Online Dynamic Reordering for Interactive Data Processing

Vijayshankar Raman

Bhaskaran Raman

Joseph M. Hellerstein

University of California, Berkeley
{rshankar,bhaskar,jmh} @cs.berkeley.edu

Abstract

We present a pipelining, dynamicaly user-
controllable reorder operator, for use in data-
intensive applications. Allowing the user to re-
order the data delivery on the fly increases the
interactivity in several contexts such asonline ag-
gregation and large-scale spreadsheets; it allows
the user to control the processing of data by dy-
namically specifying preferencesfor different data
items based on prior feedback, so that data of in-
terest is prioritized for early processing. We de-
scribe an efficient, non-blocking mechanism for
reordering, which can be used over arbitrary data
streams from files, indexes, and continuous data
feeds. We also investigate several policies for
the reordering based on the performance goals of
various typical applications. We present results
from an implementation used in Online Aggrega
tion in the Informix Dynamic Server with Univer-
sal Data Option, and in sorting and scrolling in a
large-scal e spreadsheet. Our experiments demon-
strate that for a variety of data distributions and
applications, reordering is responsive to dynamic
preference changes, imposes minimal overheads
in overall completion time, and provides dramatic
improvements in the quality of the feedback over
time. Surprisingly, preliminary experiments indi-
cate that online reordering can also be useful in
traditional batch query processing, because it can
serve as aform of pipelined, approximate sorting.

1 Introduction

It has often been noted that information analysis tools
should be interactive [BM85, Bat79, Bat90], since the data

Permission to copy without fee all or part of this material is granted
provided that the copiesarenot made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
\ery Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission fromthe Endowment.

Proceedings of the 25th VL DB Conference,
Edinburgh, Scotland, 1999.

709

exploration tasks they enable are often only loosely spec-
ified. Information seekers work in an iterative fashion,
starting with broad queries and continually refining them
based on feedback and domain knowledge (see [OJ93] for
a user study in a business data processing environment).
Unfortunately, current data processing applications such as
decision-support querying [CD97] and scientific data vi-
sualization [AT96] typicaly run in batch mode: the user
enters a request, the system runs for a long time without
any feedback, and then returns an answer. These queries
typically scan large amounts of data, and the resulting long
delays disrupt the user’s concentration and hamper inter-
active exploration. Precomputed summaries such as data
cubes [G196, ZT97] can speed up the system in some sce-
narios, but are not a panacea; in particular, they provide
little benefit for the ad-hoc analyses that often arisein these
environments.

Theperformanceconcern of the user during dataanalysis
is not the time to get a complete answer to each query, but
instead thetimeto get areasonably accurate answer. There-
fore, an alternative to batch behavior is to use techniques
such as Online Aggregation [H+97, H* 98] that provide
continuous feedback to the user as dataiis being processed.
A key aspect of such systemsis that users perceive data be-
ing processed over time. Hence an important goal for these
systemsisto processinteresting data early on, so userscan
get satisfactory results quickly for interesting regions, halt
processing early, and move on to their next request.

In this paper, we present a technique for reordering data
onthefly based on user preferences— we attempt to ensure
that interesting items get processed first. We alow users
to dynamically change their definition of “interesting” dur-
ing the course of an operation. Such online reordering is
useful not only in online aggregation systems, but also in
any scenario where users have to deal with long-running
operations involving lots of data. We demonstrate the ben-
efits of online reordering for online aggregation, and for
large-scal e interactive applications like spreadsheets. Our
experiments on sorting in spreadsheets show decreases in
response times by several orders of magnitude with online
reordering as compared to traditional sorting. Incidentally,
preliminary experimentssuggest that such reorderingisalso
useful intraditional, batch-oriented query planswhere mul-
tiple operators interact in a pipeline.

The Meaning of Reordering

A data processing system allows intra-query user control
by accepting preferencesfor different items and using them
to guide the processing. These preferences are specified
in a value-based, application-specific manner: data items
contain values that map to user preferences. Given a state-
ment of preferences, the reorder operator should permute
the data items at the source so as to make an application-
specific quality of feedback function rise asfast as possible.
We defer detailed discussion of preference modeling until
Section 3 where we present aformal model of reordering,
and reordering policiesfor different applications.

1.1 Motivating Applications

Online Aggregation

Online Aggregation [Ht97, Ht98] seeks to make
decision-support query processing interactive by providing
approximate, progressively refining estimates of the final
answers to SQL aggregation queries as they are being pro-
cessed. Reordering can be used to give users control over
theratesat whichitemsfrom different groupsin aGRoOUPBY
guery are processed, so that estimates for groups of interest
can be refined quickly.*

Consider a person analyzing a company’s sales using
the interface in Figure 1. Soon after issuing the query,
she can see from the estimates that the company is doing
relatively badly in Vietnam, and surprisingly well in China,
although the confidenceinterval s at that stage of processing
are quite wide, suggesting that the Revenue estimates may
be inaccurate. With online reordering, she can indicate an
interest in these two groups using the Preference “up” and
“down” buttons of the interface, thereby processing these
groupsfaster than others. This provides better estimatesfor
these groups early on, alowing her to stop this query and
drill down further into these groups without waiting for the
guery to complete.

Another useful feature in online aggregation is fairness
— one may want confidence intervals for different groups
to tighten at same rate, irrespective of their cardinalities.
Reordering can provide such fairness even when there is
skew in the distribution of tuples across different groups.

Scalable Spreadsheets

DBMSs are often criticized as being hard to use, and
many people prefer to work with spreadsheets. However,
spreadsheets do not scale well; large data sets lead to in-
ordinate delays with “point-and-click” operations such as
sorting by afield, scrolling, pivoting, or jJumping to partic-
ular cell values or row numbers. MS Excel 97 permitsonly
65536 rowsin atable[Exc], sidestepping these issueswith-
out solving them. Spreadsheet users typically want to get
some information by browsing through the data, and often
don’t use complex queries. Hence usability and interactiv-
ity are the main goals, and delays are especially annoying.

1User preferences can be passed from the interface to the DBMS by
calling UDFsin auxiliary queries[H* 97].

710

Stop Preference Nation Revenue Interval
@ 7 2 china 8000528 400045
@ 5 ¢ inda 3501024 389276
@ & : Japan 4931590 700.52
@ & 3 vieman 1001978 156788
Confidence: 95% 2% done W |

select avg(revenue), nation from sales, branches
where sales.id = branches.id group by nation

Figure 1: Relative speed control in online aggregation

ThisisunlikeaDBMS scenario, where users expect to wait
for awhile for a query to return.

We are building [SS] a scalable spreadsheet where sort-
ing, scrolling, and jumping are al instantaneous from the
user’s point of view. We lower the response time as per-
ceived by the user by processing/retrieving items faster in
the region around the scrollbar —the range to which anitem
belongsisinferred via a histogram (this could be stored as
a precomputed statistic or be built on the fly [CT98]). For
instance, when the user presses a column heading to re-sort
on that column, he almost immediately sees a sorted table
with theitemsread sofar, and moreitems are added asthey
are scanned. While the rest of the tableis sorted at a slow
rate, itemsfrom the range being displayed areretrieved and
displayed asthey arrive.

Imprecise Querying: With reordering behindit, the scroll-
bar becomesatool for fuzzy, imprecise querying. Suppose
that a user trying to analyze student grades asks for the
records sorted by GPA. With sorting done online as de-
scribed above, the scrollbar position acts as a fuzzy range
guery on GPA, since the range around it is filled in first.
By moving the scrollbar, she can examine several regions
without explicitly giving different queries. If there is no
index on GPA, thiswill save several sequential scans. More
importantly, she need not pre-specify a range — the range
isimplicitly specified by panning over aregion. Thisisim-
portant because she does not know in advance what regions
may contain valuable information. Contrast this with the
ORDER BY clause of SQL and extensionsfor “top N” filters,
whichrequire apriori specification of adesired range, often
followed by extensive batch-mode query execution [CK97].

Sort of Sort

Interestingly, we have found that a pipelining reorder
operator is useful in batch (non-online) query processing
too. Consider a key/foreign-key join of two tables R and
S, with the foreign key of R referencing the key of S. If
there is a clustered index on the key column of S, a good
plan would be to use an index-nested-loopsjoin algorithm.
Taking advantage of the clustered index, the DBMS might
insert asort operator on R beforethejoin, so that each leaf of
the index is fetched at most once. Unfortunately, since sort
is a blocking operator, this plan forfeits the pipelined par-

Reorder

consune

put get
Produce buffer /\ Process
N
g Join/ Network
Transfer /
A :) @ Consume Render on
network screen
food index

r eor der

ﬁéﬁ User

Figure 2: Data flow model for the reordering

alelism that is available in index-nested-loops join. Note
that sorting is used as a performance enhancement to batch
up index lookups; total ordering is not needed for correct-
ness. Hence we can use a pipelining, best-effort r eor der
operator instead to gain most of the benefit of sorting, with-
out introducing ablocking operation into thequery pipeline.
Not only isthe resulting query non-blocking (and hence po-
tentially interactive), but the overall completion time may
be faster than if we had sorted, since (a) we need not do
a complete sort, and (b) opportunities exist for pipelined
parallelism (e.g. if the index for S is on a separate disk
from R). We have started experimenting with this idea by
inserting reorder operatorsinto traditional query plans, and
present preliminary resultsin Section 5.3.

Organization of the paper

We present our technique for reordering in Section 2.
In Section 3 we describe several policies for reordering,
and corresponding quality of feedback functions that are
suited for different applications. Wethen discuss disk man-
agement issues for the reordering algorithm in Section 4.
We present performance results for different applications
in Section 5. We discuss related work in Section 6, and
conclude with some avenues for future work in Section 7.

2 Best Effort Online Reordering

Since our aim is interactivity, the reordering must not in-
volve pre-processing or other overheads that will increase
runtime. Instead, we want a “best effort” reordering that
runs concurrently with the processing, with negligible over-
head. Figure 2 depicts our scheme of inserting a reorder
operator into a data flow, which we divide into four stages
as described below.

Pr oduce — this may be a disk scan, an index scan, or a
data feed from a network or sensor.

Reor der —thisreorderstheitemsaccording to the dynam-
ically changing preferences of the consumer.

Pr ocess —thisisthe set of operationsdone by theapplica-
tion, and it could involve query plan operatorsin aDBMS,
sending data acrossa slow network, rendering data onto the
screen in data visualization, etc.

711

scan

process

Figure 3: Reor der in plan treesfor online aggregation

Consune — this captures the user think-time, if any —
it is important mainly for interactive applications such as
spreadsheets or data visualization.

Since al these operations can go on concurrently, we
exploit the differencein throughput between the pr oduce
stage and the pr ocess or consumne stages to permute
the items: while the items taken out so far are being
processed/consumed, r eor der can take more items from
pr oduce and permute them.

Figure 3 shows a sample data flow in a DBMS query
plan. Reor der isinserted just above a scan operator on
the table to be reordered, and the pr ocessing cost is the
cost of the operators above it in the plan tree.

2.1 The Prefetch and Spool (P& S) technique for re-
ordering

Reor der triestoput asmany interestingitemsaspossible
onto amain-memory buffer, and pr ocess issues requests
to get an item from the buffer. When Pr ocess issues
aget operation, Reor der decides which item to give it
based on the performance goal of the application; thisis a
function of the preferences, and will be formally derived
for sometypical applicationsin Section 3.1.

The user preferences that indicate interest may be at the
granularity of either an individual item or a group of items,
depending on the application. Even in the former case, we
can divide the itemsinto groups based on a histogram, and
reorder at the granularity of agroup — pr ocess contin-
ually get s the best item from the best group on buffer?.
Reor der strives to maintain items from different groups
at different ratios on the buffer based on the preferencesand
the reordering policy. We derive theseratiosin Section 3.2.

The P&S algorithm for reordering uses the time gap
between successive get sfrom the buffer (which may arise
due to processing or consumption time) to maintain the
correct ratios of different groups on the buffer. It has two
phases, asshowninFigure4. In Phase1it continually scans
the input, trying to maintain the appropriate ratio of items
inthe buffer by spooling uninteresting itemsto an auxiliary

2Whenpr ocess issuesaget operation, itisr eor der that chooses
the item to give out. The decision of which item to give out is made by
reor der andistransparent to pr ocess

Phase 1 Phase 2 i | index of atuple
application application J |nde>t<)of E?QVOUD

t et g | number of groups

ge/ / / n | number of items processed so far
Buf f er Buf f er N | total number of items
put spool DP | delivery priority
T i ch UP | normalized user preference
fead enrich enric F | feedback function
| nput si dedi sk si dedi sk Table 1: Notation used in the reordering model

Figure 4: Reordering by Prefetch & Spool

side-disk. It spools out items from the group that has the
highest difference between the ratio of items actually on
the buffer and the ratio desired. Inthe common case where
produce is reading data from a disk, r eor der does
sequential 1/0s, and so can often go much faster than the
stagesdown thedataflow. If r eor der findsit has spooled
some interesting items to the side-disk (as will happen if
the user changes their definition of “interesting” midway),
it may have to read them back from the side-disk to enrich
the buffer. Again, it reads items from the group that has
the highest difference between the ratio of items desired,
and what is actually on the buffer. Phase 1 completeswhen
the input is fully consumed. In Phase 2, it directly reads
itemsfrom the side-disk tofill the buffer with needed items.
If pr oduce is a continuous network feed, Phase 1 never
finishes. Reor der in thissituation will still have to spool
out uninteresting items to the side-disk, assuming that the
feed rateisfaster than the pr ocess rate.

2.2 Index Stride

We have so far assumed that r eor der cannot control the
order in which datais provided by pr oduce. However, if
there is an index on the columns that determine the prefer-
ence for atuple (the group-by columnsin the case of online
aggregation), we can use the index to retrieve items at dif-
ferent rates based on the ratio we want in the buffer. We
open one cursor for each group and keep filling the buffer
with items from that group whose ratio is less than what is
needed. This approach — Index Stride — was described
in [H+97]. However even if such an index exists, it is may
not be clustered. Wewill seelater that despite doing perfect
reordering, Index Stride often doesworsethan regular P& S
because of random I/Osinto the index of pr oduce.

As Figure 4 shows, P&Sis a fairly simple algorithm. It
continually “juggles’ data between the buffer and the side-
disk, to ensure that it has interesting data to give when
process asks. The details lie in choosing a reordering
policy based on the performance goals, and in managing
data in memory and on side-disk so as to optimize the
enrich and spool operations. We tackle these issues in the
next two sections.

712

3 Policiesfor onlinereordering

What exactly do we want to achieve by reordering a data
set? Given an input stream ¢4, ¢, . . .1, We want to out-
put a “good” permuted stream ¢, tr,, . .., tx,. Consider
the following example. If the user divides data itemsinto
groups and is twice asinterested in group A asin group B,
one good output permutation will be “AABAABAAB..”.
This sequence correspondsto several possible permutations
of the actual tuples, since many tuples fall into each group.
Similarly, the permutation “BAABAABAA.." isalsojust
asgood. In genera, therewill be several equivalently good
permutations, and our goal is to output some permutation
from a good equivalence class.

For each prefix of length n of an output permutation
tritr, ... try, CONsider an application-specific quality of
feedback function (henceforth this will called the feed-
back function) F (U P(tx,), UP(tr,), ..., UP(tx,)). This
function captures the value of the items in the prefix, and
models their “interestingness’ to the user. U P(t;) isthe
user preference for item ¢;. Since the goal is to improve
feedback in the early stages, the goodness of the output
permutation is given by the rate at which the feedback
function rises as the number of items processed n goes
from1to N. We try (we can only try since the reorder-
ing is best-effort) for an output permutation =, such that
for any n,1 < n < N, the prefix tq,,tn,, ..., 1z, Of
T maximizes F (U P (t,), UP(tg,), ..., UP(ts,)) overdll
n-element subsets {k1, ...k, } of {1,2,... N}

We describe in Section 3.1 how to set F for different
applications based on their performance goals. The choice
of F dictates the choice of the item that r eor der gives
out when pr ocess issuesaget ; it gives out theitem that
will increase F' the most.® This in turn dictates the ratio
of items from various groups that r eor der should try to
maintain in the buffer. We describe how thisis derived in
Section 3.2.

3.1 Performance Goalsand Choiceof Itemsto Remove
from the Buffer

Consider the dataflow model of Figure2. When pr ocess
issuesaget , r eor der decides which item to givevia a
delivery priority mechanism. This priority for an item is

3We can do only alocal optimization since we know neither the distri-
bution of items across different groups in the input to be scanned, nor the
future user preferences. Our aim is to maximize the feedback early on,
and not the overall feedback.

computed dynamically based on how much the feedback
F will change if that item is processed. Reor der gives
out the item in the buffer with the highest delivery prior-
ity (which may not be the highest priority item overall).
Note that the delivery priority is not the same as the user
preference. The user preference depends on the user inter-
est whereas the delivery priority depends on the feedback
function. In fact, for the first two metrics given below, in
steady state, assuming that the most interesting group will
alwaysbeavailableon buffer, thedelivery priority for all the
groups will be equal. We proceed to outline some intuitive
feedback functions for different applications. The notation
we useis summarizedin Table 1.

Confidence metric: Average weighted confidence inter-
val

In online aggregation, the goal isto make the confidence
intervals shrink as fast as possible. One way to interpret
user preferences for different groups is as a weight on the
confidence interval. The feedback function is the nega-
tive of the average weighted confidence interval (we take
the negative since a small confidence-interval width corre-
spondsto high feedback). Almost all the large-sample con-
fidence intervals used in online aggregation (see [Haa97]
for formulas for various kinds of queries) are of the gen-
eral form: (Variance of the results seen so far)/ (number
of items seen so far)/2. Hence 1/, /n; is agood indicator
of the confidence interval for a group j. After n itemsare
processed, the feedback function we want to rise as fast as
possibleis

F=-39_,UP;//nj giventhat ny+---+n, =n

The application chooses items for processing such that F
rises as fast as possible. If we process an item from group
J,» A(n;) = 1 and so F increases by the first derivative
U P; /n ;1. Hence, to processthegroup which will increase
F themost, we set adelivery priority of DP; = U P; /n;1>.
Each timewe process an item from a group, the group’ sde-
livery priority decreases. Also, we always process an item
in the buffer with the highest priority. Hence this acts a
negative feedback, and at steady state, assuming that the
highest priority item is always present on buffer, all the
delivery prioritieswill be equal.

Ratemetric: Preference asrate of processing

A simple aternative is that items from each group be
processed at a rate proportional to its preference. Thisis
primarily afunctional goal inthat it directly tellsr eor der
what to do. However, it may be useful in applications
such as analysis of feeds from sensors, where we want
to analyze packets from different sources at different rates
based on preferences; if the user finds the packet stream
from one sensor to be anomalous, he may want to analyze
those packetsin more detail. We want the number of items
processed for a group to be proportional to its preference,
and the feedback function to maximize is the negative of
the net deviation from these proportions:

F:—Z?:l(nj—nUPj)z giventhat ni+---+ng=n

713

At any given time we want to process the group that will
make this deviation decrease the most. If we process an
item from group ¢, An; = An = 1. Hence F' increases by
thefirst derivative, —A()"7_;(n; — nlU P;)?)

= — Z]g':]_ 2(71] - nUPj)(Anj - ATLUP])

=2nUP, —n)(1-UP,) + Zj# 2(nUP; — n;)(0 —
UPj) = 2(nUP, —ny) — 2375, (nUP; —n;)UP;

For F' to rise fastest, we must process a group ¢ which will
cause the above expression to be maximum. Hence the
delivery priority is set as DP; = nUP; — n;, since the
second term of the previous expression is the same for all
groups. Asintheprevious metric, at steady state, assuming
that the highest priority group is always available in the
buffer, all the delivery priorities will be equal. It can be
easily seen that the prioritiesarein fact 0. The deviation of
the delivery priorities from 0 is a measure of how bad the
reordering is.

Strict metric: Enforcingarigid order

Whenweusear eor der operator in atraditional query
plan instead of a sort operator, the goal is a sorted permu-
tation. This can be achieved by assigning monotonically
decreasing user preferencesfor each item from the one that
is desired to be the first until the last item. After n items
have been processed, the feedback function we want to
maximizeis

F= Z?:l UPZ

By processinganitemn;, F'increasesby U P;. Tomakethis
rise fastest, we set the delivery priority tobe DP; = U P;.
That is, we always process the item with the highest user
preference on buffer. We also usethismetric for the spread-
sheets application, with the preference for arange of items
decreasing with its distance from the range being displayed
(thisisinferred from the scrollbar position).

3.2 Optimal Ratio on Buffer

Sincer eor der alwaysgivesout to pr ocess the highest
delivery priority item in buffer, the delivery priority func-
tions derived above directly dictate the ratio of items from
different groupsthat r eor der must maintain inthe buffer.
Theseratiosin turn determinethe buffer replacement policy
forr eor der.

Confidence metric: At steady state, &l the DPFP;'s
are equal. Hence for any two groups ji1 and jo,
UP;,/(nj,\/f;;) = UP;,/(nj,/nj,), andtheratio of items
from any group j must beUsz/S/(f:lUPtz/S).

Ratemetric: Asexplained before, at steady stateall D P;'s
are 0. Since DP; = nUP; — ny, the ratio of items from
group j is U P;. Indeed, the goal is to have the processing
rate be proportional to preference.

Strict metric: If DP; isU P;, there is no specific ratio —
the reorderer triesto have the highest preference item, then
the next highest, and so on.

3.3 Handling Preference Changes

In the discussion so far we have not considered dynamic
changes in the preferences. After a preference change, we
can either express the feedback F' as a goal over the items
to be delivered subsequently, or as a goal that “remembers
history”, and is expressed over all the items previously de-
livered aswell. Correspondingly, we can compute delivery
priorities either based only on items processed since the
last preference change, or on all the items that have been
processed since the initiation of the data flow.

For the Confidence metric we want to remember history
because the confidence interval is defined in terms of the
total number of items seen so far. Hencewere-calculatethe
delivery priorities based on the new user preferencestaking
into account all the items that have been processed. This
resultsin arapid spurt in the processing for a group whose
preference is increased — not only is the new preference
high, but al so we must compensate for not having processed
enough itemsfrom that group (commensurate with the new
preferences) earlier. By contrast, the Rate metric corre-
sponds to the user’s request for immediate change in the
relative processing rates. Hence, we calculate the deliv-
ery priorities based on the number of items processed since
the last preference change (D P; = n'U P; — nj;, wheren’
is the number of items processed since the last preference
change). The user preferences determine the rate at which
tuples from different groups are processed between con-
secutive preference changes. This is not an issue with the
Strict metric; the priorities are independent of the number
of items processed.

4 Disk management whilereordering

Thegoal of r eor der isto ensurethat itemsfrom different
groups are maintained in the buffer in the ratios desired by
theapplication, asderivedin Section 3.2. Therearefour op-
erations which alter the set of itemsin the buffer: scanning
from the input, spooling to the side-disk, enrichment from
the side-disk, and get 's by the application (Figure 4). The
ratios in the buffer are maintained by (&) evicting (spool-
ing) items from groups that have more items than needed,
and (b) enrichment with items from the group that is most
lacking in the buffer. In essence the buffer serves as a
preference-based cache over pr oduce and the side-disk.
We always strive to maintain some itemsin the buffer, even
if they are not the most interesting ones; the presence of
uninteresting items in the buffer may arise, for instance, if
the user preferences during Phase 1 are very different from
the data distribution across different groups. By guaran-
teeing the presence of items in the buffer, the pr ocess
stage never has to wait for the r eor der stage, and the
overhead for introducingr eor der into adataflow ismin-
imized. In addition to the buffer, some memory is required
for buffering 1/0 to and from the side-disk. The amount of
memory needed for I/O buffers depends on the data orga-
nization on the side-disk, so we defer this discussion until
after discussing our treatment of the side-disk.

714

4.1 Management of Data on Side-Disk

Since we want to process interesting items and give good
feedback to the user early on, we must make Phase 1 as
fast as possible and postpone time-consuming operations as
long as possible. Another reason to finish Phase 1 quickly
isthat during Phase 1 we cannot control the order of values
appearing from pr oduce if preferences change; whereas
in Phase 2 we know the layout of data on the side-disk and
can enrich the buffer with itemsthat best satisfy preferences
at agiventime. To speed up Phase 1, we want a datalayout
on side-disk that makes spooling go fast even at the expense
of enrichment, because we mainly do spooling in Phase 1
and enrichment in Phase 2.

Graefe[Gra93] notesaduality between sorting and hash-
ing. Hashing initially does random 1/Osto write partitions,
and later does sequential 1/Os to read partitions. Sorting
first writes out runswith sequential 1/0s, and later usesran-
dom I/Osto merge the runs. Unfortunately, neither scheme
is appropriatefor reordering. Hashing into partitionsis un-
desirable because the random 1/Os in Phase 1 slow down
spooling. Writing out sorted runs to disk is infeasible for
tworeasons. First, enrichment of the buffer with itemsfrom
a particular group would involve a small, random I/O from
each run, especially when the cardinality of the group is
low. Second, dynamically-changing user preferences drive
the decision of what we spool to or enrich from side-disk,
meaning that the distribution of valuesto different spooled
runs would be non-uniform.

To achieve the best features of both sorting and hashing,
we decided to lay out tuples on the side-disk as fixed size
chunks of items, where al theitemsin a chunk are from the
same group. Spooling is donewith only a sequential write,
by appending achunk to asequential file of dataon theside-
disk. Enrichment is done via arandom read of a chunk of
that group which is most lacking in the buffer. Intuitively,
this approach can be viewed as building an approximately
clusteredindex (with only sequential I/0s) on the side-disk,
concurrent with the other processing.*

Returning to the main-memory layout described earlier,
in Phase 1 we require an 1/O buffer for each group to col-
lect items into chunks. We also need a in-core index of
pointers to chunks for each group to quickly find chunks
corresponding to a group.

4.2 Total Ordering

We have so far assumed that the reordering is done at the
granularity of agroup. However in some applications, such
asthereorder operatorsin batch query processing, our goal
is atotal ordering on the individual items. We tackle this
by dividing the data into groups based on an approximate

4We also tried out writing out items as packed runs on the side-disk,
where the ratio of itemsin these runs is determined by current user pref-
erences. With this method, ideally, with no preference changes, we never
have to do any random I/Os — we keep appending runs to the side-disk
in Phase 1, and keep reading runsin Phase 2. However wefound that this
method leads to severe fragmentation of items from sparse groups, and
that the packing of items into runs is useless if the preference changes.
Thisresultsin several small, random 1/Os.

select o_orderpriority, count(*) from order
where o_orderdate >="10/10/96’ and
o_orderdate < '10/10/96’ + 90
and exists (select * from lineitem
where |_orderkey = o_orderkey and
|_commitdate < |_receiptdate)
group by o_orderpriority

Figure 5: TPC-D Query 4

Group A|{B| C | D
Preferenceatthestart | 1 | 1| 1 1
Preferenceafter 1000 | 1 | 1| 1 5
tuples processed (TO)
Preferenceafter 50000 | 1 | 1 [35| 05| 1
tuples processed (T1)

W~ m

Figure 6: Changesin User Preferences

histogram. This histogram need not be accurate since we
only want a best effort reordering. We want the number of
groups to be as high as possible (this number is limited by
the amount of memory we can allocate for the I/O buffers
storing the chunks), so that the size of agroup issmall, and
we do a “fine granularity” reordering that can distinguish
between the priorities of small batches of tuples. The re-
orderer ensures a good ratio of items from different groups
in the buffer, and the application removes for processing
the best item in the buffer. Our experiments show that this
technique is surprisingly successful, since these applica-
tions need only an approximate ordering.

5 Experimental Results

We present resultsthat show the usefulness of reordering in
online aggregation and in scalable spreadsheets. The aim
is to study a) the responsiveness of the rate of processing
to dynamic changes in preference, b) the robustness of re-
ordering to different data distributions and pr ocessing
costs, and c) the overhead in overall completion time due
to reordering. We also present promising initial results that
show the advantage of using r eor der operatorsin tradi-
tional batch query plans. We scale up all results involving
Informix systems by an undisclosed factor to honor privacy
commitments while still allowing comparative analysis of
algorithms (hencetimeisexpressedin abstract “chronons’).

5.1 Online Aggregation

We have implemented our algorithms for reordering in the
context of Online Aggregation in Informix Dynamic Server
with Universal Data Option (UDO)®. The goal of reorder-
ing is to shrink the confidence intervals for the interesting

SWe ran all experiments on a200 MHz UltraSPARC machine running
SunOS 5.5.1 with 256MB RAM. We used the Informix Dynamic Server
with Universal Data Option version 9.14 which we enhanced with online
aggregation and reordering features. We chose a chunk size of 200K B for
al our experiments. This is reasonable because the number of groupsis
typically small, and so the I/O buffer (whose sizeis chunk size x number
of groups) is not very big. We used a separate disk for the side-disk, and
the size of our buffer was 2MB (including the 1/0 buffer)

70000
A
60000 | e
g 50000 | e
£ e
w 40000 | e
5 e B
= 30000 | e
- e
£ 20000 e €
2 b
10000 E

0 20 40 60 80 100 120
Time (in chronons)

Figure 7: Performance of sequential scan, Rate metric

groups quickly. We test the responsiveness and robustness
of the reordering by varying a number of parameters:
Data distribution: To study the effect of skew in
the data distribution across different groups, we test with
Zipf and uniform distributions.

Processi ng Rate: Westudy aTPC-D query (Q4, see
Figure 5), modifying it by adding and removing filters and
tables to generate index-only joins (where we only need
to look at the index of the inner table), index-nested-loop
joins, and singletable queries. We do not present resultsfor
gueries with multiple joins because we see experimentally
that even one join suffices for good reordering; more joins
only make reordering easier by reducing the processing
rate. In [H*] we present experiments involving reordering
with other pr ocess operators such as non-flattenabl e sub-
queries and ripple joins®.

Pref erence Change Mbdel : Welook at preference
changes in Phase 1 and Phase 2, under the Confidence and
Rate performance metrics from Section 3.

Al gorithm used: WecompareP& S Index Stride, and
asimple sequential scan (no reordering).

Due to space constraints we do not give exhaustive re-
sults along al dimensions. We show only results that il-
lustrate salient features of the algorithms and indicate the
trade-offs involved. We use the TPC-D dbgen program to
generate data of different distributions, with a scale factor
of 0.1. For our experiments we clustered the data in ran-
dom order, so as to give statistically correct estimates for
the aggregates [Haa97].”

Rate Metric, Index-Only Join, Zipf distribution: Our
first experiment uses a low processing cost query: select
avg(o_totalprice), o_orderpriority from order where exists
(select * from lineitem where |_orderkey = o_orderkey)
group by o_orderpriority. We have removed filters from
TPC-D Q4 to make it an index-only join with Order asthe
outer relation. Order has 150000 tuples. There are five

6Ripple joins are specialized join agorithms for online aggregation
that are efficient yet non-blocking [HH99]

“Note that P& Spreservesthe randomness properties of the datawithin
agiven group.

715

70000

/
60000 | /
35; 50000 | /
& /
o 40000 | /
5 // B
< 30000 -
=]
z o c
£ 20000 f /
=] . D
z Vi S E
10000 e
0 ;::/4/ T L ! 1 L
0 20 40 60 80 100 120 140
Time (in chronons)
Figure 8: Performance of P& S with Rate metric.
70000 : . ‘ ,
Index Stridegp A - P
60000 Index StridegpE - Q
% Seq Scangp A A
¢ 50000 |] SeqScangpE -B
hc_') A, P&Sgp A $$
w 40000 f $$ P&SgpE Riiid
= 30000 | i
€ 20000t |
2 -~
10000 |/ / Q
B
0 Lt

0 100 200 300 400 500 600 700
Time (in chronons)

Figure9: Comparison of different algorithmsfor processing
groups A and E

groupswhichwewill call A, B, C, D, and E for brevity, and
we use a Zipf distribution of tuples, in the ratio 1:3:3:2:1
respectively.

Figure 6 shows our preference change model, which
involves one change at time TO in Phase 1 (thisis not seen
in most graphs becauseit occurstoo early), and one change
at time T1in Phase 2. Since Phase 1 ends at about 40000
tuples in most cases, this separately tests our ability to
reorder in both phases. We give high preferencesto the low
cardinality groupsto stress the reorderer.

Figures 7 and 8 show the number of tuples processed for
each group for sequential scan and P& Swith the Rate met-
ric. Despitethelow processing cost and the high-preference
groups being rare, the reordering of P& Sis quite respon-
sive, even in Phase 1. P& S has finished almost all tuples
from the interesting groups D and E by 44 chronons while
sequential scan takes 120 chronons, almost 3 times longer .
P& Simposes little (2%) overhead in completion time.

Figure 9 compares the number of tuples processed for
thelargest group (A) and the smallest group (E) for different
algorithms. Thetuplesof interesting group E are processed

250 - .
| A I
1 C
200 | E
© |
5 i
£ 150 ||
8 N
Q B
g ol
£ o
3 o
T
50 et
0

0 20 40 60 80 100 120 140
Time (in chronons)

Figure 10: Confidence intervals of different groups for

P& S We plot only groups A, C, and E to avoid clutter-

ing the graph. The curve for group B overlaps that of A,
and the curve of D is similar to that of E.

much faster for P& Sthan for other methods, while for the
highest cardinality (and least interesting) group A, sequen-
tial scan producesitemsfaster than P& S Index Stride does
very poorly because of many random 1/Os (it has a 427%
completion time overhead).

To test the effect of reordering on groups with extremely
small cardinalities, we added a new group F with 70 tuples,
and gave it a constant preference of 2. While Index Stride
finished all items from group F in 0.9 chronons, P& Stook
41.6 chronons and the sequential scantook 111.2 chronons.
Index Stride easily outperforms both P& S and sequential
scan for this outlier group because P& S can only provide
as many tuples of F as it has scanned. This advantage of
Index Stride is also reported in [HT97].

Confidence Metric, Index-Only Join, Zipf distribution:
We then removed group F and repeated the previous ex-
periment with the Confidence metric. Figure 10 showsthe
shrinking of the confidenceintervalsfor different groupsfor
P& S We see that with P& Sthe confidenceintervals shrink
rapidly for the interesting groups (D,E, and later C), even
when they have low cardindlities. In contrast, with a se-
guential scan, theintervalsfor D and E shrink more slowly
than those for the other groups because D and E have low
cardinality (we omit the graph to save space).

Rate Metric, Index-Only Join, Uniform distribution:
We now look at the effect of changing the distribution and
the processing rates. We first repeat the previous experi-
ment with the Rate metric and a uniform data distribution
across different groups. To save space, we do not plot
graphs but instead give in Table 2 the delivery priorities of
different groups after 30000 tuples are processed and after
60000 tuples are processed. Recall that for the rate met-
ric these priorities capture the deviation in the number of
tuples processed from the number that should have been
processed. After 30000 tuples are processed, the devia-
tionsare A = —0.64, B = 0.36, C' = 0.36, D = —0.18,

716

Dist.bn Proc. | Algor- Deviation at 30000 tuples processed Deviation at 60000 tuples processed Ovhd.
Rate -ithm A B C E A B C D E
Zipf Small | P&S —1098 —1097 —1097 3266 | —0.18 —-0.18 0.36 Fin Fin | 2.2
Zipf Small | IS 0.09 0.09 0.09 0.27 -054| —-0.27 -0.27 054 Fin Fin | 423
Uniform | Small | P&S —0.64 0.36 0.36 -0.18 0.09 | —0.88 0.55 0.33 Fin Fin | 24
Zipf Large | P&S —0.64 0.36 0.36 -0.18 0.09 | —0.65 0.35 0.23 0.05 Fin | 1.1
Zipf Tiny P&S —5075 —4785 2772 8507 4124 | —2016 —1571 2170 —-860 2278 | 2.6
Zipf Tiny IS 064 —-0.36 —0.36 0.18 —0.09 0 0 0 Fin Fin | 626

Table 2: Deviation of number of tuples processed of groups A,B,C,D,E, from desired values. A value of Fin for a group
meansthat it has been exhausted. 1S = Index Stride. Ovhd. = percentage completion time overhead

and £ = 0.09 — this is amost an exact reordering. In
contrast the deviations after 30000 tuples are processed for
the Zipf distribution of the earlier experiment are much
higher: A = —1098.64, B = —1097.64, C' = —1097.64,
D = 27.09,and £ = 3266.82. The uniform distributionis
easier to reorder since interesting groups are plentiful. The
deviations after 60000 tuples have been processed are very
small in both cases; reordering is easy in Phase 2 since we
can directly read the needed chunks off the side-disk.

Rate Metric, Index Join, Zipf distribution: We next
change the distribution back to Zipf and increase the
processing cost: we reintroduce a filter to force an ex-
plicit join of Order and Lineitem. The new query is se-
lect o_orderpriority, count(*) from order where exists (se-
lect * from lineitem where |_orderkey = o_orderkey and
[_commitdate < |_receiptdate) group by o_orderpriority.
The reordering is much better even with the Zipf distribu-
tion: the deviations after 30000 tuples are processed are
only —0.64, 0.36, 0.36, —0.18, and 0.09. Thisis because
there is more time to reorder between consecutive get s of
thedataby pr ocess.

Rate Metric, Single Table Query, Zipf distribution:
Next, to stress our reorderer, weform aminimal-pr ocess
guery by removing Lineitem: select o_orderpriority,
count(*) from order group by o_orderpriority. Figure 11
shows that the reordering is relatively ineffective in this
case. Groups D and E are processed infrequently, since we
can never spool to the side-disk and can only reorder within
the buffer. This affirmsthat we can reorder effectively only
when the pr ocessing rate isless than the pr oduce rate
(i.e. the processing cost is more than the pr oduce
cost). Here the only cost isthat of the input scan — there
is no processing save the addition to the Count aggregate.
As Table 2 shows, Index Stride works very well, but it has
a huge compl etion time overhead of 626% — random 1/0Os
have a high penalty since the processing cost is low.

Rate Metric, Original TPC-D Query, Zipf distribution:
Finally we add back all the filters and tables, and run the
complete TPC-D query given in Figure 5. Due to a low-
selectivity filter on the Order table, very few tuples (5669)
are handled by the reorderer. Figure 12 shows that P&S
performs very well. The change at 1000 tuples processed
is seen on this graph (TO) since the total number of tuples
processed issmall. Interestingly, with the predicate applied
on Order, E becomes a more frequent group than D.

717

70000 ‘
60000
g 50000
O /
£
o 40000 | /
5 /B
5 30000 kH’jL/,
9] =
= o H/,—P/" C
g 20000 L 5
P A T
ole="" .

0O 2 4 6 8 10 12 14 16 18
Time (in chronons)

Figure11: Rateof processingwith the Ratemetricfor P& S
single table query

Discussion

Our experiments show that reordering by P& Sisquitere-
sponsive to dramatic preference changes even with skewed
distributionsand low processing-cost queries such asindex-
only joins; interesting groups are processed much earlier
than others even if they have low cardinalities. If the dis-
tribution is not too skewed, or the processing cost is higher
(even onejoin suffices), or preferencesare changed in Phase
2, we see that the reordering is virtually perfect, with small
overheads for completion time. Index Stride has a very
high overhead because of random I/Os, but works well for
extremely low cardinality “outlier” groups. The reordering
in the case of single-table queriesis not good because of the
low processing cost. However, note that joins are common
in decision support queries — for example, 15 out of 17
TPC-D queriesinvolvejoins.

As the outlier group case shows, reordering is intrin-
sically difficult when the preferred groups are extremely
rare. We could use a non-clustered index to fetch tuples
from the most preferred groups alone (this is a hybrid of
P& Sand Index Stride), but thiswill involve many random
[/Os. Alternatively, we can store tuples from these rare
groupsin aseparatetable, and have aclustered index on the
group-by column on thistable — thisis similar to a partial
index [Sto89], except that these tuples are now clustered
separately and therefore one avoids multiple random 1/Os.
The challenge lies in automatically deciding which values
of which column(s) to treat in this manner, taking into ac-

Number of Items Processed

2500
/
A//
2000 f /
/
1500 [/
/B
1000 r
,,,,,,,,,,,,,,,,,, C..
,,,,,,, E
500 r 5
/0
0 1 L ! L

0O 10 20 30 40 50 60 70 80 90 100
Time (in chronons)

Figure 12: Rate of processing with the Rate metric for
P& S original TPC-D query:

count the frequency of queries that will use this table, as
well asthe cardinality of tuplesin the different groups. We
intend to addressthisin future work.

5.2 Scalable Spreadsheets

Inrelated work [SS], we are building a GUI widget toolkit,
and are using it to construct a spreadsheet that will be as
interactive as a regular spreadsheet, but will scale up to
large data sizes. An integral component of this spread-
sheet isthe onlinereordering library we have implemented,
which providesimmediate responsesfor operationssuch as
sorting and pivoting. We have completed the reordering
facility for sorting and present results which show that the
system can respond almost instantaneously to operations
such as scrolling and “jumping” while concurrently sorting
the contents of the spreadsheet.

For our experiment, we used atable of 2,500,000 records
of 100 bytes each (250MB total). The sort was issued on
a 4 byte column, and we modeled a uniform distribution
of values for this column in the table. We assume that
we have a pre-computed equidepth histogram on that col-
umn, though it could be computed on the fly if we sample
the data [C*98]. For r eor der we chose a chunk size of
50K B in order to amortizethe costs of random I/Osto enrich
in Phase 2, and have an 1/0O buffer of 25MB. As explained
in Section 4.2, we divided the data into the maximum num-
ber of groups possible, which is 25MB/50KB = 500 in
this case; correspondingly, we divide the range of the key
valuesinto 500 groups based on the histogram, and usethis
partitioning to decide which group any given tuple belongs
to. Therefore, each range has 2500000/500 = 5000 tuples.
Since our goal isto sort, we reorder using the Strict metric
of Section 3: the preference for different ranges decreases
monotonically with their distances from the range the user
is currently looking at (the exact values of the preferences
assigned do not matter for the Strict metric).

Note that this is an application where the data can be
consumned multiple times since the user may view the
same portion of the spreadsheet many times. Hence the

Operation Number of tuples Time Taken
accumulated in range
being panned over
Sort started 500 | 2.1 secs
User Thinking 5 seconds
Short Jump 1000 25.5 msecs
1500 2.4 secs
User Thinking 10 seconds
Random Jump 2500 263 msecs
5000 21.9 secs
Phase 2 has begun
Short Jump 2500 6.9 msecs
5000 13.5 msecs
Random Jump 2500 139 msecs
5000 201 msecs

Figure 13: Scalable Spreadsheet: Latenciesfor various
user actions

buffer is really only a cache of what is stored on the side-
disk. Currently we have an additional in-memory display
cache (1.5MB) to store the items that were recently panned
over by the user. If we were to do this in a client-server
setting where the user is seeing a spreadsheet on a client
node and the data is on a separate server, then we believe
that we could use multi-level caching schemes to avoid
repeatedly sending the same datato the client [A*97].

To place the timings in our experiment in perspective,
we sorted a 250MB file with 100 byte records using the
UNIX sort utility. Thistook 890.4 seconds (we used a
separatedisk for thetemporary filesin order to avoid giving
r eor der any unfair advantage). We studied the following
scenario (the timings are summarized in Figure 13): The
user starts off by issuing acommand to sort by afield, and
we immediately start displaying the tuples of the topmost
range — within 2.1 seconds, we have output 500 tuples,
which is aready enough to fill the screen. The user then
analyzes the data in this range for 5 seconds, after which
he makes a short jump (we model scrolls as short jumpsto
adjacent ranges) to the next range. Asweseeinthetable, we
are ableto give 1000 tuples of thisrange amost at once (25
milliseconds), by enrichment from the side-disk — we have
exploited the time the user spent analyzing the previous
range to sort more items and so we can respond quickly.
After thisinitial spurt of itemsin the desired range, we have
exhausted all that is available on side-disk, and settle down
to fetch more items at the sequential read bandwidth — the
next 500 tuplesin this range take around 2 seconds.

The user looks at this data for 10 seconds and then
makes a random jump to a new location. We see again
that r eor der (in 263 milliseconds) immediately provides
2500 items by enrichment before settling down to sequential
read bandwidth (giving 5000 tuples, which is the total size
of that range, takes 21.9 seconds). By thistime, r eor der
has scanned the entire input and moved into Phase 2. All
subsequent latencies are in milliseconds — a short jump
(scroll) to a nearby range is about 20 times faster than
jumping to arandom location because the nearby range has

718

a higher preference.

The above scenario clearly illustrates the advantage of
online reordering in a scalable spreadsheet — most opera-
tions have millisecond latencieswithr eor der , whereasa
blocking sort take 15 minutes!

5.3 Sort of Sort

With the Strict metric, one could view r eor der as an
approximate, pipelining sort operator. As sketched in Sec-
tion 1.1, best-effort reordering can be exploited in query
plans involving “interesting orders’ used for performance
enhancements.

Although our focus is on user-controlled reordering, we
have performed initial experiments to validate our intu-
itions, comparing the insertion of sort versus reorder oper-
ators into a few query plans in UDO. We consider a key-
foreign key join of two tables R and S, where the foreign
key of Sreferencesthekey of R. R has 10° rowsand S has
10° rows, each of size 200 bytes. S has a clustered index
on the join column, but rows of R are clustered randomly
(thejoin column values are uniformly distributed). A direct
index nested loops join of R and S took 3209.6 chronons
because it performed several random I/Os. Adding a sort
operator before the join reduced the total time taken for
the query to 958.7 chronons, since the sort batches index
lookupsinto runs of similar values, resulting in at most one
1/O per leaf page of the index.

We then replaced the sort operator with a r eor der
operator, using the Strict metric, with achunk size of 25KB
(we chose this so as to amortize the cost of a random /O
over areasonably large chunk). We used a 1/O buffer size
of 2.5MB. This means that the number of groups we could
support was 2.5MB/25KB = 100 (recall that we want the
number of groupsto be as high aspossible so that we can do
afine granularity reordering). Hence, we divided the range
of join column values into 100 groups for the reordering,
and used a pre-computed equidepth histogram on the join
column values of table R to identify the group to which
each value belongs. The time required for the join with
reor der is899.5 chronons, which is even better than the
time required for the traditional join by sorting. The 6%
improvement in completion time occurs because we spool
out fewer tuples to disk — the process stage directly get s
12.1% of the tuples from the buffer. We are able to do this
because we only do a fuzzy, approximate reordering. This
sufficesbecausethe only purpose of thesorting isto batch up
tuples of R that match similar rows of Stogether. However,
the biggest gain by using r eor der instead of sort is that
the plan has become non-blocking. This can alow us to
exploit pipelined paralelism (if we have aparalel DBMS)
and also allow interactive estimation techniques such as
online aggregation. If we consider the rate at which output
tuplesaredelivered, aplainindex-nested-loopsjoin delivers
311.6 tuples/chronon, and adding r eor der increases the
rate to 1111.7 tuples per chronon.

719

6 Related Work

There has been some recent work on making data analysis
interactive by providing approximate answers to queries
early on [HH99, GM98]. Reordering complements this
by allowing users to improve the quality of approximation
based on interest.

Algorithmically, our reorder operator is most similar to
the unary sorting and hashing operatorsin traditional query
processing [Gra93]. However our performance and usabil-
ity goas are quite different, which leads to a different im-
plementation. Logically our operator does not correspond
to any previous work in the relational context, since it is
logically superfluous—orderingisnot “ supposed” to matter
in astrict relational model.

Our focus on ordering was anticipated by the large body
of work on ranking in Information Retrieval [VR75]. In
more closely related work, there have been afew recent pa-
personoptimizing“topN” and* bottom N” queries| CK97],
and on “fast-first” query processing [AZ96]. These propose
enhancing SQL with a stopping condition clause which the
optimizer can useto produce optimal plansthat processonly
those parts of the datathat are needed for output. However
in these papers, the user isrequired to specify a priori what
portionsof thedataheisinterestedin, and doesnot have any
dynamic control over the processing. Our work on spread-
sheets can be viewed as an extension of this, wherethe user
can dynamically specify what portions of the data interest
him by moving a scrollbar, after seeing partial results.

7 Conclusions& FutureWork

Interactive data analysis is an important computing task;
providing interactive performance over large data sets re-
quiresalgorithmsthat are different than those devel oped for
relational query processing. We have described the benefits
of dynamically reordering data at delivery in diverse appli-
cations such as online aggregation, traditional query pro-
cessing, and spreadsheets. A main advantage of reordering
is that the user can dynamically indicate what areas of the
data are interesting and speed up the processing in these
areas at the expense of others. This, when combined with
continual feedback on the result of the processing, allows
the user to interactively control the processing so that he
can extract the desired information faster.

We have devel oped a framework for deriving the nature
of the desired reordering based on the performance goal s of
an application, and have used thisto come up with reorder-
ing policies in some typical scenarios. We have designed
and implemented areordering algorithm called P& S which
implements these ideas in a responsive and |ow-overhead
manner. P& Sisrelatively simple, leveraging the difference
between processing rate and data production. We have
integrated P& S with a commercial DBMS, and are using
it as a core component in the development of a scalable
spreadsheet. For online aggregation, asinglejoin abovethe
reorder operator is sufficient for good reordering. Our ssim-
ulation experiments with spreadsheet scrolling and sorting

scenarios show that we can provide almost immediate —
on the order of milliseconds — responsesto sort operators
that would otherwisetake several minutes, by preferentially
fetching items in the range under the scrollbar. Inserting
reorder operatorsinto standard query plansin place of sort
operatorsispromising; initial results show that we are able
to convert blocking plans into pipelines while actually re-
ducing the completion time.

This paper opens up anumber of interesting avenues for
further work that we intend to explore.

Other feedback functions appear to be appropriate for
applicationsthat processreal -timedatasuch asstock quotes,
since recent items are more important than earlier ones, and
this must considered when calculating delivery priorities.

We have looked at reordering data delivery to meet the
dynamic preferences of asingle user. When onlinereorder-
ing is used in applications such as broadcast disks [AT97],
we need to consider the aggregate preferences from several
users, and the reordering policy needsto be chosen suitably.

In graphica data visualization ([A*96]), large volumes
of information are presented to the user as a picture or map
over which he can pan and zoom. Fetching this data from
the disk and rendering it onto the screen typically takes a
longtime. It makes senseto fetch more data pointsfromthe
region the user is currently panning over and asmall region
around it, so that these portions can be rendered in greater
detail / higher resolution. Here the user interest isinferred
based on mouse position, and this is a two-dimensional
version of the spreadsheet problem.

A pipelining best-effort reorder operator appears to be
substitutable for regular sort operators at other places in
guery plans. For instance, it can replace a sort operator
that is designed to reuse memoized values of a correlated
subquery or expensive user-defined function [HN96, St 96].
Here, online reordering amounts to computing the set of
variablebindingson thefly, possibly with someduplication.

Acknowledgments

We would like to thank all the members of the CON-
TROL project at Berkeley for many useful discussions.
The idea of using reordering in general query plans was
suggested by Surgjit Chaudhuri. Discussions with Miron
Livny were useful in understanding the limits of best-effort
reordering in meeting performance goals. Paul Aoki, Ron
Avnur, Mehul Shah, Mike Stonebraker, and our anonymous
referees gave several detailed comments on drafts of this
paper. Wewant to thank Informix Corporation for allowing
us access to their source code. Satheesh Bandaram and
Kathey Marsden helped uswith the programming on UDO.
Computing and network resources were provided through
NSF RI grant CDA-9401156. Thiswork wassupported by a
grant from Informix Corp., aCaliforniaMICRO grant, NSF
grant 11S-9802051, and a Sloan Foundation Fellowship.

References

[AT96] A. Aiken et a. Tioga-2: A direct-manipulation data
visualization environment. In |ICDE, 1996.

720

[At97]
[AZ96]

[Bat79]

[Bat90]

[BM85]

[Ct 98]
[CD97]
[CK97]
[Exc]

(G 96]

[GM9g]

[Gra93]
[H*]

[Haa97]
[HHO9]
[H*97]
[H 98]

[HN96]

[0J93]

[S*96]
[SS]

[Stog9]
[VR75]

[Z*97]

S. Acharyaet a. Balancing push & pull for data broad-
cast. InSSGMOD, 1997.

G. Antoshnekov and M. Ziauddin. Query processing
and optimization in Rdb. VLDB Journal, 1996.

M. Bates. Information search tactics. Journal of the
American Society for Information Science, 30(4):205—
214, 1979.

M. Bates. User Interface Design, chapter The Berry-
Picking Search. Addison-Wesley, 1990.

D. Blair and M. Maron. An evauation of retrieval ef-
fectiveness for a full-text document retrieval system.
CACM, 1985.

S. Chaudhuri et al. Random sampling for histogram
construction. In SGMOD, 1998.

S. Chaudhuri and U. Dayal. Data warehousing and
OLAP for decision support. In SGMOD, 1997.

M. Carey and D. Kossman. On saying “Enough Al-
ready” in SQL. In SGMOD, 1997.

Microsoft Excel 1997 — Online Help.

J. Gray et a. Data Cube: A relational aggregation op-
erator generalizing group-by, cross-tab, and sub-totals.
In ICDE, 1996.

P. Gibbons and Y. Matias. New Sampling-Based Sum-
mary Statistics for Improving Approximate Query An-
swers. In SGMOD, 1998.

G. Graefe. Query evaluation techniques for databases.
ACM Computing Surveys, 1993.

J. M. Hellerstein et a. Informix under Control: Online
query processing. submitted for publication.

P. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, 1997.

P. Haas and J. M. Hellerstein. Ripple joins for Online
Aggregation. In SGMOD, 1999.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. In SGMOD, 1997.

J. M. Hellerstein et a. Interactive Data Analysis with
CONTROL. To appear, |EEE Computer, 1999.

J. M. Hellerstein and J. Naughton. Query execution
techniques for caching expensive methods. In S GMOD,
1996.

V. O'day and R. Jeffries. Orienteering in an information
landscape: how information seekers get from here to
there. In INTERCHI, 1993.

P. Seshadri et al. Cost based optimization for Magic. In
S GMOD, 1996.

V. Raman et al. Scalable Spreadsheets for Interactive
Data Analysis. In ACM Workshop on DMKD, 1999.

M. Stonebraker. The case for partial indexes. In SG-
MOD Record, 18(4):4-11, 1989.

C. van Rijsbergen. Information Retrieval . Butterworths,

Y. Zhao et al.An array-based algorithm for simultaneous
multidimentional aggregates. In SGMOD, 1997.

