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Abstract

We present a pipelining, dynamically user-
controllable reorder operator, for use in data-
intensive applications. Allowing the user to re-
order the data delivery on the fly increases the
interactivity in several contexts such as online ag-
gregation and large-scale spreadsheets; it allows
the user to control the processing of data by dy-
namically specifying preferences for different data
items based on prior feedback, so that data of in-
terest is prioritized for early processing. We de-
scribe an efficient, non-blocking mechanism for
reordering, which can be used over arbitrary data
streams from files, indexes, and continuous data
feeds. We also investigate several policies for
the reordering based on the performance goals of
various typical applications. We present results
from an implementation used in Online Aggrega-
tion in the Informix Dynamic Server with Univer-
sal Data Option, and in sorting and scrolling in a
large-scale spreadsheet. Our experiments demon-
strate that for a variety of data distributions and
applications, reordering is responsive to dynamic
preference changes, imposes minimal overheads
in overall completion time, and provides dramatic
improvements in the quality of the feedback over
time. Surprisingly, preliminary experiments indi-
cate that online reordering can also be useful in
traditional batch query processing, because it can
serve as a form of pipelined, approximate sorting.

1 Introduction
It has often been noted that information analysis tools
should be interactive [BM85, Bat79, Bat90], since the data
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exploration tasks they enable are often only loosely spec-
ified. Information seekers work in an iterative fashion,
starting with broad queries and continually refining them
based on feedback and domain knowledge (see [OJ93] for
a user study in a business data processing environment).
Unfortunately, current data processing applications such as
decision-support querying [CD97] and scientific data vi-
sualization [A 96] typically run in batch mode: the user
enters a request, the system runs for a long time without
any feedback, and then returns an answer. These queries
typically scan large amounts of data, and the resulting long
delays disrupt the user’s concentration and hamper inter-
active exploration. Precomputed summaries such as data
cubes [G 96, Z 97] can speed up the system in some sce-
narios, but are not a panacea; in particular, they provide
little benefit for the ad-hoc analyses that often arise in these
environments.

The performance concern of the user during data analysis
is not the time to get a complete answer to each query, but
instead the time to get a reasonably accurate answer. There-
fore, an alternative to batch behavior is to use techniques
such as Online Aggregation [H 97, H 98] that provide
continuous feedback to the user as data is being processed.
A key aspect of such systems is that users perceive data be-
ing processed over time. Hence an important goal for these
systems is to process interesting data early on, so users can
get satisfactory results quickly for interesting regions, halt
processing early, and move on to their next request.

In this paper, we present a technique for reordering data
on the fly based on user preferences — we attempt to ensure
that interesting items get processed first. We allow users
to dynamically change their definition of “interesting” dur-
ing the course of an operation. Such online reordering is
useful not only in online aggregation systems, but also in
any scenario where users have to deal with long-running
operations involving lots of data. We demonstrate the ben-
efits of online reordering for online aggregation, and for
large-scale interactive applications like spreadsheets. Our
experiments on sorting in spreadsheets show decreases in
response times by several orders of magnitude with online
reordering as compared to traditional sorting. Incidentally,
preliminary experiments suggest that such reordering is also
useful in traditional, batch-oriented query plans where mul-
tiple operators interact in a pipeline.
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The Meaning of Reordering
A data processing system allows intra-query user control
by accepting preferences for different items and using them
to guide the processing. These preferences are specified
in a value-based, application-specific manner: data items
contain values that map to user preferences. Given a state-
ment of preferences, the reorder operator should permute
the data items at the source so as to make an application-
specific quality of feedback function rise as fast as possible.
We defer detailed discussion of preference modeling until
Section 3 where we present a formal model of reordering,
and reordering policies for different applications.

1.1 Motivating Applications

Online Aggregation
Online Aggregation [H 97, H 98] seeks to make

decision-support query processing interactive by providing
approximate, progressively refining estimates of the final
answers to SQL aggregation queries as they are being pro-
cessed. Reordering can be used to give users control over
the rates at which items from different groups in a GROUP BY

query are processed, so that estimates for groups of interest
can be refined quickly.1

Consider a person analyzing a company’s sales using
the interface in Figure 1. Soon after issuing the query,
she can see from the estimates that the company is doing
relatively badly in Vietnam, and surprisingly well in China,
although the confidence intervals at that stage of processing
are quite wide, suggesting that the Revenue estimates may
be inaccurate. With online reordering, she can indicate an
interest in these two groups using the Preference “up” and
“down” buttons of the interface, thereby processing these
groups faster than others. This provides better estimates for
these groups early on, allowing her to stop this query and
drill down further into these groups without waiting for the
query to complete.

Another useful feature in online aggregation is fairness
— one may want confidence intervals for different groups
to tighten at same rate, irrespective of their cardinalities.
Reordering can provide such fairness even when there is
skew in the distribution of tuples across different groups.

Scalable Spreadsheets
DBMSs are often criticized as being hard to use, and

many people prefer to work with spreadsheets. However,
spreadsheets do not scale well; large data sets lead to in-
ordinate delays with “point-and-click” operations such as
sorting by a field, scrolling, pivoting, or jumping to partic-
ular cell values or row numbers. MS Excel 97 permits only
65536 rows in a table [Exc], sidestepping these issues with-
out solving them. Spreadsheet users typically want to get
some information by browsing through the data, and often
don’t use complex queries. Hence usability and interactiv-
ity are the main goals, and delays are especially annoying.

1User preferences can be passed from the interface to the DBMS by
calling UDFs in auxiliary queries [H 97].
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Figure 1: Relative speed control in online aggregation

This is unlike a DBMS scenario, where users expect to wait
for a while for a query to return.

We are building [SS] a scalable spreadsheet where sort-
ing, scrolling, and jumping are all instantaneous from the
user’s point of view. We lower the response time as per-
ceived by the user by processing/retrieving items faster in
the region around the scrollbar – the range to which an item
belongs is inferred via a histogram (this could be stored as
a precomputed statistic or be built on the fly [C 98]). For
instance, when the user presses a column heading to re-sort
on that column, he almost immediately sees a sorted table
with the items read so far, and more items are added as they
are scanned. While the rest of the table is sorted at a slow
rate, items from the range being displayed are retrieved and
displayed as they arrive.

Imprecise Querying: With reordering behind it, the scroll-
bar becomes a tool for fuzzy, imprecise querying. Suppose
that a user trying to analyze student grades asks for the
records sorted by GPA. With sorting done online as de-
scribed above, the scrollbar position acts as a fuzzy range
query on GPA, since the range around it is filled in first.
By moving the scrollbar, she can examine several regions
without explicitly giving different queries. If there is no
index on GPA, this will save several sequential scans. More
importantly, she need not pre-specify a range — the range
is implicitly specified by panning over a region. This is im-
portant because she does not know in advance what regions
may contain valuable information. Contrast this with the
ORDER BY clause of SQL and extensions for “top N” filters,
which require a priori specification of a desired range, often
followed by extensive batch-mode query execution [CK97].

Sort of Sort
Interestingly, we have found that a pipelining reorder

operator is useful in batch (non-online) query processing
too. Consider a key/foreign-key join of two tables R and
S, with the foreign key of R referencing the key of S. If
there is a clustered index on the key column of S, a good
plan would be to use an index-nested-loops join algorithm.
Taking advantage of the clustered index, the DBMS might
insert a sort operator on R before the join, so that each leaf of
the index is fetched at most once. Unfortunately, since sort
is a blocking operator, this plan forfeits the pipelined par-
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Figure 2: Data flow model for the reordering

allelism that is available in index-nested-loops join. Note
that sorting is used as a performance enhancement to batch
up index lookups; total ordering is not needed for correct-
ness. Hence we can use a pipelining, best-effort reorder
operator instead to gain most of the benefit of sorting, with-
out introducing a blocking operation into the query pipeline.
Not only is the resulting query non-blocking (and hence po-
tentially interactive), but the overall completion time may
be faster than if we had sorted, since (a) we need not do
a complete sort, and (b) opportunities exist for pipelined
parallelism (e.g. if the index for S is on a separate disk
from R). We have started experimenting with this idea by
inserting reorder operators into traditional query plans, and
present preliminary results in Section 5.3.

Organization of the paper
We present our technique for reordering in Section 2.

In Section 3 we describe several policies for reordering,
and corresponding quality of feedback functions that are
suited for different applications. We then discuss disk man-
agement issues for the reordering algorithm in Section 4.
We present performance results for different applications
in Section 5. We discuss related work in Section 6, and
conclude with some avenues for future work in Section 7.

2 Best Effort Online Reordering

Since our aim is interactivity, the reordering must not in-
volve pre-processing or other overheads that will increase
runtime. Instead, we want a “best effort” reordering that
runs concurrently with the processing, with negligible over-
head. Figure 2 depicts our scheme of inserting a reorder
operator into a data flow, which we divide into four stages
as described below.
Produce – this may be a disk scan, an index scan, or a
data feed from a network or sensor.
Reorder – this reorders the items according to the dynam-
ically changing preferences of the consumer.
Process – this is the set of operations done by the applica-
tion, and it could involve query plan operators in a DBMS,
sending data across a slow network, rendering data onto the
screen in data visualization, etc.
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process

scan

Figure 3: Reorder in plan trees for online aggregation

Consume – this captures the user think-time, if any —
it is important mainly for interactive applications such as
spreadsheets or data visualization.

Since all these operations can go on concurrently, we
exploit the difference in throughput between the produce
stage and the process or consume stages to permute
the items: while the items taken out so far are being
processed/consumed, reorder can take more items from
produce and permute them.

Figure 3 shows a sample data flow in a DBMS query
plan. Reorder is inserted just above a scan operator on
the table to be reordered, and the processing cost is the
cost of the operators above it in the plan tree.

2.1 The Prefetch and Spool (P&S) technique for re-
ordering

Reorder tries to put as many interesting items as possible
onto a main-memory buffer, and process issues requests
to get an item from the buffer. When Process issues
a get operation, Reorder decides which item to give it
based on the performance goal of the application; this is a
function of the preferences, and will be formally derived
for some typical applications in Section 3.1.

The user preferences that indicate interest may be at the
granularity of either an individual item or a group of items,
depending on the application. Even in the former case, we
can divide the items into groups based on a histogram, and
reorder at the granularity of a group — process contin-
ually gets the best item from the best group on buffer2.
Reorder strives to maintain items from different groups
at different ratios on the buffer based on the preferences and
the reordering policy. We derive these ratios in Section 3.2.

The P&S algorithm for reordering uses the time gap
between successive gets from the buffer (which may arise
due to processing or consumption time) to maintain the
correct ratios of different groups on the buffer. It has two
phases, as shown in Figure 4. In Phase 1 it continually scans
the input, trying to maintain the appropriate ratio of items
in the buffer by spooling uninteresting items to an auxiliary

2When process issues a get operation, it is reorder that chooses
the item to give out. The decision of which item to give out is made by
reorder and is transparent to process
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Figure 4: Reordering by Prefetch & Spool

side-disk. It spools out items from the group that has the
highest difference between the ratio of items actually on
the buffer and the ratio desired. In the common case where
produce is reading data from a disk, reorder does
sequential I/Os, and so can often go much faster than the
stages down the data flow. If reorder finds it has spooled
some interesting items to the side-disk (as will happen if
the user changes their definition of “interesting” midway),
it may have to read them back from the side-disk to enrich
the buffer. Again, it reads items from the group that has
the highest difference between the ratio of items desired,
and what is actually on the buffer. Phase 1 completes when
the input is fully consumed. In Phase 2, it directly reads
items from the side-disk to fill the buffer with needed items.
If produce is a continuous network feed, Phase 1 never
finishes. Reorder in this situation will still have to spool
out uninteresting items to the side-disk, assuming that the
feed rate is faster than the process rate.

2.2 Index Stride

We have so far assumed that reorder cannot control the
order in which data is provided by produce. However, if
there is an index on the columns that determine the prefer-
ence for a tuple (the group-by columns in the case of online
aggregation), we can use the index to retrieve items at dif-
ferent rates based on the ratio we want in the buffer. We
open one cursor for each group and keep filling the buffer
with items from that group whose ratio is less than what is
needed. This approach — Index Stride — was described
in [H 97]. However even if such an index exists, it is may
not be clustered. We will see later that despite doing perfect
reordering, Index Stride often does worse than regular P&S
because of random I/Os into the index of produce.

As Figure 4 shows, P&S is a fairly simple algorithm. It
continually “juggles” data between the buffer and the side-
disk, to ensure that it has interesting data to give when
process asks. The details lie in choosing a reordering
policy based on the performance goals, and in managing
data in memory and on side-disk so as to optimize the
enrich and spool operations. We tackle these issues in the
next two sections.

index of a tuple
index of a group
number of groups
number of items processed so far
total number of items
delivery priority
normalized user preference
feedback function

Table 1: Notation used in the reordering model

3 Policies for online reordering

What exactly do we want to achieve by reordering a data
set? Given an input stream 1 2 , we want to out-
put a “good” permuted stream 1 2 . Consider
the following example. If the user divides data items into
groups and is twice as interested in group A as in group B,
one good output permutation will be “AABAABAAB...”.
This sequence corresponds to several possible permutations
of the actual tuples, since many tuples fall into each group.
Similarly, the permutation “BAABAABAA...” is also just
as good. In general, there will be several equivalently good
permutations, and our goal is to output some permutation
from a good equivalence class.

For each prefix of length of an output permutation
1 2 , consider an application-specific quality of

feedback function (henceforth this will called the feed-
back function) 1 2 . This
function captures the value of the items in the prefix, and
models their “interestingness” to the user. is the
user preference for item . Since the goal is to improve
feedback in the early stages, the goodness of the output
permutation is given by the rate at which the feedback
function rises as the number of items processed goes
from 1 to . We try (we can only try since the reorder-
ing is best-effort) for an output permutation , such that
for any 1 , the prefix 1 2 of

maximizes 1 2 over all
-element subsets 1 of 1 2

We describe in Section 3.1 how to set for different
applications based on their performance goals. The choice
of dictates the choice of the item that reorder gives
out when process issues a get; it gives out the item that
will increase the most.3 This in turn dictates the ratio
of items from various groups that reorder should try to
maintain in the buffer. We describe how this is derived in
Section 3.2.

3.1 Performance Goals and Choice of Items to Remove
from the Buffer

Consider the data flow model of Figure 2. When process
issues a get, reorder decides which item to give via a
delivery priority mechanism. This priority for an item is

3We can do only a local optimization since we know neither the distri-
bution of items across different groups in the input to be scanned, nor the
future user preferences. Our aim is to maximize the feedback early on,
and not the overall feedback.
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computed dynamically based on how much the feedback
will change if that item is processed. Reorder gives

out the item in the buffer with the highest delivery prior-
ity (which may not be the highest priority item overall).
Note that the delivery priority is not the same as the user
preference. The user preference depends on the user inter-
est whereas the delivery priority depends on the feedback
function. In fact, for the first two metrics given below, in
steady state, assuming that the most interesting group will
always be available on buffer, the delivery priority for all the
groups will be equal. We proceed to outline some intuitive
feedback functions for different applications. The notation
we use is summarized in Table 1.

Confidence metric: Average weighted confidence inter-
val

In online aggregation, the goal is to make the confidence
intervals shrink as fast as possible. One way to interpret
user preferences for different groups is as a weight on the
confidence interval. The feedback function is the nega-
tive of the average weighted confidence interval (we take
the negative since a small confidence-interval width corre-
sponds to high feedback). Almost all the large-sample con-
fidence intervals used in online aggregation (see [Haa97]
for formulas for various kinds of queries) are of the gen-
eral form: Variance of the results seen so far (number
of items seen so far 1 2. Hence 1 is a good indicator
of the confidence interval for a group . After items are
processed, the feedback function we want to rise as fast as
possible is

1 given that 1

The application chooses items for processing such that F
rises as fast as possible. If we process an item from group
, 1 and so increases by the first derivative

1 5. Hence, to process the group which will increase
the most, we set a delivery priority of 1 5.

Each time we process an item from a group, the group’s de-
livery priority decreases. Also, we always process an item
in the buffer with the highest priority. Hence this acts a
negative feedback, and at steady state, assuming that the
highest priority item is always present on buffer, all the
delivery priorities will be equal.

Rate metric: Preference as rate of processing

A simple alternative is that items from each group be
processed at a rate proportional to its preference. This is
primarily a functional goal in that it directly tells reorder
what to do. However, it may be useful in applications
such as analysis of feeds from sensors, where we want
to analyze packets from different sources at different rates
based on preferences; if the user finds the packet stream
from one sensor to be anomalous, he may want to analyze
those packets in more detail. We want the number of items
processed for a group to be proportional to its preference,
and the feedback function to maximize is the negative of
the net deviation from these proportions:

1
2 given that 1

At any given time we want to process the group that will
make this deviation decrease the most. If we process an
item from group , 1. Hence increases by
the first derivative, 1

2

1 2
2 1 2 0

2 2 1

For to rise fastest, we must process a group which will
cause the above expression to be maximum. Hence the
delivery priority is set as , since the
second term of the previous expression is the same for all
groups. As in the previous metric, at steady state, assuming
that the highest priority group is always available in the
buffer, all the delivery priorities will be equal. It can be
easily seen that the priorities are in fact 0. The deviation of
the delivery priorities from 0 is a measure of how bad the
reordering is.

Strict metric: Enforcing a rigid order

When we use a reorder operator in a traditional query
plan instead of a sort operator, the goal is a sorted permu-
tation. This can be achieved by assigning monotonically
decreasing user preferences for each item from the one that
is desired to be the first until the last item. After items
have been processed, the feedback function we want to
maximize is

1

By processing an item , increases by . To make this
rise fastest, we set the delivery priority to be .
That is, we always process the item with the highest user
preference on buffer. We also use this metric for the spread-
sheets application, with the preference for a range of items
decreasing with its distance from the range being displayed
(this is inferred from the scrollbar position).

3.2 Optimal Ratio on Buffer

Since reorder always gives out to process the highest
delivery priority item in buffer, the delivery priority func-
tions derived above directly dictate the ratio of items from
different groups that reordermust maintain in the buffer.
These ratios in turn determine the buffer replacement policy
for reorder.

Confidence metric: At steady state, all the ’s
are equal. Hence for any two groups 1 and 2,

1 1 1 2 2 2 , and the ratio of items

from any group must be 2 3
1

2 3 .

Rate metric: As explained before, at steady state all ’s
are 0. Since , the ratio of items from
group is . Indeed, the goal is to have the processing
rate be proportional to preference.

Strict metric: If is , there is no specific ratio —
the reorderer tries to have the highest preference item, then
the next highest, and so on.
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3.3 Handling Preference Changes

In the discussion so far we have not considered dynamic
changes in the preferences. After a preference change, we
can either express the feedback as a goal over the items
to be delivered subsequently, or as a goal that “remembers
history”, and is expressed over all the items previously de-
livered as well. Correspondingly, we can compute delivery
priorities either based only on items processed since the
last preference change, or on all the items that have been
processed since the initiation of the data flow.

For the Confidence metric we want to remember history
because the confidence interval is defined in terms of the
total number of items seen so far. Hence we re-calculate the
delivery priorities based on the new user preferences taking
into account all the items that have been processed. This
results in a rapid spurt in the processing for a group whose
preference is increased — not only is the new preference
high, but also we must compensate for not having processed
enough items from that group (commensurate with the new
preferences) earlier. By contrast, the Rate metric corre-
sponds to the user’s request for immediate change in the
relative processing rates. Hence, we calculate the deliv-
ery priorities based on the number of items processed since
the last preference change ( , where
is the number of items processed since the last preference
change). The user preferences determine the rate at which
tuples from different groups are processed between con-
secutive preference changes. This is not an issue with the
Strict metric; the priorities are independent of the number
of items processed.

4 Disk management while reordering

The goal of reorder is to ensure that items from different
groups are maintained in the buffer in the ratios desired by
the application, as derived in Section 3.2. There are four op-
erations which alter the set of items in the buffer: scanning
from the input, spooling to the side-disk, enrichment from
the side-disk, and get’s by the application (Figure 4). The
ratios in the buffer are maintained by (a) evicting (spool-
ing) items from groups that have more items than needed,
and (b) enrichment with items from the group that is most
lacking in the buffer. In essence the buffer serves as a
preference-based cache over produce and the side-disk.
We always strive to maintain some items in the buffer, even
if they are not the most interesting ones; the presence of
uninteresting items in the buffer may arise, for instance, if
the user preferences during Phase 1 are very different from
the data distribution across different groups. By guaran-
teeing the presence of items in the buffer, the process
stage never has to wait for the reorder stage, and the
overhead for introducing reorder into a data flow is min-
imized. In addition to the buffer, some memory is required
for buffering I/O to and from the side-disk. The amount of
memory needed for I/O buffers depends on the data orga-
nization on the side-disk, so we defer this discussion until
after discussing our treatment of the side-disk.

4.1 Management of Data on Side-Disk

Since we want to process interesting items and give good
feedback to the user early on, we must make Phase 1 as
fast as possible and postpone time-consuming operations as
long as possible. Another reason to finish Phase 1 quickly
is that during Phase 1 we cannot control the order of values
appearing from produce if preferences change; whereas
in Phase 2 we know the layout of data on the side-disk and
can enrich the buffer with items that best satisfy preferences
at a given time. To speed up Phase 1, we want a data layout
on side-disk that makes spooling go fast even at the expense
of enrichment, because we mainly do spooling in Phase 1
and enrichment in Phase 2.

Graefe [Gra93] notes a duality between sorting and hash-
ing. Hashing initially does random I/Os to write partitions,
and later does sequential I/Os to read partitions. Sorting
first writes out runs with sequential I/Os, and later uses ran-
dom I/Os to merge the runs. Unfortunately, neither scheme
is appropriate for reordering. Hashing into partitions is un-
desirable because the random I/Os in Phase 1 slow down
spooling. Writing out sorted runs to disk is infeasible for
two reasons. First, enrichment of the buffer with items from
a particular group would involve a small, random I/O from
each run, especially when the cardinality of the group is
low. Second, dynamically-changing user preferences drive
the decision of what we spool to or enrich from side-disk,
meaning that the distribution of values to different spooled
runs would be non-uniform.

To achieve the best features of both sorting and hashing,
we decided to lay out tuples on the side-disk as fixed size
chunks of items, where all the items in a chunk are from the
same group. Spooling is done with only a sequential write,
by appending a chunk to a sequential file of data on the side-
disk. Enrichment is done via a random read of a chunk of
that group which is most lacking in the buffer. Intuitively,
this approach can be viewed as building an approximately
clustered index (with only sequential I/Os) on the side-disk,
concurrent with the other processing.4

Returning to the main-memory layout described earlier,
in Phase 1 we require an I/O buffer for each group to col-
lect items into chunks. We also need a in-core index of
pointers to chunks for each group to quickly find chunks
corresponding to a group.

4.2 Total Ordering

We have so far assumed that the reordering is done at the
granularity of a group. However in some applications, such
as the reorder operators in batch query processing, our goal
is a total ordering on the individual items. We tackle this
by dividing the data into groups based on an approximate

4We also tried out writing out items as packed runs on the side-disk,
where the ratio of items in these runs is determined by current user pref-
erences. With this method, ideally, with no preference changes, we never
have to do any random I/Os — we keep appending runs to the side-disk
in Phase 1, and keep reading runs in Phase 2. However we found that this
method leads to severe fragmentation of items from sparse groups, and
that the packing of items into runs is useless if the preference changes.
This results in several small, random I/Os.
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select o orderpriority, count(*) from order
where o orderdate ’10/10/96’ and

o orderdate ’10/10/96’ + 90
and exists (select * from lineitem

where l orderkey = o orderkey and
l commitdate l receiptdate)

group by o orderpriority

Figure 5: TPC-D Query 4

Group A B C D E
Preference at the start 1 1 1 1 1
Preference after 1000 1 1 1 5 3
tuples processed (T0)
Preference after 50000 1 1 3.5 0.5 1
tuples processed (T1)

Figure 6: Changes in User Preferences

histogram. This histogram need not be accurate since we
only want a best effort reordering. We want the number of
groups to be as high as possible (this number is limited by
the amount of memory we can allocate for the I/O buffers
storing the chunks), so that the size of a group is small, and
we do a “fine granularity” reordering that can distinguish
between the priorities of small batches of tuples. The re-
orderer ensures a good ratio of items from different groups
in the buffer, and the application removes for processing
the best item in the buffer. Our experiments show that this
technique is surprisingly successful, since these applica-
tions need only an approximate ordering.

5 Experimental Results
We present results that show the usefulness of reordering in
online aggregation and in scalable spreadsheets. The aim
is to study a) the responsiveness of the rate of processing
to dynamic changes in preference, b) the robustness of re-
ordering to different data distributions and processing
costs, and c) the overhead in overall completion time due
to reordering. We also present promising initial results that
show the advantage of using reorder operators in tradi-
tional batch query plans. We scale up all results involving
Informix systems by an undisclosed factor to honor privacy
commitments while still allowing comparative analysis of
algorithms (hence time is expressed in abstract “chronons”).

5.1 Online Aggregation

We have implemented our algorithms for reordering in the
context of Online Aggregation in Informix Dynamic Server
with Universal Data Option (UDO)5. The goal of reorder-
ing is to shrink the confidence intervals for the interesting

5We ran all experiments on a 200 MHz UltraSPARC machine running
SunOS 5.5.1 with 256MB RAM. We used the Informix Dynamic Server
with Universal Data Option version 9.14 which we enhanced with online
aggregation and reordering features. We chose a chunk size of 200KB for
all our experiments. This is reasonable because the number of groups is
typically small, and so the I/O buffer (whose size is chunk size number
of groups) is not very big. We used a separate disk for the side-disk, and
the size of our buffer was 2MB (including the I/O buffer)
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Figure 7: Performance of sequential scan, Rate metric

groups quickly. We test the responsiveness and robustness
of the reordering by varying a number of parameters:
Data distribution: To study the effect of skew in
the data distribution across different groups, we test with
Zipf and uniform distributions.
Processing Rate: We study a TPC-D query (Q4, see
Figure 5), modifying it by adding and removing filters and
tables to generate index-only joins (where we only need
to look at the index of the inner table), index-nested-loop
joins, and single table queries. We do not present results for
queries with multiple joins because we see experimentally
that even one join suffices for good reordering; more joins
only make reordering easier by reducing the processing
rate. In [H ] we present experiments involving reordering
with otherprocess operators such as non-flattenable sub-
queries and ripple joins6.
Preference Change Model: We look at preference
changes in Phase 1 and Phase 2, under the Confidence and
Rate performance metrics from Section 3.
Algorithm used: We compare P&S, Index Stride, and
a simple sequential scan (no reordering).

Due to space constraints we do not give exhaustive re-
sults along all dimensions. We show only results that il-
lustrate salient features of the algorithms and indicate the
trade-offs involved. We use the TPC-D dbgen program to
generate data of different distributions, with a scale factor
of 0.1. For our experiments we clustered the data in ran-
dom order, so as to give statistically correct estimates for
the aggregates [Haa97].7

Rate Metric, Index-Only Join, Zipf distribution: Our
first experiment uses a low processing cost query: select
avg(o totalprice), o orderpriority from order where exists
(select * from lineitem where l orderkey = o orderkey)
group by o orderpriority. We have removed filters from
TPC-D Q4 to make it an index-only join with Order as the
outer relation. Order has 150000 tuples. There are five

6Ripple joins are specialized join algorithms for online aggregation
that are efficient yet non-blocking [HH99]

7Note that P&S preserves the randomness properties of the data within
a given group.

715



0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100 120 140

N
um

be
r 

of
 I

te
m

s 
Pr

oc
es

se
d

Time (in chronons)

A

B

C
D
E

T1

Figure 8: Performance of P&S, with Rate metric.
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groups which we will call A, B, C, D, and E for brevity, and
we use a Zipf distribution of tuples, in the ratio 1: 1

2 : 1
3 : 1

4 : 1
5

respectively.
Figure 6 shows our preference change model, which

involves one change at time T0 in Phase 1 (this is not seen
in most graphs because it occurs too early), and one change
at time T1 in Phase 2. Since Phase 1 ends at about 40000
tuples in most cases, this separately tests our ability to
reorder in both phases. We give high preferences to the low
cardinality groups to stress the reorderer.

Figures 7 and 8 show the number of tuples processed for
each group for sequential scan and P&S with the Rate met-
ric. Despite the low processing cost and the high-preference
groups being rare, the reordering of P&S is quite respon-
sive, even in Phase 1. P&S has finished almost all tuples
from the interesting groups D and E by 44 chronons while
sequential scan takes 120 chronons, almost 3 times longer.
P&S imposes little (2%) overhead in completion time.

Figure 9 compares the number of tuples processed for
the largest group (A) and the smallest group (E) for different
algorithms. The tuples of interesting group E are processed
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Figure 10: Confidence intervals of different groups for
P&S. We plot only groups A, C, and E to avoid clutter-
ing the graph. The curve for group B overlaps that of A,
and the curve of D is similar to that of E.

much faster for P&S than for other methods, while for the
highest cardinality (and least interesting) group A, sequen-
tial scan produces items faster than P&S. Index Stride does
very poorly because of many random I/Os (it has a 427%
completion time overhead).

To test the effect of reordering on groups with extremely
small cardinalities, we added a new group F with 70 tuples,
and gave it a constant preference of 2. While Index Stride
finished all items from group F in 0 9 chronons, P&S took
41 6 chronons and the sequential scan took 111 2 chronons.
Index Stride easily outperforms both P&S and sequential
scan for this outlier group because P&S can only provide
as many tuples of F as it has scanned. This advantage of
Index Stride is also reported in [H 97].

Confidence Metric, Index-Only Join, Zipf distribution:
We then removed group F and repeated the previous ex-
periment with the Confidence metric. Figure 10 shows the
shrinking of the confidence intervals for different groups for
P&S. We see that with P&S the confidence intervals shrink
rapidly for the interesting groups (D,E, and later C), even
when they have low cardinalities. In contrast, with a se-
quential scan, the intervals for D and E shrink more slowly
than those for the other groups because D and E have low
cardinality (we omit the graph to save space).

Rate Metric, Index-Only Join, Uniform distribution:
We now look at the effect of changing the distribution and
the processing rates. We first repeat the previous experi-
ment with the Rate metric and a uniform data distribution
across different groups. To save space, we do not plot
graphs but instead give in Table 2 the delivery priorities of
different groups after 30000 tuples are processed and after
60000 tuples are processed. Recall that for the rate met-
ric these priorities capture the deviation in the number of
tuples processed from the number that should have been
processed. After 30000 tuples are processed, the devia-
tions are 0 64, 0 36, 0 36, 0 18,
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Dist.bn Proc. Algor- Deviation at 30000 tuples processed Deviation at 60000 tuples processed Ovhd.
Rate -ithm A B C D E A B C D E

Zipf Small P&S 1098 1097 1097 27 3266 0 18 0 18 0 36 Fin Fin 2.2
Zipf Small IS 0 09 0 09 0 09 0 27 0 54 0 27 0 27 0 54 Fin Fin 423
Uniform Small P&S 0 64 0 36 0 36 0 18 0 09 0 88 0 55 0 33 Fin Fin 2.4
Zipf Large P&S 0 64 0 36 0 36 0 18 0 09 0 65 0 35 0 23 0 05 Fin 1.1
Zipf Tiny P&S 5075 4785 2772 8507 4124 2016 1571 2170 860 2278 2.6
Zipf Tiny IS 0 64 0 36 0 36 0 18 0 09 0 0 0 Fin Fin 626

Table 2: Deviation of number of tuples processed of groups A,B,C,D,E, from desired values. A value of Fin for a group
means that it has been exhausted. IS Index Stride. Ovhd. percentage completion time overhead

and 0 09 — this is almost an exact reordering. In
contrast the deviations after 30000 tuples are processed for
the Zipf distribution of the earlier experiment are much
higher: 1098 64, 1097 64, 1097 64,

27 09, and 3266 82. The uniform distribution is
easier to reorder since interesting groups are plentiful. The
deviations after 60000 tuples have been processed are very
small in both cases; reordering is easy in Phase 2 since we
can directly read the needed chunks off the side-disk.

Rate Metric, Index Join, Zipf distribution: We next
change the distribution back to Zipf and increase the
processing cost: we reintroduce a filter to force an ex-
plicit join of Order and Lineitem. The new query is se-
lect o orderpriority, count(*) from order where exists (se-
lect * from lineitem where l orderkey = o orderkey and
l commitdate l receiptdate ) group by o orderpriority.
The reordering is much better even with the Zipf distribu-
tion: the deviations after 30000 tuples are processed are
only 0 64, 0 36, 0 36, 0 18, and 0 09. This is because
there is more time to reorder between consecutive gets of
the data by process.

Rate Metric, Single Table Query, Zipf distribution:
Next, to stress our reorderer, we form a minimal-process
query by removing Lineitem: select o orderpriority,
count(*) from order group by o orderpriority. Figure 11
shows that the reordering is relatively ineffective in this
case. Groups D and E are processed infrequently, since we
can never spool to the side-disk and can only reorder within
the buffer. This affirms that we can reorder effectively only
when the processing rate is less than the produce rate
(i.e. the processing cost is more than the produce
cost). Here the only cost is that of the input scan — there
is no processing save the addition to the Count aggregate.
As Table 2 shows, Index Stride works very well, but it has
a huge completion time overhead of 626% — random I/Os
have a high penalty since the processing cost is low.

Rate Metric, Original TPC-D Query, Zipf distribution:
Finally we add back all the filters and tables, and run the
complete TPC-D query given in Figure 5. Due to a low-
selectivity filter on the Order table, very few tuples (5669)
are handled by the reorderer. Figure 12 shows that P&S
performs very well. The change at 1000 tuples processed
is seen on this graph (T0) since the total number of tuples
processed is small. Interestingly, with the predicate applied
on Order, E becomes a more frequent group than D.
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Figure 11: Rate of processing with the Rate metric for P&S,
single table query

Discussion

Our experiments show that reordering by P&S is quite re-
sponsive to dramatic preference changes even with skewed
distributionsand low processing-cost queries such as index-
only joins; interesting groups are processed much earlier
than others even if they have low cardinalities. If the dis-
tribution is not too skewed, or the processing cost is higher
(even one join suffices), or preferences are changed in Phase
2, we see that the reordering is virtually perfect, with small
overheads for completion time. Index Stride has a very
high overhead because of random I/Os, but works well for
extremely low cardinality “outlier” groups. The reordering
in the case of single-table queries is not good because of the
low processing cost. However, note that joins are common
in decision support queries — for example, 15 out of 17
TPC-D queries involve joins.

As the outlier group case shows, reordering is intrin-
sically difficult when the preferred groups are extremely
rare. We could use a non-clustered index to fetch tuples
from the most preferred groups alone (this is a hybrid of
P&S and Index Stride), but this will involve many random
I/Os. Alternatively, we can store tuples from these rare
groups in a separate table, and have a clustered index on the
group-by column on this table — this is similar to a partial
index [Sto89], except that these tuples are now clustered
separately and therefore one avoids multiple random I/Os.
The challenge lies in automatically deciding which values
of which column(s) to treat in this manner, taking into ac-
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Figure 12: Rate of processing with the Rate metric for
P&S, original TPC-D query:

Operation Number of tuples Time Taken
accumulated in range

being panned over
Sort started 500 2.1 secs

User Thinking 5 seconds
Short Jump 1000 25.5 msecs

1500 2.4 secs
User Thinking 10 seconds
Random Jump 2500 263 msecs

5000 21.9 secs
Phase 2 has begun

Short Jump 2500 6.9 msecs
5000 13.5 msecs

Random Jump 2500 139 msecs
5000 201 msecs

Figure 13: Scalable Spreadsheet: Latencies for various
user actions

count the frequency of queries that will use this table, as
well as the cardinality of tuples in the different groups. We
intend to address this in future work.

5.2 Scalable Spreadsheets

In related work [SS], we are building a GUI widget toolkit,
and are using it to construct a spreadsheet that will be as
interactive as a regular spreadsheet, but will scale up to
large data sizes. An integral component of this spread-
sheet is the online reordering library we have implemented,
which provides immediate responses for operations such as
sorting and pivoting. We have completed the reordering
facility for sorting and present results which show that the
system can respond almost instantaneously to operations
such as scrolling and “jumping” while concurrently sorting
the contents of the spreadsheet.

For our experiment, we used a table of 2,500,000 records
of 100 bytes each (250MB total). The sort was issued on
a 4 byte column, and we modeled a uniform distribution
of values for this column in the table. We assume that
we have a pre-computed equidepth histogram on that col-
umn, though it could be computed on the fly if we sample
the data [C 98]. For reorder we chose a chunk size of
50KB in order to amortize the costs of random I/Os to enrich
in Phase 2, and have an I/O buffer of 25MB. As explained
in Section 4.2, we divided the data into the maximum num-
ber of groups possible, which is 25MB 50KB 500 in
this case; correspondingly, we divide the range of the key
values into 500 groups based on the histogram, and use this
partitioning to decide which group any given tuple belongs
to. Therefore, each range has 2500000 500 5000 tuples.
Since our goal is to sort, we reorder using the Strict metric
of Section 3: the preference for different ranges decreases
monotonically with their distances from the range the user
is currently looking at (the exact values of the preferences
assigned do not matter for the Strict metric).

Note that this is an application where the data can be
consumed multiple times since the user may view the
same portion of the spreadsheet many times. Hence the

buffer is really only a cache of what is stored on the side-
disk. Currently we have an additional in-memory display
cache (1.5MB) to store the items that were recently panned
over by the user. If we were to do this in a client-server
setting where the user is seeing a spreadsheet on a client
node and the data is on a separate server, then we believe
that we could use multi-level caching schemes to avoid
repeatedly sending the same data to the client [A 97].

To place the timings in our experiment in perspective,
we sorted a 250MB file with 100 byte records using the
UNIX sort utility. This took 890.4 seconds (we used a
separate disk for the temporary files in order to avoid giving
reorder any unfair advantage). We studied the following
scenario (the timings are summarized in Figure 13): The
user starts off by issuing a command to sort by a field, and
we immediately start displaying the tuples of the topmost
range – within 2.1 seconds, we have output 500 tuples,
which is already enough to fill the screen. The user then
analyzes the data in this range for 5 seconds, after which
he makes a short jump (we model scrolls as short jumps to
adjacent ranges) to the next range. As we see in the table, we
are able to give 1000 tuples of this range almost at once (25
milliseconds), by enrichment from the side-disk – we have
exploited the time the user spent analyzing the previous
range to sort more items and so we can respond quickly.
After this initial spurt of items in the desired range, we have
exhausted all that is available on side-disk, and settle down
to fetch more items at the sequential read bandwidth — the
next 500 tuples in this range take around 2 seconds.

The user looks at this data for 10 seconds and then
makes a random jump to a new location. We see again
that reorder (in 263 milliseconds) immediately provides
2500 items by enrichment before settling down to sequential
read bandwidth (giving 5000 tuples, which is the total size
of that range, takes 21.9 seconds). By this time, reorder
has scanned the entire input and moved into Phase 2. All
subsequent latencies are in milliseconds — a short jump
(scroll) to a nearby range is about 20 times faster than
jumping to a random location because the nearby range has
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a higher preference.

The above scenario clearly illustrates the advantage of
online reordering in a scalable spreadsheet — most opera-
tions have millisecond latencies with reorder, whereas a
blocking sort take 15 minutes!

5.3 Sort of Sort

With the Strict metric, one could view reorder as an
approximate, pipelining sort operator. As sketched in Sec-
tion 1.1, best-effort reordering can be exploited in query
plans involving “interesting orders” used for performance
enhancements.

Although our focus is on user-controlled reordering, we
have performed initial experiments to validate our intu-
itions, comparing the insertion of sort versus reorder oper-
ators into a few query plans in UDO. We consider a key-
foreign key join of two tables R and S, where the foreign
key of S references the key of R. R has 105 rows and S has
106 rows, each of size 200 bytes. S has a clustered index
on the join column, but rows of R are clustered randomly
(the join column values are uniformly distributed). A direct
index nested loops join of R and S took 3209 6 chronons
because it performed several random I/Os. Adding a sort
operator before the join reduced the total time taken for
the query to 958 7 chronons, since the sort batches index
lookups into runs of similar values, resulting in at most one
I/O per leaf page of the index.

We then replaced the sort operator with a reorder
operator, using the Strict metric, with a chunk size of 25KB
(we chose this so as to amortize the cost of a random I/O
over a reasonably large chunk). We used a I/O buffer size
of 2 5MB. This means that the number of groups we could
support was 2 5MB/25KB 100 (recall that we want the
number of groups to be as high as possible so that we can do
a fine granularity reordering). Hence, we divided the range
of join column values into 100 groups for the reordering,
and used a pre-computed equidepth histogram on the join
column values of table R to identify the group to which
each value belongs. The time required for the join with
reorder is 899 5 chronons, which is even better than the
time required for the traditional join by sorting. The 6%
improvement in completion time occurs because we spool
out fewer tuples to disk — the process stage directly gets
12.1% of the tuples from the buffer. We are able to do this
because we only do a fuzzy, approximate reordering. This
sufficesbecausethe only purpose of the sorting is to batch up
tuples of R that match similar rows of S together. However,
the biggest gain by using reorder instead of sort is that
the plan has become non-blocking. This can allow us to
exploit pipelined parallelism (if we have a parallel DBMS)
and also allow interactive estimation techniques such as
online aggregation. If we consider the rate at which output
tuples are delivered, a plain index-nested-loops join delivers
311.6 tuples/chronon, and adding reorder increases the
rate to 1111.7 tuples per chronon.

6 Related Work

There has been some recent work on making data analysis
interactive by providing approximate answers to queries
early on [HH99, GM98]. Reordering complements this
by allowing users to improve the quality of approximation
based on interest.

Algorithmically, our reorder operator is most similar to
the unary sorting and hashing operators in traditional query
processing [Gra93]. However our performance and usabil-
ity goals are quite different, which leads to a different im-
plementation. Logically our operator does not correspond
to any previous work in the relational context, since it is
logically superfluous – ordering is not “supposed” to matter
in a strict relational model.

Our focus on ordering was anticipated by the large body
of work on ranking in Information Retrieval [vR75]. In
more closely related work, there have been a few recent pa-
pers on optimizing “top N” and “bottom N” queries [CK97],
and on “fast-first” query processing [AZ96]. These propose
enhancing SQL with a stopping condition clause which the
optimizer can use to produce optimal plans that process only
those parts of the data that are needed for output. However
in these papers, the user is required to specify a priori what
portions of the data he is interested in, and does not have any
dynamic control over the processing. Our work on spread-
sheets can be viewed as an extension of this, where the user
can dynamically specify what portions of the data interest
him by moving a scrollbar, after seeing partial results.

7 Conclusions & Future Work

Interactive data analysis is an important computing task;
providing interactive performance over large data sets re-
quires algorithms that are different than those developed for
relational query processing. We have described the benefits
of dynamically reordering data at delivery in diverse appli-
cations such as online aggregation, traditional query pro-
cessing, and spreadsheets. A main advantage of reordering
is that the user can dynamically indicate what areas of the
data are interesting and speed up the processing in these
areas at the expense of others. This, when combined with
continual feedback on the result of the processing, allows
the user to interactively control the processing so that he
can extract the desired information faster.

We have developed a framework for deriving the nature
of the desired reordering based on the performance goals of
an application, and have used this to come up with reorder-
ing policies in some typical scenarios. We have designed
and implemented a reordering algorithm called P&S, which
implements these ideas in a responsive and low-overhead
manner. P&S is relatively simple, leveraging the difference
between processing rate and data production. We have
integrated P&S with a commercial DBMS, and are using
it as a core component in the development of a scalable
spreadsheet. For online aggregation, a single join above the
reorder operator is sufficient for good reordering. Our sim-
ulation experiments with spreadsheet scrolling and sorting
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scenarios show that we can provide almost immediate —
on the order of milliseconds — responses to sort operators
that would otherwise take several minutes, by preferentially
fetching items in the range under the scrollbar. Inserting
reorder operators into standard query plans in place of sort
operators is promising; initial results show that we are able
to convert blocking plans into pipelines while actually re-
ducing the completion time.

This paper opens up a number of interesting avenues for
further work that we intend to explore.

Other feedback functions appear to be appropriate for
applications that process real-time data such as stock quotes,
since recent items are more important than earlier ones, and
this must considered when calculating delivery priorities.

We have looked at reordering data delivery to meet the
dynamic preferences of a single user. When online reorder-
ing is used in applications such as broadcast disks [A 97],
we need to consider the aggregate preferences from several
users, and the reordering policy needs to be chosen suitably.

In graphical data visualization ([A 96]), large volumes
of information are presented to the user as a picture or map
over which he can pan and zoom. Fetching this data from
the disk and rendering it onto the screen typically takes a
long time. It makes sense to fetch more data points from the
region the user is currently panning over and a small region
around it, so that these portions can be rendered in greater
detail / higher resolution. Here the user interest is inferred
based on mouse position, and this is a two-dimensional
version of the spreadsheet problem.

A pipelining best-effort reorder operator appears to be
substitutable for regular sort operators at other places in
query plans. For instance, it can replace a sort operator
that is designed to reuse memoized values of a correlated
subquery or expensive user-defined function [HN96, S 96].
Here, online reordering amounts to computing the set of
variable bindings on the fly, possibly with some duplication.
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