
Data-Driven One-to-One Web Site Generation

for Data-Intensive Applications�

Stefano Ceri Piero Fraternali Stefano Paraboschi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
fceri,fraterna,paraboscg@elet.polimi.it

Abstract

A data-driven approach can be fruitfully used
in the speci�cation and automatic generation
of data-intensive Web applications, i.e., ap-
plications which make large amounts of data
available on the Web. We present a multi-level
architecture based on orthogonal abstractions
for the de�nition of the structure, derivation,
navigation, composition, and presentation of
Web sites; then we show how these ingredi-
ents are used in Torii, a tool environment for
the speci�cation and automatic generation of
Web sites, currently developed in the context
of a large Esprit project.

By means of design tools, speci�cations are
collected in a design repository, which is next
used for Web page generation. This dynamic,
data-centered approach opens up opportuni-
ties for personalizations: each user can be
mapped to an individual hypertextual view of
the Web site (called site view), and business
rules may be used to change site views, both
statically and dynamically. We argue that
personalization of Web access (also called one-
to-one Web delivery) is naturally supported
by the proposed data-driven approach, and is

�We acknowledge the support of ESPRIT Project 28771
W3I3, MURST Project Interdata, CNR-CESTIA, and the HP
Internet Philanthropic Initiative.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,

Edinburgh, Scotland, 1999.

at the same time a key ingredient of the Web
applications of the near future.

1 Introduction

The integration between Web applications and DBMS
technology is subject to continuous and fast evolution;
a variety of new technologies are being developed and
brought to the market. Tools like Microsoft's Active
Server Pages, Allaire's Cold Fusion, and many oth-
ers, greatly simplify the implementation of integrated
Web-DBMS sites. However, these technological ad-
vances are not matched by parallel e�orts in data ab-
straction and modeling. Although in the community
of database research it has been widely accepted that
the \Web changes everything" [4], little e�ort has been
devoted so far to adapt data design methods to the use
of the Web as the fundamental data interface.

This paper is concerned with extending the classical
data-centric approach to database application design
by incorporating Web-related concepts into it. This
e�ort can also be seen specularly from the viewpoint
of Web design methods and tools, as an attempt at
making them aware of data design aspects.

This methodological approach is well suited to the
category of data-intensive Web applications, i.e., those
Web sites whose primary purpose is to present a large
amount of content to a variety of possible users. With
respect to traditional database applications, data-
intensive Web sites, have the following di�erences:

� Simpler functional requirements: typically a data-
intensive Web site must o�er a generic user the
possibility to browse a large collection of data, in
a way that ful�lls some application-speci�c goal
(e.g., in electronic commerce, showing to each user
exactly those goods that he will most likely pur-
chase). Sophisticated interaction control is not
normally necessary, because the ow of activities
is determined by the user via browsing.

� Simpler transactional requirements: in most

615

cases, it is su�cient to o�er high-performance
read-only access, and write access is reduced to a
few standard operations on a well-delimited frac-
tion of the data (e.g., in electronic commerce, the
addition of items to the users' shopping cart).

� Focus on interface organization and ease of nav-
igation: users must immediately grasp the way
in which the site is structured, be o�ered a rich
variety of navigation options, and be always con-
fronted with a carefully crafted and appealing pre-
sentation of the information.

� Support of one-to-one Web delivery [11]: each
user must have the impression of interacting with
the application by means of a dedicated inter-
face, speci�cally tailored to his needs and pref-
erences. One-to-one delivery not only requires
identifying users and their preferences, but also
tracking their interaction with the application and
updating the interface dynamically to reect any
improved understanding of the user's needs, typ-
ically by means of reactive mechanisms (such as
the so-called business rules).

� Support of multi-device output generation: with
the availability of the Internet on such diverse
devices as cellular phones and digital television,
content delivery must be automatically tuned to
di�erent output languages (e.g., HTML, HDML
[13], ATVEF [1]) and rendition capabilities.

We claim that current database and Web design
methods and tools are insu�cient for coping with the
development of highly personalized and dynamic data-
intensive Web sites, and that new design abstractions
are in order, supported by adequate tools. This pa-
per is concerned with Torii, a tool environment for the
speci�cation and automatic generation of Web sites 1.
Torii is developed as part of the W3I3 (Web-based In-
telligent Information Infrastructure) Project2, whose
goal is to develop the abstractions, technologies, meth-
ods, and tools to support one-to-one data-intensive
Web applications.

1Torii, an ancient Finnish word, is the signpost that in me-
dieval Scandinavia was used to indicate the Market Place, i.e.
the place in the village were people met to chat and exchange
goods.

2W3I3 is a 3 Million Euro Project of the Esprit IV Frame-
work, sponsored at 50% by the EU. The W3I3 Consortium in-
cludes Politecnico di Milano as technology provider, TXT In-
gegneria Informatica from Italy as software integrator, Digia
(Digital Information Architects) from Finland as responsible of
interface design and exploitation. The W3I3 Consortium also
includes two pilot users with huge Web applications: OTTO
Versand from Germany, the world's largest mail order company,
and KPN Research from the Netherlands, the research branch
of the major telecom company of Holland.

1.1 Related Work

The Torii proposal builds on the vast body of research
that has been devoted to data design techniques, tools,
and methods [3], and to the similar approaches devel-
oped for hypermedia applications [10, 12]. In fact, in
the software industry most of the major data develop-
ment projects are conducted by �rst giving an abstract
representation of the data content (also called a \con-
ceptual schema"), and then mapping such content to a
logical and physical representation [3]. The availability
of an abstract, implementation-independent schema is
useful not only during design, but also for mainte-
nance, quality assessment, and reverse engineering of
data-intensive applications. We expect that a similar,
high-level approach to data design for industrial appli-
cations will soon characterize the development of data-
intensive Web sites. Indeed, several recent projects,
namely Araneus [2], Autoweb [9], WebArchitect [12],
and Strudel [7], have proceeded along this direction.

In particular, Araneus starts from the description
of the content and then derives and/or integrates Web
sites; with respect to Araneus, Torii adds to Web mod-
eling the dimensions of presentation design, user mod-
eling, customization and business rules. Strudel pro-
poses a novel way of developing Web sites based on
the declarative speci�cation of the site's structure and
content by means of queries. In Strudel, the speci�ca-
tion of navigation is not orthogonal to structure and
presentation, because navigable links and index collec-
tions are speci�ed together. An in-depth comparison
of Autoweb, Araneus, and Strudel appears in [5].

1.2 Comparison with Commercial Tools

The Torii system �ts into the broad market of tools
for designing a Web application. We give a concise
classi�cation of them, and indicate their main merits
and limitations.

� Visual HTML editors and site managers (like,
e.g., NetObject's Fusion, Macromedia's Dream-
weaver and Microsoft's FrontPage) concentrate on
HTML production and do not support the inte-
gration of large amounts of data.

� HTML-DB integrators (like, e.g., Microsoft's Ac-
tive Server Pages (ASP) and Cold Fusion) provide
a way to scale the dimension of a site by producing
HTML pages dynamically from database content,
but are implementation-level tools and do not ad-
dress conceptual modeling and site customization.

� Web application generators (like, e.g., Oracle De-
signer 2000 Web Generator and Hyperwave) start
from conceptual modeling and produce the Web
site automatically, but have limitations in the ex-
pressiveness of the concepts available to the de-
signer for structuring a Web site. They do not

616

provide a description of user-oriented site views,
nor business rules.

� Rule-driven Web site generators use rules ex-
tensively for matching content to users. The
most relevant product in this class is Broadvi-
sion (http://www.broadvision.com), which is very
powerful in matching content to users based on
pro�le information, transaction history, session
behavior, and other data. Broadvision does not
support the separation between structural, com-
position, navigation, and presentation aspects,
therefore Broadvision rules apply mostly to con-
tent delivery and not to the other aspects of a
Web site's delivery.

For a thorough review of the state of the practice of
commercial tools for Web design, we refer the reader
to [8].

1.3 Outline of the Paper

The main research objective of W3I3 is to rise the level
of abstraction of a site's speci�cation, by enriching and
refocusing the classical models for database and hy-
pertext design; in Section 2 we will show how Torii
supports the �ve orthogonal dimensions of structure,
derivation, navigation, page composition, and presen-
tation. We will discuss in Section 3 how Torii supports
personalization, by introducing both a declarative ap-
proach, based on data derivation, and a reactive ap-
proach, based on business rules. Then, in Section 4
we will describe the implementation of the Torii sys-
tem, and show that Torii introduces important novel-
ties with respect to the predecessor Autoweb. Finally,
we will discuss in Section 5 some preliminary experi-
ences of use of Autoweb, Torii's predecessor, so as to
justify the most important decisions that were taken
in Torii.

2 Support of Orthogonal Abstractions
in Torii

Modeling Web sites according to the Torii approach
and tools consists of specifying �ve orthogonal per-
spectives: structure, derivation, navigation, page com-
position, and presentation. This multi-level organiza-
tion has been motivated in [5]. We here give emphasis
to the innovative features of the Torii system.

2.1 A Multi-Level Architecture

The Torii architecture is an extension of the classical
multi-level architecture of database systems.

� The Physical Level describes the low-level organi-
zation of data. Torii will use standard relational
technology for implementing this layer, for rea-
sons of availability, standardization and e�ciency.

� The Structural Level describes the high-level or-
ganization of data using the Entity-Relationship
model, with the additional notion of \target",
which describes how concepts should be aggre-
gated within applications.

� The Derivation Level denotes how new concepts
can be derived from the concepts of the structural
schema. It is analogous to the de�nition of views
commonly found in database applications.

� The Composition Level describes how the con-
cepts of the structural schema are mapped to Web
pages. Composition-level constructs, called site
views, group related pages, which ful�ll common
user requirements; they are analogous to di�erent
external schemas of the same database.

� The Navigation Level describes the way in which
relationships among data should be translated
into hypertextual links.

� The Presentation Level is responsible of de�ning
the appearance of Web pages, independently of
the language used for page construction (HTML,
XML, etc.).

All the above levels are associated both with graphic
and textual descriptions: each concept is �rst provided
graphically by using the Torii WYSIWYG interface
and then mapped to its textual form. The complete
XML syntax of Torii models can be found in [6], while
a preliminary description of the user interface is given
in [14]. We next describe each level separately, except
the physical level, which is automatically generated by
the Torii system.

2.2 Structural Model

The structural model of Torii de�nes the organization
of the structured data which is used by the applica-
tion; it is independent from the data models used by
the data sources, where such content is stored. The
model is based on the classical Entity-Relationship
model, and uses the concepts of entity, attribute, and
relationship. All relationships are binary and have no
attributes. The model also supports classical general-
ization hierarchies. Properties with multiple or struc-
tured values constitute components and correspond to
the classical part-of relationship. Each entity instance,
or object, has an object identi�er, and each relation-
ship and component has cardinality constraints (min
and max values). In addition, concepts of the struc-
tural model are clustered into targets; each target rep-
resents an application object of the real world, that
may be represented by means of several concepts of
the structural schema.

Torii o�ers two important prede�ned targets, Pro-
�le and Metadata, whose structure is described by
means of the Torii structural model. The Pro�le target

617

contains information regarding users and groups. For
each user, we collect identi�cation information (identi-
�er, email address), login history, group membership,
and trace information (the URLs of pages accessed at
given times). Groups are associated to site views, i.e.,
to collections of pages which constitute a Web site.

<TARGET id="Profile" entryEntity="User">
<ENTITY id="User">
<ATTRIBUTE id="UID" type="Number"/>
<COMPONENT id="Trace" minCard="0" maxCard="N">
<ATTRIBUTE id="URL" type="Url"/>
<ATTRIBUTE id="TraceTime" type="Time"/>

</COMPONENT>
...

</ENTITY>

<ENTITY id="Group">
...

</ENTITY>
</TARGET>

Pro�les can be specialized for each application con-
text. For instance, a specialization of the entity User
in the context of electronic commerce is indicated be-
low. Customers provide their name, age, sex, birthday,
and purchase preferences, and are classi�ed by the sys-
tem (e.g., according to the wealth of their district).
The system tracks automatically their last purchases
(at most ten).

<ENTITY id="Customer" superEntity="User">
<ATTRIBUTE id="Name" type="String"/>
<ATTRIBUTE id="BirthDate" type="Date"/>
<COMPONENT id="PurchasePreferences" minCard="0"

maxCard="10">
<ATTRIBUTE id="ProductType" type="String"/>
<ATTRIBUTE id="Rank" type="Number"/>

</COMPONENT>
...

</ENTITY>

In a similar manner, the Metadata target enriches
objects with information concerning their creator, the
modi�cation and usage pattern, their validity, and pos-
sibly some user or group-speci�c access right speci�-
cation. Also in the case of metadata, it is possible
to introduce specializations to reect the needs of a
speci�c application. Metadata are reachable from the
concepts of the structural schema by means of an im-
plicit Meta relationship, that is assumed between each
concept and the corresponding meta-information.

2.3 Derivation Model

Derivation is the process of de�ning as many concep-
tual views of the data as needed to support the various
interfaces required by the di�erent users of the Web
application. Torii permits the de�nition of derived at-
tributes, components, relationships, and entities.

The derivation is based on Torii-DL (Derivation
Language), whose syntax and semantics are de�ned
in [6]. The language supports path expressions, used

for traversing relationships and for accessing compo-
nents. A prede�ned Self variable represents the entity
for which a derived element is being de�ned. An ISA
predicate allows checking for membership of instances
in a sub-entity.

Path expressions, variable declarations and the
management of components are inspired by OQL, em-
bedded within a restricted syntax that permits an ef-
�cient and simple translation to the underlying rela-
tional model. Each derived concept is translated into
a view on the relational database managing the data.

In the example below, a derived attribute is added
to entity Book, to add a \New" icon to the books which
have been introduced into the system by less than 45
days.

<ATTRIBUTE id="NewIcon" type="Image"
value="'icons/new.gif'

where Self.Meta.Created > Sysdate-45"/>

Another derived attribute presents a Special O�er
if the user accessing the data is member of the Best
Customers group3.

<ATTRIBUTE id="Special Offer" type="Number"
value="Price*0.8

where User.OfGroup.Name='Best Customers'/>

2.4 Composition Model

Composition is the process of specifying the content
of each page; pages may be associated to an entire
target, or to a speci�c entity within a target, or to
a speci�c component within an entity. In order to
preserve coherence between the structural and compo-
sition schemas, a page cannot arbitrarily intermix in-
formation coming from multiple targets; however, by
means of derivation it is possible to extend the in-
formation content of a target with derived attributes,
components, and relationships, computed on the basis
of other related targets.

Conversely, each concept may be described by
means of multiple pages; this feature allows the de-
signer to represent the information on the same real-
world object in di�erent ways for serving the needs
of di�erent users. A complete personalized view of
the application (called a site view) is constructed for
a class of users, by de�ning a set of user-speci�c pages
and the connections between them. The same concept
of the structural model can be mapped to multiple
pages belonging to the same site view.

The de�nition of a page for a target, entity, compo-
nent, or collection of the structural schema requires:

3In both examples of derived attributes, the value is null
if the predicate is false; we anticipate that Torii' style sheets,
describing the presentation aspects of a given Web page, auto-
matically omit to generate those regions corresponding to null
attributes, and rearrange automatically the surrounding regions.
Thus, derived attributes whose value is null are automatically
\removed" from a given page.

618

� The mapping between structure and page con-
tent. By default, all attributes, components, and
relationships of a given target, entity, or compo-
nent are included into the page (including the de-
rived ones), but the designer may explicitly ex-
clude some of them to tailor the content of a page
to the requirements of a class of users.

� The choice of the collections to be included in the
page. This aspect is discussed in Section 2.5.2.

� The choice of the pages that are reachable from
the page currently being de�ned, by means of re-
lationships or components. This process is recur-
sive, and is completed when all page references
are resolved.

All of the above steps are optional and have default
rules; in this way, composition modeling can be en-
tirely skipped, e.g., for Web applications that present
a single site view, o�er a single page for each concept
of the structural model, and do not need any form of
personalization.

2.5 Navigation Model

Navigation is the fundamental access paradigm of Web
applications: pages are visited by following links con-
necting anchors to destination pages. A fundamental
assumption of Torii is that most navigable links be-
tween pages in data-intensive Web sites correspond to
conceptual connections in the structural model, i.e., re-
ect the semantic organization of the site expressed in
its structural schema; these are called contextual nav-
igations, to denote the fact that the navigation occurs
from a given object to a related object in the given se-
mantic context. However, some other non-contextual
navigations may occur, which enable the user to ac-
cess other objects regardless of the current semantic
context. Coherently with this assumption, Torii navi-
gation modeling requires the speci�cation of two com-
plementary, but orthogonal, aspects: object traversal
and non-contextual data access.

2.5.1 Object traversal

Object traversal speci�es how relationships and com-
ponents of the structural schema are used to navigate
from one concept to a related concept. Navigation se-
mantics is straightforward when moving from one page
to exactly another page, e.g., following a one-to-one re-
lationship. However, in many cases Torii applications
need to support one-to-many navigation, e.g., from an
entity to the elements of a component, or to a set of
entities connected by an n-ary relationship.

For the sake of abstraction, in the following we call
navigable container any set of related items that must
be navigated as a result of a user request. The opera-
tional semantics of container navigation is de�ned by
the designer, who establishes the navigation mode of

the container by considering �ve independent dimen-
sions:

� Filtering: enables the de�nition of �lter predicates
that select a subset of the objects of the container.

� Indexing: presents representative information of
each selected element of the container within an
index, enabling a further selection by the user.

� Showing: indicates how many selected objects are
presented on the same page.

� Sorting: de�nes the order in which the selected
objects of the container are presented.

� Browsing: indicates the possibility of scrolling
from one element of the container to another one,
e.g., to the next or previous one.

By assembling di�erent values for the above dimen-
sions, the designer customizes the navigation modes
which are most suitable for the application. In addi-
tion, Torii supports a rich collection of prede�ned nav-
igation modes which correspond to the choices along
the above dimensions which are most commonly used
together:

� Index, with two variants of location (detached and
embedded); it o�ers no browsing. A detached in-
dex may have a �lter, producing the �ltered in-
dex mode, also without browsing. The �lter is
retained for repeated searches.

� Guided tour, which presents the objects in a se-
quence which can be browsed using all the avail-
able browsing commands. A variant, the indexed
guided tour, adds a detached index, so as to en-
able an initial jump into an arbitrary position of
the sequence.

� Show all, which presents the elements of a con-
tainer contiguously, one after the other, either em-
bedded in the same page (embedded show all) or
detached in a separate page (detached show all).

The default modes are summarized in Table 1; when
the designer does not provide a navigation mode for a
container, the mode detached index is the default nav-
igation mode, except for components, whose default is
the embedded show all mode.

Figure 1 shows the pages that correspond to �ve
di�erent ways of navigating the relationship between
an author and his books. Figure 1.a illustrates the de-
tached index mode: by clicking on the AuthorToBook
link, an index of books is presented and after select-
ing one entry, a speci�c book is displayed. Figure 1.b
illustrates the guided tour mode: by clicking on the
AuthorToBook link, the �rst book (in descending or-
der of year) is shown and commands are available to

619

Sorting Filtering Indexing Showing Browsing

Detached index Yes No Detached One No
Filtered index Yes Detached Detached One No
Embedded index Yes No Embedded One No
Guided tour Yes No No One Yes
Indexed guided tour Yes No Detached One Yes
Show all Yes No No All No
Show random No No No All No

Table 1: Synopsis of the most common navigation modes
scroll the books of the same author. Figure 1.c il-
lustrates the �ltered index mode: by clicking on the
AuthorToBook link, a form is presented in a separate
page to �lter the books to be seen (by publisher and
year), then an index of the books that satisfy the �lter-
ing condition is presented from which a speci�c book
can be accessed. Figure 1.d illustrates the detached
showall mode: by clicking on the AuthorToBook link,
all books are presented together in a new page. Finally,
Figure 1.e illustrates the embedded showall mode: all
books are presented together on the same page of their
author.

2.5.2 Non-contextual Data Access

Collections are sets of objects which are meaningfully
grouped together; they can be collectively accessed
from a user regardless of the current context 4. Col-
lections can be used to access a Torii application from
\outside" (e.g., from the home page); however, they
can also be used to move freely within an application.
For instance, when a page represents a speci�c course,
the page can include the collections of all courses, of
the o�ered degrees, or even of the services o�ered by
the university. A collection could enclose advertising
material reachable from a given page but not related
to the page's content.

Enclosing a collection in a page means to add a nav-
igation option anchored to the collection's name. If the
collection has a singleton element, that element is im-
mediately shown after activating the link. Otherwise,
the collection acts in the same way as a container, and
the same mechanisms described for object traversal
are applicable for selecting and reaching individual el-
ements of the collection from the collection's name.
Torii collections can be hierarchically structured to
form collections of collections, and their member ob-
jects may be de�ned intensionally, i.e., by means of
Torii-DL expressions, or extensionally, i.e., by explicit
enumeration.

2.6 Presentation Model

Presentation is concerned with the look and feel of
Web pages, in particular with the design of the gen-

4In hypertexts and hypermedia, collections are also called
\indexes"; we avoid this term which is already quite overloaded.

eral page layout, with the placement of speci�c pieces
of information on the page, and with the selection of
graphical resources like backgrounds, icons and anima-
tions.

The basic unit of presentation is the page; each page
is associated to one or more style sheets, each specify-
ing a di�erent way of presenting the page instances
on the screen. Style sheets are formally expressed in
XML and can be de�ned visually by means of suitable
WYSIWYG tools.

The style sheet language contains the following el-
ements:

� A sublanguage to de�ne metric spaces, i.e., re-
gions of the screen which can host the presenta-
tion of a page. Presently, such regions are bidi-
mensional, but the style sheet language is open to
the description of multidimensional metric spaces.

� A sublanguage to de�ne the internal structure of
screen regions. Such language is based on an ex-
tended notion of grid, enabling overlapping re-
gions and exibly de�ned multispan regions.

� A sublanguage to de�ne presentation panels, i.e.,
the content associated to each screen region. Pan-
els are recursively constructed from atomic ele-
ments, which permit the insertion into a page of
either language-dependent pieces of content (e.g.,
HTML text), or of content extracted from the
database (e.g., an attribute, a component, or an
outgoing relationship). If the content of a given
conceptual element is null, the corresponding re-
gion is not generated, and surrounding regions are
automatically rearranged. The goal of this sub-
language is to allow the designer to de�ne panels
at a varying degree of granularity and complete-
ness, to enable the construction of reusable style
sheet libraries.

A default page style is generated for each page,
based on a very simple layout. The screen is sepa-
rated into �ve prede�ned regions by means of a grid.
The upper region contains the page header; the left
region contains icons enabling non-contextual naviga-
tion; the two regions immediately below the header
contain icons enabling contextual navigation, respec-
tively on components and relationships; �nally, the

620

Author To books

Name S. Ceri
Affilation Politecnico
Home: http:www.elet.polimi.it/~ceri

Index of books of S. Ceri Book To Author

Title Designing Database Applications With
 Objects and Rules :The Idea Methodology

Author To books

Name S. Ceri
Affilation Politecnico
Home: http:www.elet.polimi.it/~ceri

Author To books

Name S. Ceri
Affilation Politecnico
Home: http:www.elet.polimi.it/~ceri

Author To books

Name S. Ceri
Affilation Politecnico
Home: http:www.elet.polimi.it/~ceri

- The Art and Craft of Computing
- Active Database Systems :
 Triggers and Rules for Advanced
 Database Processing
- Designing Database Applications With
 Objects and Rules :The Idea Methodology

Search book of S. Ceri

Cover

Book To Author

Title Designing Database Applications With
 Objects and Rules :The Idea Methodology

Cover

Title Designing Database Applications With
 Objects and Rules :The Idea Methodology

Cover

Book To Author

Title
Year

Submit Reset

Books of S. Ceri

Author

a)

b)

c)

d)

e)

Title Designing Database Applications With
 Objects and Rules :The Idea Methodology

Cover

Title The Art and Craft of Computing

Title Designing Database Applications With
 Objects and Rules :The Idea Methodology

Name S. Ceri
Affilation Politecnico
Home: http:www.elet.polimi.it/~ceri

Cover

Figure 1: Examples of Navigation Modes

621

Figure 2: The Torii Presentation Designer

lower right region occupies most of the page and con-
tains the actual content extracted from the database.
Figure 2 shows the interface of the style sheet editor
operating on the default style. The prede�ned pan-
els are personalized on the speci�c entity by supplying
entity-speci�c graphical resources (icons, banners).

Various languages (HTML 3.2, HTML 4, VRML,
ATVEF [1], HDML [13], etc.) can be used to imple-
ment the presentation pages. Torii provides optional
language-dependent attributes, which can be associ-
ated to the elements of a style sheet to improve the
presentation in a speci�c language.

3 One-to-One Delivery

One-to-one delivery indicates the ability of personal-
izing a Web site so as to o�er each user a \dedicated
view" of the site. Personalization in Torii occurs at
three levels.

� At the composition level: the designer builds site
views suitable for given groups of users. The user,
when connecting to the Web site, provides enough
information in order to be classi�ed as member of
a given group, and consequently sees a given site
view.

� At the derivation level: the designer de�nes in-
tensional concepts (e.g., attributes, components,
collections) whose de�nition may depend on user-
speci�c data and metadata. In this way, cus-
tomization is declaratively speci�ed by the de-
signer, and then the runtime page generator com-
putes and presents the information speci�c to a
given user.

� At the business rule level: the designer writes
business rules to handle personalization. Typi-
cally, business rules manipulate user-speci�c in-
formation, and this results in a change of the site's
organization or presentation.

As we have already discussed the possibility of building
distinct site views for each group of users, we concen-
trate on the remaining two options, which are the most
innovative.

3.1 Declarative Personalization

Pro�le data can be used to customize the site in a
declarative way. To this end, the content of derived
concepts can be de�ned in terms of the pro�le data of
the speci�c user who is accessing the site. For exam-
ple, in an electronic commerce site, the SpecialO�ers
collection can be tailored to the purchase preferences
of the user, stored in the pro�le data of the entity Pur-
chaser. To do so, it is su�cient to de�ne a derivation
query that looks up user pro�le data to select matching
products among those currently discounted, as follows:

<COLLECTION id="SpecialOffers" range="Product"
value="Product as P

where P.Type in
User.PurchasePreferences.ProductType

and P.Discount > 0.2"/>

Customization takes place automatically by includ-
ing the above collection in a page visible to users of
type Purchaser. If the query fails (e.g., because the
user has no known purchase preferences or because
there is no special o�er matching his preferences), then
no collection is shown; if the derivation query succeeds,
the right o�ers are automatically included in the pages
seen by the individual user.

As another application, consider the addition of a
collection of items based on the shopping history. As-
sume that certain products have high resale potential
(e.g., books, magazines, CDs); then, when one such
item is part of the purchase history of a given user,
we collect in the PotentialResales collection all items
of the same category which were added to the site in
the last thirty days. The collection can then be high-
lighted with an attractive presentation that indicates
the new releases of products belonging to the user's
shopping history.

<COLLECTION id="PotentialResales"
range="Product"
value="Product as P

where P.Category in
User.LastPurchase.ProductCategory

and P.ProductResalePotential = 'Y'
and P.Meta.Created > Sysdate - 30"/>

Even more simply, personalization can take place
by means of derived attributes whose value is linked
to personal properties of the user; e.g., the following
WelcomeMessage is displayed only on the user's birth-
day. Style sheets may associate to the welcome mes-
sage any kind of visualization, generated only if the
attribute is not null.

<ATTRIBUTE id="WelcomeMessage"
value="'Special welcome in your birthday!'

where User.Birthday = Sysdate"/>

622

3.2 Business Rules

Business rules are speci�ed according to the well-
known event-condition-action paradigm: they are trig-
gered by a given event, once triggered the condition is
considered, and if the condition is true then the action
is executed. Rules have tuple-level granularity, there-
fore each elementary data change event is followed by
the triggering of the rules related to it. Rules triggered
by the same event may be prioritized; a priority is a
positive number, and higher numbers denote higher
priorities.

Events considered by rules are classi�ed as click-
stream and data change events. The former include
the start and end of a session and each new page ac-
cess. When the event is a new page being accessed, the
event may be speci�ed as relative to a speci�c entity,
denoted by its name.

Conditions evaluate predicates or queries over the
database. The condition is satis�ed if the predicate is
true or the query result is not empty; bindings pro-
duced in the evaluation of the condition are available
for the execution of the action. Conditions may be
missing, in which case the action is always executed.
In the evaluation of conditions, special variables are
associated to the triggering event. In particular:

� When the event is a clickstream event, the vari-
able User denotes the user who performed the
clickstream action.

� When the event is a page access, a variable asso-
ciated to the event is bound to the given entity
instance being accessed.

� When the event is a data change, variables Old
and New denote, respectively, the values of the
entity instance before or after the operation.

Actions performed by rules include adding or drop-
ping elements from collections, executing simple data
updates, sending mail to users or assigning them a
given site view.

We next present several examples of business rules,
classi�ed according to the speci�c application being
performed by them. A precise characterization of the
syntax and semantics of rules can be found in [6].

3.2.1 Rules for User Classi�cation

These rules are focused on assigning a given view to
the current user. The condition is typically a predicate
on the current user; the action is an assignment of the
(current) site view. Rules are executed in priority or-
der, but as soon as one of them assigns a site view
to the current user, this value cannot be further up-
dated within the session. The two rules below assign
suitable site views to users who classify respectively as
kids or as frequent purchasers; the former criterion is
predominant, as indicated by the rules' priority.

<RULE id="ClassifyKid">
<EVENT eventType="SessionStart"/>
<CONDITION predicate="User.Age < 12"/>
<ACTION action="Assign(SiteView,'SV-KIDS')"/>
<PRIORITY value="100"/>

</RULE>

<RULE id="ClassifyFrequent">
<EVENT eventType="SessionStart"/>
<CONDITION

predicate="User.LastLogin - Sysdate < 10"/>
<ACTION action="Assign(SiteView,'SV-FREQ')"/>
<PRIORITY value="50"/>

</RULE>

The advantage of using business rules instead of a
static grouping of users and assignment of site views
to groups lies in the higher dynamicity and ease of
evolution.

3.2.2 Rules for Managing User-De�ned Col-

lections

Business rules may be used for managing user-speci�c
information, so as to increase the information about
the user and thereby enable current or future person-
alizations. The following rule adds to the user-de�ned
collection User.VisitedBook the book currently being
visited.

<RULE id="AddToVisitedBooks">
<EVENT eventType="newpage(Book as B)"/>
<ACTION action="add(User.VisitedBooks,B)"/>

</RULE>

The following two rules add to (drop from) the col-
lection Group.Chatline, associated to each group, the
user who is starting (ending) a session. On the basis
of this information, newsgroup management software
may be used to enable conversation among these users
so as to facilitate their on-line exchange of information
and mutual advice about possible purchases.

<RULE id="AddToActiveUsers">
<EVENT eventType="SessionStart"/>
<ACTION action="add(Group.Chatline,User)"/>

</RULE>

<RULE id="DropFromActiveUsers">
<EVENT eventType="SessionEnd"/>
<ACTION action="drop(Group.Chatline,User)"/>

</RULE>

3.2.3 Rules for Pushing Information to the
Users

A typical example of push technology in electronic
commerce is concerned with providing a user with in-
formation about new purchase opportunities. The fol-
lowing rule reacts to the insertion of a new entity Book
by sending a message to all users who are interested
in the book topics, provided that they accept e-mail
noti�cations.

623

<RULE id="NewRelevantBook">
<EVENT eventType="Insert(Book)"/>
<CONDITION
query="user as U where U in new.Topics.InterestedIn

and U.Solicitable = 'Y'"/>
<ACTION
action="SendMsg(To:U.address,

Text:'This book is now available in our
electronic store:'+new.Title)"/>

</RULE>

3.2.4 Rules for Metadata Management

Although less likely, rules may as well change meta-
information 5. For instance, the following rule incre-
ments the number of visitors of the pages of given
books.

<RULE id="CheckDBTextbooks">
<EVENT eventType="newpage(Book as B)"/>
<CONDITION

predicate="B.Gender = 'Database Textbooks'"/>
<ACTION action="Increment(B.Meta.Visitors)"/>

</RULE>

4 Architecture

The architecture of the Torii system has been con-
ceived to meet the following goals:

� Runtime performance: the system must be able
to support high loads.

� Evolvability: due to the inherent dynamicity of
the Web standards and technologies, the system
architecture must facilitate product evolution.
The basic requirements are the porting to di�er-
ent software platforms (Microsoft IIS/ASP, Java
servlets), code generation in di�erent Web lan-
guages (HTML 3 and 4, XML, ATVEF, HDML),
and support for data feeds from heterogeneous
legacy databases.

� Adherence to open and commercial standards: to
capitalize on existing software and reduce devel-
opment and maintenance e�orts, the architecture
is based on well established architectural, data
storage, and content formatting standards (SQL,
XML 1.0 [16], DOM [15], Java and Corba 2.0).

The experience with the Autoweb system proved in-
adequate with respect to most of the above objectives:

� Autoweb has a monolithic CGI-server structure,
with an active process managing all the phases
of page generation. The runtime engine does not
bene�t from data integration and parallelization
capabilities provided by industrial platforms (e.g.,
application servers).

5In principle, business rules can change arbitrary informa-
tion, including the data content, but this application is not en-
visioned by the users of the W3I3 Consortium.

Design layer

Pre-Runtime layer

Runtime layer

Torii Presentation
DesignerTorii Site Designer

Template generator
(XSL processor) Pre-processor

Runtime

Commercial scripting
engines

Runtime data
retrieval classes

(within Web server)

Client
(browser)
requests

HTML/XML/... page
(generated on
client request)

DB

Application data
Metadata

Location data
Profile data

Page
templates

Expanded
style sheets

Style
sheets

Conceptual
schema

Figure 3: Architecture of the Torii system

� Service requests are serialized by the Autoweb
server, which strongly limits performance for
heavily loaded systems.

� The monolithic structure results in a tightly in-
tegrated piece of software, which proves di�cult
to manage in view of possible evolution of the
design methodology, layout generation strategies,
and underlying technologies.

� Autoweb caches output pages to enhance the run-
time performance; this technique must be recon-
sidered in a scenario in which pages are personal-
ized on a per-user or a per-group basis.

Due to these observations, the Torii system is based
on a completely di�erent architecture, illustrated in
Figure 3. Generally speaking, the Torii architecture
consists of three main layers:

� The design layer includes the tools for modeling
Web applications; the output of the design layer
is a Torii application, coded in the Torii modeling
language.

� The pre-runtime layer comprises a chain of code
generators that transform the Torii application
into an intermediate representation suitable for
processing on top of commercial Web-database
systems.

� The runtime layer consists of an interpreter for
converting page templates into actual application
pages. The main functionality of the runtime
layer is to merge application data into page tem-
plates to obtain the fully instantiated �nal appli-
cation pages.

624

In addition, the Torii architecture includes a repos-
itory storing the following data:

� Application data: the actual content delivered
by the application to the users. It is fur-
ther subdivided into structured application data
(e.g., database tuples, valid XML documents),
and semi-structured and unstructured application
data (e.g., image �les, HTML pages).

� Metadata: information about the conceptual
schema of the application, as de�ned by the con-
ceptual design.

� Location data: information about the mapping
between the Torii conceptual schema and the
physical data structures that host the application
data (e.g., external databases).

� Pro�le data: information about users and groups,
used to customize a site. User data are managed
according to privacy legislation and must be dis-
closed to owners on demand.

4.1 The Design Tools

The design layer consists of two major components:

� Torii Site Designer: permits the de�nition of a
Torii application and manages a project reposi-
tory containing the schemas of the de�ned Torii
applications.

� Torii Presentation Designer: deals with the spe-
ci�c aspect of presentation speci�cation, by let-
ting the designer de�ne in a visual way presenta-
tion models and style sheets to be used in a Torii
application (see Figure 2).

>From the architectural standpoint, the Torii De-
sign Environment is a multi-user client server applica-
tion, sitting on top of a project repository structured
as a collection of DOM objects. The user interface
permits the visual editing of Torii schemas, which are
translated in real-time into a DOM representation, so
that both the graphical and XML speci�cations are
available to the designer. A dual-interface to persis-
tence permits to store DOM objects either as XML
�les or database objects.

4.2 The Pre-Runtime and Runtime Environ-
ments

The output of the design tools is the input of a chain
of transformations operated by the Torii Pre-Runtime
and Runtime environments, which ends with the ac-
tual application page in the chosen delivery language.

The transformation process is clearly divided into
two steps:

� The Pre-Runtime environment pre-processes the
Torii presentation styles by unfolding all the im-
plicit information (e.g., type information about
the concept to which the style sheet is applied) to
obtain a fully instantiated, language independent,
speci�cation of the layout, which is then turned
into a language and platform dependent page tem-
plate. Such template is complete, except for the
actual data content, which is replaced by suitable
calls to the runtime data retrieval classes.

� The Torii data retrieval classes are installed in a
commercial engine, which is used to merge appli-
cation data into templates to produce the actual
page sent to the browser.

The Pre-Runtime processors are coded as a library
of Java classes which permits the unfolding of presen-
tation styles based on application metadata, plus a
set of XSL programs (style sheets, in the XSL termi-
nology) which map pre-processed XML presentation
styles into code in the language of choice. With this
architecture, adding a new output language does not
require coding a new compiler, but simply writing a
new XSL program that does the mapping.

The page generation process is illustrated in Figure
3. It is worth noticing that the architectural solutions
adopted are exible enough to guarantee the e�ortless
recon�guration of the page generation process, which
is the base for tracking technology changes.

The requirement for performance clearly pushes in
the direction of anticipating as much processing as pos-
sible before runtime, but also clashes with the need of
serving content dynamically and on the base of the
knowledge dynamically accumulated about the user.
This tension is the major architectural challenge faced
in Torii, and we have solved it by carefully designing
the distribution of responsibilities among the di�erent
components of the model and of the system.

5 Experiences

Torii is at its infancy, but the predecessor Autoweb
system is operational since the end of 1996 and has
been used in several projects, both in the industry and
in university.

These experiences have proven that a data-driven
approach to Web Site design is very useful, o�ering
the following advantages:

� The modeling concepts of the structural model
constitute a design notation which can be used
also by non-technical people, like graphic design-
ers and content producers.

� Data quality improves, because the Web content
needs to adapt to a rigid format; this is especially
important when content is highly volatile, as in
distance learning applications.

625

� The approach yields to a dramatic reduction of
prototyping times; once the structure schema is
in place, a default Web site is already ready to
run.

� Maintenance and evolution are dramatically im-
proved, because changes in the structural model
can be automatically or semi-automatically prop-
agated to the implementation. This bene�t is fun-
damental, because even model-driven design does
not always fully reect requirements, and require-
ments change during or after application delivery.

� The decision to provide a high-level model of pre-
sentation, which is automatically translated into
physical pages, enforces presentation consistency
and coherence.

Further experiences of use will be collected through
the development of two pilot applications of the indus-
trial partners of the W3I3 Consortium. Otto Versand,
which already makes a fraction of its revenues through
a large Web site o�ering a selection of its mail-order
catalogs, will experiment the use of Torii to add one-
to-one functionality and more e�ective management
and evolution facilities to its application. KPN Re-
search, which manages HetNet, a Web-based network
with about one million subscribers in the Netherlands,
will use Torii to develop an application acting as an in-
termediary between service providers and customers,
and to o�er personalized access and facilitated service
location to HetNet subscribers.

6 Conclusions

In this paper, we have argued that data-centric ab-
stractions - already quite popular in database design -
are applicable, with very strong potentiality, to data-
intensive Web applications. The rationale of this ar-
gument is that data-intensive Web applications have
a very simple control pattern (e.g., if compared to the
nontrivial applications of databases); as such, a fully
automatic development of the Web application is quite
feasible, even from very rich speci�cations. We have
also shown the very many orthogonal dimensions along
which such speci�cations are needed in order to de-
velop e�ective Web sites for a variety of users, with
di�erent needs.

This approach presents substantial advantages, be-
cause implementation and prototyping are immedi-
ate, and operation, maintenance and reengineering are
greatly facilitated. In addition, the availability of a
data-centric repository storing all information about
Web site generation, together with the data content,
opens up new opportunities to one-to-one Web gener-
ation, in the form of data derivations or of business
rules operating on the repository itself. The power
and novelty of applying both declarative queries and

business rules for handling personalizations has been
shown by means of several examples.

Presently, the design of the ToriiSoft Environment
is completed, and the prototypes of Torii tools are at
various stages of design and implementation; some of
the innovative features of Torii are already supported
by its predecessor project Autoweb, which is opera-
tional.

References

[1] Advanced television enhancement fo-
rum speci�cation (ATVEF), Feb. 1999. available at
http://www.atvef.com.

[2] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the
Web. In Proc. 23rd VLDB, pages 206{215, Athens,
Greece, Aug. 26-29, 1997.

[3] C. Batini, S. Ceri, and S. Navathe. Conceptual
Database Design. Benjamin Cummings, Menlo Park
CA, 1993.

[4] P. Bernstein et al. The Asilomar report on database
research. ACM Sigmod Record, 27(4):74{80, Dec.
1998.

[5] S. Ceri, P. Fraternali, and S. Paraboschi. Design
principles for data-intensive web sites. ACM Sigmod
Record, 28(1):84{89, Mar. 1999.

[6] S. Ceri, P. Fraternali, and S. Paraboschi. Speci�cation
of W3I3 models. Technical Report W3I3PAP2, W3I3
Esprit Project n. 28771, Feb. 1999.

[7] M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Su-
ciu. Catching the boat with Strudel: Experiences with
a web-site management system. In Proc. Sigmod'98,
pages 414{425, Seattle, June, 1998.

[8] P. Fraternali. Tools and approaches for developing
data-intensive web applications: A survey. ACM
Comput. Surv., 1999. To appear.

[9] P. Fraternali and P. Paolini. A conceptual model and
a tool environment for developing more scalable and
dynamic Web applications. In Proc. EDBT'98, pages
421{435, Valencia, Spain, March, 1998.

[10] T. Isakowitz, E. A. Stohr, and P. Balasubramanian.
RMM: a methodology for structured hypermedia de-
sign. Communications of the ACM, 38(8):34{44, 1995.

[11] D. Peppers and M. Rogers. Enterprise One to One:
Tools for Competing in the Interactive Age. Currency-
Doubleday, 1997.

[12] K. Takahashi and E. Liang. Analysis and Design of
Web-based Informations Systems. In Proc. Sixth Int.
WWW Conf., Santa Clara, California, 1997.

[13] Unwired Planet Inc. Handheld device markup lan-
guage (HDML) speci�cation, Apr. 1997.

[14] M. K. Uusitalo. Speci�cation of tools user interface.
Technical report, W3I3 Esprit Project n. 28771, Feb.
1999.

[15] World Wide Web Consortium. Document Object
Model (DOM) level 1 speci�cation. Oct. 1998.

[16] World Wide Web Consortium. Extensible Markup
Language (XML) 1.0. Feb. 1998.

626

