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Abstract

An important issue for federated systems of diverse data

sources is optimizing cross-source queries, without build-

ing knowledge of individual sources into the optimizer.

This paper describes a framework through which a fed-

erated system can obtain the necessary cost and cardinal-

ity information for optimization. Our framework makes it

easy to provide cost information for diverse data sources,

requires few changes to a conventional optimizer and is

easily extensible to a broad range of sources. We believe

our framework for costing is the first to allow accurate

cost estimates for diverse sources within the context of a

traditional cost-based optimizer.

1 Introduction

Increasingly, companies need to be able to interrelate infor-
mation from diverse data sources such as document manage-
ment systems, web sites, image management systems, and
domain-specific application systems (e.g., chemical structure
stores, CAD/CAM systems) in ways that exploit these sys-
tems’ special search capabilities. They need applications that
not only access multiple sources, but that ask queries over the
entire pool of available data as if it were all part of one vir-
tual database. One important issue for such federated systems
is how to optimize cross-source queries to ensure that they
are processed efficiently. To make good decisions about join
strategies, join orders, etc., an optimizer must consider both
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the capabilities of the data sources and the costs of operations
performed by those sources. Standard database optimizers
have built-in knowledge of their (sole) store’s capabilities and
performance characteristics. However, in a world where the
optimizer must deal with a great diversity of sources, this de-
tailed, built-in modeling is clearly impractical.

Garlic is a federated system for diverse data sources. Gar-
lic’s architecture is typical of many heterogeneous database
systems, such as TSIMMIS [PGMW95], DISCO [TRV96],
and HERMES [ACPS96]. Garlic is a query proces-
sor [HFLP89]; it optimizes and executes queries over diverse
data sources posed in an extension of SQL. Data sources are
integrated by means of awrapper [RS97]. In [HKWY97,
RS97], we described how the optimizer and wrappers cooper-
ate to determine alternative plans for a query, and how the op-
timizer can select the least cost plan, assuming it has accurate
information on the costs of each alternative plan. This paper
addresses how wrappers supply information on the costs and
cardinalities of their portions of a query plan and describes
the framework that we provide to ease that task. This infor-
mation allows the optimizer to compute the cost of a plan
without modifying its cost formulas or building in knowledge
of the execution strategies of the external sources. We also
show that cost-based optimizationis necessary in a heteroge-
neous environment; heuristic approaches that push as much
work as possible to the data sources can err dramatically.

Our approach has several advantages. It provides suffi-
cient information for an optimizer to choose good plans, but
requires minimal work from wrapper writers. Wrappers for
simple sources can provide cost information without writing
any code, and wrappers for more complex sources build on
the facilities provided to produce moreaccurate information
as needed. Our framework requires few changes to a con-
ventional bottom-up optimizer. As a result, in addition to
examining the full space of possible plans, we get the ben-
efits of any advances in optimizer technology for free. The
framework is flexible enough toaccommodate a broad range
of sources easily, and does not assume that sources conform
to any particular execution model. We believe that our frame-
work for costing is the first to allow accurate cost estimates
for diverse sources within the context of a traditional cost-
based optimizer.

The remainder of the paper is structured as follows. Sec-
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tion 2 discusses the traditional approach to costing query
plans. In Section 3, we present a framework by which these
costing techniques can be extended to a heterogeneous envi-
ronment. Section 4 shows how a set of four wrappers with di-
verse capabilities adapt this framework to provide cost infor-
mation for their data sources. In Section 5, we present exper-
iments that demonstrate the importance of cost information
in choosing good plans, the flexibility of our framework, the
accuracy it allows, and finally, that it works – the optimizer
is able to choose good plans even for complex cross-source
queries. Section 6 discusses related work, and in Section 7
we conclude with some thoughts about future directions.

2 Costing in a Traditional Optimizer

In a traditional bottom-up query optimizer [SAC+79], the
cost of a query plan is the cumulative cost of the operators
in the plan (plan operators, orPOPs). Since every operator in
the plan is the root of a subplan, its cost includes the cost of
its input operators. Hence, the cost of a plan is the cost of the
topmost operator in the plan. Likewise, the cardinality of a
plan operator is derived from the cardinality of its inputs, and
the cardinality of the topmost operator represents the cardi-
nality of the query result.

In order to derive the cumulative costs and cardinality es-
timates for a query plan, three important cost numbers are
tracked for each POP:total cost(the cost in seconds to ex-
ecute that operator and get a complete set of results),re-
execution cost(the cost in seconds to execute the POP a sec-
ond time), andcardinality(the estimated result cardinality of
the POP). The difference between total and re-execution cost
is the cost of any initialization that may need to occur the first
time an operator is executed. For example, the total cost of
a POP to scan a temporary collection includes both the cost
to populate and scan the collection, but its re-execution cost
includes only the scan cost.

The total cost, re-execution cost, and cardinality of a POP
are computed usingcost formulasthat model the runtime be-
havior of the operator. Cost formulas model the details of
CPU usage and I/O (and in some systems, messages) as accu-
rately as possible. A special subset of the formulas estimates
predicate selectivity.

Cost formulas, of course, have variables that must be in-
stantiated to arrive at a cost. These include the cardinality
of the input streams to the operator, andstatisticsabout the
data to which the operator is being applied. Cardinality of
the input streams is either computed using cost formulas for
the input operators or is a statistic if the input is a base table.
Hence, statistics are at the heart of any cost-based optimizer.
Typically, these statistics include information about collec-
tions, such as the base cardinality, and about attributes, such
as information about the distribution of data values. A tradi-
tional optimizer also has statistics about the physical system
on which the data is stored, usually captured as a set of con-
stant weights (e.g., CPU speed, disk transfer rate, etc.).

Figure 1 summarizes this flow of information. At the core
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Figure 1: Traditional ost-based optimization
is a set of statistics that describe the data. At the next layer,
these statistics feed cost formulas to compute selectivity esti-
mates, CPU and I/O costs. Finally, in the outer layer, operator
costs are computed from the cost formulas, and these operator
costs ultimately result in plan costs.

3 Costing Query Plans in a Heterogeneous En-
vironment

This section focuses on the process of costing query plans in
a heterogeneous environment. Two significant challenges in
adapting a traditional cost-based optimizer to a heterogenous
environment are first, to identifywhatadditional information
is required to cost the portions of a query plan executed by
remote sources, and second,howto obtain such information.
Section 3.1 addresses thewhat, by introducing a framework
for wrappers to provide information necessary to extend tra-
ditional plan costing to a heterogeneous environment. Sec-
tion 3.2 addresses thehow, by describing a default adapta-
tion of the framework and facilities that a wrapper may use to
compute cost and cardinality information for its data source.

3.1 A Framework for Costing in a Heterogeneous Envi-
ronment

While the flow of information from base statistics to plan op-
erator costs described in Section 2 works well in a traditional
(relational) environment, it is incomplete for a heterogeneous
environment. Given the diversity of data sources involved
in a query, it is impossible to build cost formulas into the
optimizer to compute the costs of operations performed by
those data sources. Furthermore, since the data sources are
autonomous, a single strategy cannot be used to scan the base
data to gather and store the statistics the optimizer needs to
feed its formulas. Clearly, a cost-based optimizer cannot ac-
curately cost plans without cooperation from wrappers. In
this section, we describe what information is needed from
wrappers to extend cost-based optimization to a heteroge-
neous environment.

3.1.1 Cost Model

The first challenge for an optimizer in a heterogeneous envi-
ronment is to integrate the costs of work done by a remote
data source into the cost of the query plan. In Garlic, the
portions of a query plan executed by data sources are encap-
sulated asPUSHDOWNPOPs. Such POPs show up as leaves
of the query plan tree. As a result, total cost, re-execution
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cost, and result cardinality are all that is needed to integrate
the costs of aPUSHDOWNPOP into the cost of the query plan.

Fortunately, these three estimates provide an intuitive level
of abstraction for wrappers to provide cost information about
their plans to the optimizer. On one hand, these estimates
give the optimizer enough information to integrate the cost
of a PUSHDOWNPOP into the cost of the global query plan
without having to modify any of its cost formulas or under-
stand anything about the execution strategy of the external
data source. On the other hand, wrappers can compute to-
tal cost, re-execution cost, and result cardinality in whatever
way is appropriate for their sources, without having to com-
prehend the details of the optimizer’s internal cost formulas.

3.1.2 Cost Formulas

Wrappers will need cost formulas to compute their plan costs,
and most formulas tailored to the execution models of the
built-in operators will typically not be appropriate. On the
other hand, some of the optimizer’s formulas may be widely
applicable. For example, the formula to compute the selec-
tivity of a set of predicates depends on the predicates and at-
tribute value distributions, and not on the execution model.
Wrappers should be able to pick from among available cost
formulas those that are appropriate for their data sources, and
if necessary, develop their own formulas to model the execu-
tion strategies of their data sources more accurately.

Additionally, wrappers may need to provide formulas to
help the optimizer cost new built-in POPs specific to a hetero-
geneous environment. For example, traditional query proces-
sors often assume that all required attributes can be extracted
from a base collection at the same time. In Garlic, wrap-
pers are not required to perform arbitrary projections in their
plans. However, they must be able to retrieve any attribute of
an object given the object’s id. If a wrapper is unable to sup-
ply all requested attributes as part of its plan, the optimizer
attaches aFETCHoperator to retrieve the missing attributes.
The retrieval cost may vary greatly between data sources, and
even between attributes of the same object, making it impos-
sible to estimate using standard cost formulas. Thus, to allow
the optimizer to estimate the cost of thisFETCHoperator,
wrappers are asked to provide a cost formula that captures
theaccess costto retrieve the attributes of its objects.

As another example, wrappers are allowed to export meth-
ods that model the non-traditional capabilities of their data
sources, and such methods can be invoked by Garlic’s query
engine. Methods may be extremely complex, and their costs
may vary greatly depending on the input arguments. Again,
accurately estimating such costs using generic formulas is im-
possible. Wrappers are asked to provide two formulas to mea-
sure a method’s costs:total method cost(the cost to execute
the method once), andre-execution method cost(the cost to
execute the method a second time). These formulas provide
an intuitive level of abstraction for the wrapper, yet give the
optimizer enough information to integrate method invocation
costs into its operator costs.

3.1.3 Statistics

Both the optimizer and the wrappers need statistics as input to
their cost formulas. In a heterogeneous environment, the base
data is managed by external data sources, and so it becomes
the wrapper’s task to gather these statistics. Since wrappers
provide the cost estimates for operations performed by their
data sources, the optimizer requires onlylogical statistics
about the external data. Statistics that describe the physical
characteristics of either the data or the hardware of the un-
derlying systems are not necessary or even helpful; unless the
optimizer actually models the operations of the data sources,
it would not know how to use such statistics.

A traditional optimizer’s collection statistics include base
cardinality, as well as physical characteristics (such as the
number of pages it occupies), which are used to estimate the
I/O required to read the collection. In a heterogeneous envi-
ronment, the optimizer still needs base cardinality statistics to
compute cardinality estimates for its operators.

For attributes, optimizers typically keep statistics that can
be used to compute predicate selectivity assuming a uniform
distribution of values, and some physical statistics such as
the average length of the attribute’s values. More sophisti-
cated optimizers keep detailed distribution statistics for oft-
queried attributes. In a heterogeneous environment, an opti-
mizer still needs some attribute statistics in order to compute
accurate cardinality estimates. In Garlic, wrappers are asked
to provide uniform distribution statistics (number of distinct
values, second highest and second lowest values). They may
optionally provide more detailed distribution statistics, and
the optimizer will make use of them. Physical statistics such
as average column length are not required, although they may
be helpful to estimate the cost to operate on the data once it
is returned to Garlic. If not provided, the optimizer estimates
these costs based on data type.

Not only are these statistics needed for the optimizer’s
formulas, but wrappers may need them as input to their pri-
vate cost formulas. In addition, wrappers may introducenew
statistics that only their cost formulas use. Such statistics may
be for collections, attributes, or methods. For example, the
cost formulas a wrapper must provide to estimate the total and
re-execution costs of its methods are likely to require some
information as input. Thus, as with cost formulas, the set of
statistics in a heterogeneous environment must be extensible.

To summarize, Figure 2 shows the extended flow of infor-
mation needed for an optimizer in a heterogeneous environ-
ment. White objects represent information that is produced
and used by the optimizer. Objects with horizontal lines (e.g.,
the formula to compute predicate selectivity) are provided by
the optimizer and made available to the wrappers. Those with
vertical lines are provided by the wrappers, and used by both
the optimizer and the wrappers. Statistics and cost formulas
shown shaded in gray are introduced by and available only
to wrappers. The outer circle shows that wrappers are asked
to report the total cost, re-execution cost, and result cardi-
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Figure 2: Heterogeneous cost-based optimization
nality for their plans. Armed with this information, the op-
timizer can combine the costs ofPUSHDOWNPOPs with the
costs of built-in POPs to compute the cost of the query plan.
In the next circle, wrappers are asked to provide formulas to
compute attribute access costs and method costs. In addition,
they can make use of some existing cost formulas, and add
new formulas to model the execution strategies of their data
sources. Finally, in the inner circle, wrappers are asked to
provide the basic statistics about their collections and the at-
tributes of their objects that the optimizer needs as input to its
formulas. They may also compute and store statistics that are
required by their own formulas.

3.2 Completing the Framework

Figure 2 shows how our framework extends the traditional
flow of cost information to include wrapper input at all lev-
els. To make it easy to provide such information (particularly
for simple data sources), the framework also provides a de-
fault cost model, default cost formulas, and a facility to gather
statistics. The framework is completely flexible; wrappers
may use any of the defaults provided, or choose to provide
their own implementations.

3.2.1 Extending the Cost Model

As described in Section 3.1.1, a wrapper’s first job is to re-
port total cost, re-execution cost, and result cardinality for
its plans. To make this task as easy as possible, the frame-
work includes a default cost model which wrappers can use
to model the execution strategies of their data sources. Wrap-
pers can take advantage of this cost model, or, if it is not
sufficient, replace it with a cost model of their own.

The default cost model was designed with simple data
sources in mind. We chose this approach for two important
reasons. First, simple data sources have very basic capabili-

Cost Model

P1 plan total cost = resetcost + advancecost �

((result cardinality+1)=BLOCK SIZE)
P2 plan reexecutioncost= plan total cost� resetcost
P3 plan result cardinality =

∏n
i=1BASECARDi �applied predicatesselectivity

Table 1: Default cost model estimates for wrapper plans

ties. They can iterate over the objects in their collections, and
perhaps apply basic predicates. They do not perform joins or
other complex SQL operations. This limited set of capabili-
ties often means that their execution strategy is both straight-
forward and predictable. These characteristics make it easy to
develop a general purpose cost model. Second, an important
goal of Garlic is to ensure that writing a wrapper is as easy
as possible. If the default cost model is complete enough to
model very basic capabilities, then wrapper writers for simple
data sources need not provideanycode for computing costs.

The default cost model is anchored around the execution
model of a runtime operator. Regardless of whether a runtime
operator represents a built-in POP or aPUSHDOWNPOP, its
work can be divided into two basic tasks1: reset, which repre-
sents the work that is necessary to initialize the operator, and
advance, which represents the work necessary to retrieve the
next result. Thus, the total cost of a POP can be computed as
a combination of the reset and advance costs. As shown in Ta-
ble 1, the default model exploits this observation to compute
the total and re-execution costs of a wrapper plan.

(P1), the formula to compute the total cost of a plan,
captures the behavior of executing aPUSHDOWNPOP once.
The operator must be reset once, and advanced to retrieve
the complete result set (plus an additional test to determine
that all results have been retrieved).BLOCK SIZE represents
the number of results that are retrieved at a time. Default
formulas to compute reset and advance costs are described
in Section 3.2.2 below. The re-execution cost (P2) is com-
puted by factoring out the initialization costs from the to-
tal cost estimate. SincePUSHDOWNPOPs are leaf POPs of
the query plan tree, the result cardinality estimate (P3) is
computed by multiplying the cross product of then collec-
tion base cardinalitiesaccessed by the plan by the selectiv-
ity of the applied predicates. As described in Section 3.2.3,
BASECARD is the basic collection cardinality statistic, and
applied predicatesselectivitycan be computed using the
standard selectivity formula provided by the optimizer.

3.2.2 Extended Cost Formulas

Our framework provides default implementations of all the
cost formulas wrappers need to supply (including those intro-

1Our model actually has three tasks; we are omitting discussion of the
bind task to simplify exposition. Bind represents the work needed to provide
the next set of parameter values to a data source, and can be used, for exam-
ple, to push join predicate evaluation down to a wrapper. However, simple
sources typically don’t accept bindings, as they cannot handle parameterized
queries. Our relational wrapper does accept bindings, and provides cost for-
mulas to calculate their cost.
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Cost formula

F1 accesscost(A) = AV G ACCESSCOSTmax + (n � 1) �
OV ERHEAD�AV G ACCESSCOSTmax

F2 methodtotal costi = AV G TOTALMET H COSTi
F3 methodreexecutioncosti = AV G REEX METH COSTi
F4 resetcost= AVG RESETCOSTc
F5 advancecost= AVG ADVANCECOSTc

Table 2: Default cost formulas

duced in Section 3.1.2) as well as those needed by the default
cost model of Section 3.2.1. These formulas are summarized
in Table 2, and we will describe each formula in greater detail
below. They rely on a new set of statistics, and Section 3.2.3
describes how these statistics are computed and stored.

(F1) is the default definition of the attributeaccess cost
formula.A represents a set ofn attributes to be retrieved by a
FETCHPOP. Typically there is a significant charge to retrieve
the first attribute, but only an incremental charge to retrieve
additional attributes once the first attribute has been retrieved.
AVG ACCESSCOSTi is a new attribute statistic that measures
the cost to retrieve attributei, and AVG ACCESSCOSTmax

is the most expensive attribute retrieved by theFETCH.
OVERHEADis a constant multiplier between 0 and 1 that rep-
resents the additional cost to retrieve an attribute, assuming
that the most expensive attribute inA has already been re-
trieved. Wrappers may adjust this value as appropriate.

(F2) and (F3) represent the default definitions provided
by the framework for the optimizer’s method cost formulas.
AVG TOTALMETH COST andAVG REEXMETH COST are
new statistics that represent measures of the average total and
re-execution costs to invoke a method. This information is
similar to the information standard optimizers keep for user-
defined functions [Cor97]. These statistics are extremely sim-
ple, and do not, for example, take into account the set of ar-
guments that are passed in to the method. As we will illus-
trate in Section 4.2, wrappers that use methods to export the
nontraditional capabilities of a data source may provide new
definitions that match the execution strategy of their under-
lying data source more accurately, including any dependency
on the method’s arguments.

Formulas (F4) and (F5) are the default cost formulas used
by the default cost model to compute plan costs. For simple
wrappers with limited capabilities, computing average times
over the range of queries that the data source supports may
often be sufficient to obtain accurate cost estimates. The de-
fault cost formulas to compute plan costs use this approach.
While these formulas are admittedly naive, in Section 5.2
we show that they work remarkably well for the simple data
sources in our experiments. Since simple wrappers typically
do not perform joins, the reset and advance costs are com-
puted to be the average reset and advance costs of the sin-
gle collectionc accessed by the plan.AVG RESETCOSTand
AVG ADVANCECOSTare new collection statistics that repre-
sent measures of the average time spent initializating and re-
trieving the results for queries executed against a collection.

If these default cost formulas are not sufficient for a partic-

Category Statistic Query template

Collection BASE CARD select count(*) from
collection

AVG RESETCOST� ,
AVG ADVANCE COST�

select c.OID from col-
lection c

Attribute NUM DISTINCT VALUES select count(distinct
c.attribute) from col-
lection c

2ND HIGH VALUE select c.attribute from
collection c order by 1
desc

2ND LOW VALUE select c.attribute from
collection c order by 1
asc

AVG ACCESSCOST� select c.attribute from
collection c

Method AVG TOTAL METH COST� ,
AVG REEX METH COST�

select c.method(args)
from collection c

Table 3: Statistics generated by updatestatistics facility

ular data source (and they won’t be for more capable sources),
a wrapper writer may provide formulas that more accurately
reflect the execution strategy of the data source. In fact, our
framework for providing cost formulas is completely exten-
sible; wrappers may use the optimizer’s predicate selectivity
formulas, any of the default formulas used by the default cost
model, or add their own formulas. Wrapper-specific formulas
can feed the formulas that compute operator costs and cardi-
nalities, and their implementations can make use of the base
statistics, and any statistics wrappers choose to introduce.

3.2.3 Gathering Statistics

As described in Section 3.1.3, both the standard cost for-
mulas and wrapper-provided cost formulas are fueled by
statistics about the base data. Garlic provides a genericup-
datestatisticsfacility that wrappers can use to gather and
store the necessary statistics. The updatestatistics facility in-
cludes a set of routines that execute a workload of queries
against the data managed by a wrapper, and uses the results
of these queries to compute various statistics. Wrappers may
use this facility “as-is”, tailor the query workload to gain a
more representative view of the data source’s capabilities and
data, or augment the facility with their own routines to com-
pute the standard set of statistics and their own statistics.

Table 3 describes the default query workloads that are used
to compute various statistics. From the table, it should be
clear how the standard statistics are computed. However,
the calculations for the newly introduced statistics (marked
with an asterisk) bear further description. For collections,
the default cost model described in Section 3.2.1 relies on
statistics that measure the average time to initialize and ad-
vance a wrapper operator. These measures are derived by
executing a workload of single-collection queries defined by
the wrapper writer (or DBA) that characterizes the wrap-
per’s capabilities. For example, for a simple wrapper, the
workload may contain a single simple “select c.OID
from collection c ” query, executed multiple times.
Running averages of the time spent in reset and advance
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Wrapper Code Cost
model

Cost formulas Statistics

ObjectStore 0 default default default
Lotus Notes 0 default default default

QBIC 700 default replaces method
cost, reset, ad-
vance formulas

added
method
statistics

Relational 400 default replaces reset,
advance
formulas

added col-
lection
statistics

Table 4: Wrapper adaptations of framework

of the wrapper’s runtime operator are computed for this
workload of queries, and those measures are stored as the
AVG RESETCOSTandAVG ADVANCECOSTstatistics. Note
that these times include network costs, so the plan cost for-
mulas do not have to consider network costs explicitly.

To compute the new attribute statisticAVG ACCESSCOST

(used by the default cost formula to compute attribute access
cost), a single query which projects the attribute is executed,
and the optimizer is forced to choose a plan that includes a
FETCHoperator to retrieve the attribute. This query is exe-
cuted multiple times, and a running average of the time spent
retrieving the attribute is computed, including network costs.

For the new method statistics, a workload of queries which
invoke the method with representative sets of arguments (sup-
plied by the wrapper writer) is executed multiple times. Run-
ning averages are computed to track the average time (includ-
ing network costs) to execute the method both the first time,
and multiple subsequent times. These averages are stored as
the AVG TOTALMETH COST and AVG REEXMETH COST

statistics, respectively.

4 Wrapper Adaptations of the Framework

Figure 2 shows how our framework enables wrapper input in
each concentric circle. In this section, we describe how a set
of wrappers have adapted this framework to report cost infor-
mation about their data sources to the optimizer. These wrap-
pers represent a broad spectrum of capabilities, from the very
limited capabilities of our complex object repository wrapper
to the very powerful capabilities of our wrapper for relational
databases. Table 4 summarizes how these different wrappers
adapted the framework to their data sources, as well as the
number of lines of code involved in the effort.

4.1 Simple Data Sources

We use ObjectStore as a repository to store complex objects,
which Garlic clients can use to bind together existing objects
from other data sources. This wrapper is intentionallysimple,
as we want to be able to replace the underlying data source
without much effort. This wrapper will only generate plans
that return the objects in the collections it manages, i.e., it will
only produce plans for the simple query “select c.OID
from collection c ”. The optimizer must append Gar-
lic POPs to the ObjectStore wrapper’s plans to fetch any re-
quired attributes and apply any relevant predicates. Because

of its simplicity, the wrapper uses the default cost model to
compute its plan costs and cardinality estimates, and uses
the updatestatistics facility “as-is” to compute and store the
statistics required to fuel the default formulas, as well as those
used by the optimizer to cost the appended Garlic POPs. We
will see in Section 5.2 that the default model is indeed well-
suited to this very basic wrapper.

We also implemented a more capable wrapper for Lotus
Notes databases. It can project an arbitrary set of attributes
and apply combinations of predicates that contain logical,
comparison and arithmetic operators. It cannot perform joins.
We have observed that the execution strategy for Lotus Notes
is fairly predictable. For any given query with a set of at-
tributes to project and set of predicates to apply, Lotus will
retrieve each object from the collection, apply the predicates,
and return the requested set of attributes from those objects
that survive the predicates.

We intended to demonstrate with this wrapper that only a
few modifications by the wrapper were needed to tailor the
default cost model to a more capable wrapper. However, as
we will show in Section 5.2, we discovered that although the
wrapper for Lotus Notes is much more capable than the Ob-
jectStore wrapper, the behavior of its underlying data source
is predictable enough that the simple default cost model is still
suitable. The wrapper writer was only required to tailor the
workload of queries used to generate theAVG RESETCOST

and AVG ADVANCECOST collection statistics so that they
more accurately represented the data source’s capabilities.
We used a simple workload of queries; techniques described
in [ZL98] might do a better job of choosing the appropriate
sample queries.

4.2 Data Sources with Interesting Capabilities

QBIC [N+93] is an image server that manages collections of
images. These images may be retrieved and ordered accord-
ing to features such as average color, color histogram, shape,
texture, etc. We have built a wrapper for QBIC that mod-
els the average color and color histogram feature searches
as methods on image objects. Each method takes a sample
image as an argument, and returns a “score” that indicates
how well the image object on which the method was invoked
matched the sample image; the lower the score, the better the
match. These methods may be applied to individual image
objects via the Garlic method invocation mechanism. In ad-
dition, the QBIC wrapper will produce plans that apply these
methods to all image objects in a collection, and return the
objects ordered from best match to worst match. It can also
produce plans that return the image objects in an arbitrary
order. It does not apply predicates, project arbitrary sets of
attributes, or perform joins.

Both the average color feature searches and color his-
togram feature searches are executed in a two-step process
by the QBIC image server. In the first step, an appropriate
‘color value’ is computed for the sample image. In the second
step, this value is compared to corresponding pre-computed
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Feature sampleeval cost comparisoncost

Average
color

AVGCOLORSLOPE �

samplesize +
AVGCOLORINTERCEPT

AVGCOLORCOMPARE

Color
histogram

AVG HISTOGRAMEVAL HISTOGRAMSLOPE �

(numbero f colors) +
HISTOGRAMINTERCEPT

Table 5: QBIC wrapper cost formulas
values for the images in the scope of the search. In our imple-
mentation, the scope is a single object if the feature is being
computed via method invocation, or all objects in the collec-
tion if the feature is being computed via a QBIC query plan.
For each image in the collection, the relationship between the
sample image’s color value and the image’s color value de-
termines the score for that image. Hence, the cost of both
feature searches can be computed using the following gen-
eral formula:

searchcost= sampleeval cost+m�comparisoncost

In this formula,sampleeval costrepresents the cost to com-
pute the color value of the sample image,comparisoncost
represents the cost to compare that value to a collection image
object’s corresponding value, andm is the number of images
in the scope of the search.

In an average color feature search, the color value rep-
resents the average color value of the image. The exe-
cution time of an average color feature search is domi-
nated by the first step and depends upon the x-y dimen-
sions of the sample image; the larger the image, the more
time it takes to compute its average color value. How-
ever, the comparison time is relatively constant per image
object. The first entry in Table 5 shows the formulas the
wrapper uses to estimate the cost of an average color fea-
ture search.AVG COLORSLOPE, AVGCOLORINTERCEPT,
and AVGCOLORCOMPAREare statistics the wrapper gath-
ers and stores using the updatestatistics facility. The wrap-
per uses curve fitting techniques and a workload of queries
with different sizes for the sample image to compute both the
AVGCOLORSLOPEandAVG COLORINTERCEPTstatistics.
AVGCOLORCOMPARErepresents the average time to com-
pare an image, and an estimate for it is derived using the same
workload of queries.

In a color histogram feature search, the color value rep-
resents a histogram distribution of the colors in an image.
In this case, the execution time is dominated by the sec-
ond step. For the typical case in which the number of col-
ors is less than six, QBIC employs an algorithm in which
the execution time of the first step is relatively constant, and
the execution time of the second step is linear in the num-
ber of colors in the sample image. The second entry of Ta-
ble 5 shows the formulas the wrapper uses to compute the
cost of color histogram searches.AVG HISTOGRAMEVAL,
HISTOGRAMSLOPE, and HISTOGRAMINTERCEPT are
new statistics, andnumbero f colors represents the num-
ber of colors in the sample image. Again, the wrapper
uses curve fitting and a workload of queries with differ-
ent numbers of colors for the sample image to compute

HISTOGRAMSLOPEandHISTOGRAMINTERCEPT. It uses
the same workload of queries to compute an average cost for
AVG HISTOGRAMEVAL.

The wrapper uses these formulas to provide both method
cost estimates to the optimizer and to compute the costs of its
own plans. The effort to provide these formulas and compute
the necessary statistics was about 700 lines of code.

4.3 Sophisticated Data Sources

Our relational wrapper is a “high-end wrapper”; it exposes as
much of the sophisticated query processing capabilities of a
relational database as possible. Clearly, the default formulas
are not sufficient for this wrapper. Vast amounts of legacy
data are stored in relational databases, and we expect perfor-
mance to be critically important. The time invested in imple-
menting a more complete cost model and cost formulas for a
relational query processor is well-worth the effort.

However, decades of research in query optimization show
that modelling the costs of a relational query processor is not
a simple task, and creating such a detailed model is not within
the scope of this paper. We believe that an important first
step is to implement a set of formulas that provide reasonable
ball-park cost estimates, as such estimates may be sufficient
for the optimizer to make good choices in many cases. With
this goal in mind, for the relational wrapper, we chose to use
the default cost model, and implement a very simple set of
formulas to compute the reset and advance costs that use an
oversimplified view of relational query processing:

resetcost= prep cost
advancecost= executioncost+ f etchcost

In these formulas,prep cost represents the cost to compile
the relational query,executioncostrepresents the cost to ex-
ecute the query, andf etch cost represents the cost to fetch
the results. At a high level,prep cost and executioncost
depend on the number of collections involved in the query,
and f etch cost depends on the number of results. The re-
lational wrapper used curve fitting techniques and the up-
datestatistics facility to compute and store cost coefficients
for these formulas. The total number of lines to implement
this was less than 400.

While this is an admittedly naive implementation, the esti-
mates produced by this formula are more accurate than those
from the default model, and provide the optimizer with ac-
curate enough information to make the right plan choices in
many cases. However, we do not claim that our implementa-
tion is sufficient for the general case. We believe many of the
techniques applied in [DKS92] and the approaches of more
recent work of [ZL98] could be adapted to work within the
context of the relational wrapper, and present an interesting
area of research to pursue.

5 Experiments and Results

In this section, we describe the results of experiments that
show that the information provided by wrappers through our

605



Query Pushdown
join time
(secs)

Garlic
join time
(secs)

Card

Q1 selectp.id, p1.id
from professor p, professor p1
where p.id< p1.id

and p.status= p1.status
and p.aysalary> 115000
and p1.aysalary> 115000

369.47 1550.52 605401

Q2 selectp.id, p1.id
from professor p, professor p1
where p.id< p1.id

and p.status< p1.status
and p.aysalary> 115000
and p1.aysalary> 115000

6332.14 1766.11 2783677

Table 6: A comparison of execution times for 2 join queries

framework is critical for the optimizer to choose quality exe-
cution plans. Without wrapper input, the optimizer can (and
will) choose bad plans. However, with wrapper input, the op-
timizer is able to accurately estimate the cost of plans. As
with any traditional cost-based optimizer, it may not always
choose the optimal plan. However, for most cases, it chooses
a good plan and avoids bad plans.

We adapted the schema and data from the BUCKY bench-
mark [C+97] to a scenario suitable for a federated system.
We used only the relational schema, distributed it across a
number of sources, and added to it a collection of images
representing department buildings. We developed our own
set of test queries that focus on showing how the optimizer
performs when data is distributed among a diverse set of data
sources. The test data is distributed among four data sources:
an IBM DB2 Universal Database (UDB) relational database,
a Lotus Notes version 4.5 database, a QBIC image server,
and an ObjectStore version 4.0 object database. For the ex-
periments, the query engine executed on one machine, the
UDB database, QBIC image server, and ObjectStore database
all resided on a second server machine, and the Notes server
resided on a third machine. All were connected via a high-
speed network. When an execution plan included a join, we
limited the optimizer’s choices to nested loop join and push-
down join. This did not affect performance, and allowed us
to illustrate the tradeoffs in executing a join in Garlic or at a
data source without having to consider countless alternative
plans. It should be noted that Garlic is an experimental proto-
type, and as such, the Garlic execution engine is slower than
most commercial relational database product engines. How-
ever, it is significantly faster than Notes. Hence, we believe
our test environment is representative of a real world environ-
ment in which some sources are slower and some faster than
the middleware, and hence, is a fair testbed for our study.

5.1 The Need for Wrapper Input

This first set of experiments addresses the need for cost-based
optimization in an extensible federated database system. It
has been suggested [ACPS96, EDNO97, LOG93, ONK+96,
SBM95] that heuristics that push as much work as possible
to the data sources are sufficient. Consider the two queries

ID Department
predicate

Professor
predicate

Cardinality

Q3 dno< 1 id = 101 0
Q4 dno< 51 id = 101 50
Q5 dno< 101 id = 101 100
Q6 dno< 151 id = 101 150
Q7 dno< 201 id = 101 200
Q8 id < 102 250
Q9 id < 103 500
Q10 id < 105 1000
Q11 id < 107 1500
Q12 id < 109 2000

Table 7: UDB professorxdepartment predicates
defined in Table 6. (Q1) finds all pairs of similarly ranked
professors that make more than $115,000 a year. (Q2) finds,
for all professors that make at least $115,000 a year, the set
of professors of a lower rank that also make at least $115,000
a year. The professor collection is managed by the rela-
tional wrapper. There are two obvious plans to execute these
queries: push both the join and the predicate evaluation down
to the UDB wrapper, or push the predicate evaluation down to
the wrapper but perform the join in Garlic. Table 6 also shows
the result cardinality and execution times for these 2 plans. In
(Q1), the equi-join predicate on status restricts the amount of
data retrieved from the data source, so the pushdown join is a
better plan. However, in (Q2), the join predicates actually in-
crease the amount of data retrieved from the data source, so it
is faster to execute the join in Garlic. These queries represent
two points in a query family that ranges from an equi-join
(p.status= p1.status) to a cross product (no predicate on sta-
tus). At some point in this query family, there is acrossover
pointat which it no longer makes sense to push the join down.
The crossover point depends on different factors, such as the
amount of data, the distribution of data values, the perfor-
mance of both query engines, network costs, etc. Cost-based
optimizers use such information to compare plan alternatives
to identify where such crossover points exist, while heuristic
approaches can only guess.

5.1.1 Working without wrapper input

The previous example motivated the need for cost-based opti-
mization in a federated system by showing that pushing down
as much work as possible to the data sources is not always a
winning strategy. In this experiment, we show that accurate
information is crucial for a cost-based optimizer to identify
crossover points. For this set of experiments, we chose a fam-
ily of queries over the UDB department and professor collec-
tions. To control result cardinality, we used a cross product
with local predicates (shown in Table 7) on each table.

To predict plan costs accurately, a cost-based optimizer de-
pends heavily on the availability andaccuracy of statistics. If
statistics are not available, the optimizer uses default values
for these parameters. Withoutaccurate information, the opti-
mizer will sometimes choose a good plan, and sometimes it
will not. In our environment, in the absence of wrapper input,
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Figure 3: Optimizer choices without wrapper input
the optimizer’s parameters have been tuned to favor pushing
as much work down to the data sources as possible.

For the set of queries in Table 7, the crossover point at
which it makes sense to execute the join in Garlic occurs be-
tween queries (Q8) and (Q9), or when the result cardinality
is between 250 and 500. Figure 3 shows the execution times
for executing these queries with both the pushdown join and
Garlic join plans. For each query, anx marks the plan that
was chosen by the optimizer. Since the optimizer does not
have the benefit of wrapper input, it relies on its defaults, and
favors the pushdown join plan in all cases. With only de-
fault values, the cardinalities of the base collections look the
same, and all local predicates (e.g., d.dno< 101 or p.id<
102) have the same selectivity estimates. Without more ac-
curate information, the optimizer cannot easily discriminate
between plans.

5.1.2 Working with wrapper input

Consider the same set of queries, only this time with input
from the UDB wrapper, using the cost model and formulas
described in Section 4.3. Figure 4 shows both the optimizer’s
estimates and the execution times for both the pushdown and
Garlic join plans. The graph shows that while the optimizer’s
estimates differ by 10% to 45% from the actual execution
costs, the wrapper input allows the optimizer to compare the
relativecost of the two plans. Keep in mind that the cost for-
mulas implemented by the UDB wrapper are fairly naive; if
the wrapper writer invested more effort in implementing cost
formulas reflecting the execution strategies of UDB, the opti-
mizer’s estimates would be more accurate.

Now instead of favoring the pushdown plan in all cases,
the optimizer recognizes a crossover point in which it makes
sense to execute the join in Garlic. The vertical dotted line
on the graph shows the actual crossover point. The vertical
solid line on the graph shows the optimizer’s estimate of the
crossover point. The area between the two lines represents
the range in which the optimizer may make the wrong choice.
Since we didn’t have a data point in this area of the graph, we
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Figure 4: Optimizer estimates with statistics
ran further experiments to identify the range more accurately.
These experiments used a few more predicates to allow us to
control the result cardinality more precisely. We found that
the execution crossover point is at cardinality= 251, and the
optimizer identifies the crossover point in the 278-298 range.
Thus, the range in which the optimizer will make the wrong
choice is between 251 and at most 298. In this narrow range,
the execution times of the plans are so close that the wrong
plan choice is not significant.

5.2 Adaptability of the Framework

In the previous section, we showed that wrapper input is crit-
ical for the optimizer to choose good plans. In this section,
we show that our framework makes it easy for wrappers to
provide accurate input. We look at 3 wrappers in particular:
ObjectStore, Notes, and QBIC.

5.2.1 Wrappers that Use the Default Cost Model

As described in Section 4.1, the ObjectStore wrapper is our
most basic wrapper and uses the default cost model without
modification. [ROH99] shows the optimizer’s estimates and
actual execution times for a set of queries that exercise the
wrapper’s capabilities. The experiments show that the de-
faults are well suited for the ObjectStore wrapper; the opti-
mizer’s estimates differ from the actual execution time by no
more than 10%.

Recall that although Notes is a more capable wrapper, the
Notes wrapper also uses the default cost model, formulas, and
statistics. Again, [ROH99] shows that for a set of queries
that exercise the wrapper’s capabilities, the optimizer’s esti-
mates are “in the ballpark”, ranging from a 13% to 40% dif-
ference from the actual execution time. For the experiments
with more complicated queries, the optimizer’s estimates are
off by more than 30%. Further analysis showed that a signif-
icant percentage of this difference can be attributed to result
cardinality underestimates, which were off by 21% for both
of these queries. Such inaccuracies are notunusual for cost-
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Figure 5: QBIC avg color query plan
based optimizers, and are the result of imperfect cost formu-
las and deviations in the data from the distribution assump-
tions. To make up the difference between the estimate and the
actual execution time that cannot be attributed to inaccurate
result cardinality estimates, the wrapper writer could provide
formulas that model the predicate application strategy of Lo-
tus Notes more accurately. However, we do not believe such
effort is necessary. Analysis to be presented in section 5.3
shows that even for this more capable wrapper, the default
cost formulas provide estimates that are close enough for the
optimizer to choose good plans in most instances.

5.2.2 Wrappers with Interesting Capabilities

For data sources with unusual capabilities, such as QBIC, the
default model is not sufficient. As described in Section 4.2,
the execution time for an average color search depends on
the size of the sample image. Figure 5 shows optimizer es-
timates and actual execution times for a family of average
color queries with increasingly larger predicate images. The
x-axis shows the size of the sample image. The first bar for
each query represents the optimizer’s cost estimate without
wrapper input, the second bar shows the optimizer’s cost es-
timate with wrapper input, and the third bar shows the actual
execution time.

Without wrapper input, the optimizer has no knowledge
of how much an average color search costs, nor is it aware
that the cost depends on the size of the sample image. Thus,
it must rely on default estimates, which can in no way ap-
proximate the real cost of the search or the plan. However,
with wrapper input, the optimizer’s estimates do reflect the
dependency on the image predicate size, and its estimates are
extremely accurate, with most being within 4% of the actual
cost. An analysis of color histogram queries yields similar
results. As we will see in Section 5.3, such input from wrap-
pers with unusual capabilities is crucial for the optimizer to
choose good plans when data from that source is joined with
data from other sources.

5.3 Cross-Repository Optimization

Our final experiment shows that our framework provides suf-
ficient information for the optimizer to choose good plans for
complex queries. For this experiment, we used the query
template given in Table 8 to generate a query family. The
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Figure 6: 4-way cross-repository join queries

Query template
selecti.OID,

i.avg color(’767x589image.gif’),
i.avg color(’1x1 image.gif’)

from images i, notesdepartments nd,
udb course uc, udbdepartment ud

where n d.building= i.imagefile name
and u c.dno= u d.OID
and u d.dno= n d.dno

Table 8: 4-way join query template

query template is a 4-way join between the department and
course collections managed by the UDB wrapper, the Notes
department collection, and the QBIC image collection. To
generate the family, we added predicates on the UDB depart-
ment collection and the UDB course collection that control
the cardinality of the results. These predicates and the result
cardinalities are shown in Table 9. The queries also contain 2
average color image searches, one of which is for a 1x1 image
(cheap), while the other is for a 767x598 image (expensive).

The number of possible plans for executing this query fam-
ily is over 200. However, a large number of these plans are
clearly bad choices, as they would require computing large
cross-products. We enumerated and forced the execution of
the 20 most promising plans, including the ones the optimizer
itself selected. In any plan, the optimizer is forced to push one
average color search down and evaluate the other by method
invocation because the QBIC wrapper returns plans that exe-
cute only one search at a time.

Figure 6 shows the execution time of 7 plans for each
query. The first bar represents the plan the optimizer chose
without statistics or wrapper input. The other 6 bars are rep-
resentative plans from the set that we analyzed. The plans are

ID Predicates Card
Q13 u d.budget < 10000000 and

u c.cno< 102
456

Q14 u d.budget < 6000000 and
u c.cno< 102

258

Q15 u d.budget < 2000000 and
u c.cno= 102

23

Table 9: 4-way join query predicates
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denoted by the order in which the joins are evaluated. A col-
lection is identified by the first character of the wrapper that
manages it. The UDB collections are further marked by the
first character of each collection. Anupper case X indicates
that the join was done in Garlic, and a lower case x indicates
the join was pushed down to the UDB wrapper. A * over a
bar indicates that the optimizer, working with wrapper input,
chose the corresponding plan.

For all three queries, the optimizer picked the best plan of
the alternatives we studied, and, we believe, of all possible
plans. Note that this may not happen in general; the purpose
of a cost-based optimizer is not to choose the optimal plan for
every query, but to consistently choose good plans and avoid
bad ones.

The graph once again reinforces the assertion that wrap-
per input is crucial for the optimizer to choose the right plan.
Without wrapper input, the optimizer chose the same plan for
all three queries, which was to push the join between the UDB
collections down to the UDB wrapper, join the result of that
with the Notes department collection, and join that result with
the image collection. Without information from the QBIC
wrapper about the relative costs of the two image searches,
it arbitrarily picked one of them to push down, and the other
to perform via method invocation. In this case, the optimizer
made a bad choice, pushing the cheap search of the 1x1 im-
age down to the QBIC wrapper, and executing the expensive
search via method invocation on the objects that survive the
join predicates. This plan is a bad choice for all three queries,
with execution times well over 1000 seconds.

When the optimizer was given input from the QBIC wrap-
per about the relative cost of the two average color searches,
it chose correctly to push the expensive search down to the
QBIC wrapper and perform the cheap search via method in-
vocation. This is true for all plans we looked at for all queries,
and brings the execution times for all of our sample plans to
under 200 seconds.

This experiment also shows that pushing down as much
work as possible to the data sources does not always lead to
the best plan. For (Q13) and (Q15), the best plan did in fact
include pushing the join between the UDB collections down
to the UDB wrapper. However, for (Q14), the best plan actu-
ally split these two collections, and joined UDB department
with Notes department as soon as possible. In this plan, the
predicate on the UDB department collection (ud.budget<
6000000) restricted the number of UDB department tuples
by 50%. Joining this collection with the Notes department
collection first also reduced the number of tuples that needed
to be joined with the image collection by 50%. For (Q13),
the UDB department predicate (ud.budget< 10000000) was
not as restrictive. In this case, it would have only reduced the
number of tuples that needed to be joined with the image col-
lection by 9%, which was not a significant enough savings to
make this alternative attractive. Instead, it was better to group
UDB department and UDB course together and push the join
down to the UDB wrapper.

For (Q15), the UDB department predicate is even more
restrictive, filtering out over 90% of the tuples. In this case, it
is a good idea to use it to filter out both the Notes department
tuples and UDB course tuples as soon as possible. Thus, the
two best plans push the join between the UDB collections
down to the wrapper, and immediately join the result with
Notes. The two worst plans failed to take advantage of this.
Plan 2 in the figure arranged these collections out of order,
and plan 3 joined the entire Notes department collection with
QBIC image before the join with the UDB collections.

These experiments show that cost-based optimization is
indeed critical to choose quality execution plans in a hetero-
geneous environment. Using our framework, wrappers can
provide enough information for the optimizer to cost wrap-
per plans with a sufficient degree of accuracy. By combining
such cost information with standard cost formulas for built-in
operators, traditional costing techniques are easily extended
to cost complex cross-source queries in a heterogeneous en-
vironment.

6 Related Work

As federated systems have gained in popularity, researchers
have given greater attention to the problem of optimizing
queries over diverse sources. Relevant work in this area in-
cludes work on multidatabase query optimization [LOG93,
DSD95, SBM95, EDNO97, ONK+96] and early work on het-
erogeneous optimization [Day85, SC94], both of which fo-
cus on approaches to reduce the flow of data for cross-source
queries, and not on estimation of costs. More recent ap-
proaches [PGH96, LRO96] describe various methods to rep-
resent source capabilities. Optimizing queries with foreign
functions[CS93, HS93] is related, but these papers have fo-
cused on optimization algorithms, and again, not on estimat-
ing costs. [UFA98] describes orthogonal work to incorporate
cost-based query optimization into query scrambling.

Work on frameworks for providing cost information and
on developing cost models for data sources is, of course,
highly relevant. OLE DB [Bla96] defines a protocol by which
federated systems can interact with external data sources,
but it does not address cross-source query optimization, and
presumes a common execution model. The most complete
framework for providing cost information to date is In-
formix’s DataBlades [Cor97] architecture. DataBlades inte-
grates individual tables, rather than data sources, and the op-
timizer computes the cost of an external scan using formulas
that assume the same execution model as for built-in scans.

Various approaches have been proposed to develop cost
models for external data sources. These approaches can be
grouped into four categories: calibration [DKS92, GST96],
regression [ZL98], caching [ACPS96], andhybrid tech-
niques [NGT98]. The calibration and regression approaches
typically assume a common execution model for their sources
(which doesn’t work for heterogeneous federations), but may
be useful in developing wrapper cost models for particular
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sources. Both [ACPS96] and [NGT98] deal with diverse data
sources, but neither approach employs standard dynamic pro-
gramming optimization techniques.

7 Conclusion

We have demonstrated the need for cost-based optimization
in federated systems of diverse data sources, and we pre-
sented a complete yet simple framework that extends the ben-
efits of a traditional cost-based optimizer to such a federated
system. Our approach requires only minor changes to tradi-
tional cost-based optimization techniques, allowing us to eas-
ily take advantage of advances in optimization technology.
Our framework provides enough information to the optimizer
for it to make good plan choices, and yet, it is easy for wrap-
pers to adapt. In the future, we intend to continue testing our
framework on a broad range of data sources. We would like
to add templates to support classes of data sources that share
a common execution model, and test our framework for how
well it handles object-relational features such as path expres-
sions and nested sets.
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