based applications will
be moved to main memory in the future. Since
updates are batched in those systems, incremental
updates of indexes may not be very important. In
fact, we may want to rebuild indexes from scratch
after a batch of updates, if that leads to faster index
searches. In this paper, we focus on such an OLAP
environment.

Two important criteria for the selection of index

structures are space and time. Space is critical in
a main memory database; we may have a limited
amount of space available for precomputed struc-
tures such as indexes. Given space constraints, we
try to optimize the time taken by index lookups. In
a main-memory database there are several factors
influencing the speed of database operations. An
important factor is the degree of locality in data
references for a given algorithm. Good data locality
leads to fewer (expensive) cache misses, and better
performance.

We study a variety of existing techniques, includ-
ing hash indexes, binary search on a sorted list of
record identifiers, binary trees, B+-trees [Com79],
T-trees [LC86a], and interpolation search. We also
introduce a new technique called “Cache-Sensitive
Search Trees” (CSS-trees). CSS-trees augment bi-
nary search by storing a directory structure on top
of the sorted list of elements. CSS-trees differ from
B+-trees by avoiding storing the child pointers in
each node. The CSS-tree is organized in such a way
that traversing the tree yields good data reference
locality (unlike binary search), and hence relatively
few cache misses. CSS-trees also take advantage of
the OLAP context to optimize search performance,
at the expense of update performance.

We summarize the space/time tradeoffs of vari-
ous methods in Figure 2. Each point for T-trees,
enhanced B+-trees and CSS-trees corresponds to
a specific node size (multiple of cache line size).
Normally a larger node size means less space but
more search time. The stepped line basically tells
us what’s the optimal searching time for a given
amount of space. Our conclusion is that CSS-trees
dominate T-trees and enhanced B+-trees in both
space and time. There are tradeoffs between space
and time for binary search, CSS-trees and hash in-
dices. CSS-trees reasonably balance space and time.
We discuss this issue in more detail in Section 7.

2 Main Memory Databases

Main Memory Database Systems: Some past
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work on main memory databases has addressed
the problems of concurrency, transaction process-
ing and logging [GMS86, LN88, JLRS94], and re-
covery [Hag86, LC87]. Systems with a significant
query-processing component include OBE [WK90],
MM-DBMS [LC87], and Starburst [LSC92]. More
recently, the TimesTen corporation (formerly the
Smallbase project at Hewlett-Packard) has devel-
oped a commercial main-memory system, with
claims of tenfold speedups over disk-based sys-
tems [Sof97]. Most of the systems do not address
the issue of cache reference locality.

Data Layout: [AHK85] and others describe the
concept of a domain. When data is first loaded into
main memory, distinct data values are stored in an
external structure, the domain, and only pointers to
domain values are stored in place in each column.
This has the benefits of: (a) saving space in the
presence of duplicates, (b) simplified handling of
variable-length fields and (c) pointer comparisons
can be used for equality tests. In the main memory
database project at Columbia University, we focus
on an OLAP main memory database system. We go
further than [AHK85] by keeping the domain values
in order and associate each value with a domain
ID (represented by an integer). As a result, we
can process both equality and inequality tests on
domain IDs directly, rather than on the original
values. Although keeping values in order has extra
cost, we expect the data is updated infrequently.
Independently, Tandem Inc.’s InfoCharger storage
engine [Eng98] has also chosen to keep domain values
in sorted order. The use of domains means that
many indexes can be built with smaller keys.

Indexing in Main Memory Databases: Al-
though sequential data access is much cheaper in
main memory than in disk-based systems, indexing
remains very important in main memory databases.
First of all, searching an index is still useful for
answering single value selection queries and range
queries. Next, cheaper random access makes indexed
nested loop joins more affordable in main memory
databases. Indexed nested loop join is pipelinable,
requiring minimal storage for intermediate results
and is relatively easy to implement. As a matter of
fact, indexed nested loop join is the only join method
used in [WK90]. This approach requires a lot of
searching through indexes on the inner relations.
Last but not least, transforming domain values to
domain IDs (as described in the previous section)
requires searching on the domain.

A list of record identifiers sorted by some columns
provides ordered access to the base relation. Or-
dered access is useful for range queries and for satis-
fying interesting orders [SAC+79]. A sorted array is
an index structure itself since binary search can be

used.
Assumptions: We assume an OLAP environ-

ment, so we don’t care too much about updates.
Our main concerns are the lookup time for an index,
and the space required to store the index. There
are many applications in this class, as described in
Section 1.

3 Cache Optimization on Indexes

In this section, we first describe cache memories and
the impact of cache optimization. We then give a
survey of the related work. Finally, we analyze the
cache behavior of various existing index structures
for searching and point out their shortcomings.

Cache memories are small, fast static RAM mem-
ories that improve program performance by holding
recently referenced data [Smi82]. Memory refer-
ences satisfied by the cache, called hits, proceed
at processor speed; those unsatisfied, called misses,
incur a cache miss penalty and have to fetch the
corresponding cache block from the main memory.

A cache can be parameterized by capacity, block
size and associativity, where capacity is the size of
the cache, block size is the basic transferring unit
between cache and main memory, and associativity
determines how many slots in the cache are potential
destinations for a given address reference.

Cache optimization in a main memory database
system is similar to main memory optimization in
a disk-based system. But the management of the
cache is done by the hardware and the database
system doesn’t have direct control of which block to
bring into a cache. This makes cache optimization
more subtle.

Typical cache optimization techniques include
clustering, compression and coloring [CLH98]. Clus-
tering tries to pack, in a cache block, data structure
elements that are likely to be accessed successively.
Compression tries to remove irrelevant data and thus
increases cache block utilization by being able to
put more useful elements in a cache block. This
includes key compression, structure encodings such
as pointer elimination and fluff extraction. Caches
have finite associativity, which means that only a
limited number of concurrently accessed data el-
ements can map to the same cache line without
causing conflict. Coloring maps contemporaneously-
accessed elements to non-conflicting regions of the
cache.

Previous research has attacked the processor-
memory gap using the above techniques. Wolf and
Lam [WL91] exploited cache reference locality to
improve the performance of matrix multiplication.
LaMarca and Ladner [LL96, LL97] considered the
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effects of caches on sorting algorithms and improved
performance by restructuring these algorithms to
exploit caches. In addition, they constructed a
cache-conscious heap structure that clustered and
aligned heap elements to cache blocks. [CLH98]
demonstrated that cache optimization techniques
can improve the spatial and temporal locality of
pointer-based data structures. They showed im-
provement on various benchmarks.

In [NBC+94], Nyberg et al. have shown that
for achieving high performance sorting, one should
focus carefully on cache memory behavior.

Cache conscious algorithms have been considered
in database systems also. In [SKN94], the authors
suggested several ways to improve the cache refer-
ence locality of query processing operations such as
joins and aggregations. They showed that the new
algorithms can run 8% to 200% faster.

Although cache optimization has been considered
on tree-based structures, nobody has looked at the
influence of the cache on index structures used in
database systems. Some other papers have consid-
ered the issue of compact representations of B-tree
indexes [CS83, JTR87]. These papers appeared too
early to consider cache issues since memory speed
wasn’t too slow compared with CPU speed. In the
rest of this section, we study the cache behavior
of various typical index structures used in main
memory database systems.

Array Binary Search: The problem with bi-
nary search is that many accesses to elements of the
sorted array result in a cache miss. We do not get
misses for the first references because of temporal
locality over many searches. We avoid misses for
the last references, due to spatial locality, if many
records from the array fit inside a single cache line.
However, when the array is substantially bigger than
the cache, many of the intervening accesses cause
cache misses. In the worst case, the number of
cache misses is of the order of the number of key
comparisons.

T-Trees: T-Trees have been proposed as a better
index structure in main memory database systems.
A T-Tree [LC86a] is a balanced binary tree with
many elements in a node. Elements in a node con-
tain adjacent key values and are stored in order. Its
aim is to balance the space overhead with searching
time and cache behavior is not considered (thirteen
years ago the gap between processor and main mem-
ory speeds was not that large). T-Trees put more
keys in each node and give the impression of being
cache conscious. But if we think carefully, we can
observe that for most of the T-Tree nodes, only
the two end keys are actually used for comparison
(in the improved version [LC86b], only one key is
used). This means that the utilization of each node

is low. Since the number of key comparisons is still
the same, T-Trees do not provide any better cache
behavior than binary search.

Another problem with the T-Tree is that it has
to store a record pointer for each key within a node.
Since most of the time the record pointers won’t be
needed, essentially half of the space in each node is
wasted. Potentially, one could put just RIDs in the
T-tree with no keys, but then search is much slower
due to indirection.

B+-trees: Although B+-trees were designed for
disk-based database systems, they actually have a
much better cache behavior than T-trees. In each
internal node we store keys and child pointers, but
the record pointers are stored on leaf nodes only.
Multiple keys are used to search within a node. If
we fit each node in a cache line, this means that a
cache load can satisfy more than one comparison.
So each cache line has a better utilization ratio.

Enhanced B+-trees: In an OLAP environ-
ment, we can use all the slots in a B+-tree node
(similar to compact B-Trees [CS83] and the ISAM
method used in the IBM OS/360 operating sys-
tem [GR93]) and rebuild the tree when batch up-
dates arrive. We can design the node size to be
exactly the same as a cache line and align each node.
We can also hard-code the node search since we know
all the slots are used. But B+-trees enhanced in
these ways still need to store child pointers within
each node (even when compact). So for any given
node size, only half of the space can be used to store
keys.

In the rest of this paper we shall consider only
“enhanced B+-trees” as described above; however,
we may sometimes use “B+-trees” for brevity.

Hash: Hash indices can also benefit from cache
optimization. The most common hashing method
is chained bucket hashing [Knu73]. In [GBC98], the
authors use the cache line size as the bucket size and
squeeze in as many < key,RID > pairs as possible.
This can reduce the number of cache misses when
scanning through the buckets. Hash indices are fast
for searching only if the length of each bucket chain
is small. This requires a fairly large directory size
and thus a fairly large amount of space. Skewed
data can seriously affect the performance of hash
indices unless we have a relatively sophisticated hash
function, which will increase the computation time.
Hash indices do not preserve order. To provide
ordered access, an ordered list has to be kept in
addition to the hash indices.

4 Cache Sensitive Search Trees

In this section, we present our cache conscious
searching methods called CSS-trees. Section 4.1
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introduces the concept of “full” CSS-trees. We talk
about “level” CSS-trees in Section 4.2.

Suppose that we have a sorted array a[1..n] of
n elements. The array a could contain the record-
identifiers of records in some database table in the
order of some attribute k. a could alternatively
contain column-k keys from the records in the table,
with a companion array holding the corresponding
record-identifiers, using some extra space to avoid
an indirect reference during the search. a could
alternatively contain records of a table or domain
values.

Binary search of a has a serious cache usage
problem as described in Section 3. A second problem
with binary search is that it requires a calculation
to be performed log2 n times to find the next el-
ement to search. Even if this calculation uses a
shift rather than a division by two [WK90], the
calculation represents a significant portion of the
execution time needed. Nevertheless, binary search
has the benefit that no additional space beyond a is
needed to perform a search. Our goal is to improve
upon the search time of binary search without using
a significant amount of additional space.

4.1 Full CSS-Trees

We create a search tree with nodes containing ex-
actly m keys. (We’ll see how to choose m later.) If
the depth of the tree is d, then the tree is a complete
(m + 1)-ary search tree up to depth d − 1, and at
depth d the leaves are filled from left to right. An
example tree is shown for m = 4 in the left diagram
of Figure 3 (the numbers in the boxes are node
numbers and each node has four keys). The nodes
of a CSS-tree can be stored in an array as shown on
the right in Figure 3. Note that we do not need to
store explicit pointers to child nodes; the children of
a node can be computed from offsets in the CSS-tree
array. (The exact formulas are given below.)

Our basic idea is to store a CSS-tree as a directory
structure on top of the array a. There are two
reasons why we expect a traversal of such a tree
to be faster than binary search. First, if we choose
m such that a node fits in a cache line, then all
local searching within a node happens with at most

one cache miss. As a result we get at most logm+1 n
cache misses for a lookup, unlike binary search which
gets up to log2 n cache misses. (Even if a node
occupies two cache lines, half the time only one cache
miss will be generated, while half the time there will
be two cache misses.) Second, we can hard-code the
traversal within a node, so that calculations needed
to find the next node happen logm+1 n times rather
than log2 n times. (Note that the total number of
comparisons is the same.)

Suppose that we number the nodes and keys
starting at 0. If we have an internal node numbered
b, then it is not difficult to show that the children
of that node are numbered from b(m + 1) + 1 to
b(m + 1) + (m + 1). Within the directory, we have
m keys per node, so key number i in the directory
array maps to node number b imc. As a result, one
can find the offset of the first key of the child nodes
within the directory array as (b imc ∗ (m+ 1)+ 1)∗m
through (b imc ∗ (m+ 1) +m+ 1) ∗m.

A subtle point in the structure of a CSS-tree is
that we store the leaf nodes in a contiguous array
in key order. This conflicts with the natural order
of the CSS-tree that stores the nodes from left to
right, level by level. The CSS-tree order would split
the array, putting the right half of the array (which
appears at a higher level than the left half of the
array) ahead of the left half of the array. In Figure 3,
the natural tree order is to store nodes 16-30 before
nodes 31-80. However, when the leaves are stored in
a sorted array, nodes 31-80 come before nodes 16-30.
Since maintaining a contiguous array in key order
is desirable for other purposes, and since the array
is given to us without assumptions that it can be
restructured, we leave the array in key order. To get
to the correct leaves when searching the CSS-tree,
we modify the natural search algorithm.

When performing a search, we move from parent
to child by recalculating the offset within the direc-
tory structure as above. We mark the end of the
directory structure (in Figure 3, that’s the last key
in node 15), and terminate this portion of the search
when the computed offset exceeds the endpoint. If
the leaves were stored in the natural CSS-tree order,
we’d use this offset to look up the directory directly.
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However, since the two parts of the leaf nodes are
stored in reverse order in a separate array, we need
to process this offset further.

The two parts of the leaf nodes are mapped into
the sorted array as shown in Figure 3. We use y to
denote the boundary of the two parts of the leaf
nodes, which is the offset of the first key at the
deeper leaf level in the directory array. (In Figure 3
that’s the first key in node 31.) Given an offset x of a
key in a leaf node, we compare it with y to determine
which part of the sorted array to look into. If x > y,
we find the element at position x− y from the start
of the sorted array a. Otherwise, we find the element
at position y− x from the end of a. For example, in
Figure 3, the first key in leaf node 30 can be found
at the first key in node 64 in the sorted array.

Note that our techniques apply to sorted arrays
having elements of size different from the size of a
key. Offsets into the leaf array are independent of
the record size within the array; the compiler will
generate the appropriate byte offsets.

The following lemma tells us how to calculate
the node number of the last internal node, and the
node number y. Key offsets can be obtained by
multiplying these numbers by m.

Lemma 4.1: Let n = N ∗ m be the number of
elements in the sorted array a (N is the number of
leaf nodes). The total number of internal nodes in
a full CSS-tree is (m+1)k−1

m −b (m+1)k−N
m c. The first

leaf node in the bottom level is number (m+1)k−1
m .

In both formulas, k = dlogm+1(N)e.

Notice that CSS-trees are stored in a way similar
to heaps. This is possible because of the way we
“virtually” split the sorted array. B+-trees can’t use
the same technique since they require all the leaves
to be on the same level.

Building a Full CSS-Tree: To build a full CSS-
tree from a sorted array, we first split the sorted
array logically into two parts (based on Lemma 4.1)
and establish the mapping between the leaf nodes
and elements in the sorted array. We then start
with the last internal node. For each entry in the
node, we fill it with the value of the largest key in
its immediate left subtree. Finding the largest key
in a subtree can be done by following the link in the
rightmost branch until we reach the leaf nodes.

Some internal nodes, namely ancestors of the last
leaf node at the deepest level, may not have a full
complement of keys. In our algorithm, we simply fill
in those dangling keys with the last element in the
first half of array a. So there may be duplicate keys
in some internal nodes. In our searching algorithm,
we tune the searching within each node in such a

way that the leftmost key will always be found in
case of duplicates. So we will never reach the leaf
nodes in the deepest level with an index out of the
range of the first half of the sorted array.

Although it’s difficult to incrementally update a
full CSS-tree, it’s relatively inexpensive to build such
a tree from scratch. Our experiments show that to
build a full CSS-tree from a sorted array of twenty-
five million integer keys takes less than one second on
a modern machine. Therefore, when batch updates
arrive, we can afford to rebuild the CSS-tree.

Searching a Full CSS-Tree: Once a full CSS-
tree is built, we can search for a key. We start from
the root node. Every time we reach an internal node,
we do a binary search to find out which branch to go
to. We repeat until we reach a leaf node. Finally, we
map the leaf node into the sorted array and binary
search the node.

All the searches within a node consist of hard-
coded if-else statements. When doing binary search
in the internal nodes, we keep checking whether the
keys in the left part are greater than or equal to the
searching key. We stop when we find the first slot
that has a value smaller than the searching key and
then follow the branch on the right. (If such a slot
can’t be found, we follow the leftmost branch.) In
this way, if there are duplicates in a node, we are
guaranteed to find the leftmost key among all the
duplicates. When there are duplicate keys being
indexed, we can return the leftmost match in a
fashion similar to B+-trees.

4.2 Level CSS-Trees

3 5 7

2

8

1

4

6

Figure 4: Node with 8 keys
A full CSS-tree with m entries per node will have

exactly m keys, i.e., all the entries are fully used.
Figure 4 shows the binary search tree of a node with
m = 23 entries. Out of the nine possible branches,
seven of them need three comparisons and two of
them need four. But if we waste one entry and
just put seven keys per node, we will have a full
binary search tree and all the branches need three
comparisons. This may give us some benefit. So for
m = 2t, we define a tree that only uses m−1 entries
per node and has a branching factor of m a level
CSS-tree. A level CSS-tree will be deeper than the
corresponding full CSS-tree since now the branching
factor is m instead of m+1. However, we have fewer
comparisons per node. If N is the number of nodes
that the elements in the sorted array can form, a
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Method branching # of levels comparisons per comparisons per
factor (l) internal node (nComp) leaf node (Achild)

Binary search 2 log2 n 1 1
T-trees 2 log2

n
m − 1 1 log2m

enhanced B+-trees m
2

logm
2

n
m

log2m− 1 log2m

Full CSS-trees m+ 1 logm+1
n
m

(1 + 2
m+1

) log2 m log2m
Level CSS-trees m logm

n
m

log2m log2m

Method Total comparisons Moving across Level Cache Misses Cache Misses
Level mK

c
<= 1 mK

c
> 1

Binary search log2 n log2 n ∗Ab log2 n log2 n
T-trees log2 n log2 n ∗D log2 n log2 n

enhanced B+-trees log2 n logm
2

n
m
∗D log2 n

log2 m−1
logm

2
n((log2

mK
c

) + c
mK

)

Full CSS-trees m+3
m+1 logm+1 m log2 n logm+1

n
m ∗Afcss

log2 n
log2 (m+1) logm+1 n((log2

mK
c ) + c

mK )

Level CSS-trees log2 n logm
n
m ∗Alcss

log2 n
log2 m

logm n((log2
mK
c ) + c

mK )

Table 1: Time analysis
level CSS-tree has logmN levels while a full CSS-tree
has logm+1N levels. The number of comparisons per
node is t for a level CSS-tree and t ∗ (1 + 2

m+1 ) for
a full CSS-tree. So the total number of comparisons
for a level CSS-tree is logmN ∗ t = log2N and that
for a full CSS-tree is logm+1N ∗ t ∗ (1 + 2

m+1 ) =
log2N ∗ logm+1m ∗ (1 + 2

m+1 ). The ratio of the

former to the latter is (m+1) logm (m+1)
m+3 . Thus a level

CSS-tree always uses fewer comparisons than a full
CSS-tree for searching. On the other hand, level
CSS-trees may require logmN cache accesses and
logmN node traversals, compared with logm+1N
for full CSS-trees. Whether we obtain a net gain
in speed depends upon how time-consuming a com-
parison operation is compared with node traversals
and cache accesses. A level CSS-tree still utilizes
most of the data in each cache line. It uses a little
more space than a full CSS-tree, but this may be
desirable for users who want to trade space for time.

The building of level CSS-trees is similar to that
of full CSS-trees. We can also make good use of the
empty slot in each node. During the population, we
can use that slot to store the largest value in the last
branch of each node. We can thus avoid traversing
the whole subtree to find the largest element. The
searching algorithm of a level CSS-tree is similar to
that of a full CSS-tree. The only difference is the
calculation of the offset of a child node.

5 Time and Space Analysis

In this section, we analytically compare the time
performance and the space requirement for different
methods. We let R denote the space taken by a
record-identifier, K denote the space taken by a key,
P denote the space taken by a child pointer and
n denote the number of records being indexed. h
denotes a hashing fudge factor (typically about 1.2,
meaning that the hash table is 20% bigger than the

raw data in the hash table). c denotes the size of a
cache line in bytes, and s denotes the size of a node
in a T-tree, CSS-tree or enhanced B+-tree measured
in cache-lines. We choose typical values as follows:
R = K = P = 4 bytes, n = 107, h = 1.2, c = 64
bytes and s = 1.

Time Analysis: To make the analysis easy, in
this section we assume that R, P and K are the
same. Thus we have a single parameter m, which is
the number of slots per node. The size of a node in
cache-lines is given by s = mK

c .

The first table in Table 1 shows the branching
factor, number of levels, comparisons per internal
node and comparisons per leaf node for each method.
B+-trees have a smaller branching factor than CSS-
trees since they need to store child pointers explic-
itly. The total cost of each searching method has
three parts, namely the comparison cost, the cost of
moving across levels and the cache miss cost. We
show the three costs for each method in the second
table in Table 1. We use D to denote the cost of
dereferencing a pointer, Ab, Afcss, Alcss to denote
the cost of computing the child address for binary
search, full CSS-tree and level CSS-tree respectively.
First of all, the comparison cost is more or less
the same for all the methods. Full CSS-trees have
slightly more comparisons than level CSS-trees as
we described earlier. Some of the methods find
the child node by following pointers and others by
arithmetic calculations. The relative cost depends
on computation complexity and the hardware. For
example, while Ab could be smaller than D, Afcss
is likely to be more expensive than D. Nevertheless,
methods with a higher branching factor have fewer
levels and thus usually have a lower cost of moving
across levels. But that doesn’t mean the larger the
branching factor the better. Too large a node size
will increase the cache miss cost, which is probably
the most important factor since each cache miss can
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Method Space (indirect) Typical Value Space (direct) Typical Value RID-Ordered Access
Binary search 0 0 MB 0 0 MB Y

Full CSS-trees nK2

sc 2.5 MB nK2

sc 2.5 MB Y

Level CSS-trees nK2

sc−K 2.7 MB nK2

sc−K 2.7 MB Y

enhanced B+-trees nK(P+K)
sc−P−K 5.7 MB nK(P+K)

sc−P−K 5.7 MB Y
Hash table (h− 1)nR 8 MB hnR 48 MB N

T-trees 2nP (K+R)
sc−2P

11.4 MB 2nP (K+R)
sc−2P

+ nR 51.4 MB Y

Table 2: Space analysis
be an order of magnitude more expensive than a unit
computation.

We assume a cold start in the cache. If the node
size is smaller than the cache line size, each level has
one cache miss. When the node size is larger than
the cache line size, we estimate the number of cache
misses per node to be (log2 s)+ 1

s = (log2
mK
c )+ c

mK
(the total number of cache misses for all the keys
adds up to s ∗ (log2 s) + 1 and we divide that by
s assuming each cache-line is equally likely to be
chosen). The results are summarized in the last two
columns of the table. For most reasonable config-
urations, the number of cache misses is minimized
when the node size is the same as cache line size.
In the third column, we can see that binary search
and T-trees always have a number of misses that
are independent of m. B+-trees and CSS-trees have
only a fraction of the cache misses of binary search.
The fractions for CSS-trees are even smaller than
that of B+-trees. So CSS-trees have the lowest
values for the cache related component of the cost.
As we can see, as m gets larger, the number of
cache misses for all the methods approaches log2 n
(essentially all methods degrade to binary search).
There is a tradeoff between full CSS-trees and level
CSS-trees. While the latter has slightly more cache
misses, it also performs fewer comparisons. It’s hard
to compare the moving cost of the two since Alcss is
cheaper than Afcss. We will show an experimental
comparison in Section 6.

To summarize, we expect CSS-trees to perform
significantly better than binary search and T-trees
in searching, and also to outperform B+-trees. If a
bunch of searches are performed in sequence, the top
level nodes will stay in the cache. Since CSS-trees
have fewer levels than all the other methods, it will
also gain the most benefit from a warm cache.

Space Analysis: Table 2 lists the space re-
quirements of the various algorithms. The column
“Space (indirect)” describes the space required by
the algorithms if the structure being indexed is a col-
lection of record-identifiers that can be rearranged
if necessary. In other words, it is acceptable for a
method to store record-identifiers internally within
its structure, as opposed to leaving the list of record-
identifiers untouched as a contiguous list. In this

column, we do not count the space used by the
record-identifiers themselves since all methods share
this space requirement.

The column “Space (direct)” describes the space
required by the algorithms if the structure being
indexed is a collection of records that cannot be
rearranged. In other words, it is not acceptable for
a method to store the records internally within its
structure. In this column, we count the space used
by record-identifiers for T-trees and hash tables since
record-identifiers would not be necessary with other
methods.

All methods other than hash tables support ac-
cess in RID-order. The formula for Level CSS-trees
assumes that sc

K is a power or 2.

6 Experimental Results

We perform an experimental comparison of the al-
gorithms on two modern platforms. We analyze the
wall-clock time taken to perform a large number
of random successful lookups to the index. We
summarize our experiments in this section.

Experimental Setup: We ran our experiments
on an Ultra Sparc II machine (296MHz, 1GB RAM)
and a Pentium II (333MHz, 128M RAM) personal
computer. The Ultra machine has a < 16k, 32B, 1 >
(<cache size, cache line size, associativity>) on-chip
cache and a < 1M, 64B, 1 > secondary level cache.
The PC has a < 16k, 32B, 4 > on-chip cache and
a < 512k, 32B, 4 > secondary level cache. Both
machines are running Solaris 2.6. We implemented
chained bucket hashing, array binary search, inter-
polation search [Pet57], T-tree, enhanced B+-tree,
full CSS-tree and level CSS-tree in C++. We chose
to implement all the existing methods ourselves
because we are considering them in the context of
main memory OLAP environment. Existing imple-
mentations won’t be optimized for space allocation
and cache related issues such as alignment. As a
result, we believe our implementation will run faster.
Since cache optimization can be sensitive to compil-
ers [SKN94], we also chose two different compilers:
one is Sun’s native compiler CC and the other is
GNU’s g++. We used the highest optimization level
of both compilers. However, the graphs for different
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compilers look very similar, so we only report the
results for CC. All the keys are integers and are
chosen randomly between 0 and 1 million. Each
key takes four bytes. The lookup keys are generated
in advance to prevent the key generating time from
affecting our measurements. We performed 100,000
searches on randomly chosen matching keys. We
repeated each test five times and report the minimal
time to find the first matching key.

Algorithm Implementation Details: We
tried our best to optimize all the searching methods.
For methods that can have different node sizes, we
implemented specialized versions for selected node
size. We allocate a large chunk of memory at the
beginning and create all the nodes from that pool
to save allocation time. We use logical shifts in
place of multiplication and division whenever possi-
ble. For T-trees, B+-trees and CSS-trees, we unfold
the binary search loop in each internal node by
hardcoding all the if-else tests to reduce the amount
of overhead. The search within a leaf node is also
hardcoded. Additionally, once the searching range
is small enough, we simply perform the equality
test sequentially on each key. This gives us better
performance when there are less than 5 keys in the
range. Code specialization is important. When our
code was more “generic” (including a binary search
loop for each node), we found the performance to be
20% to 45% worse than the specialized code.

The sorted array is aligned properly according to
the cache line size. For T-trees, B+-trees and CSS-
trees, all the tree nodes are allocated at once and
the starting addresses are also aligned properly.

We implemented enhanced B+-trees. They use
all the slots in each node.1 Each node is designed to
have a prespecified size and all the nodes are aligned
properly. We also forced each key and child pointer
to be adjacent to each other physically.

We avoid storing the parent pointer in each
node of a T-tree since it’s not necessary for search-
ing. We implemented the improved version of T-
Trees [LC86b], which is a little bit better than the
basic version. For each T-tree node, we store the
two child pointers adjacent to the smallest key so
that they will be brought into the same cache line
together. (Most of the time, the improved version
checks only the smallest key in each node.)

For the chained bucket hashing, we followed the
techniques used in [GBC98] by using the cache line
size as the bucket size. Besides keys, each bucket
also contains a counter indicating the number of
occupied slots in the bucket and the pointer to the
next bucket. Our hash function simply uses the low
order bits of the key and thus is cheap to compute.

1Since there is always one more pointer than keys, for
nodes with an even number of slots, we leave one slot empty.

Results: In the first experiment, we test how
long it takes to build a CSS-tree. Both building time
curves are linear in the size of the sorted array. Level
CSS-trees are cheaper to build than full CSS-trees
because they don’t need to traverse each subtree
to find the largest key. We are not claiming that
CSS-trees can be built much faster than other index
structures. Instead, we want to show that since the
absolute rebuilding time is small (less than a second
for 25 million keys), we can afford to rebuild CSS-
trees periodically. The graph is omitted due to space
limitations.

We then measure the searching time for all the
algorithms. We first fix the node size and vary the
size of the sorted array. We choose the node size
to be each of the cache line size of the two levels of
cache in the Ultra Sparc (32 bytes and 64 bytes).
Figure 5 shows the result on the Ultra Sparc. First
of all, when all the data can fit in cache, there
is hardly any difference among all the algorithms
(except for interpolation search). As the data size
increases, we can see that our cache conscious CSS-
trees perform the best among all the methods except
for hashing. T-tree and binary search are the worst
and run more than twice as slow as CSS-trees. The
B+-tree curve falls in the middle. Although these
searching methods all have to do the same number
of key comparisons, they differ on how many of those
comparisons cause a cache miss. T-tree search and
binary search essentially have one cache miss for
each comparison. For CSS-trees, all comparisons
within a node are performed with only one cache
miss. B+-trees also have one cache miss per node.
But since a B+-tree stores half as many keys per
node as CSS-trees, it has more levels than a CSS-
tree. Although it’s hard to discern visually, the level
CSS-tree performs slightly better than the full CSS-
tree. Across all of our tests we observed that level
CSS-trees were up to 8% faster than full CSS-trees.
The performance of interpolation search depends on
how well the data fits a linear distribution. Although
not shown here, we also did some tests on non-
uniform data and interpolation search performs even
worse than binary search. So in practice, we would
not recommend using interpolation search. For B+-
trees and the two CSS-trees, the numbers in Fig-
ure 5(b) are smaller than that in Figure 5(a). The
reason is that the miss penalty for the second level of
cache is larger than that of the on-chip cache. B+-
trees get more benefit than CSS-trees from having
a larger node size. This is because B+-trees always
hold half the number of keys per node as CSS-trees
and thus its benefit from avoiding extra cache misses
is more significant. Although the T-tree has many
keys per node, it doesn’t benefit from having a larger
node size. In this experiment, we chose the hash
table directory size to be 4 million. Hashing uses
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Figure 5: Varying array size, Ultra Sparc II
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Figure 6: Ultra Sparc II, 16 integers per node

only one third of the time of CSS-trees. But we
have to keep in mind that it’s using 20 times as much
space.

To compare the number of cache misses, we ran all
the searching methods through a cache simulator.2
Figure 6(a) and 6(b) show the total number of
key accesses and the total number of key misses
in the secondary level cache in a configuration that
matches the Sun Ultra Sparc. As the data set gets
larger, a larger proportion of the key accesses are
cache misses. B+-trees have approximately 50%
more cache misses than CSS-trees. Let’s assume
that each RAM access takes 180ns.3 Then enhanced
B+-trees take 0.06 seconds to load data from RAM
to cache (when there are 25 million keys in the
sorted array) and this is about 30% of the total
amount of time taken (0.22 seconds). Out of the 0.04
seconds time difference between B+-trees and CSS-
trees, about 0.014 seconds is caused by the difference
in cache miss penalties. Thus the cache simulation
verifies that 30% of the observed performance gap is
due to the cache miss behavior. As the speed gap

2We implemented the simulator ourselves and instru-
mented our code (using #ifdef SIMULATOR macros) to log all
memory accesses.

3We assume the memory has a peak bandwidth of
350MB/s [Inc99]. 64/350M=180ns

between CPU and RAM widens, this ratio will get
higher and the difference between the performance
of each method will be even more significant.

The results on the Pentium PC are very similar
and are omitted here. In [LC86a, LC86b], the
authors reported that T-trees perform better than
binary search and B+-trees. Our results show the
contrary conclusion. The explanation is that the
CPU speed has improved by two orders of magnitude
relative to memory latency during the past thirteen
years [CLH98].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140

tim
e(

s)

number of entries per node

T tree
enhanced B+ tree

full CSS-tree
level CSS-tree

hash

Figure 7: Varying node size, 10 million keys

In our next experiment, we fix the size of the
sorted array and vary the node size of T-trees, B+-
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trees, full CSS-trees and level CSS-trees. Figure 7
shows the result on the Ultra Sparc. For both CSS-
trees, the lowest point is 16 integers per node, which
corresponds to the cache line size of the machine.
B+-trees have a minimum at 32 integers per node.
Although this doesn’t quite fit in the time analysis
in Section 5, the difference between 16-integers and
32-integers per node is not very significant. There
is a bump for full CSS-trees and B+-trees when
each node has 24 integers. One reason is that the
node size is not a multiple of the cache line size.
Thus nodes are not properly aligned with cache
line and cause more cache misses. The bumps in
full CSS-trees are more dramatic. This is because
that the arithmetic computation for the child node
is more expensive for m = 24 since division and
multiplication must be used to compute child nodes
instead of logical shifts. We also tested the optimal
hash directory size of chained bucket hashing. Each
point corresponds to a directory size from 223 to 218

with the leftmost point having the largest directory
size. When the directory size has been increased to
223, the system starts to run out of memory and thus
the searching time goes up. T-trees perform much
worse on all the node sizes.

7 Space/Time Tradeoffs

An indexing method is measured by the pair (S, T )
of space required for the whole index structure (S),
and time taken for a single lookup (T ). Figure 2
shows the space requirement and searching time for
each method.4 Each point for T-trees, B+-trees and
CSS-trees corresponds to a specific node size. Since
keeping an ordered RID list is usually necessary, we
calculate the space requirement using the formula
for “direct” space listed in Table 2. The stepped line
basically tells us how to find the optimal searching
time for a given amount of space. All the methods
on the upper-right side of the line are dominated
by some methods on the line. T-trees and B+-trees
are both dominated by CSS-trees. Methods on the
line have tradeoffs between space and time. On the
bottom, we have binary search on the sorted array,
which doesn’t require any extra space, but uses three
times as much time as CSS-trees and seven times
as much as hashing. If we invest a little bit of
extra space, we can use CSS-trees, which reduce the
searching time to one third of binary search. To
make another factor of two improvement, we have
to pay 20 times as much space as CSS-trees to be
able to use hashing. When space is limited, CSS-
trees balance the space and time.

We show the breakdown of the cost of enhanced
B+-trees and CSS-trees in Figure 8(a). For the

4We present the numbers from searching a sorted array of
5 million elements on an Ultra Sparc II.
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time being, the cache miss cost corresponds to a
relatively small fraction of the total cost. Given the
trend shown in Figure 1, in five years, we expect the
CPU to be 10 times faster while the memory speed
will be only 1.6 times faster. So the breakdown at
that time will probably look like that in Figure 8(b).
The cache miss cost will be much more significant.
Figure 9 shows the projected space/time tradeoff
between B+-trees and CSS-trees in five years. As
we can see, the optimal CSS-trees are almost 30%
faster than the optimal enhanced B+-trees. In the
limit, if cache miss cost dominates the total cost,
CSS-trees can be up to 50% faster than enhanced
B+-trees. Also, the optimal node size in five years
is different from what it is now.

8 Conclusion

We studied the cache behavior of various in-memory
indexes in an OLAP environment and showed that
cache conscious methods such as CSS-trees can im-
prove searching performance by making good use of
cache lines. As the gap between CPU and memory
speed is widening, we expect the improvement that
can be achieved by exploiting the cache will be
even more significant in the future. Cache conscious
searching behavior is just one step towards efficiently
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utilizing the cache in database systems. We aim to
study the effect of cache behavior on other database
operations in the future.
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