
Extending Practical Pre-Aggregation
in On-Line Analytical Processing

Torben Bach Pedersen
Kommunedata

DK–8200Århus N, Denmark
tbp@kmd.dk

Christian S. Jensen Curtis E. Dyreson
Department of Computer Science

Aalborg University, DK–9220 Aalborg Øst, Denmark
fcsj,curtis g@cs.auc.dk

Abstract

On-Line Analytical Processing (OLAP) based on
a dimensional view of data is being used in-
creasingly for the purpose of analyzing very large
amounts of data. To improve query performance,
modern OLAP systems use a technique known
as practical pre-aggregation, whereselectcom-
binations of aggregate queries are materialized
and re-used to compute other aggregates; full pre-
aggregation, where all combinations of aggregates
are materialized, is infeasible. However, this re-
use of aggregates is contingent on the dimension
hierarchies and the relationships between facts
and dimensions satisfying stringent constraints,
which severely limits the scope of practical pre-
aggregation. This paper significantly extends the
scope of practical pre-aggregation to cover a much
wider range of realistic situations. Specifically, al-
gorithms are given that transform “irregular” di-
mension hierarchies and fact-dimension relation-
ships, which often occur in real-world OLAP ap-
plications, into well-behaved structures that, when
used by existing OLAP systems, enable practical
pre-aggregation. The algorithms have low compu-
tational complexity and may be applied incremen-
tally to reduce the cost of updating OLAP struc-
tures.

1 Introduction
On-Line Analytical Processing (OLAP) systems aim to
ease the process of extracting useful information from large

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

amounts of detailed transactional data and have gained
widespread acceptance in traditional business applications
as well as in new applications such as health care. These
systems generally offer a dimensional view of data, in
which measured values, termed facts, are characterized by
descriptive values, drawn from a number of dimensions;
and the values of a dimension are typically organized in
a containment-type hierarchy. A prototypical query applies
an aggregate function, such as average, to the facts charac-
terized by specific values from the dimensions.

Fast response times are required from these systems,
even for queries that aggregate large amounts of data. The
perhaps most central technique used for meeting this re-
quirement is termedpre-aggregation, where the results of
aggregate queries are pre-computed and stored, i.e., ma-
terialized, for later use during query processing. Pre-
aggregation has attracted substantial attention in the re-
search community, where it has been investigated how
to optimally use pre-aggregated data for query optimiza-
tion [6, 3] and how to maintain the pre-aggregated data
when base data is updated [18, 23]. Further, the latest
versions of commercial RDBMS products offer both query
optimization based on pre-computed aggregates and auto-
matic maintenance of the stored aggregates when base data
is updated [28].

The fastest response times may be achieved when ma-
terializing aggregate results corresponding to all combina-
tions of dimension values across all dimensions, termed
full (or eager) pre-aggregation. However, the required stor-
age space grows rapidly, to quickly become prohibitive,
as the complexity of the application increases. This phe-
nomenon is calleddata explosion[25, 20] and occurs be-
cause the number of possible aggregation combinations
grows rapidly when the number of dimensions increase,
while the sparseness of the multidimensional space de-
creases in higher dimension levels, meaning that aggregates
at higher levels take up nearly as much space as lower-level
aggregates. In some commercial applications, full pre-
aggregation takes up as much as200 times the space of the
raw data [20]. Another problem with full pre-aggregation is
that it takes too long to update the materialized aggregates

663

when base data changes.
With the goal of avoiding data explosion, research has

focused on how to select the best subset of aggregation
levels given space constraints [10, 8, 30, 1, 26] or main-
tenance time constraints [9], or the best combination of ag-
gregate data and indices [7]. This approach is commonly
referred to aspractical (or partial or semi-eager [4, 10, 27])
pre-aggregation. Commercial OLAP systems now also ex-
ist that employ practical pre-aggregation, e.g., Informix
MetaCube [12] and Microsoft Decision Support Services
(Plato) [17].

The premise underlying the applicability of practical
pre-aggregation is that lower-level aggregates can bere-
usedto compute higher-level aggregates, known as summa-
rizability [15]. Summarizability occurs when the mappings
in the dimension hierarchies areonto (all paths from the
root to a leaf in the hierarchy have equal lengths),covering
(only immediate parent and child values can be related),
andstrict (each child in a hierarchy has only one parent);
and when also the relationships between facts and dimen-
sions are many-to-one and facts are always mapped to the
lowest levels in the dimensions [15]. However, the data en-
countered in many real-world applications fail to comply
with this rigid regime. This motivates the search for tech-
niques that allow practical pre-aggregation to be used for a
wider range of applications, the focus of this paper.

Specifically, this papers leverages research such as that
cited above. It does so by showing how to transform dimen-
sion hierarchies to obtain summarizability, and by showing
how to integrate the transformed hierarchies into current
systems, transparently to the user, so that standard OLAP
technology is re-used. Specifically, algorithms are pre-
sented that automatically transform dimension hierarchies
to achieve summarizability for hierarchies that are non-
onto, non-covering, and non-strict. The algorithms have
low computational complexity and are thus applicable to
even very large databases. The algorithms can also be used
to contend with non-summarizable relationships between
facts and dimensions and may be modified to accommodate
incremental computation, thus minimizing the maintenance
cost associated with base-data updates [22].

To our knowledge, this work is the first to present algo-
rithms to automatically achieve summarizability for non-
covering and non-onto hierarchies. The research reported
here is also the first to demonstrate techniques and algo-
rithms for achieving summarizability in non-strict hierar-
chies. The integration of the techniques into current sys-
tems, transparently to the user, we believe is a novel fea-
ture. The only past research on the topic has been on how
to manually, and not transparently to the user, achieve sum-
marizability for non-covering hierarchies [24].

The next section presents a real-world clinical case study
that exemplifies the non-summarizable properties of real-
world applications. Section 3 proceeds to define the aspects
of a multidimensional data model necessary for describing
the new techniques, and defines also important properties
related to summarizability. Section 4 presents algorithms

that transform dimension hierarchies to achieve summariz-
ability and discusses how the algorithms may be applied to
non-summarizable relationships between facts and dimen-
sions. Section 5 demonstrates how the techniques may be
integrated into current systems, and Section 6 summarizes
and points to topics for future research.

2 Motivation—A Case Study
The case study concerns patients in a hospital, their asso-
ciated diagnoses, and their places of residence. The data
analysis goal is to investigate whether some diagnoses oc-
cur more often in some areas than in others, in which case
environmental or lifestyle factors might be contributing to
the disease pattern. An ER diagram illustrating the under-
lying data is seen in Figure 1.

Diagnosis
Diagnosis

Family
Belongs

to(1,n)

* Code
* Text

Patient

* Name

(0,n)

Grouping
Diagnosis

Group(1,n)(1,n)

Has

Low-level
Diagnosis

Address

Lives
at

(0,1)

(0,n)

City County
City

located
in

Located
in city

* Address * Name * Name

(0,1) (1,1)(0,n) (1,n)

Diagnosis

D

(0,n)

Located in
rural area

(0,n)
(0,1)

* Type * Type

(1,n)

Figure 1: ER Schema of Case Study

The most important entities are thepatients, for which
we record the name. We always want to count the num-
ber of patients, grouped by some properties of the patients.
Thus, in multidimensional terms, the patients are thefacts,
and the other, describing, entities constitute thedimensions.

Each patient has a number ofdiagnoses, yielding to a
many-to-manyrelationship between facts and the diagnosis
dimension. When registering diagnoses of patients, physi-
cians use different levels of granularity, ranging from very
precise diagnoses, e.g., “Insulin dependent diabetes during
pregnancy,” to more imprecise diagnoses, e.g., “Diabetes,”
which cover wider ranges of patient conditions. To model
this, the relationship from Patient to diagnoses is to the su-
pertype “Diagnosis,” which then has three subtypes, cor-
responding to different levels of granularity, thelow-level
diagnosis, the diagnosis family, and thediagnosis group.
Examples of these are “Insulin dependent diabetes during
pregnancy,” “Insulin dependent diabetes,” and “Diabetes,”
respectively. The higher-level diagnoses are both (impre-
cise) diagnoses in their own right, but also serve as groups
of lower-level diagnoses, i.e., a diagnosis family consists
of 5–20 related low-level diagnoses and a diagnosis group
consists of 5–20 related diagnosis families.

Each diagnosis has an alphanumeric code and a descrip-
tive text, which are specified by some standard, here the
World Health Organization’s International Classification of

664

Diseases (ICD-10) [29], or by the physicians themselves.
In the hierarchy determined by the WHO, one lower-level
item belongs to exactly one higher-level item, leading to
a strict, coveringhierarchy. In the user-defined hierarchy,
one lower-level item may belong to zero or more higher-
level items, e.g., the family “Diabetes during pregnancy”
may belong to both the “Diabetes” and “Other pregnancy
related diseases” groups. Thus, the user-defined hierarchy
is non-strictandnon-covering.

We also record the addresses of the patients. If the ad-
dress is located in a city, we record thecity; otherwise, if the
address is in a rural area, we record thecountyin which the
address is located. A city is located in exactly one county.
As not all addresses are in cities, we cannot find all ad-
dresses in a county by going through the “City located in”
relationship. Thus, the mapping from addresses to cities is
non-coveringw.r.t. addresses. For cities and counties, we
record the name. Not all counties have cities in them, so
the mapping from cities to counties isinto rather thanonto.

In order to exemplify the data, we assume a standard
mapping of the ER diagram to relational tables and the use
of surrogate keys, namedID, with globally unique values.
The three subtypes of the Diagnosis type are mapped to a
common Diagnosis table, and because of this, the “Belongs
to” and “Grouping” relationships are mapped to a common
“Grouping” table. The resulting tables with sample data are
shown in Table 1 and will be used in examples throughout
the paper.

If we apply pre-aggregation to the data from the case
study, several problems occur. For example, if the counts
of patients by City are pre-computed and we use these for
computing the numbers of patients by county, an incorrect
result will occur. In the data, the addresses “123 Rural
Road” and “1 Sandy Dunes” (one of them is the address
of a patient) are not in any city, making the mapping from
City to County notcoveringw.r.t. addresses.

Next, if the counts of patients by Low-Level Diagnosis
are pre-computed and we use these for computing the to-
tal count of patients, an incorrect result again ensues. First,
patients only with lung cancer are not counted, as lung can-
cer is not present at the level of Low-Level Diagnosis; the
mapping from Low-Level Diagnosis to Diagnosis Family
is into. Second, patients such as “Jim Doe” only have
higher-level diagnoses and will no be counted; the fact-
to-dimension mapping hasvarying granularity. Third, pa-
tients such as “Jane Doe” have several diagnoses and will
be counted several times; the relationship between facts and
dimensions ismany-to-many. Fourth, Low-Level diagnoses
such as “Insulin dependent diabetes during pregnancy” are
part of several diagnosis families, which may also lead
to “double” counting when computing higher-level counts;
the dimension hierarchy isnon-strict.

These problems yield “non-summarizable” dimension
hierarchies that severely limit the applicability of practical
pre-aggregation, leaving only full pre-aggregation, which
requires huge amounts of storage, or no pre-aggregation,
which results in long response times for queries.

ID Name
1 John Doe
2 Jane Doe
3 Jim Doe

Patient

PatientID DiagID Type
1 9 Primary
2 5 Secondary
2 9 Primary
3 11 Primary

Has

PatientID AddressID
1 50
2 51
3 52

LivesAt

ID Address
50 21 Central Street
51 34 Main Street
52 123 Rural Road
53 1 Sandy Dunes

Address

ID Code Text Type
4 O24 Diabetes during pregnancy DF
5 O24.0 Ins. dep. diab. during pregn. LLD
6 O24.1 Non ins. dep. diab. during pregn. LLD
9 E10 Insulin dependent diabetes DF
10 E11 Non insulin dependent diabetes DF
11 E1 Diabetes DG
12 O2 Other pregnancy related diseasesDG
13 A1 Cancer DG
14 A11 Lung cancer DF

Diagnosis

ParentID ChildID Type
4 5 WHO
4 6 WHO
9 5 User
10 6 User
11 9 WHO
11 10 WHO
12 4 WHO
13 14 WHO

Grouping

CityID CountyID
20 30
21 31
CityLocatedIn

ID Name
20 Sydney
21 Melbourne

City

AddressID CityID
50 20
51 21
LocatedInCity

ID Name
30 Sydney
31 Melbourne
32 Outback

County

ID Name
52 31
53 32
LocatedInRuralArea

Table 1: Tables for the Case Study
The properties described above are found in many other

real-world applications. Many-to-many relationships be-
tween facts and dimensions occur between bank customers
and accounts, between companies and Standard Industry
Classifications (SICs), and between students and depart-
ments [14, 15]. Non-strict dimension hierarchies occur
from cities to states in a Geography dimension [24] and
from weeks to months in a Time dimension. In addition,
hierarchies where the change over time is captured are gen-
erally non-strict. The mapping from holidays to weeks as
well as organization hierarchies of varying depth [11] offer
examples of “into” mappings. Non-covering relationships
exist for days-holidays-weeks and for counties-cities-states,
as well as in organization hierarchies [11].

Even though many real-world cases possess the proper-
ties described above, current techniques for practical pre-
aggregation require that facts are in a many-to-one relation-
ships to dimensions and that all hierarchies are strict, onto,

665

and covering.

3 Data Model Context and Concepts
This section describes the aspects of a multidimensional
data model that extend practical pre-aggregation. The full
model is described elsewhere [21]. Next, the data model
context is exploited for defining properties of hierarchies
relevant to the techniques.

The particular data model has been chosen over other
multidimensional data models because it quite naturally
captures the data described in the case study and because
it includes explicit concepts of dimensions and dimension
hierarchies, which is very important for clearly presenting
the techniques. However, the techniques are also applicable
to other multidimensional or statistical data models, as will
be discussed in Section 5.

3.1 A Concrete Data Model Context

For each part of the model, we define theintensionand the
extension, and we give an illustrating example.

An n-dimensional fact schemais a two-tupleS =
(F ;D), whereF is afact typeandD = fTi; i = 1; ::; ng is
its correspondingdimension types.

Example 1 In the case study from Section 2,Patientis the
fact type, andDiagnosis, Residence, andNameare the di-
mension types. The intuition is thateverythingthat charac-
terizes the fact type is considered to bedimensional.

A dimension typeT is a four-tuple(C;�T ;>T ;?T),
whereC = fCj ; j = 1; ::; kg are thecategory typesof T ,
�T is a partial order on theCj ’s, with>T 2 C and?T 2 C

being the top and bottom element of the ordering, respec-
tively. Thus, the category types form a lattice. The intuition
is that one category type is “greater than” another category
type if members of the former’s extension logically contain
members of the latter’s extension, i.e., they have a larger
value size. The top element of the ordering corresponds
to the largest possible value size, that is, there is only one
value in it’s extension, logically containing all other values.

We say thatCj is a category type ofT , writtenCj 2 T ,
if Cj 2 C.

Example 2 Low-level diagnoses are contained in diagno-
sis families, which are contained in diagnosis groups. Thus,
theDiagnosisdimension type has the following order on its
category types:?Diagnosis = Low-level Diagnosis< Di-
agnosis Family< Diagnosis Group< >Diagnosis . Other
examples of category types areAddress, City, andCounty.
Figure 2, to be discussed in detail later, illustrates the di-
mension types of the case study.

A categoryCj of typeCj is a set ofdimension valuese.
A dimensionD of typeT = (fCjg;�T ;>T ;?T) is a two-
tupleD = (C;�), whereC = fCjg is a set of categories
Cj such thatType(Cj) = Cj and� is a partial order on
[jCj , the union of all dimension values in the individual
categories. We assume a functionPred : C 7! 2C that
gives the set of immediate predecessors of a categoryCj .

Similarly, we a assume a functionDesc : C 7! 2C that
gives the set of immediate descendants of a categoryCj .
For bothPred andDesc, we “count” from the category>T

(of type>T), so that category>T is the ultimate predeces-
sor and category?T (of type?T) is the ultimate descen-
dant.

The definition of the partial order is: given two values
e1; e2 thene1 � e2 if e1 is logically contained ine2. We
say thatCj is a category ofD, writtenCj 2 D, if Cj 2 C.
For a dimension valuee, we say thate is a dimensional
value ofD, writtene 2 D, if e 2 [jCj .

The category of type?T in dimension of typeT con-
tains the values with the smallest value size. The category
with the largest value size, of type>T , contains exactly
one value, denoted>. For all valuese of the dimensionD,
e � >. Value> is similar to theALL construct of Gray et
al. [5]. When clear from the context, we refer to a category
of type>T simply as a> category, not to be confused with
the> dimension value.

Example 3 In our Diagnosisdimension we have the fol-
lowing categories, named by their type. The numbers
in parentheses are the ID values from the Diagnosis ta-
ble in Table 1. Low-level Diagnosis= f“Insulin depen-
dent diabetes during pregnancy” (5), ”Non insulin de-
pendent diabetes during pregnancy” (6)g, Diagnosis Fam-
ily = f“Diabetes during pregnancy” (4), “Insulin depen-
dent diabetes” (9), ”Non insulin dependent diabetes” (10),
“Lung cancer” (14)g, Diagnosis Group= f“Diabetes” (11),
“Other pregnancy related diseases” (12), “Cancer” (13)g,
and>Diagnosis = f>g. We have thatPred(Low-level Di-
agnosis) = fDiagnosis Familyg. The partial order� is
obtained by combining the WHO and user-defined hierar-
chies, as given by the Grouping table in Table 1. Addition-
ally, the top value> is greater than, i.e., logically contains,
all the other diagnosis values.

Let F be a set of facts, andD = (C = fCjg;�) a
dimension. Afact-dimension relationbetweenF andD
is a setR = f(f; e)g, wheref 2 F and e 2 [jCj .
ThusR links facts to dimension values. We say that fact
f is characterized bydimension valuee, written f ; e,
if 9e1 2 D ((f; e1) 2 R ^ e1 � e). We require that
8f 2 F (9e 2 [jCj ((f; e) 2 R)); thus, all fact maps
to at least one dimension value in every dimension. The
> value is used to represent an unknown or missing value,
as> logically contains all dimension values, and so a fact
f is mapped to> if it cannot be characterized within the
particular dimension.

Example 4 The fact-dimension relationR links patient
facts to diagnosis dimension values as given by the Has ta-
ble from the case study, so thatR = f(“John Doe” (1), “In-
sulin dependent diabetes” (9)), (“Jane Doe” (2), “Insulin
dependent diabetes during pregnancy” (5)), (“Jane Doe”
(2), “Insulin dependent diabetes” (9)), (“Jim Doe” (3), “Di-
abetes” (11))g. Note that facts may be related to values in
higher-level categories. We do not require thate belongs to
?Diagnosis . For example, the fact “John Doe” (1) is related

666

to the diagnosis “Insulin dependent diabetes” (5), which be-
longs to theDiagnosis Familycategory. This feature will be
used later to explicitly capture the different granularities in
the data. If no diagnosis was known for patient “John Doe”
(1), we would have added the pair (“John Doe” (1),>) toR.

A multidimensional object(MO) is a four-tupleM =
(S; F;D;R), whereS = (F ;D = fTig) is the fact
schema,F = ffg is a set offactsf whereType(f) = F ,
D = fDi; i = 1; ::; ng is a set ofdimensionswhere
Type(Di) = Ti , andR = fRi; i = 1; ::; ng is a set of
fact-dimension relations, such that8i((f; e) 2 Ri) f 2
F ^ 9Cj 2 Di(e 2 Cj)).

Example 5 For the case study, we get a three-dimensional
MO M = (S; F;D;R), whereS = (Patient, fDiagnosis,
Name, Residenceg) andF = f“John Doe” (1), “Jane Doe”
(2), “Jim Doe” (3)g. The definition of the diagnosis di-
mension and its corresponding fact-dimension relation was
given in the previous examples. The Residence dimension
has the categoriesAddress(= ?Residence), City, County,
and>Residence. The values of the categories are given
by the corresponding tables in Table 1. The partial order
is given by the relationship tables. Additionally, the only
value in the>Residence category is>, which logically con-
tains all the other values in the Residence dimension. The
Name dimension is simple, i.e., it just has aNamecategory
(= ?Name) and a> category. We will refer to this MO as
the “Patient” MO. A graphical illustration of its schema is
seen in Figure 2. Because some addresses map directly to
counties, County is an immediate predecessor of Address.

Low-level Diagnosis = ⊥

Diagnosis Family

Diagnosis Group

⊥

Diagnosis
Dimension

Residence
Dimension

Address = ⊥

City

County

⊥

Patient

Name = ⊥

⊥

Name
Dimension

Name

NameResidence

Residence

Diagnosis

Diagnosis

Figure 2: Schema of the Case Study

The facts in an MO are objects withvalue-independent
identity. We can test facts for equality, but do not assume an
ordering on the facts. The combination of dimension values
that characterize the set of facts of an MO donotconstitute
a “key” for the fact set. Thus, several facts may be charac-
terized by the same combination of dimension values. But,
the facts of an MOis a set, and an MO does not have dupli-
catefacts.

3.2 Hierarchy Properties

In this section important properties of MOs are defined,
which will be used in the following sections to state pre-
cisely what problems the proposed algorithms solve. The

first important concept issummarizability, which intuitively
means that higher-level aggregates may be obtained directly
from lower-level aggregates.

Definition 1 Given a typeT , a setS = fSj ; j = 1; ::; kg,
whereSj 2 2T , and a functiong : 2T 7! T , we say thatg
is summarizablefor S if g(ffg(S1); ::; g(Sk)gg) = g(S1 [
::[Sk). The argument on the left-hand side of the equation
is a multiset, i.e., the same value may occur multiple times.

Summarizability is important as it is a condition for the
flexible use of pre-computed aggregates. Without summa-
rizability, lower-level results generally cannot be directly
combined into higher-level results. This means that we can-
not choose to pre-compute only a relevant selection of the
possible aggregates and then use these to (efficiently) com-
pute higher-level aggregates on-the-fly. Instead, we have to
pre-compute the all the aggregate results of queries that we
need fast answers to, while other aggregates must be com-
puted from the base data. Space and time constraints can be
prohibitive for pre-computing all results, while computing
aggregates from base data is often inefficient.

It has been shown that summarizability is equivalent to
the aggregate function (g) beingdistributive, all paths be-
ing strict, and the mappings between dimension values in
the hierarchies beingcoveringandonto [15]. These con-
cepts are formally defined below. The definitions assume a
dimensionD = (C;�) and an MOM = (S; F;D;R).

Definition 2 Given two categories,C1; C2 such thatC2 2

Pred(C1), we say that the mapping fromC1 to C2 is onto
iff 8e2 2 C2(9e1 2 C1 (e1 � e2)). Otherwise, it isinto.
If all mappings in a dimension are onto, we say that the
dimension hierarchy isonto.

Mappings that are into typically occur when the dimen-
sion hierarchy has varying height. In the case study, there
is no low-level cancer diagnosis, meaning that some parts
of the hierarchy have height2, while most have height3.
It is thus not possible to use aggregates at the Low-level
Diagnosis level for computing aggregates at the two higher
levels. Mappings that are into also occur often in organiza-
tion hierarchies.

Definition 3 Given three categories,C1, C2, andC3 such
that Type(C1) < Type(C2) < Type(C3), we say that
the mapping fromC2 to C3 is covering with respect toC1

iff 8e1 2 C1 (8e3 2 C3 (e1 � e3) 9e2 2 C2 (e1 �
e2 ^ e2 � e3))). Otherwise, it isnon-covering with respect
toC1. If all mappings in a dimension are covering w.r.t. any
category, we say that the dimension hierarchy iscovering.

Non-covering mappings occur when some of the links
between dimension values skip one or more levels and map
directly to a value located higher up in the hierarchy. In
the case study, this happens for the “1 Sandy Dunes” ad-
dress, which maps directly to “Outback County” (there are
no cities in Outback County). Thus, we cannot use ag-
gregates at the City level for computing aggregates at the
County level.

667

Definition 4 Given an MOM = (S; F;D;R), and two
categoriesC1 andC2 that belong to the same dimension
Di 2 D such thatType(C1) < Type(C2), we say that the
mapping fromC1 to C2 is covering with respect toF , the
set of facts, iff8f 2 F (8e2 2 C2 (f ;i e2) 9e1 2
C1 (f ;i e1 ^ e1 �i e2))).

This case is similar to the one above, but now it is the
mappings between facts and dimension values that may
skip one or more levels and map facts directly to dimen-
sion values in categories above the bottom level. In the
case study, the patients can map to diagnoses anywhere in
the Diagnosis dimension, not just to Low-level Diagnoses.
This means that we cannot use aggregates at the Low-level
Diagnosis Level for computing aggregates higher up in the
hierarchy.

Definition 5 Given two categories,C1 andC2 such that
C2 2 Pred(C1), we say that the mapping fromC1 toC2 is
strict iff 8e1 2 C1 (8e2; e3 2 C2 (e1 � e2 ^ e1 � e3)
e2 = e3)). Otherwise, it isnon-strict. The hierarchy in
dimensionD is strict if all mappings in it are strict; oth-
erwise, it isnon-strict. Given an MOM = (S; F;D;R)
and a categoryCj in some dimensionDi 2 D, we say that
there is astrict pathfrom the set of factsF to Cj iff 8f 2
F (f ;i e1 ^ f ;i e2 ^ e1 2 Cj ^ e2 2 Cj) e1 = e2).
(Note that the paths to the>T categories are always strict.)

Non-strict hierarchies occur when a dimension value has
multiple parents. This occurs in the Diagnosis dimension in
the case study where the “Insulin dependent diabetes during
pregnancy” low-level diagnosis is part of both the “Insulin
Dependent Diabetes” and the “Diabetes during pregnancy”
diagnosis families, which in turn both are part of the “Di-
abetes” diagnosis group. This means that we cannot use
aggregates at the Diagnosis Family level to compute ag-
gregates at the Diagnosis Group level, since data for “In-
sulin dependent diabetes during pregnancy” would then be
counted twice.

Definition 6 If the dimension hierarchy for a dimension
D is onto, covering, andstrict, we say thatD is normal-
ized. Otherwise, it isun-normalized. For an MOM =
(S; D; F;R), if all dimensionsDi 2 D are normalized and
8Ri 2 R ((f; e) 2 Ri) e 2 ?D) (, i.e., all facts map to
dimension values in the bottom category), we say thatM is
normalized. Otherwise, it isun-normalized.

For normalized hierarchies and MOs, all mappings are
summarizable, meaning that we can pre-aggregate values
at any combination of dimension levels and safely re-use
the pre-aggregated values to compute higher-level aggre-
gate results. Thus, we want to normalize the dimension
hierarchies and MOs for which we want to apply practical
pre-aggregation.

4 Transformation Techniques
This section describes how dimensions can be transformed
to achieve summarizability. Transforming dimensions on
their own, separately from the facts, results in well-behaved

dimensions that can be applied in a number of different sys-
tems or sold to third-party users. In addition, it is discussed
how to apply the presented algorithms to non-summarizable
fact-dimension relations. The transformation of the dimen-
sion hierarchies is a three-step operation. First, all map-
pings are transformed to becovering, by introducing ex-
tra “intermediate” values. Second, all mappings are trans-
formed to beonto, by introducing “placeholder” values at
lower levels for values without any children. Third, map-
pings are madestrict, by “fusing” values together. The
three steps are treated in separate sections. None of the
algorithms introduce any non-summarizable properties, so
applying each once is sufficient.

In general, the algorithms take as input a set of tables
RC1;C2

that specifies the mapping from dimension values
in categoryC1 to values in categoryC2. The input needs
not contain all pairs of ancestors and descendants—only
direct parent-child relationships are required. If there are
non-covering mappings in the hierarchy, we have categories
C;P;H such thatfP;Hg � Pred(C) andType(P) <
Type(H). In this case, the input must also containRP;H

tables that mapP values toH values.

4.1 Non-Covering Hierarchies

The first algorithm renders all mappings in a dimension hi-
erarchy covering w.r.t. any category. When a dimension
value is mappeddirectly to another value in a category
higher than the one immediately above it in the hierarchy,
a new intermediate value is inserted into the category im-
mediately above, and the two original dimension values are
linked to this new value, rather than to each other.

Example 6 In the hierarchy for the Residence dimension,
two links go from Address directly to County. The address
“123 Rural Road” (52) is in “Melbourne County” (31), but
not in a city, and the address “1 Sandy Dunes” (53) is in
“Outback County” (32), which doesnot have any cities at
all. The algorithm inserts two new dimension values in the
City category,C31 andC32, which represent Melbourne
and Outback county, respectively, and links them to their re-
spective counties. The addresses “123 Rural Road” and “1
Sandy Dunes” are then linked toC31andC32, respectively.
This occurs in the first call of procedure MakeCovering (on
the Address category; the procedure is given below). When
MakeCovering is called recursively on the City, County,
and> categories, nothing happens, as all mappings are al-
ready covering. The transformation is illustrated graphi-
cally in Figure 3. The dotted lines show the “problematic”
links, and the bold-face values and thick lines show the new
dimension values and links.

In the algorithm,C is a child category,P is a parent
category,H is a “higher” category,L are the non-covering
links from C to H , andN are the “higher” dimension val-
ues inL. The1 operator denotes natural join. The al-
gorithm works as follows. Given the argument categoryC
(initially the bottom category) in line 1, the algorithms goes
through allC ’s parent categoriesP (line 2). For each par-
ent categoryP , it looks for predecessor categoriesH of C

668

⊥

30 3231

20 21

50 51 52 53

⊥

30 3231

20 21

50 51 52 53

C31 C32

Figure 3: Transformations by MakeCovering

that are “higher” in the hierarchy thanP (line 4). If such an
H exists, there might be links in the mapping fromC toH
that are not available by going throughP . Line 6 finds these
“non-covered” links,L, in the mapping fromC to H by
“subtracting” the links thatare available by going through
P from all the links in the mapping fromC to H . Line 7
usesL to find the dimension valuesN in H that participate
in the “non-covered” mappings. For each value inN , line 8
inserts a corresponding marked value intoP ; these marked
values represent theN values inP . The marked values in
P are then linked to the original values inH (line 9) and C
(line 10). Line 12 contains a recursive call to the algorithm
onP , thus fixing mappings higher up in the hierarchy. The
algorithm terminates when it reaches the> category, which
has no predecessors.

(1) procedureMakeCovering(C)
(2) for eachP 2 Pred(C) do
(3) begin
(4) for eachH 2 Pred(C)

whereType(H) > Type(P) do
(5) begin
(6) L RC;H n�C;H(RC;P 1 RP;H)
(7) N �H(L)
(8) P P [fMark (h) j h 2 N g
(9) RP;H RP;H [f(Mark (h); h) j h 2 N g
(10) RC;P RC;P [f(c;Mark (h)) j (c; h) 2 Lg
(11) end
(12) MakeCovering(P)
(13) end
(14)end

All steps in the algorithm are expressed using standard
relational algebra operators. Thegeneralworst-case com-
plexity of join isO(n2), wheren is the size of the input.
However, because the input to the algorithm are hierarchy
definitions, the complexity of the join in the algorithm will
only beO(n logn). Thus, all the operators used can be
evaluated in timeO(n log n), wheren is the size of the in-
put. TheMark operation can be performed inO(1) time.
The inner loop of the algorithm is evaluated at most once
for each link between categories, i.e., at mostk2=2 times,
wherek is the number af categories (if all categories are
directly linked to all others). Thus, the overall big-O com-
plexity of the algorithm isO(k2n logn), wherek is the
number of categories andn is the size of the largest par-
ticipatingRC1;C2

relation. The worst-case complexity will

not apply very often; in most cases, the inner loop will only
be evaluated at mostk times.

The algorithm inserts new values into theP category to
ensure that the mappings fromP to higher categories are
summarizable, i.e., that pre-aggregated results forP can be
directly combined into higher-level aggregate results. The
new values inP mean that the cost of materializing aggre-
gate results forP is higher for the transformed hierarchy
than for the original. However, if the hierarchy was not
transformed to achieve summarizability, we would have to
materialize aggregates forG, and perhaps also for higher
level categories. At most one new value is inserted intoP
for every value inG, meaning that the extra cost of mate-
rializing results forP is never greater than the cost of the
(otherwise necessary) materialization of results forG. This
is a very unlikely worst-case scenario—in the most com-
mon cases, the extra cost forP will be much lower than
the the cost of materializing results forG, and the savings
will be even greater because materialization of results for
higher-level categories may also be avoided.

The correctness argument for the algorithm has two as-
pects. First, the mappings in the hierarchy should becov-
ering upon termination. Second, the algorithm should only
make transformations that are semantically correct, i.e., we
should get the same results when computing results with
the new hierarchy as with the old. The correctness follows
from Theorem 1 and 2, below. As new values are inserted
in theP category, we will get aggregate values for both the
new and the original values when “grouping” byP . Re-
sults for the original values will be the same as before, so
the original result set is asubsetof the result set obtained
with the transformed hierarchy.

Theorem 1 Algorithm MakeCovering terminates and the
hierarchy for the resulting dimensionD0 is covering.

Proof: By induction in the height of the lattice [22].

Theorem 2 Given dimensionsD andD0 such thatD0 is the
result of running MakeCovering onD, an aggregate result
obtained usingD is a subset of the result obtained using
D0.

Proof: Follows easily from Lemma 1 [22].

Lemma 1 For the dimensionD0 = (C 0;�0) resulting
from applying algorithm MakeCovering to dimensionD =
(C;�), the following holds:8e1; e2 2 D (e1 �

0 e2 ,
e1 � e2) (there is a path between any two original dimen-
sion values in the new dimension hierarchy iff there was a
path between them in the original hierarchy).

Proof: By induction in the height of the lattice [22].

We see that the original values in the hierarchy are still
linked to exactly the same original values as before, as
stated by Lemma 1, although new values might have been
inserted in-between the original values. Thus, when eval-
uating a query using the transformed hierarchy, the results
for the original values will be the same as when using the
original hierarchy.

669

Assuming only the original result set is desired, results
for the new values must be excluded, which is easy to
accomplish. The new, “internal” values are marked with
“mark = internal”, whereas the original values have “mark
= original”. In order to exclude the new, internal values
from the result set, the equivalent of an SQL HAVING
clause condition of “mark= original” is introduced into
the original query.

4.2 Non-Onto Hierarchies

The second algorithm renders all mappings in hierarchies
onto, i.e., all dimension values in non-bottom categories
have children. This is ensured by inserting placeholder val-
ues in lower categories to represent the childless values.
These new values are marked with the original values, mak-
ing it possible to map facts to the new placeholder values
instead of to the original values. This makes it possible to
only map facts to the bottom category.

Example 7 In the Diagnosis dimension, the “Lung cancer”
diagnosis family (ID = 14) has no children. When the al-
gorithm (given shortly) reaches the Diagnosis Family cate-
gory, it inserts a placeholder value (L14) into the Low-level
Diagnosis category, representing the “Lung cancer” diag-
nosis, and links it to the original value. Facts mapped to
the “Lung cancer” value may then instead be mapped to the
new placeholder value. Using this technique we can ensure
that facts are mapped only to the Low-level Diagnosis Cate-
gory. A graphical illustration of the transformation is given
in Figure 4. The bold-faced valueL14 is the new value in-
serted, and the thick line between 14 andL14 is the new
link inserted.

12 11

4 9 10

5 6

⊥

13

14

12 11

4 9 10

5 6

⊥

13

14

L14

Figure 4: Transformations by MakeOnto

In the algorithm that follows,P is aparentcategory,C
is achild category, andN holds the parent values withno
children. The algorithm works as follows. Given a cate-
gory P (initially the > category) in line 1, the algorithm
goes through all categoriesC that are (immediate) descen-
dants ofP (line 2). For eachC, line 4 finds the valuesN
in P that havenochildren inC, by “subtracting” the values
with children inC from the values inP . For each “child-
less” value inN , lines 5 and 6, respectively, insert intoC a
placeholder value marked with the parent value, and links
the new value to the original. MakeOnto is then called re-
cursively onC (line 7). The algorithms terminates when it
reaches the? category, which has no descendants.

(1) procedureMakeOnto(P)
(2) for eachC 2 Desc(P) do
(3) begin
(4) N P n�P (RC;P)
(5) C C [fMark(p) j p 2 N g
(6) RC;P RC;P [f(Mark(p); p) j p 2 N g
(7) MakeOnto(C)
(8) end
(9) end

Following the reasoning in Section 4.1, we find that the
overall big-O complexity isO(k2n logn), wherek is the
number of categories andn is the size of the largest partic-
ipatingRC1;C2

relation. However, the complexity will be
O(kn logn) for the most common cases.

The MakeOnto algorithm inserts new values intoC to
ensure that the mapping fromC to P is summarizable.
Again, this means that the cost of materializing results for
C will be higher for the transformed hierarchy than for the
original. However, if the new values were not inserted, we
would have to materialize results forP , and perhaps also
higher categories, as well asC. At most one value is in-
serted inC for every value inP , meaning that the extra
cost forC is never greater than the cost of materializing re-
sults forP . As before, this is a very unrealistic scenario, as
it corresponds to the case whereno values inP have chil-
dren inC. In most cases, the extra cost forC will be a
small percentage of the cost of materializing results forP ,
and the potential savings will be even greater because pre-
aggregation for higher-level categories may be avoided.

As before, the correctness argument for the algorithm
has two aspects. First, the mappings in the hierarchy should
be onto upon termination. Second, the algorithm should
only make transformations that are semantically correct.
The correctness follows from Theorems 3 and 4, below.
Again, the result set for the original values obtained using
the original hierarchy will be a subset of the result set ob-
tained using the transformed hierarchy. The results for the
new values can be excluded from the result set by adding a
HAVING clause condition.

Theorem 3 Algorithm MakeOnto terminates and the hier-
archy for the resulting dimensionD0 is onto.

Proof: By induction in the height of the lattice [22].

Theorem 4 Given dimensionsD andD0 such thatD0 is the
result of applying algorithm MakeOnto toD, an aggregate
result obtained usingD is a subset of the result obtained
usingD0.

Proof: Follows easily from the observation that “childless”
dimension values are linked to new placeholder values in
lower categories in one-to-one relationships, meaning that
data for childless values will still be counted exactly once
in aggregate computations that use the new dimension.

4.3 Non-Strict Hierarchies

The third algorithm renders mappings in hierarchies strict,
meaning that “double-counting” will not occur. Non-strict

670

12 11

4 9 10

5 6 5 6

4,9 4,10

4 9 10

11,12

⊥ ⊥

12 11

⊥ ⊥

Diagnosis
Group

Diagnosis
Group

Diagnosis
Family

Diagnosis
Family

Low-level
Diagnosis

Low-level
Diagnosis

Set-of
Diagnosis

Family

Set-of
Diagnosis

Group

13

14

L14 L14

14

14

13

13

Figure 5: The Diagnosis Dimension Schema and Instance Before and After MakeStrict

hierarchies occur when one dimension value has several
parent values.

The basic idea is to “fuse” a set of parent values into one
“fused” value, then link the child value to this new value
instead. The fused values are inserted into a new category
in-between the child and parent categories. Data for the
new fused category may safely be re-used for computation
of higher-level aggregate results, as the hierarchy leading
up to the new category is strict.

The fused value is also linked to the relevant parent val-
ues. This mapping is by nature non-strict, but this non-
strictness is not a problem, as we prevent aggregate results
for the parent category from being re-used higher up in the
hierarchy. This is done by “unlinking” the parent category
from its predecessor categories.

The categories higher up are instead reached through
the fused category. This means that we can still get re-
sults for any original category, while being able to apply
practical pre-aggregation throughout the hierarchy. In pre-
aggregation terms, the “unlinking” of the parent categories
means that we must prevent results for including this cate-
gory from being materialized—only “safe” categories may
be materialized. This should be given as a constraint to the
pre-aggregation system that chooses which levels of aggre-
gation to materialize.

We note that the algorithm does not introduce morelev-
elsin the hierarchy, only more categories, and that the num-
ber of “safe” categories in the result is the same as the num-
ber of original categories. This means that the complexity
of the task of selecting the optimal aggregation levels to
materialize is unaffected by the algorithm.

Example 8 The result of running the algorithm on the Di-
agnosis dimension is seen in Figure 5. Because of the non-
strictness in the mapping from Low-level Diagnosis to Di-
agnosis Family, and from Diagnosis Family to Diagnosis
Group, two new category types and the corresponding cat-
egories are introduced. The third picture indicates the argu-
ment to the algorithm; and, in addition, its dotted lines indi-
cate the links deleted by the algorithm. The fourth picture

gives the result of applying the algorithm; here, the bold-
face values and thick lines indicate the values and links in-
serted by the algorithm (note that all lines are thick, as no
original links remain).

In the first call of the algorithm, the three Low-level Di-
agnosis values—“(low-level) Lung cancer” (L14); “Insulin
dependent diabetes during pregnancy” (5); and “Non in-
sulin dependent diabetes during pregnancy” (6)—are linked
to the three new fused values—“(low-level) Lung cancer”
(14); “Diabetes during pregnancy, Insulin dependent dia-
betes” (4, 9); and “Diabetes during pregnancy, Non insulin
dependent diabetes” (4, 10)—and these are in turn linked to
“Lung Cancer” (14); “Diabetes during pregnancy” (4); “In-
sulin dependent diabetes” (9); and “Non insulin dependent
diabetes” (10). The these latter four values in the Diagno-
sis Family category are un-linked from their parents, as the
Diagnosis Family category is “unsafe.”

When called recursively on the Set-of Diagnosis Family
category, the algorithm creates the new fused values “Can-
cer” (13) and “Diabetes, Other pregnancy related diseases”
(11, 12) in the Set-of Diagnosis Group category. These new
values are linked to the values “Cancer” (13), “Diabetes”
(11), and “Other pregnancy related diseases” (12) in the Di-
agnosis Group category, and to the> value; and the values
in the Diagnosis Group category are un-linked from their
parents. Note the importance of having a> value: the val-
ues not linked to> are exactly the unsafe values, for which
aggregate results should not be re-used.

The algorithm assumes that all paths in the dimension
hierarchy have equal length, i.e., all direct links are from
children to their immediate parents. This is ensured by the
MakeCovering and MakeOnto algorithms. In the algorithm
that follows,C is achild category,P is aparentcategory,G
is agrandparentcategory,N is thenewcategory introduced
to hold the “fused” values, and1 denotes natural join.

The algorithm takes a categoryC (initially the ? cate-
gory) as input. It then goes through the set of immediate
parent categoriesP of C (line 2). Line 4 tests if there is
non-strictness in the mapping fromC to P and if P has

671

any parents. If this test fails, there is no problem as aggre-
gate results forP can either be safely re-used or are guar-
anteed not be re-used; and the algorithm is then invoked
recursively, in line 20.

(1) procedureMakeStrict (C)
(2) for eachP 2 Pred(C) do
(3) begin
(4) if (9e1 2 C (9e2; e3 2 P (e1 � e2 ^ e1 � e3

^ e2 6= e3))) ^ Pred(P) 6= ; then
(5) begin
(6) N CreateCategory(2P)
(7) RC;N f(e1;Fuse(fe2 j (e1; e2) 2 RC;P g))g
(8) N �N (RC;N)
(9) RN;P f(e1; e2) j e1 2 N ^ e2 2 Unfuse(e1)g
(10) Pred(C) Pred(C) [fNg n fPg
(11) Pred(N) fPg
(12) for eachG 2 Pred(P) do
(13) begin
(14) RN;G �N;G(RN;P 1 RP;G)
(15) Pred(N) Pred(N) [fGg
(16) Pred(P) Pred(P) n fGg
(17) end
(18) MakeStrict(N)
(19) end
(20) elseMakeStrict(P)
(21)end
(22)end

If the test succeeds, the algorithm creates a new fused
category. First, an empty categoryN with domain2P is
created in line 6. The values inserted into this category rep-
resentsetsof values ofP . For example. the value “1, 2”
represents the set consisting of precisely1; 2. Values inC
are then linked to new, fused values, representing their par-
ticularcombinationof parents inP (line 7). The new values
are constructed using a Fuse function that creates a distinct
value for each combination ofP values and stores the cor-
respondingP values along with it.

The resulting links are used in line 8 to insert the fused
values into their categoryN , and an “Unfuse” function,
mapping fused values fromN into the correspondingP val-
ues, is used in line 9 to map the values inN to those inP .
In line 10,N is included into, andP is excluded from, the
sets of predecessors ofC. The set of predecessors ofN is
set toP in line 11, meaning that the new categoryN resides
in-betweenC andP in the hierarchy.

For each grandparent categoryG, the algorithm links
values inN to values inG, in line 14; it includesG in
the predecessors ofN , in line 15; and it excludesG from
the predecessors ofP , in line 16, thereby also deleting the
links fromP toG from the hierarchy. The exclusion of the
G categories from the predecessors ofP means that aggre-
gate results forP will not be re-used to compute results for
theG categories.

In the end, the algorithm is called recursively on the new
category,N . Note that the test forPred(P) 6= ; in line (4)
ensures that the mapping fromN to P will not be altered,
asP now hasnopredecessors.

Following the reasoning in Section 4.1, we find that the
overall big-O complexity isO(pnk logn log k), wherep
is the number of immediate parent and children categories
in the dimension type lattice,n is the size of the largest
mapping in the hierarchy, andk is the maximum number of
values fused together. For most realistic scenarios,p andk
are small constants, yielding a lowO(n logn) complexity
for the algorithm.

The MakeStrict algorithm constructs a new categoryN
and inserts fused values intoN to achieve summarizability
for the mapping fromN to P and fromN to G. The al-
gorithm only inserts the fused values for the combinations
that are actually present in the mapping fromC to P . This
means that the cost of materializing results forN is never
higher than the cost of materializing results forC. This is a
worst-case scenario—for the most common cases, the cost
of materializing results forN will be be close to the cost of
materializing results forP . However, without the introduc-
tion ofN , we would have to materialize results not only for
P , but also forG andall higher-level categories. Thus, the
potential savings in materialization costs are very high.

Considering correctness, the mappings in the hierarchy
should bestrict upon termination, and the algorithm should
only make transformations that are semantically correct.
More specifically, it is acceptable that some mappings be
non-strict, namely the ones from the new, fused categories
to the unsafe parent categories that donot have predeces-
sors in the resulting hierarchy, meaning that aggregate re-
sults for these categories will not be re-used.

The correctness follows from Theorems 5 and 6, below.
When evaluating queries we get the same result for original
values as when evaluating on the old hierarchy. The val-
ues that are deleted by the algorithm were not linked to any
facts, meaning that these values did not contribute to the
results in the original hierarchy. As all the new values are
inserted into new categories that are unknown to the user,
the aggregate result obtained will be the same for the orig-
inal and transformed hierarchy. We do not need to modify
the original query.

Theorem 5 LetD0 be the dimension resulting from apply-
ing algorithm MakeStrict on dimensionD. Then the fol-
lowing hold: Algorithm MakeStrict terminates and the hi-
erarchy for the dimensionD00, obtained by removing unsafe
categories fromD0, is strict.
Proof: By induction in the height of the lattice [22].
Theorem 6 Given dimensionsD andD0 such thatD0 is the
result of applying algorithm MakeStrict toD, an aggregate
obtained usingD0 is the same as that obtained usingD.
Proof: Follows from Lemma 2 [22].
Lemma 2 For the dimensionD0 = (C 0;�0) resulting from
applying algorithm MakeStrict to dimensionD = (C;�),
the following holds.8e1; e2 2 D (e1 2 C1 ^ Safe(C1) ^
e1 �

0 e2 , e1 � e2) (there is a path between an original
dimension value in a safe category and any other original
dimension value in the new dimension hierarchy iff there
was a path between them in the original hierarchy).
Proof: By induction in the height of the lattice [22].

672

4.4 Transforming Fact-Dimension Relations

The algorithms from the previous sections may also be ap-
plied to the relationships between facts and dimensions.
The basic idea is to view the facts as the bottom granularity
in the lattice. The inputs to the algorithms then are the facts
F , theRF;C tables that describe the mappings from facts
to dimension values, and theC andRC1;C2

tables that de-
scribe the dimension categories and the mappings between
them.

Only the covering and strictness properties are of con-
cern for the fact-dimension relationships. Aninto mapping
from facts to dimension values means that not all dimen-
sion values in the bottom category have associated facts,
which does not affect summarizability. The MakeCovering
and MakeStrict algorithms may be applied to render rela-
tionships summarizable (see [22] for a detailed coverage).

First, facts may be mappeddirectly to dimension val-
ues in categories higher than the? category. This map-
ping to values ofmixedgranularities means that not all facts
will be accounted for when materializing aggregate results
for lower categories. The MakeCovering algorithm recti-
fies this situation. Second, relationships between facts and
dimension values may be many-to-many. This means that
the hierarchy, with the facts as the bottom category, is non-
strict, leading to possible double-counting of facts. The
Makestrict algorithm addresses this problem.

In the case study, the mapping between patients and di-
agnoses is of mixed granularity and also many-to-many: a
patient may have several diagnoses, each of which which
may belong to any of the levels Low-Level Diagnosis, Di-
agnosis Family, and Diagnosis Group.

5 Architectural Context
The overall idea presented in this paper is to take un-
normalized MOs and transform them into normalized MOs
that are well supported by the practical pre-aggregation
techniques available in current OLAP systems. Queries are
then evaluated on the transformed MOs. However, we still
want the users to see only the original MOs, as they reflect
the users’ understanding of the domain. This prompts the
need for means of handling both the original and the trans-
formed MOs. This section explores their coexistence.

A current trend in commercial OLAP technology is
the separation of the front-end presentation layer from the
back-end database server. Modern OLAP applications con-
sist of an OLAP client that handles the user interface and an
OLAP server that manages the data and processes queries.
The client communicates with the server using a standard-
ized application programming interface (API), e.g., Mi-
crosoft’s OLE DB for OLAP [16] or the OLAP Council’s
MDAPI [19]. The architecture of such a system is given to
the left in Figure 6.

This separation of client and server facilitates our desire
to have the user see the original MO while queries are eval-
uated against the transformed MO. Studies have shown that
queries on a data warehouse consist of 80%navigational

Data

OLAP
Client

OLAP
Server

OLAP
Server

Navigational
Data

Aggregational
Data

OLAP
Client

OLAP
Server

Query
HandlerQueries

Queries

Navigational
Queries

Aggregation
Queries

Figure 6: Architecture of Integration

queries that explore the dimension hierarchies and 20%ag-
gregationqueries that summarize the data at various lev-
els of detail [13]. Examples of navigational and aggrega-
tion queries are “Show me the Low-Level Diagnoses con-
tained in the Insulin-Dependent Diabetes Diagnosis Fam-
ily” and “Show me the count of patients, grouped by Diag-
nosis Family,” respectively. The navigational queries must
be performed on theoriginal MO, while the aggregation
queries must be performed on thetransformedMO. This is
achieved by introducing an extra “Query Handler” compo-
nent between the client and the server. The OLAP client
sends a query to the query handler, the primary task of
which is to determine whether the query is a navigational
query (internal to a dimension) or an aggregation query
(involving the facts). Navigational queries are passed to
one OLAP server that handles the original (navigational)
data, while aggregation queries are passed to another OLAP
server that manages the transformed (aggregation) data.
This extended architecture is seen to the right in Figure 6.

The OLAP server for navigation data needs to support
dimension hierarchies which have non-summarizable prop-
erties, a requirement not yet supported by many commer-
cial systems today. However, relational OLAP systems us-
ing snow-flake schemas [13] are able to support this type
of hierarchies, as are some other OLAP systems, e.g., Hy-
perion (Arbor) Essbase [11]. If the OLAP system avail-
able does not have sufficiently flexible hierarchy support,
one solution is to build a special-purpose OLAP server that
conforms to the given API. This task is not as daunting as
it may seem at first because onlynavigationalqueries need
to be supported, meaning that multidimensional queries can
be translated into simple SQL “lookup” queries.

We note that the only data needed to answer navigational
queries is the hierarchy definitions. Thus, we only need to
store the fact data (facts and fact-dimension relations, in
our model) once, in the aggregational data, meaning that
the overall storage requirement is only slightly larger than
storing just the aggregational data. Navigational queries are
evaluated on the original hierarchy definitions and do not
need to be re-written by the query handler.

As described in Section 4, aggregation queries need to

673

be re-written slightly by adding an extra HAVING clause
condition to exclude results for the new values inserted by
the transformation algorithms. This can be done automati-
cally by the query handler, giving total transparency for the
user. Even though the added HAVING clause conditions
are only necessary for the covering and onto transforma-
tions, they can also be applied to hierarchies transformed
to achieve strictness; this has no effect, but simplifies the
query rewriting.

6 Conclusion and Future Work
Motivated by the increasing use of OLAP systems in many
different applications, this paper provides transformation
techniques for multidimensional databases that leverage the
performance-enhancing technique known as practical, or
partial or semi-eager, preaggregation, making this tech-
nique relevant to a much wider range of real-world appli-
cations.

Current pre-aggregation techniques assume that the di-
mensional structures aresummarizable. Specifically, the
mappings in dimension hierarchies must beonto, cover-
ing, andstrict; the relationships between facts and dimen-
sions must be many-to-one, and facts must be mapped to the
lowest categories in dimensions. The paper presents trans-
formation techniques that render dimensions with hierar-
chies that do not satisfy these properties summarizable. The
transformations have low, practical computational com-
plexity, they may be implemented using standard relational
database technology, and the paper also describes how to
integrate the transformed hierarchies in current OLAP sys-
tems, transparently to the user. The algorithms may also
be applied to the cases of non-summarizable relationships
between facts and dimensions, which also occur often in
real-world applications, and the algorithms can be modi-
fied to incrementally maintain the transformed hierarchies
when the underlying data is modified [22].

Several directions for future research appear promising.
The current techniques render the entire dimension hierar-
chies summarizable; extending the techniques to consider
only the parts that have been selected for preaggregation
appears attractive and possible. Another direction is to take
into account the different types of aggregate functions to be
applied, leading to local relaxation of the summarizability
requirement. For example,maxandmin are insensitive to
duplicate values, which relaxes summarizability.

References
[1] E. Baralis et al. Materialized View Selection in a Multidi-

mensional Database. InProc. of VLDB, pp. 156–165, 1997.
[2] E. F. Codd. Providing OLAP (on-line analytical processing)

to user-analysts: An IT mandate. E.F. Codd and Assoc., 1993.
[3] S. Dar et al. Answering SQL Queries Using Views. InProc.

of VLDB, pp. 318–329, 1996.
[4] C. E. Dyreson. Information Retrieval from an Incomplete

Data Cube. InProc. of VLDB, pp. 532–543, 1996.
[5] J. Gray et al. Data Cube: A Relational Aggregation Opera-

tor Generalizing Group-By, Cross-Tab and Sub-Totals.Data
Mining and Knowledge Discovery, 1(1):29–54, 1997.

[6] A. Gupta et al. Aggregate Query Processing in Data Ware-
housing Environments. InProc. of VLDB, pp. 358–369, 1995.

[7] H. Gupta et al. Index Selection for OLAP. InProc. of ICDE,
pp. 208–219, 1997.

[8] H. Gupta. Selection of Views to Materialize in a Data Ware-
house. InProc. of ICDT, pp. 98–112, 1997.

[9] H. Gupta and I.S. Mumick. Selection of Views to Materialize
Under a Maintenance-Time Constraint. InProc. of ICDT,
pp. 453–470, 1999.

[10] V. Harinarayan et al. Implementing Data Cubes Efficiently.
In Proc. of SIGMOD, pp. 205–216, 1996.

[11] Hyperion Corporation. Hyperion Essbase OLAP Server.
<www.hyperion.com/downloads/essbaseolap.pdf>. Current
as of May 20, 1999.

[12] Informix Corporation. MetaCube ROLAP Option for
Informix Dynamic Server. <www.informix.com/answers/
english/pdfdocs/metacube/4189.pdf>. Current as of May
20, 1999.

[13] R. Kimball. The Data Warehouse Toolkit. Wiley Computer
Publishing, 1996.

[14] R. Kimball. Help with Multi-Valued Dimension.DBMS
Magazine, 11(9), 1998.

[15] H. Lenz and A. Shoshani. Summarizability in OLAP and
Statistical Data Bases. InProc. of SSDBM, pp. 39–48, 1997.

[16] Microsoft Corporation. OLE DB for OLAP Version 1.0
Specification. Microsoft Technical Document, 1998.

[17] Microsoft Corporation. OLAP Services White Paper.
<www.microsoft.com/sql/70/whpprs/olapoverview.htm>.
Current as of May 20, 1999.

[18] I. S. Mumick et al. Maintenance of data cubes and summary
tables in a warehouse. InProc. of SIGMOD, pp. 100–111,
1997.

[19] The OLAP Council. MDAPI Specification Version 2.0.
OLAP Council Technical Document, 1998.

[20] The OLAP Report. Database Explosion.
<www.olapreport.com/DatabaseExplosion.htm>. Current as
of May 20, 1999.

[21] T. B. Pedersen and C. S. Jensen. Multidimensional
Data Modeling for Complex Data. InProc. of ICDE,
1999. Extended version available as TimeCenter TR-37,
<www.cs.auc.dk/TimeCenter>, 1998.

[22] T. B. Pedersen et al. Extending Practical Pre-Aggrega-
tion in On-Line Analytical Processing. TR R-99-5004,
Comp. Sci. Dept., Aalborg University,<www.cs.auc.dk/
�tbp/articles/R995004.ps>, 1999.

[23] D. Quass and J. Widom. On-Line Warehouse View Mainte-
nance for Batch Updates. InProc. of SIGMOD, pp. 393–404,
1997.

[24] M. Rafanelli and A. Shoshani. STORM: A Statistical Object
Representation Model. InProc. of SSDBM, pp. 14–29, 1990.

[25] A. Shukla et al. Storage Estimation for Multidimensional
Aggregates in the Presence of Hierarchies. InProc. of VLDB,
pp. 522–531, 1996.

[26] D. Theodoratos and T. Sellis. Data Warehouse Configura-
tion. In Proc. of VLDB, pp. 126–135, 1997.

[27] J. Widom. Research Problems in Data Warehousing. In
Proc. of CIKM, pp. 25–30, 1995.

[28] R. Winter. Databases: Back in the OLAP game.Intelligent
Enterprise Magazine, 1(4):60–64, 1998.

[29] World Health Organization.International Classification of
Diseases (ICD-10). Tenth Revision, 1992.

[30] J. Yang et al. Algorithms for materialized view design in a
data warehousing environment. InProc. of VLDB, pp. 136–
145, 1997.

674

