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Abstract

On-Line Analytical Processing (OLAP) based on
a dimensional view of data is being used in-
creasingly for the purpose of analyzing very large
amounts of data. To improve query performance,
modern OLAP systems use a technique known
as practical pre-aggregationwhereselectcom-
binations of aggregate queries are materialized
and re-used to compute other aggregates; full pre-
aggregation, where all combinations of aggregates
are materialized, is infeasible. However, this re-
use of aggregates is contingent on the dimension
hierarchies and the relationships between facts
and dimensions satisfying stringent constraints,
which severely limits the scope of practical pre-
aggregation. This paper significantly extends the
scope of practical pre-aggregationto cover a much
wider range of realistic situations. Specifically, al-
gorithms are given that transform “irregular” di-
mension hierarchies and fact-dimension relation-
ships, which often occur in real-world OLAP ap-
plications, into well-behaved structures that, when
used by existing OLAP systems, enable practical
pre-aggregation. The algorithms have low compu-
tational complexity and may be applied incremen-
tally to reduce the cost of updating OLAP struc-
tures.
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amounts of detailed transactional data and have gained
widespread acceptance in traditional business applications
as well as in new applications such as health care. These
systems generally offer a dimensional view of data, in
which measured values, termed facts, are characterized by
descriptive values, drawn from a number of dimensions;
and the values of a dimension are typically organized in
a containment-type hierarchy. A prototypical query applies
an aggregate function, such as average, to the facts charac-
terized by specific values from the dimensions.

Fast response times are required from these systems,
even for queries that aggregate large amounts of data. The
perhaps most central technique used for meeting this re-
quirement is termegre-aggregationwhere the results of
aggregate queries are pre-computed and stored, i.e., ma-
terialized, for later use during query processing. Pre-
aggregation has attracted substantial attention in the re-
search community, where it has been investigated how
to optimally use pre-aggregated data for query optimiza-
tion [6, 3] and how to maintain the pre-aggregated data
when base data is updated [18, 23]. Further, the latest
versions of commercial RDBMS products offer both query
optimization based on pre-computed aggregates and auto-
matic maintenance of the stored aggregates when base data
is updated [28].

The fastest response times may be achieved when ma-
terializing aggregate results corresponding to all combina-
tions of dimension values across all dimensions, termed
full (or eager) pre-aggregation. However, the required stor-
age space grows rapidly, to quickly become prohibitive,
as the complexity of the application increases. This phe-
nomenon is calledlata explosior[25, 20] and occurs be-

On-Line Analytical Processing (OLAP) systems aim tocause the number of possible aggregation combinations
ease the process of extracting useful information from larggrows rapidly when the number of dimensions increase,
while the sparseness of the multidimensional space de-
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advantage, the VLDB copyright notice and the title of the publication an i hlgher levels take up nearly as much space as lower-level
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requires a fee and/or special permission from the Endowment. raw data [20]. Another problem with full pre-aggregation is
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when base data changes. that transform dimension hierarchies to achieve summariz-
With the goal of avoiding data explosion, research haability and discusses how the algorithms may be applied to

focused on how to select the best subset of aggregatiomon-summarizable relationships between facts and dimen-

levels given space constraints [10, 8, 30, 1, 26] or mainsions. Section 5 demonstrates how the techniques may be

tenance time constraints [9], or the best combination of agategrated into current systems, and Section 6 summarizes

gregate data and indices [7]. This approach is commonignd points to topics for future research.

referred to apractical (or partial or semi-eager [4, 10, 27])

pre-aggregation. Commercial OLAP systems now also e2  Motivation—A Case Study

ist that employ practical pre-aggregation, e.g., Informi

MetaCube [12] and Microsoft Decision Support Service he case study concerns patients in a hospital, their asso-
(Plato) [17]. ciated diagnoses, and their places of residence. The data

The premise underlying the applicability of practicalanalySiS goal is to investigate whether some diagnoses oc-

pre-aggregation is that lower-level aggregates camepe CU" more ofter|1 in Isfomelar;aas than @nhotgers, in ‘.’;hi(.:h case

usedto compute higher-level aggregates, known as summ _nwcrignmenta or es':\y eEscdt_ors mlg.”t e contri hutlngdto

rizability [15]. Summarizability occurs when the mappingst € disease pattern. An lagram illustrating the under-
lying data is seen in Figure 1.

in the dimension hierarchies aomto (all paths from the
root to a leaf in the hierarchy have equal lengthsyering * Address ' * Name " Name,
0.1) ocated On)
in city

(only immediate parent and child values can be related), adess gy oo S couny
andstrict (each child in a hierarchy has only one parent); Y

and when also the relationships between facts and dimen-

sions are many-to-one and facts are always mapped to th
lowest levels in the dimensions [15]. However, the data en-
countered in many real-world applications fail to comply

0.1 ocated in ©m

ural area

with this rigid regime. This motivates the search for tech-| """ [on ~% " on ~ vy
nigues that allow practical pre-aggregation to be used for a - name A
wider range of applications, the focus of this paper. >

Specifically, this papers leverages research such as that Jﬁ HYJ Jf
cited above. It does so by showing how to transform dimen- | towevel Diagnosis @ Diagnosis
sion hierarchies to obtain summarizability, and by showing ™" lan o “an ™™ ] an an | G
how to integrate the transformed hierarchies into current *Type *Type
systems, transparently to the user, so that standard OLAP Figure 1: ER Schema of Case Study

technology is re-used. Specifically, algorithms are pre- The most important entities are tpatients for which
sented that automatically transform dimension hlerarchlc-w

to achieve summarizability for hierarchies that are nong .. record the name. We always want to count the num-
y ber of patients, grouped by some properties of the patients.

onto, non-covering, and non-strict. The algorithms haV%’hus, in multidimensional terms, the patients areftus

g)\,véncsgpT;?tlgrﬂtgg;gsex%:gﬁ grri?htmhgscsr?gllgstt))lee lj(s)a(_:‘rad the other, describing, entities constitutedimensions
yrarg : 9 Each patient has a number diagnosesyielding to a

to contend with non-summarizable relationships bewVeePnany-to-manyeIationship between facts and the diagnosis
facts and dimensions and may be modified to accommoda&?

incremental computation, thus minimizing the maintenanc mension. When registering diagnoses of patients, physi-

cost associated with base-data updates [22]. &ians use different levels of granularity, ranging from very

To our knowledge, this work is the first to present algo_precise diagnoses, e.g., “Insulin dependent diabetes during

rithms to automatically achieve summarizability for non_pregnancy,” to more imprecise diagnoses, e.g., "Diabetes,’
y Y vﬂqich cover wider ranges of patient conditions. To model

covering and non-onto hierarchies. The research report(? is, the relationship from Patient to diagnoses is to the su-

here is also the first to demonstrate techniques and algBértype “Diagnosis,” which then has three subtypes, cor-

rithms for achieving summarizability in non-strict hierar- . . . §
chies. The integration of the techniques into current Sysr_espondmg to different levels of granularity, tew-level

tems, transparently to the user, we believe is a novel fe d_iagnosis the diagnosis family and thediagnosis group
' p y ' %xamples of these are “Insulin dependent diabetes during

L. T oy past esearch o i opi s been o1 Mlflegnancy. inuln dependent dabetes? and Disbets;
Y P y ’ espectively. The higher-level diagnoses are both (impre-

o o et cas 25 Q0S8 n ek oun g, bt 12 seve s r0ups
P f lower-level diagnoses, i.e., a diagnosis family consists

that exemplifies the non-summarizable properties of rea S 5-20 related low-level diagnoses and a diagnosis group
world applications. Section 3 proceeds to define the aspec Shsists of 5-20 related diagnosis families

of a multidimensional data model necessary for describing Each diagnosis has an alphanumeric code and a descrip-

the new technique_s, a’ld define; also important properti%% text, which are specified by some standard, here the
related to summarizability. Section 4 presents algorlthm§\lorld Health Organization’s International Classification of
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Diseases (ICD-10) [29], or by the physicians themselves.

In the hierarchy determined by the WHO, one lower-level| ID | Name PatientD D'E;g'D Pm’aery
item belongs to exactly one higher-level item, leading to| 1 | John Doe
. ) 8 ; - > Jane Doe 2 5 Secondary
a strict, coveringhierarchy. In the user-defined hierarchy, T Jim bos 2 9 Primary
one lower-level item may belong to zero or more higher- Pafient 3 11 Primary
level items, e.g., the family “Diabetes during pregnancy” Has
may belong to both the “Diabetes” and “Other pregnancy ) ID Address
. " ! g PatientID | AddressID
related diseases” groups. Thus, the user-defined hierarchy T 50 50 | 21 Central Street
is non-strictandnon-covering 5 51 g; 13;‘3'\2{3'” ISgeetd
We also record the addresses of the patients. If the ad- 3 52 T Sanz;aDuggs
dressis located in a city, we record itigy; otherwise, if the LivesAt Address
address is in a rural area, we record tle@ntyin which the
Code Text Type

. L . ID
address is located. A city is Iopated in exactly one countyr———<- Siabetes during pregnancy | DF
As not all addresses are in cities, we cannot find all adr 5152201 ns. dep. diab. during pregn. | LLD
dresses in a county by going through the “City located in"[6 [ 024.1 [ Non ins. dep. diab. during pregr}. LLD
relationship. Thus, the mapping from addresses to citiesis 9 | E10 Insulin dependent diabetes | DF
non-coveringw.r.t. addresses. For cities and counties, wel 10 | E11 | Noninsulin dependent diabetes DF
record the name. Not all counties have cities in them, so—+|— 1 Diabetes DG

12 02 Other pregnancy related diseases DG

the mapping from citie's to countiesirgo rather tharonto. 131 AL Cancer DG
In order to exemplify the data, we assume a standar@i 14 | A1l Lung cancer DF
mapping of the ER diagram to relational tables and the use Diagnosis
of surrogate keys, namdD, vyith gIo'baIIy unique values. ParentiD | ChildiD | Type
The three subtypes of the Diagnosis type are mappedto & 2 5 WHO
common Diagnosis table, and because of this, the “Belongs 4 6 WHO '
to” and “Grouping” relationships are mapped to a common 190 g Bser C'tzy(;D CO‘ggy'D
“Grouping” table. The resulting tables with sample data are i1 5 W|5-|ec; 51 31
shown in Table 1 and will be used in examples throughoutr——1 10 WHO CityLocatedin
the paper. 12 4 WHO
If we apply pre-aggregation to the data from the case| 13 14 WHO
study, several problems occur. For example, if the counts Grouping
of patients by City are pre-computed and we use these for ID Name AddressID | CitylD
computing the numbers of patients by county, an incorrect 20 | Sydney 50 20
result will occur. In the data, the addresses “123 Rural 21 "C"_e'boume L51 - C_t21
Road” and “1 Sandy Dunes” (one of them is the address D '%ame oeaiedintiy
of a patient) are not in any city, making the mapping from 30 | Sydney '52 Ng;ne
City to County notcoveringw.r.t. addresses. 31 | Melbourne =3 0
Next, if the counts of patients by Low-Level Diagnosis 32 | Outback TocaiednRuralATea
are pre-computed and we use these for computing the to- County
tal count of patients, an incorrect result again ensues. First, Table 1: Tables for the Case Study

patit_ants only with lung cancer are not counteq, as Iung can- e properties described above are found in many other
cer is not present at the level of Low-Level Diagnosis; the-re

ing f Low-Level Di < (0 Di i Farnil al-world applications. Many-to-many relationships be-
mapping from Low-Level Diagnosis “O. |agn(35|s amily yveen facts and dimensions occur between bank customers
is into. Second, patients such as “Jim Doe” only hav

hiaher-level di d will b ted: the f €nd accounts, between companies and Standard Industry
'9 d_er- eve |agno_seshan will-no elcqunTeh_, d € facty|assifications (SICs), and between students and depart-
to-dimension mapping hagrying granularity Third, pa- = o [14, 15]. Non-strict dimension hierarchies occur

tients such as “Jane Doe” have S‘?"efa'_ diagnoses and Wili, ) cities to states in a Geography dimension [24] and
be counted several times; the relationship between facts agd .\ eaks to months in a Time dimension. In addition
dlmensu?‘ns isnany-to-manyFourth, Low-Level dlagnose"s hierarchies where the change over time is captured are gen-
such as “Insulin d.ependgnt dla_petes du.rlng pregnhancy a&jrally non-strict. The mapping from holidays to weeks as
paEt of se,\,/eral d_|agn03|s famllles_, Wh_'Ch may also Iea. ell as organization hierarchies of varying depth [11] offer
to “double” counting when computing higher-level Counts’examples of “into” mappings. Non-covering relationships

theT?:mensmr;)lh|erarch3|/dr$9n-str|ct izable” di . exist for days-holidays-weeks and for counties-cities-states,
ese problems yield ‘non-summarizable” dimension, ¢ ,yq|| a5 in organization hierarchies [11].

hierarchies that severely limit the applicability of practical
pre-aggregation, leaving only full pre-aggregation, Whin}ie
requires huge amounts of storage, or no pre-aggregati

which results in long response times for queries. ships to dimensions and that all hierarchies are strict, onto,
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and covering. Similarly, we a assume a functiaBlesc : C — 2¢ that
gives the set of immediate descendants of a categgry

3 Data Model Context and Concepts For bothPred andDesc, we “count” from the category

f type T 1), so that category 7 is the ultimate predeces-

This section describes the aspects of a multidimensional), and category - (of type L 1) is the ultimate descen-

data model that extend practical pre-aggregation. The fu _
model is described elsewhere [21]. Next, the data model 1o efinition of the partial order is: given two values

context is exploited _for defining properties of h|erarch|esel’62 thene; < es if e, is logically contained ires. We
relevant to the techniques.

: say thatC'; is a category oD, writtenC; € D, if C; € C.
The particular data model has been chosen over oth Y J gory S i <

L . ! i Bor a dimension value, we say that is a dimensional
multidimensional data models because it quite naturall\&a'ue ofD. writtene € D.ife € U.Cs
) 1 VA

captures the data described in the case study and becaus he category of typel - in dimension of type]” con-

it includes explicit concepts of dimensions and dimensioyg the values with the smallest value size. The category

hierarchies, which is very importan_t for clearly presen_tin ith the largest value size, of type;, contains exactly
the technlqugg. Howgver, the teqhmques are also appllcg fie value, denoted. For all values of the dimensiorD,
to other multidimensional or statistical data models, as WI|€ < T. ValueT is similar to theALL construct of Gray et

be discussed in Section 5. al. [5]. When clear from the context, we refer to a category
of type T+ simply as ar category, not to be confused with
3.1 A Concrete Data Model Context the T dimension value.
For each part of the model, we define theensionand the
extensionand we give an illustrating example.

An n-dimensional fact schemis a two-tupleS =
(F,D), whereF is afact typeandD = {7;,i = 1, ..,n} is
its correspondingimension types

Example 3 In our Diagnosisdimension we have the fol-
lowing categories, named by their type. The numbers
in parentheses are the ID values from the Diagnosis ta-
ble in Table 1. Low-level Diagnosis= {“Insulin depen-
dent diabetes during pregnancy” (5), "Non insulin de-
Example 1 In the case study from SectionRatientis the  pendent diabetes during pregnancy”}@piagnosis Fam-
fact type, andDiagnosis ResidenceandNameare the di- ily = {“Diabetes during pregnancy” (4), “Insulin depen-
mension types. The intuition is thaverythinghat charac- dent diabetes” (9), "Non insulin dependent diabetes” (10),
terizes the fact type is considered todimensional “Lung cancer” (14}, Diagnosis Group= {“Diabetes” (11),
“Other pregnancy related diseases” (12), “Cancer” §13)
andT piggnosis = {T}. We have thaPred (Low-level Di-

. : o agnosig = {Diagnosis Family. The partial ordeK is
<7 is apartial order on thé;’s, with Ty € Cand Ly € C g_btain:d by{combining the ngl-|0 and user-defined hierar-

being the top and bottom element of the ordering, respec- . ? ) . I
tively. Thus, the category types form a lattice. The intuitionCh'eS’ as given by t_he Grouping tat_)le N T"’?b'e 1. Add|_t|on-
ly, the top valuer is greater than, i.e., logically contains,

is that one category type is “greater than” another catego Il'the other diagnosis values
type if members of the former’s extension logically contain '
members of the latter's extension, i.e., they have a larger | et F be a set of facts, an®) = (C = {C;},<) a
value size. The top element of the ordering correspondfimension. Afact-dimension relatiorbetweenF" and D

to the largest possible value size, that is, there is only ong a setkR = {(f,e)}, wheref € F ande € U;C;.
value in it's extension, logically containing all other values.Thys R links facts to dimension values. We say that fact
 We say that’; is a category type of, writtenC; € 7,  f is characterized bydimension value:, written f ~» e,

if Cj eC. if Je; € D ((f,e1) € RAer < e). We require that

Example 2 Low-level diagnoses are contained in diagno-V/ € ¥ (3e € U;C; ((f,e) € R)); thus, all fact maps
sis families, which are contained in diagnosis groups. ThudQ at least one dimension value in every dimension. The
theDiagnosisdimension type has the following order on its 1 Value is used to represent an unknown or missing value,
category types:L piagnosis = LOW-level Diagnosis< Di- asT logically contains all dimension value_s, and_ So a fact
agnosis Family< Diagnosis Group< T pagnosis- Other [ 1S mapped toT if it cannot be characterized within the
examples of category types aheldress City, andCounty ~ Particular dimension.

Flgur(_a 2, to be discussed in detalil later, illustrates the d'ExampIe 4 The fact-dimension relatior® links patient
mension types of the case study.

facts to diagnosis dimension values as given by the Has ta-
A categoryC; of typeC; is a set ofdimension values.  ble from the case study, so th&dt= {(*John Doe” (1), “In-
A dimensionD of type7 = ({C;}, <7, T7,L7)isatwo- sulin dependent diabetes” (9)), (“Jane Doe” (2), “Insulin
tuple D = (C, <), whereC' = {C,} is a set of categories dependent diabetes during pregnancy” (5)), (“Jane Doe”
C; such thatType(C;) = C; and< is a partial order on (2), “Insulin dependent diabetes” (9)), (“Jim Doe” (3), “Di-
U;C;, the union of all dimension values in the individual abetes” (11)). Note that facts may be related to values in
categories. We assume a functiBred : C — 2¢ that higher-level categories. We do not require thékelongs to
gives the set of immediate predecessors of a categery L piagnosis- FOr example, the fact “John Doe” (1) is related

A dimension typeT is a four-tuple(C, <7, T, L1),
whereC = {C;,j = 1,..,k} are thecategory typesf T,
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to the diagnosis “Insulin dependent diabetes” (5), which befirstimportant concept isummarizabilitywhich intuitively
longs to theDiagnosis Familycategory. This feature will be means that higher-level aggregates may be obtained directly
used later to explicitly capture the different granularities infrom lower-level aggregates.

the data. If no diagnosis was known for patient “John Doe”

e " Definition 1 Given a typeTl’, a setS = {S;,j = 1,..,k},
(), we would have added the pair (“John Doe” [1)to R. wheres, € 27, and a functiory : 27 — T, we say thay

A multidimensional objecfMO) is a four-tupleM = is summarizabldor S if g({{g(S1),..,9(Sk)}}) = g(S1 U
(S,F,D,R), whereS = (F,D = {T;}) is the fact ..uUS};). The argumenton the left-hand side of the equation
schemaF = {f} is a set offacts f where Type(f) = F, is a multiset, i.e., the same value may occur multiple times.
?yp;(D{i)D“:Z 7;_ alr’u'j"Ig}zls{ziS?:T'TT‘%T:Z”;’;Z?E Summarizability is important as it is a condition for the
fact-dimension relations, such,thﬁt((f: e)’ €R = fe flexible use of pre-computed aggregates. Without summa-
FA3C; € Di(e € C))). rlzab|l_|ty, Ipwer-_level results generally cannot be directly

J ! J , . combined into higher-level results. This means that we can-
Example 5 For the case study, we get a three-dimensiong{o; choose to pre-compute only a relevant selection of the
MO M = (S, F, D, R), whereS = (Patient {Diagnosis, = ossiple aggregates and then use these to (efficiently) com-
Name, Re3|de:,n(},¢andF = {"John Doe” (1), “Jane Doe” ;e higher-level aggregates on-the-fly. Instead, we have to
(2), “Jim Doe” (3)}. The definition of the diagnosis di- ,re_compute the all the aggregate results of queries that we
mension and its corresponding fact-dimension relation Wasee fast answers to, while other aggregates must be com-
given in the previous examples. The Residence dimensiqy| e from the base data. Space and time constraints can be
has the categorie&ddress(= L residence), City, County 5 ghinitive for pre-computing all results, while computing
and T gesidence-  The values of the categories are given,yqregates from base data is often inefficient.
by the corresponding tables in Table 1. The partial order~|; hag heen shown that summarizability is equivalent to
is givgn by the relationship tab_les. Aqlditionglly, the only e aggregate functiony) beingdistributive all paths be-
value in theT gesiaence Category isT, which logically con-  jng strict, and the mappings between dimension values in
tains all the other values in the Residence dimension. Th@e nierarchies beingoveringandonto [15]. These con-

Name dimension is simple, i.e., it just halamecategory  cents are formally defined below. The definitions assume a
(= Lname) and aT category. We will refer to this MO as dimensionD = (C, <) and an MOM = (S, F, D, R)
the “Patient” MO. A graphical illustration of its schema is T o
seen in Figure 2. Because some addresses map directly@gfinition 2 Given two categorieg,;, C> such thaiC, €
counties, County is an immediate predecessor of AddressPred(C1), we say that the mapping frodh to Cs is onto
iff Vea € Co(Jey € C) (e < eq)). Otherwise, it iSnto.

Diagnosis Residence o Name If all mappings in a dimension are onto, we say that the
Dimension Dimension mension dimension hierarchy isnto,
DDiagr\osws DResidence DName

Mappings that are into typically occur when the dimen-
sion hierarchy has varying height. In the case study, there

Diagnosis Group County

‘ K} is no low-level cancer diagnosis, meaning that some parts
Diagnosis Family City of the hierarchy have heiglat while most have heigha.
\ KJ It is thus not possible to use aggregates at the Low-level
Low-level Diagnosis =Opiagnosis ~ Address =[UResidence  Name =CName Diagnosis level for computing aggregates at the two higher
levels. Mappings that are into also occur often in organiza-
tion hierarchies.
Patient Definition 3 Given three categorie§);, Cs, andC5 such

that Type(C;) < Type(Co) < Type(Cs), we say that
the mapping fronC- to C'5 is covering with respect t¢';
The facts in an MO are objects withalue-independent iff Ve; € C; (Ves € Cs (e1 < e3 = Jex € Cs (e1 <
identity. We can test facts for equality, but do not assume as, A e; < e3))). Otherwise, it imon-covering with respect
ordering on the facts. The combination of dimension valuet (. If all mappings in a dimension are covering w.r.t. any
that characterize the set of facts of an MOraiconstitute  category, we say that the dimension hierarchgoigering
a “key” for the fact set. Thus, several facts may be charac-
terized by the same combination of dimension values. BuB
the facts of an MQs a set, and an MO does not have dupli- €
catefacts

Figure 2: Schema of the Case Study

Non-covering mappings occur when some of the links
tween dimension values skip one or more levels and map
directly to a value located higher up in the hierarchy. In
the case study, this happens for the “1 Sandy Dunes” ad-
dress, which maps directly to “Outback County” (there are
no cities in Outback County). Thus, we cannot use ag-

In this section important properties of MOs are definedgregates at the City level for computing aggregates at the
which will be used in the following sections to state pre-County level.

cisely what problems the proposed algorithms solve. The

3.2 Hierarchy Properties
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Definition 4 Given an MOM = (S, F,D,R), and two dimensions that can be applied in a number of different sys-
categories”; and C- that belong to the same dimensiontems or sold to third-party users. In addition, it is discussed
D; € D such thatType(C;) < Type(C2), we say that the how to apply the presented algorithms to non-summarizable
mapping fromC; to C, is covering with respect té’, the  fact-dimension relations. The transformation of the dimen-
set of facts, iffVf € F (Ves € Cy (f ~; ex = Je; €  sion hierarchies is a three-step operation. First, all map-
Cy (f ~ie1 Nep < e2))). pings are transformed to kmovering by introducing ex-

This case is similar to the one above, but now it is thira intermediate” values. Second, all mappings are trans-

mappings between facts and dimension values that m é)/rmed to beontq by introducing "placeholder” values at
skip one or more levels and map facts directly to dimen- wer levels for vqlues W',EhO‘.“ a”ny children. Third, map-
ings are madstrict, by “fusing” values together. The

sion values in categories above the bottom level. In th o6 steps are treated in separate sections. None of the

case study, the patients can map to diagnoses anywhereai orithmg introduce an non—psummarizable .ro erties, so

the Diagnosis dimension, not just to Low-level Diagnoses; gon > any no prop '
plying each once is sufficient.

This means that we cannot use aggregates at the Low-le\%l?In general, the algorithms take as input a set of tables

Diagnosis Level for computing aggregates higher up in th%C c. that specifies the mapping from dimension values

hierarchy. in categoryC} to values in categor¢>. The input needs
Definition 5 Given two categories(; and C'> such that not contain all pairs of ancestors and descendants—only
C, € Pred(Cy), we say that the mapping fro6y to C5 is  direct parent-child relationships are required. If there are
strict iff Ve; € Cy (Vez,e3 € C2 (1 < e2Ae; < e3 =  non-covering mappings in the hierarchy, we have categories
ez = ez)). Otherwise, it isnon-strict The hierarchy in  C, P, H such that{P,H} C Pred(C) and Type(P) <
dimensionD is strict if all mappings in it are strict; oth- Type(H). In this case, the input must also contdim i
erwise, it isnon-strict Given an MOM = (S, F,D,R) tables that ma@ values toH values.

and a categor¢’; in some dimensio®; € D, we say that

there is astrict pathfrom the set of facté#' to C; iff Vf € 4.1 Non-Covering Hierarchies

F(f’\')l 61/\f’\f>i ea Ney € Cj/\@Q S Cj = €1 262).

(Note that the paths to the categories are always strict.) The first algorithm renders all mappings in a dimension hi-

erarchy covering w.r.t. any category. When a dimension
Non-strict hierarchies occur when a dimension value hagalue is mappedlirectly to another value in a category
multiple parents. This occurs in the Diagnosis dimension imigher than the one immediately above it in the hierarchy,
the case study where the “Insulin dependent diabetes durimgnew intermediate value is inserted into the category im-
pregnancy” low-level diagnosis is part of both the “Insulin mediately above, and the two original dimension values are
Dependent Diabetes” and the “Diabetes during pregnancyihked to this new value, rather than to each other.

diagnosis families, which in turn both are part of the “Di- Example 6 In the hierarchy for the Residence dimension,
abetes” diagnosis group. This means that we cannot Uggo |inks go from Address directly to County. The address
aggregates at the Diagnosis Family level to compute ag423 rural Road” (52) is in “Melbourne County” (31), but
gregates at the Diagnosis Group level, since data for “Inyot in a city, and the address “1 Sandy Dunes” (53) is in
sulin dependent diabetes during pregnancy” would then bgyythack County” (32), which doesot have any cities at
counted twice. all. The algorithm inserts two new dimension values in the
Definition 6 If the dimension hierarchy for a dimension City category,C31 and C32, which represent Melbourne

D is onto, covering andstrict, we say thatD is normal- ~and Outback county, respectively, and links them to their re-
ized Otherwise, it isun-normalized For an MOM =  Spective counties. The addresses “123 Rural Road” and “1

(S,D, F,R), if all dimensionsD; € D are normalized and Sandy Dunes” are then linked@81andC32, respectively.
VR; € R((f,e) € R; = e € Lp)(, i.e., all facts map to This occurs in the first call of procedure MakeCovering (on

dimension values in the bottom category), we say iids ~ the Address category; the procedure is given below). When
normalized Otherwise, it isun-normalized MakeCovering is called recursively on the City, County,

) . . . andT categories, nothing happens, as all mappings are al-
For normalized hierarchies and MOs, all mappings argsaqy covering. The transformation is illustrated graphi-

summarizable, meaning that we can pre-aggregate valuggjiy'in Figure 3. The dotted lines show the “problematic”

at any combination of dimension levels and safely re-Usgnys and the bold-face values and thick lines show the new
the pre-aggregated values to compute higher-level ag9r8imension values and links.

gate results. Thus, we want to normalize the dimension

hierarchies and MOs for which we want to apply practical In the algorit‘hm,C i,s achild category.P is a parent
pre-aggregation. category,H is a “highef’ category,L are the non-covering

linksfrom C to H, andN are the “higher” dimension val-

. . ues inL. The X operator denotes natural join. The al-
4 Transformation Techniques gorithm works as follows. Given the argument categGry
This section describes how dimensions can be transforméhitially the bottom category) in line 1, the algorithms goes
to achieve summarizability. Transforming dimensions orthrough allC’s parent categorieB (line 2). For each par-
their own, separately from the facts, results in well-behavednt categoryP, it looks for predecessor categoridsof C
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not apply very often; in most cases, the inner loop will only
0 g be evaluated at mosttimes.
The algorithm inserts new values into tRecategory to
ensure that the mappings fromto higher categories are

0 31 32 30 31 32 summarizable, i.e., that pre-aggregated result®foan be
‘ ‘ \ \ directly combined into higher-level aggregate results. The
L — new values inP mean that the cost of materializing aggre-
20 2l 2021 31 C32 gate results forP is higher for the transformed hierarchy
‘ \ : ‘ ‘ ‘ than for the original. However, if the hierarchy was not
50 51 52 &3 50 51 52 53 transformed to achieve summarizability, we would have to

. ) ] materialize aggregates f6¥, and perhaps also for higher

Figure 3: Transformations by MakeCovering level categories. At most one new value is inserted iAto
that are “higher” in the hierarchy than (line 4). If such an  for every value inG, meaning that the extra cost of mate-
H exists, there might be links in the mapping fréfto H#  rializing results forP is never greater than the cost of the
that are not available by going through Line 6 finds these (otherwise necessary) materialization of resultgfoiT his
“non-covered” links,L, in the mapping fronC' to H by is a very unlikely worst-case scenario—in the most com-
“subtracting” the links thaare available by going through mon cases, the extra cost fé& will be much lower than
P from all the links in the mapping fromd to H. Line 7  the the cost of materializing results fat, and the savings
usesL to find the dimension value¥ in H that participate will be even greater because materialization of results for
in the “non-covered” mappings. For each valuéinline 8  higher-level categories may also be avoided.
inserts a corresponding marked value iftothese marked The correctness argument for the algorithm has two as-
values represent th®¥ values inP. The marked values in pects. First, the mappings in the hierarchy should¢te
P are then linked to the original values i (line 9) and C  ering upon termination. Second, the algorithm should only
(line 10). Line 12 contains a recursive call to the algorithmmake transformations that are semantically correct, i.e., we
on P, thus fixing mappings higher up in the hierarchy. Theshould get the same results when computing results with
algorithm terminates when it reaches theategory, which  the new hierarchy as with the old. The correctness follows
has no predecessors. from Theorem 1 and 2, below. As new values are inserted
in the P category, we will get aggregate values for both the
new and the original values when “grouping” B, Re-
sults for the original values will be the same as before, so
the original result set is aubsetof the result set obtained
with the transformed hierarchy.

(1) procedure MakeCovering(')

(2) for eachP € Pred(C) do

(3) begin

4 for eachH € Pred(C)
whereType(H) > Type(P) do

(5) begin Theorem 1 Algorithm MakeCovering terminates and the
(6) L+ Reg\lc,ug(Rep ™ Rpm) hierarchy for the resulting dimensidy is covering.
7) N « Iy (L) o o . .
®) P« PU{Mark(h) | h € N} Proof: By induction in the height of the lattice [22].
9 Rp g < Rp g U{(Mark(h),h) | h€ N} Theorem 2 Given dimension® andD’ such thatD' is the
(10) Re.p < Reo,p U{(c, Mark(h)) | (¢,h) € L} result of running MakeCovering o, an aggregate result
(11) end obtained usingD is a subset of the result obtained using
(12)  MakeCoveringP) D'
13) end
§l4gend Proof: Follows easily from Lemma 1 [22].

All steps in the algorithm are expressed using standargemma 1 For the dimensionD" = (¢, <') resulting

relational algebra operators. Theneralworst-case com- 1om applying algorithm MakeCovering to dimensidh=
plexity of join is O(n?), wheren is the size of the input. (C> <), the following holds: Ve, e; € D (e1 <’ ex &
However, because the input to the algorithm are hierarch‘ggl < e2) (thgre Is a path_betwe_en any two or|g|na| dimen-
definitions, the complexity of the join in the algorithm will $1on values in the new dimension hierarchy iff there was a
only be O(nlogn). Thus, all the operators used can bePath between them in the original hierarchy).

evaluated in time)(n log n), wheren is the size of the in-  proof: By induction in the height of the lattice [22].

put. TheMark operation can be performed #(1) time. . . . .
The inner loop of the algorithm is evaluated at most onc%,Ne see that the original values in the hierarchy are still

for each link between categories, i.e., at m&t2 times inked to exactly the same original values as before, as
wherek is the number af categories (if all categories aretated by Lemma 1, although new values might have been
directly linked to all others). Thus, the overall big-com- msgrted m-betwegn the original values_. Thus, when eval-
plexity of the algorithm isO(k?nlogn), wherek is the uating a query using the_ transformed hierarchy, the_ results
number of categories and is the size of the largest par- for the original values will be the same as when using the

ticipating Rc, ¢, relation. The worst-case complexity will "iginal hierarchy.
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Assuming only the original result set is desired, result§1) procedure MakeOnto{)
for the new values must be excluded, which is easy t¢2) for eachC € Desc(P) do
accomplish. The new, “internal” values are marked with(3) begin
“mark = internal”, whereas the original values have “mark(4) N+ P\Up(Rc,p)
= original”. In order to exclude the new, internal values(5) C + CU{Mark(p) | p € N}
from the result set, the equivalent of an SQL HAVING (6) Re.p < RepU{(Mark(p),p) | p € N}
clause condition of “mark= original” is introduced into (7) MakeOnto()
the original query. (8) end

(9)end
4.2 Non-Onto Hierarchies
Following the reasoning in Section 4.1, we find that the

The sc_acond alg_orithm renders a_II mappings in hierarchie@vera” big© complexity isO(k2n logn), wherek is the
onto, i.e., all dimension values in non-bottom categoriesmper of categories andis the size of the largest partic-
have_ children. This |s_ensured by inserting pla_lceholdervabating Re, ¢, relation. However, the complexity will be
ues in lower categories to represent the childless value@(kn log n)’ for the most common cases.

These new values are marked with the original values, mak- The MakeOnto algorithm inserts new values iftcto

ing it possible to map facts to the new placeholder ‘_’a|ueénsure that the mapping frofi to P is summarizable.
instead of to the original values. This makes it possible t\gain, this means that the cost of materializing results for
only map facts to the bottom category. C will be higher for the transformed hierarchy than for the
Example 7 In the Diagnosis dimension, the “Lung cancer”original. However, if the new values were not inserted, we
diagnosis family (ID = 14) has no children. When the al-would have to materialize results fét, and perhaps also
gorithm (given shortly) reaches the Diagnosis Family catehigher categories, as well &. At most one value is in-
gory, it inserts a placeholder valuel@) into the Low-level ~ serted inC' for every value inP, meaning that the extra
Diagnosis category, representing the “Lung cancer” diagcost forC'is never greater than the cost of materializing re-
nosis, and links it to the original value. Facts mapped t&ults forP. As before, this is a very unrealistic scenario, as
the “Lung cancer” value may then instead be mapped to thécorresponds to the case wherevalues inP have chil-
new placeholder value. Using this technique we can ensuf§en inC. In most cases, the extra cost forwill be a
that facts are mapped only to the Low-level Diagnosis Catesmall percentage of the cost of materializing resultsior
gory. A graphical illustration of the transformation is givenand the potential savings will be even greater because pre-
in Figure 4. The bold-faced valuel 4 is the new value in- aggregation for higher-level categories may be avoided.

serted, and the thick line between 14 dridh is the new As before, the correctness argument for the algorithm
link inserted. has two aspects. First, the mappings in the hierarchy should

be onto upon termination. Second, the algorithm should

O 0 only make transformations that are semantically correct.
The correctness follows from Theorems 3 and 4, below.
/N /N Again, the result set for the original values obtained using
13 12 11 13 12 11 the original hierarchy will be a subset of the result set ob-
‘ M\ ‘ M\ tained using the transformed hierarchy. The results for the
> new values can be excluded from the result set by adding a
14 4 9 10 14 4 9 10 HAVING clause condition.
W | W Theorem 3 Algorithm MakeOnto terminates and the hier-
5 6 L14 5 6 archy for the resulting dimensiaB’ is onto.

Proof: By induction in the height of the lattice [22].
Figure 4: Transformations by MakeOnto y g [22]

_ . Theorem 4 Given dimension® andD’ such thatD' is the
In the algorithm that followsP is aparentcategoryC'  result of applying algorithm MakeOnto tB, an aggregate

is achild category, andV holds the parent values witho  result obtained usind is a subset of the result obtained
children. The algorithm works as follows. Given a cate-singD’.

gory P (initially the T category) in line 1, the algorithm
goes through all categori€sthat are (immediate) descen-
dants ofP (line 2). For eachC, line 4 finds the value®/

in P that havenochildren inC, by “subtracting” the values
with children inC' from the values inP. For each “child-
less” value inN, lines 5 and 6, respectively, insert infba
placeholder value marked with the parent value, and Iinkﬁ 3 Non-Strict Hierarchies

the new value to the original. MakeOnto is then called re-

cursively onC' (line 7). The algorithms terminates when it The third algorithm renders mappings in hierarchies strict,
reaches the category, which has no descendants. meaning that “double-counting” will not occur. Non-strict

Proof: Follows easily from the observation that “childless”
dimension values are linked to new placeholder values in
lower categories in one-to-one relationships, meaning that
data for childless values will still be counted exactly once
in aggregate computations that use the new dimension.

670



O O O O

Diagriosis Diagnosis

Group Group 13 12 1 13 12 11
13 11,12
Set-of Lo

DI Lo Diagnosis ‘ ’ '

lagnosis > Group Diagnosis 14 4 9 1Q 14 4 10

Family Family
Set-of 14 4.9 4,10
| Diagnosis | . i} | | |
1 Family L14 5 6 L14 5 6

Low-level Low-level
Diagnosis Diagnosis

Figure 5: The Diagnosis Dimension Schema and Instance Before and After MakeStrict

hierarchies occur when one dimension value has sevengives the result of applying the algorithm; here, the bold-
parent values. face values and thick lines indicate the values and links in-
The basic ideais to “fuse” a set of parent values into onserted by the algorithm (note that all lines are thick, as no
“fused” value, then link the child value to this new valueoriginal links remain).
instead. The fused values are inserted into a new category In the first call of the algorithm, the three Low-level Di-
in-between the child and parent categories. Data for thagnosis values—*“(low-level) Lung cancer” (L14); “Insulin
new fused category may safely be re-used for computaticslependent diabetes during pregnancy” (5); and “Non in-
of higher-level aggregate results, as the hierarchy leadirgulin dependent diabetes during pregnancy” (6)—are linked
up to the new category is strict. to the three new fused values—"(low-level) Lung cancer”
The fused value is also linked to the relevant parent valf14); “Diabetes during pregnancy, Insulin dependent dia-
ues. This mapping is by nature non-strict, but this nonbetes” @, 9); and “Diabetes during pregnancy, Non insulin
strictness is not a problem, as we prevent aggregate resultspendent diabetes?,(10)—and these are in turn linked to
for the parent category from being re-used higher up in thd.ung Cancer” (14); “Diabetes during pregnancy” (4); “In-
hierarchy. This is done by “unlinking” the parent categorysulin dependent diabetes” (9); and “Non insulin dependent
from its predecessor categories. diabetes” (10). The these latter four values in the Diagno-
The categories higher up are instead reached througiis Family category are un-linked from their parents, as the
the fused category. This means that we can still get rédiagnosis Family category is “unsafe.”
sults for any original category, while being able to apply When called recursively on the Set-of Diagnosis Family
practical pre-aggregation throughout the hierarchy. In prezategory, the algorithm creates the new fused values “Can-
aggregation terms, the “unlinking” of the parent categorieser” (13) and “Diabetes, Other pregnancy related diseases”
means that we must prevent results for including this catg411, 12) in the Set-of Diagnosis Group category. These hew
gory from being materialized—only “safe” categories mayvalues are linked to the values “Cancer” (13), “Diabetes”
be materialized. This should be given as a constraint to th@ 1), and “Other pregnancy related diseases” (12) in the Di-
pre-aggregation system that chooses which levels of aggragnosis Group category, and to tiievalue; and the values
gation to materialize. in the Diagnosis Group category are un-linked from their
We note that the algorithm does not introduce mexe  parents. Note the importance of having avalue: the val-
elsin the hierarchy, only more categories, and that the numies not linked tor are exactly the unsafe values, for which
ber of “safe” categories in the result is the same as the nunaggregate results should not be re-used.
ber of original categories. This means that the complexity ) _ ) )
of the task of selecting the optimal aggregation levels to The algorithm assumes that all paths in the dimension

materialize is unaffected by the algorithm. hierarchy have equal length, i.e., all direct links are from
children to their immediate parents. This is ensured by the

Example 8 The result of running the algorithm on the Di- makeCovering and MakeOnto algorithms. In the algorithm
agnosis dlmen5|0n is seen in Figure 5. Bec_ause o_f the NOfivat follows,C is achild categoryP is aparentcategory(
strictness in the mapping from Low-level Diagnosis to Di-is agrandparentategory,V is thenewcategory introduced
agnosis Family, and from Diagnosis Family to Diagnosigg hold the “fused” values, arid denotes natural join.
Group, two new category types and the corresponding cat- The algorithm takes a catego€y (initially the L cate-
egories are introduced. The third picture indicates the ardyory) as input. It then goes through the set of immediate
ment to the algorithm; and, in addition, its dotted lines indi‘parent categorie® of C (line 2). Line 4 tests if there is
cate the links deleted by the algorithm. The fourth picturg,qn-strictness in the mapping fro@i to P andif P has
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any parents. If this test fails, there is no problem as aggre- Following the reasoning in Section 4.1, we find that the
gate results fo® can either be safely re-used or are guaroverall big<®D complexity is O(pnklognlogk), wherep
anteed not be re-used; and the algorithm is then invoked the number of immediate parent and children categories

recursively, in line 20. in the dimension type latticey is the size of the largest
: mapping in the hierarchy, aridis the maximum number of
8 Fgfggciﬁr; Z%ﬁ?trg g’;) values fused together. For most realistic scenagiesdk
(3) begin are small constants, yielding a lo@(n log n) complexity
; for the algorithm.
(4) if (Ge1 € € (3er ’/\ez < #Pe((;;)g/\e;/e\ de(lp)g ;30 then The MakeStrict algorithm constructs a new categdty
(5) begin 27 and inserts fused values indé to achieve summarizability

for the mapping fromV to P and fromN to G. The al-
gorithm only inserts the fused values for the combinations
that are actually present in the mapping fréhto P. This
means that the cost of materializing results féiis never
higher than the cost of materializing results far This is a
worst-case scenario—for the most common cases, the cost
of materializing results foV will be be close to the cost of
materializing results foP. However, without the introduc-
tion of IV, we would have to materialize results not only for
P, but also forG andall higher-level categories. Thus, the
potential savings in materialization costs are very high.
Considering correctness, the mappings in the hierarchy

(6) N « CreateCategory(2F)

(7)  Ron < {(e1, Fuse({e2 | (e1,€e2) € Rep}))}
(8) N <«<In(Ren)

9 Ry p < {(e1,e2) | e1 € N Aey € Unfuse(er)}
(10) Pred(C) < Pred(C) U{N}\ {P}

(11)  Pred(N) « {P}

(12) for eachG € Pred(P) do

(13) begin

(14) Ry« Ong(Rnp X Rpa)

(15) Pred(N) « Pred(N) U {G}

(16) Pred(P) + Pred(P)\ {G}

88 ﬂ]:keStricW) should bestrict upon termination, and the algorithm should
(19) end only make_t_ransfo_rmatlons that are semantically correct.
(20) elseMakeStrict) More speuﬂcally, it is acceptable that some mappings pe
(21)end non-strict, namely the ones from the new, fused categories
(22)end to the unsafe parent categories thatrid have predeces-

sors in the resulting hierarchy, meaning that aggregate re-

If the test succeeds, the algorithm creates a new fusediilts for these categories will not be re-used.
category. First, an empty categaly with domain2” is The correctness follows from Theorems 5 and 6, below.
created in line 6. The values inserted into this category repA/hen evaluating queries we get the same result for original
resentsetsof values of P. For example. the valuel; 2  values as when evaluating on the old hierarchy. The val-
represents the set consisting of preciskly. Values inC'  ues that are deleted by the algorithm were not linked to any
are then linked to new, fused values, representing their pafiacts, meaning that these values did not contribute to the
ticularcombinatiorof parents inP (line 7). The new values results in the original hierarchy. As all the new values are
are constructed using a Fuse function that creates a distirinserted into new categories that are unknown to the user,
value for each combination d? values and stores the cor- the aggregate result obtained will be the same for the orig-
respondingP values along with it. inal and transformed hierarchy. We do not need to modify

The resulting links are used in line 8 to insert the fusedhe original query.
values into their categoryv, and an “Unfuse” function,
mapping fused values frofW into the corresponding val-
ues, is used in line 9 to map the valuesNnto those inP.
In line 10, N is included into, and® is excluded from, the
sets of predecessors 6f The set of predecessors &fis
settoP inline 11, meaning that the new categd¥yresides
in-betweernC andP in the hierarchy.

For each grandparent categaky the algorithm links

Theorem 5 Let D' be the dimension resulting from apply-

ing algorithm MakeStrict on dimensioR. Then the fol-

lowing hold: Algorithm MakeStrict terminates and the hi-

erarchy for the dimensioR”, obtained by removing unsafe

categories fromD’, is strict.

Proof: By induction in the height of the lattice [22].

Theorem 6 Given dimension® andD’ such thatD' is the

values inN to values inG, in line 14; it includes in  'esult of applying algorithm MakeStrict D, an aggregate

the predecessors d¥, in line 15; and it excludes’ from OPtained using)’ is the same as that obtained usifig

the predecessors @, in line 16, thereby also deleting the Proof: Follows from Lemma 2 [22].

links from P to G from the hierarchy. The exclusion of the Lemma 2 For the dimensio®’ = (C’, <') resulting from

G categories from the predecessorsroieans that aggre- applying algorithm MakeStrict to dimensidn = (C, <),

gate results fo will not be re-used to compute results for the following holds.Ve;,es € D (e € C1 A Safe(Cy) A

theG categories. e; <' es & e; < eg) (there is a path between an original
In the end, the algorithm is called recursively on the newlimension value in a safe category and any other original

category,N. Note that the test foPred(P) # () in line (4)  dimension value in the new dimension hierarchy iff there

ensures that the mapping froNi to P will not be altered, Wwas a path between them in the original hierarchy).

as P now hasno predecessors. Proof: By induction in the height of the lattice [22].
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4.4 Transforming Fact-Dimension Relations

The algorithms from the previous sections may also be ap- (C)ﬁ:ni (gh:ri

plied to the relationships between facts and dimensions. :

The basic idea is to view the facts as the bottom granularity Queries

in the lattice. The inputs to the algorithms then are the facts Query

F, the Rp ¢ tables that describe the mappings from facts Queries Handler

to dimension values, and ti¢ and R¢, ¢, tables that de- Navigationsl Agaregation

scribe the dimension categories and the mappings between —  Queries /\Queries

them. . . . OLAP OLAP OLAP
Only the covering and strictness properties are of con-| e Server Server

cern for the fact-dimension relationships. Ao mapping I T T

from facts to dimension values means that not all dimen-— — >

sion values in the bottom category have associated facts ——— |Navigatona! | %ﬁ%

which does not affect summarizability. The MakeCovering | P22 | Dpata | ~ pata__

and MakeStrict algorithms may be applied to render rela-
tionships summarizable (see [22] for a detailed coverage).

First, facts may be mappetirectly to dimension val- queries that explore the dimension hierarchies and 20%
ues in categories higher than thecategory. This map- gregationqueries that summarize the data at various lev-
ping to values ofmixedgranularities means that not all facts els of detail []_3] Examp|es of navigationa| and aggrega-
will be accounted for when materializing aggregate resultgon queries are “Show me the Low-Level Diagnoses con-
for lower categories. The MakeCovering algorithm rectitained in the Insulin-Dependent Diabetes Diagnosis Fam-
fies this situation. Second, relationships between facts ang” and “Show me the count of patients, grouped by Diag-
dimension values may be many-to-many. This means thabsis Family,” respectively. The navigational queries must
the hierarchy, with the facts as the bottom category, is norbe performed on theriginal MO, while the aggregation
strict, leading to possible double-counting of facts. ThQ]uerieS must be performed on tlnansformedVO. This is
Makestrict algorithm addresses this problem. achieved by introducing an extra “Query Handler” compo-

In the case study, the mapping between patients and dient between the client and the server. The OLAP client
agnoses is of mixed granularity and also many-to-many: gends a query to the query handler, the primary task of
patient may have several diagnoses, each of which whighhich is to determine whether the query is a navigational
may belong to any of the levels Low-Level Diagnosis, Di-query (internal to a dimension) or an aggregation query

Figure 6: Architecture of Integration

agnosis Family, and Diagnosis Group. (involving the facts). Navigational queries are passed to
) one OLAP server that handles the original (navigational)
5 Architectural Context data, while aggregation queries are passed to another OLAP

server that manages the transformed (aggregation) data.

The overall idea presented in this paper is to take unz;. ) ) o9 B9
normalized MOs and transform them into normalized MOZThIS extended architecture Is seen to the right in Figure 6.
The OLAP server for navigation data needs to support

that are well supported by the practical pre-aggregatio imension hierarchies which have non-summarizable prop-

techniques available in current OLAP systems. Queries a i requirement not vet suboorted by manv commer-
then evaluated on the transformed MOs. However, we stifftles. a require y PP y Y

want the users to see only the original MOs, as they refle&lal systems today. However, relational OLAP systems us-

the users’ understanding of the domain. This prompts thté}gh?“ow';'?‘ke schemas [13] t?]re %bﬂeA;OSSl;‘t)epr?]rst t2|s tpre_
need for means of handling both the original and the trand” NI€rarchies, as are some other y » €., My

formed MOs. This section explores their coexistence. perion (Arbor) Essbase_[_ll]. I th? OLAP system avail-
A current. trend in commercial OLAP technology is able does not have sulfficiently flexible hierarchy support,

the separation of the front-end presentation layer from th@M€ solution is to build a special-purpose OLAP server that

back-end database server. Modern OLAP applications co onforms to the given API. This task is not as daunting as

ILmay seem at first because omlgvigationalqueries need

sist of an OLAP client that handles the user interface and be subported. meaning that multdimensional queries can
OLAP server that manages the data and processes que%)s € supp X 9 q

The client communicates with the server using a standar € translated into simple SQL "lookup” queries. I
ized application programming interface (API), e.g., Mi- We note that the only data needed to answer navigational

crosoft's OLE DB for OLAP [16] or the OLAP Council's queries is the hierarchy definitions. Thus, we only need to

MDAPI [19]. The architecture of such a system is given tostore the fact data (facts and fact-dimension relations, in

the left in Figure 6. our model) once, in the aggregational data, meaning that

This separation of client and server facilitates our desirIs,he overall storage requirement is only slightly larger than

to have the user see the original MO while queries are evapioringjust the aggregational data. Navigational queries are

uated against the transformed MO. Studies have shown th%\{aluated on the original hierarchy definitions and do not

gueries on a data warehouse consist of 8igigational need to be re-written by.the query hand]er. .
As described in Section 4, aggregation queries need to
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