Cost Models DO Matter: Providing Cost Information for Diverse
Data Sources in a Federated Systern

Mary Tork RotH FatmaOzcart Laura M. Haa%

IBM Almaden Research Center, San Jose CA 95120

the capabilities of the data sources and the costs of operations
performed by those sources. Standard database optimizers
Abstract have built-in knowledge of their (sole) store’s capabilities and
performance characteristics. However, in a world where the
An important issue for federated systems of diverse data optimizer must deal with a great diversity of sources, this de-
sources is optimizing cross-source queries, without build- tailed, built-in modeling is clearly impractical.

ing knowledge of individual sources into the optimizer. Garlic is a federated system for diverse data sources. Gar-
This paper describes a framework through which a fed- |ic’s architecture is typical of many heterogeneous database
erated system can obtain the necessary costand cardinal- systems, such as TSIMMIS [PGMW895], DISCO [TRV96],
ity information for optimization. Our framework makes it and HERMES [ACPS96]. Garlic is a query proces-

easy to provide costinformation for diverse data sources, sor [HFLP89]; it optimizes and executes queries over diverse
requires few changes to a conventional optimizer and is data sources posed in an extension of SQL. Data sources are
easily extensible to a broad range of sources. We believe integrated by means of wrapper [RS97]. In [HKWY97,

our framework for costing is the first to allow accurate RS97], we described how the optimizer and wrappers cooper-
cost estimates for diverse sources within the contextof a ate to determine alternative plans for a query, and how the op-
traditional cost-based optimizer. timizer can select the least cost plan, assuming it has accurate
information on the costs of each alternative plan. This paper
1 Introduction addresses how wrappers supply information on the costs and

Increasingly, companies need to be able to interrelate infor(_:ardinalities of their portions of a query plan and describes
gy, P the framework that we provide to ease that task. This infor-

mation from diverse data sources such as document manage- . L
. . tion allows the optimizer to compute the cost of a plan
ment systems, web sites, image management systems, an

without modifying its cost formulas or building in knowledge

domain-specific application systems (€.g., chemical structurgf the execution strategies of the external sources. We also

stores, CAD/CAM systems) in ways that exploit these SYSShow that cost-based optimizatimmecessary in a heteroge-

tems’ special search capabilities. They need applications that

not onl nitiol rces. but that ask queries over theneous environment; heuristic approaches that push as much
0 only access mliple Sources, bul q . ~work as possible to the data sources can err dramatically.
entire pool of available data as if it were all part of one vir-

. . r roach h veral advantages. It provides suffi-

tual database. One importantissue for such federated systemsou. approach has several 9 P
. - . cient information for an optimizer to choose good plans, but
is how to optimize cross-source queries to ensure that the . . :
. o . _.requires minimal work from wrapper writers. Wrappers for
are processed efficiently. To make good decisions about join

RS oy . r91imple sources can provide cost information without writing
strategies, join orders, etc., an optimizer must consider bot .
any code, and wrappers for more complex sources build on

This work was partially supported by DARPA contract F33615-93-1-13the facilities provided to produce moaecurate information
39. as needed. Our framework requires few changes to a con-

forkroth@almaden.ibom.com . - . o
fatma@cs.umd.edu; current address: DepartmentofComputerSciencg,entlonal bOttom'Up optimizer. As a result, in addition to

University of Maryland; partial funding provided by Army Research Labo- €xamining the full space of possible plans, we get the ben-
ratog Con"aft DdAAL9b1'97'K0135- efits of any advances in optimizer technology for free. The
ura@almaden.ibm.com framework is flexible enough taccommodate a broad range

Permission to copy without fee all or part of this material is granted provided .
that the copies are not made or distributed for direct commercial advantagepf sources easily, and does not assume that sources conform

the VLDB copyright notice and the title of thablication and its date appear, t0 any particular execution model. We believe that our frame-
and notice is given that copying is by permission of the Very Large Data Basa?/ork for costing is the first to allow accurate cost estimates

Endowment. To copy otherwise, or to republish, requires a fee and/or speci . o .
permission from thgi’;ndowmem_ P a Pe“%or diverse sources within the context of a traditional cost-

Proceedings of the 25th VLDB Conference, based optimizer.
Edinburgh, Scotland, 1999. The remainder of the paper is structured as follows. Sec-

599

tion 2 discusses the traditional approach to costing query
plans. In Section 3, we present a framework by which these
costing techniques can be extended to a heterogeneous envi-
ronment. Section 4 shows how a set of four wrappers with di-
verse capabilities adapt this framework to provide cost infor-
mation for their data sources. In Section 5, we present exper;
iments that demonstrate the importance of cost informatig Eggmm
in choosing good plans, the flexibility of our framework, thé
accuracy it allows, and finally, that it works — the optimizer

l re-execution cost l<7 l total cost]~\

Cost
Formulas

. Figure 1: Traditional ost-based optimization
is able to choose good plans even for complex Cross-sourGg 5 get of statistics that describe the data. At the next layer,

gueries. Section 6 discusses related work, and in Section

X o these statistics feed cost formulas to compute selectivity esti-
we conclude with some thoughts about future directions.

mates, CPU and I/O costs. Finally, in the outer layer, operator
costs are computed from the cost formulas, and these operator

2 Costing in a Traditional Optimizer costs ultimately result in plan costs.

In a traditional bottom-up query optimizer [SAC9], the
cost of a query plan is the cumulative cost of the operator$ Costing Query Plans in a Heterogeneous En-
in the plan (plan operators, BIOP9. Since every operator in vironment

the plan is the root of a subplan, its cost includes the cost o{.

o) his section focuses on the process of costing query plans in
its input operators. Hence, the cost of a plan is the cost of th P gquery p

§ heterogeneous environment. Two significant challenges in

tolpmost op;ergtoc; n thg fplan.thleeV\:jl§e, Itth € ?ird'mah:y of Zadapting a traditional cost-based optimizer to a heterogenous
plan operatoris derived from the cardinality ot ts INpUts, anBy 5y ment are first, to identifishatadditional information

the. cardinality of the topmost operator represents the cardtl;5 required to cost the portions of a query plan executed by
nality of the query result.

remote sources, and secohadwto obtain such information.

In order to derive the cumulative costs and cardinality €Sgaction 3.1 addresses thenat, by introducing a framework

timates for a query plan, three |mportapt cost numbers artor wrappers to provide information necessary to extend tra-
tracked for each PORotal cost(the cost in seconds to ex-

ditional plan costing to a heterogeneous environment. Sec-
ecute that operator and get a complete set of resutts),

. . tion 3.2 addresses theow, by describing a default adapta-
execution cosfthe cost in seconds to execute the POP a se y g P

Sion of the framework and facilities that a wrapper may use to
ond time), anctardinality (the estimated result cardinality of PP y

. . compute cost and cardinality information for its data source.
the POP). The difference between total and re-execution cost P y

is the cost of any initialization that may need to occur thefirstz 1 A Framework for Costing in a Heterogeneous Envi-
time an operator is executed. For example, the total cost of onment

a POP to scan a temporary collection includes both the cost

to populate and scan the collection, but its re-execution codfvhile the flow of information from base statistics to plan op-
includes only the scan cost. erator costs described in Section 2 works well in a traditional

The total cost, re-execution cost, and cardinality of a pogrelational) environment, it is incomplete for a heterogeneous
are computed us,ing)st formulaghat model the runtime be- €Nvironment. Given the diversity of data sources involved
havior of the operator. Cost formulas model the details of & duery, it is impossible to build cost formulas into the
CPU usage and I/O (and in some systems, messages) as aclptimizer to compute the costs of operations performed by

rately as possible. A special subset of the formulas estimatdB0Se data sources. Furthermore, since the data sources are
predicate selectivity. autonomous, a single strategy cannot be used to scan the base

Cost formulas. of course. have variables that must be indata to gather and store the statistics the optimizer needs to

stantiated to arrive at a cost. These include the cardinalitfe€d its formulas. Clearly, a cost-based optimizer cannot ac-

of the input streams to the operator, astdtisticsabout the ~ cUrately cost plans without cooperation from wrappers. In

data to which the operator is being applied. Cardinality ofthis section, we describe what mformgtlo'n is needed from

the input streams is either computed using cost formulas fof'raPPers to extend cost-based optimization to a heteroge-

the input operators or is a statistic if the input is a base tabld?€0US €nvironment.

Her!ce, statistics are a’F thg heart o'f any cqst-based optlmlze:j(: 11 Cost Model

Typically, these statistics include information about collec-

tions, such as the base cardinality, and about attributes, sudthe first challenge for an optimizer in a heterogeneous envi-

as information about the distribution of data values. A tradi-ronment is to integrate the costs of work done by a remote

tional optimizer also has statistics about the physical systerdata source into the cost of the query plan. In Garlic, the

on which the data is stored, usually captured as a set of comportions of a query plan executed by data sources are encap-

stant weights (e.g., CPU speed, disk transfer rate, etc.). sulated a®USHDOWROPs. Such POPs show up as leaves
Figure 1 summarizes this flow of information. At the core of the query plan tree. As a result, total cost, re-execution

600

cost, and result cardinality are all that is needed to integrat8.1.3 Statistics
the costs of ®USHDOWRDP into the cost of the query plan. o o)
Fortunately, these three estimates provide an intuitive levePOth the optimizer and the wrappers need statistics as input to

of abstraction for wrappers to provide cost information aboufh€ir costformulas. Ina heterogeneous environment, the base
their plans to the optimizer. On one hand, these estimatedata is managed by external data sources, and so it becomes

give the optimizer enough information to integrate the cost® Wrapper's task to gather these statistics. Since wrappers

of a PUSHDOWROP into the cost of the global query plan provide the cost estimates for operations performed by their
without having to modify any of its cost formulas or under- data sources, the optimizer requires ofdgical statistics
stand anything about the execution strategy of the externadibout the external data. Statistics that describe the physical
data source. On the other hand, wrappers can compute tgharacteristics of either the data or the hardware of the un-
tal cost, re-execution cost, and result cardinality in whatevef€'lYing systems are not necessary or even helpful; unless the
way is appropriate for their sources, without having to Cc)m_.op'[|m|zer actually models the operatlo'ns.of the data sources,
prehend the details of the optimizer's internal cost formulas. It Would not know how to use such statistics.
A traditional optimizer’s collection statistics include base

3.1.2 Cost Formulas cardinality, as well as physical characteristics (such as the

il q ¢ | heir bl number of pages it occupies), which are used to estimate the
erlppers \;V' nele CO,SIt ormu aito compqtet eirp ;’:m CfOS;SI’IO required to read the collection. In a heterogeneous envi-
and most formulas tailored to the execution models of t Gonment, the optimizer still needs base cardinality statistics to

built-in operators will typically not be appropriate. On the compute cardinality estimates for its operators.

other hand, some of the optimizer’s formulas may be widely
. For attributes, optimizers typically keep statistics that can
applicable. For example, the formula to compute the selec:

tivity of a set of predicates depends on the predicates and a?—.e u.sed'to compute predicate selectlery assuming a uniform
. L . distribution of values, and some physical statistics such as
tribute value distributions, and not on the execution model

. : he average length of the attribute’s values. More sophisti-
Wrappers should be able to pick from among available cos gl . . L
. : cated optimizers keep detailed distribution statistics for oft-

formulas those that are appropriate for their data sources, and
. . queried attributes. In a heterogeneous environment, an opti-
if necessary, develop their own formulas to model the execu- . : . oo
: ' . mizer still needs some attribute statistics in order to compute
tion strategies of their data sources more accurately.

- . accurate cardiddy estimates. In Garlic, wrappers are asked
Additionally, wrappers may need to provide formulas to ay PP

to provide uniform distribution statistics (number of distinct

help the optimizer cost new built-in POPs specific to a hEteroilalues, second highest and second lowest values). They may

geneous environment. For example, traditional query proceso'é)tionally provide more detailed distribution statistics, and

sors often assume that all required attributes can be extract? & optimizer will make use of them. Physical statistics such

from a base collection at the same time. In Garlic, wrap- .
as average column length are not required, although they may

pers are not required to perform arbltrary'prOIectlons n the'r?e helpful to estimate the cost to operate on the data once it
plans. However, they must be able to retrieve any attribute o;

. : A : is returned to Garlic. If not provided, the optimizer estimates
an object given the object’s id. If a wrapper is unable to SUPinese costs based on data type

ply all requested attributes as part of its plan, the optimizer N | h o ded for th L

attaches &ETCHoperator to retrieve the missing attributes. Otl only are these statistics neede or the optlm!zer§

The retrieval cost may vary greatly between data sources, aﬁ‘armu as, but wrappers may need them as mput to their pri-
Jvate cost formulas. In addition, wrappers may introdoee

even between attributes of the same object, making it impo tics th v thei p | h -
sible to estimate using standard cost formulas. Thus, to aIIov%t""t'StICSt at'on yt e", cost formulas use. Such statistics may
be for collections, attributes, or methods. For example, the

the optimizer to estimate the cost of tHi&ETCHoperator, 3 .

wrappers are asked to provide a cost formula that Capturec‘Sost formulas a wrapper must provide to estimate the total and

theaccess codb retrieve the attributes of its objects re-execution costs of its methods are likely to require some
pinformation as input. Thus, as with cost formulas, the set of

As another example, wrappers are allowed to export met . . .
ods that model the non-traditional capabilities of their datastatlstlcs in a heterogeneous environment must be extensible.

sources, and such methods can be invoked by Garlic’'s query To summarize, Figure 2 shows the extended flow of infor-
engine. Methods may be extremely complex, and their costmation needed for an optimizer in a heterogeneous environ-
may vary greatly depending on the input arguments. Againment. White objects represent information that is produced
accurately estimating such costs using generic formulas is imand used by the optimizer. Objects with horizontal lines (e.g.,
possible. Wrappers are asked to provide two formulas to meahe formula to compute predicate selectivity) are provided by
sure a method’s costsotal method cosfthe cost to execute the optimizer and made available to the wrappers. Those with
the method once), ang-execution method cofthe cost to vertical lines are provided by the wrappers, and used by both
execute the method a second time). These formulas providée optimizer and the wrappers. Statistics and cost formulas
an intuitive level of abstraction for the wrapper, yet give theshown shaded in gray are introduced by and available only
optimizer enough information to integrate method invocatiornto wrappers. The outer circle shows that wrappers are asked
costs into its operator costs. to report the total cost, re-execution cost, and result cardi-

601

[provided and used by optimizer
Built-in POP cost estimates B :\:‘;‘i/l;i;g ?Q?V;S;pdet)sy optimizer, | | Cost Model |

| oo P1 | plantotal_cost = resetcost + advancecost x
P[]

((resultcardinality+ 1) /BLOCK SIZE)
P2 | planreexecutioncost= plantotal_cost— resetcost
rioute access ot P3 | planresultcardinality =
estimates

[1L;BASECARD x applied predicatesselectivity

stas

method cost
estimates

Table 1: Default cost model estimates for wrapper plans

Standard cost
formulas

ties. They can iterate over the objects in their collections, and
perhaps apply basic predicates. They do not perform joins or
other complex SQL operations. This limited set of capabili-
ties often means that their execution strategy is both straight-
forward and predictable. These characteristics make it easy to
develop a general purpose cost model. Second, an important
goal of Garlic is to ensure that writing a wrapper is as easy
as possible. If the default cost model is complete enough to
model very basic capabilities, then wrapper writers for simple
ammeer anawramnes - data sources need not proviakey code for computing costs.
B powessmasavysmes e default cost model is anchored around the execution
model of a runtime operator. Regardless of whether a runtime
operator represents a built-in POP oPESHDOWROP, its

rlmal!ty for their plqns Armed with this mformatlon,'t © 9P" \vork can be divided into two basic taskseset which repre-
timizer can combine the costs BUSHDOWROPS with the . .
sents the work that is necessary to initialize the operator, and

costs of built-in POPs to compute the cost of the query plan: . i
. . advancewhich represents the work necessary to retrieve the
In the next circle, wrappers are asked to provide formulas to
) . next result. Thus, the total cost of a POP can be computed as
compute attribute access costs and method costs. Itiadd o :
L combination of the reset and advance costs. As shownin Ta-
they can make use of some existing cost formulas, and a . . .
. . : e 1, the default model exploits this observation to compute
new formulas to model the execution strategies of their dat .
. . . . e total and re-execution costs of a wrapper plan.
sources. Finally, in the inner circle, wrappers are asked to P1). the f la t te the total t of lan
provide the basic statistics about their collections and the at- (t r), the Sanli/?rOfC(:(mputii JSF?DaO\(/:\(/EDFC’) oicpe):a ’
tributes of their objects that the optimizer needs as input to it aptures the behavior of executing :

formulas. They may also compute and store statistics that art%r;eczrr):rfg?er rrglsjjtt t;ztr(e sﬁ[s Z:C:la;zgnﬁ\:ggf ?c? dtgt(;(rart:ii\;e
required by their own formulas. P P

that all results have been retrieve®). OCK_SIZE represents

the number of results that are retrieved at a time. Default
formulas to compute reset and advance costs are described
Figure 2 shows how our framework extends the traditionain Section 3.2.2 below. The re-execution cost (P2) is com-
flow of cost information to include wrapper input at all lev- puted by factoring out the initialization costs from the to-
els. To make it easy to provide such information (particularlytal cost estimate. SindRUSHDOWROPs are leaf POPs of

for simple data sources), the framework also provides a dethe query plan tree, the result cardinality estimate (P3) is
fault cost model, default cost formulas, and a facility to gathetcomputed by multiplying the cross product of thecollec-
statistics. The framework is completely flexible; wrapperstion base cardinalitieaccessed by the plan by the selectiv-
may use any of the defaults provided, or choose to providéty of the applied predicates. As described in Section 3.2.3,

attribute
stats,

Statistics

wrapper
stats

wrapper cost 2
gstimates

|| oot /

PUSHDOWN POP cost estimate

Wrapper cost
formulas

re~execution cost

result cardinality

Figure 2: Heterogeneous cost-based optimization

3.2 Completing the Framework

their own implementations. BASECARD s the basic collection cardinality statistic, and
applied predicatesselectivitycan be computed using the
3.2.1 Extending the Cost Model standard selectivity formula provided by the optimizer.

As described in Section 3.1.1, a wrapper’s first job is to re-

port total cost, re-execution cost, and result cardinality for3'2'2 Extended Cost Formulas

its plans. To make this task as easy as possible, the fram@ur framework provides default implementations of all the

work includes a default cost model which wrappers can usgost formulas wrappers need to supply (including those intro-
to model the execution strategies of their data sources. Wrap-

i it 10our model actually has three tasks; we are omitting discussion of the
Pers can take advantage of this cost model, or, if it is noLind task to simplify expason. Bind represents the work needed to provide

sufficient, replace it with a cost model of their own. the next set of parameter values to a data source, and can be used, for exam-
The default cost model was designed with simple dataple, to push join predicate evaluation down to a wrapper. However, simple

. . . . ources typically don’t accept bindings, as they cannot handle parameterized
sources in mind. We chose this approach for two Import""'@ueries. Our relational wrapper does accept bindings, and provides cost for-

reasons. First, simple data sources have very basic capabithulas to calculate their cost.

602

| | Cost formula | [Category] Statistic [Query template |

F1 | accesxos{A) = AVGACCESSCOShax + (N — 1) x Collection] BASE.CARD select count(*) from
OVERHEADx AV GACCESSCOSThax collection
F2 | methodtotal_cosf = AV GTOTALMETHCOST AVG_RESET.COST, select ¢.OID from col-
F3 | methodreexecutiorcost = AV GREEXMETH.COST AVG_ADVANCE_COST lection ¢
F4 | resetcost= AVGRESETCOST Attribute | NUM_DISTINCT_VALUES select count(distinct
F5 | advancecost= AV GADVANCECOST c.attribute) from col-
lection ¢
Table 2: Default cost formulas 2ND-HIGH_VALUE select c.attribute from
collection c order by 1
. . It desc
duced in Section 3:1.2) as well as those needed by the de.fauu SND LOWVALUE elect Catiibute from
cost model of Section 3.2.1. These formulas are summarized collection ¢ order by 1
in Table 2, and we will describe each formula in greater detai G ACCESSCOST asf e
below. They rely on a new set of statistics, and Section 3.2.3 iglgﬁtigﬁ té” ute from
describes how these statistics are computed and stored. Method | AVG_TOTAL_METH_COST, select c.method(args
(F1) is the default definition of the attributecess cost AVG_REEXMETH.COST from collection ¢

formula. Arepresents a set ofattributes to be retrieved by a
FETCHPOP. Typically there is a significant charge to retrieve

the first attribute, but only an incremental charge to retrievg,|5r data source (and they won't be for more capable sources),

additional attributes once the first attribute has been retrieved, wrapper writer may provide formulas that more accurately
AVGACCESSCOST is a new attribute statistic that measures gfiect the execution strategy of the data source. In fact, our

the cost to retrieve attributg and AVGACCESSCOSTax framework for providing cost formulas is completely exten-
is the most expensive attribute retrieved by BETCH gjpje: wrappers may use the optimizer's predicate selectivity
OVERHEADS a constant multiplier between 0 and 1 that rep-gormy|as, any of the default formulas used by the default cost
resents the additional cost to retrieve an attribute, assumin,glodeL or add their own formulas. Wrapper-specific formulas
that the most expensive attribute Anhas already been re- 4, feed the formulas that compute operator costs and cardi-
trieved. Wrappers may adjust this value as appropriate. jities, and their implementations can make use of the base

(F2) and (F3) represent the default definitions providedsiagistics, and any statistics wrappers choose to introduce.
by the framework for the optimizer's method cost formulas.

AVG_TOTAI._MET H.COSTand AV GREEXMETH.COST are 3.2.3 Gathering Statistics
new statistics that represent measures of the average total and
re-execution costs to invoke a method. This information isAs described in Section 3.1.3, both the standard cost for-
similar to the information standard optimizers keep for usermulas and wrapper-provided cost formulas are fueled by
defined functions [Cor97]. These statistics are extremely simstatistics about the base data. Garlic provides a gengric
ple, and do not, for example, take into account the set of ardatestatisticsfacility that wrappers can use to gather and
guments that are passed in to the method. As we will illusstore the necessary statistics. The updadgistics facility in-
trate in Section 4.2, wrappers that use methods to export thdudes a set of routines that execute a workload of queries
nontraditional capabilities of a data source may provide newagainst the data managed by a wrapper, and uses the results
definitions that match the execution strategy of their underof these queries to compute various statistics. Wrappers may
lying data source more accurately, including any dependencyse this facility “as-is”, tailor the query workload to gain a
on the method’s arguments. more representative view of the data source’s capabilities and

Formulas (F4) and (F5) are the default cost formulas usedata, or augment the facility with their own routines to com-
by the default cost model to compute plan costs. For simplgute the standard set of statistics and their own statistics.
wrappers with limited capabilities, computing average times Table 3 describes the default query workloads that are used
over the range of queries that the data source supports may compute various statistics. From the table, it should be
often be sufficient to obtain accurate cost estimates. The delear how the standard statistics are computed. However,
fault cost formulas to compute plan costs use this approachihe calculations for the newly introduced statistics (marked
While these formulas are admittedly naive, in Section 5.2with an asterisk) bear further description. For collections,
we show that they work remarkably well for the simple datathe default cost model described in Section 3.2.1 relies on
sources in our experiments. Since simple wrappers typicallgtatistics that measure the average time to initialize and ad-
do not perform joins, the reset and advance costs are convance a wrapper operator. These measures are derived by
puted to be the average reset and advance costs of the siexecuting a workload of single-collection queries defined by
gle collectionc accessed by the plaAvGRESETCOSTand the wrapper writer (or DBA) that characterizes the wrap-
AV GADVANCECOSTare new collection statistics that repre- per's capabilities. For example, for a simple wrapper, the
sent measures of the average time spent initializating and revorkload may contain a single simplsélect c.OID
trieving the results for queries executed against a collection.from collection ¢ " query, executed multiple times.

If these default cost formulas are not sufficient for a partic-Running averages of the time spent in reset and advance

Table 3: Statistics generated by updatatistics facility

603

of its simplicity, the wrapper uses the default cost model to

Wrapper Code | Cost Cost formulas Statistics . L .
model compute its plan costs and cardinality estimates, and uses
ObjectStore| 0 | default Jdefault Jdefault the updatestatistics facility “as-is” to compute and store the
Lotus Notes| 0 | default default default statistics required to fuel the default formulas, as well as those
QBIC 700 | default L%’;'t""cf:s;”tetg%f ;de‘:ﬁg g used by the optimizer to cost the appended Garlic POPs. We
vance formulas | statistics will see in Section 5.2 that the default model is indeed well-
Relational | 400 | default replaces reset| added col- suited to this very basic wrapper.
?Odr‘r'r?l:'lgi Let;i'igtr;cs We also implemented a more capable wrapper for Lotus

Notes databases. It can project an arbitrary set of attributes
Table 4: Wrapper adaptations of framework and apply combinations of predicates that contain logical,
comparison and arithmetic operators. It cannot perform joins.
of the wrapper's runtime operator are computed for thisye have observed that the execution strategy for Lotus Notes
workload of queries, and those measures are stored as t@famy predictable. For any given query with a set of at-
AV GRESETCOSTandAV GADVANCECOSTSstatistics. Note ripytes to project and set of predicates to apply, Lotus will
that these times include network costs, so the plan cost fokgtrieve each object from the collection, apply the predicates,
mulas do not have to consider network costs explicitly. and return the requested set of attributes from those objects
To compute the new attribute statist¢G ACCESSCOST hat survive the predicates.
(used by the default cost formula to compute attribute access \we intended to demonstrate with this wrapper that only a
cost), a single query which projects the attribute is executeta,y modifications by the wrapper were needed to tailor the
and the optimizer is forced to choose a plan that includes gefault cost model to a more capable wrapper. However, as
FETCHoperator to retrieve the attribute. This query is exe-yye will show in Section 5.2, we discovered that although the
cuted multiple times, and a running average of the time Spe%rapper for Lotus Notes is much more capable than the Ob-
retrieving the attribute is computed, including network COStS-jectStore wrapper, the behavior of its underlying data source
For the new method statistics, a workload of queries whichs predictable enough that the simple default cost model is still
invoke the method with representative sets of arguments (SURyitable. The wrapper writer was only required to tailor the
plied by the wrapper writer) is executed multiple times. Run-,orkload of queries used to generate HveG.RESETCOST
ning averages are computed to track the average time (includs, 4 av G ADVANCECOST collection statistics so that they
ing network costs) to execute the method both the first timey,ore accurately represented the data source’s dijesh

and multiple subsequent times. These averages are stored\gg ysed a simple workload of queries; techniques described
the AV GTOTALMETH.COSTand AVGREEXMETH.COST i, [zL.98] might do a better job of choosing the appropriate

statistics, respectively. sample queries.

4 Wrapper Adaptations of the Framework 4.2 Data Sources with Interesting Capabilities

Figure 2 shows how our framework enables wrapper input i"QBIC [N*+93] is an image server that manages collections of
each concentric circle. In this section, we describe how a SE?Fnages. These images may be retrieved and ordered accord-
of wrappers have adapted this framework to report cost in1‘orl~ng to features such as average color, color histogram, shape,
mation about their data sources to the optimizer. These WraRexture, etc. We have built a wrapper for QBIC that mod-
pers represent a broad spectrum of capabilities, from the very|s the average color and color histogram feature searches
limited capabilities of our complex object repository wrapper 55 methods on image objects. Each method takes a sample
to the very powerful capabilities of our wrapper for relational image as an argument, and returns a “score” that indicates
databases. Table 4 summarizes how these different wrappgig well the image object on which the method was invoked
adapted the framework to their data sources, as well as th@atched the sample image; the lower the score, the better the
number of lines of code involved in the effort. match. These methods may be applied to individual image
objects via the Garlic method invocation mechanism. In ad-
dition, the QBIC wrapper will produce plans that apply these
We use ObjectStore as a repository to store complex objectsethods to all image objects in a collection, and return the
which Garlic clients can use to bind together existing object®bjects ordered from best match to worst match. It can also
from other data sources. This wrapper is intentionally simpleproduce plans that return the image objects in an arbitrary
as we want to be able to replace the underlying data souraerder. It does not apply predicates, project arbitrary sets of
without much effort. This wrapper will only generate plans attributes, or perform joins.

that return the objects in the collections it manages, i.e., itwill Both the average color feature searches and color his-
only produce plans for the simple querselect ¢.OID togram feature searches are executed in a two-step process
from collection ¢ ". The optimizer must append Gar- by the QBIC image server. In the first step, an appropriate
lic POPs to the ObjectStore wrapper’s plans to fetch any re‘color value’ is computed for the sample image. In the second
quired attributes and apply any relevant predicates. Becaussep, this value is compared to corresponding pre-computed

4.1 Simple Data Sources

604

Feature |

sampleevalcost

comparisoncost

HISTOGRAMSLOPEandHISTOGRAMINT ERCEPT It uses

Fuerage ?Z&?&ZC;RSLOPE X | AVGCOLORCOMPARE the same workload of queries to compute an average cost for
AVG.COLORINTERCEPT AVG.HISTOGRAMEVAL
Color AVGHISTOGRAMEVAL HISTOGRAMSLOPE x The wrapper uses these formulas to provide both method
histogram (numberof_colors) + t estimates to the optimizer and to compute the costs of its
HISTOGRAMINTERCEPT | COStestimates o the optimizera P

own plans. The effort to provide these formulas and compute
Table 5: QBIC wrapper cost formulas the necessary statistics was about 700 lines of code.

values for the images in the scope of the search. In ourimple-

mentation, the scope is a single object if the feature is being-3 Sophisticated Data Sources

computed via method invocation, or all objects in the collec-g ;¢ relational wrapper is a “high-end wrapper”; it exposes as
tion if the feature is being computed via a QBIC query plan., ¢, of the sophisticated query processing capabilities of a
For each image in the collection, the relationship between thg,|aional database as possible. Clearly, the default formulas
sample image’s color value and the image’s color value dexre not sufficient for this wrapper. Vast amounts of legacy
termines the score for that image. Hence, the cost of botRat are stored in relational databases, and we expect perfor-
feature searches can be computed using the following gennance to be critically important. The time invested in imple-
eral formula: menting a more complete cost model and cost formulas for a
relational query processor is well-worth the effort.

However, decades of research in query optimization show
that modelling the costs of a relational query processor is not

represents the cost to compare that value to a collection imageSiMPle task, and creating such a detailed model is not within

object’s corresponding value, andis the number of images the scope of this paper. We believe that an important first
in the scope of the search. step is to implement a set of formulas that provide reasonable

In an average color feature search, the color value replgall-park CPSF estimates, as such e§tim§ltes may be suffic?ent
resents the average color value of the image. The exd®' the optimizer to make good choices in many cases. With
cution time of an average color feature search is domithis goal in mind, for the relat'lonal wrapper, we c'hose to use
nated by the first step and depends upon the x-y dimenthe default cost model, and implement a very simple set of
sions of the sample image; the larger the image, the morfPrmulas to compute the reset and advance costs that use an
time it takes to compute its average color value. How-Oversimplified view of relational query processing:
ever, the comparison time is relatively constant per image
object. The first entry in Table 5 shows the formulas the
wrapper uses to estimate the cost of an average color fea- ,
ture searchAV G.COLORSLOPE AV G.COLORINT ERCEPT In these' formulasprepcogt represents the cost to compile
and AV GCOLORCOMPARE are statistics the wrapper gath- the relational querygxecutioncostrepresents the cost to ex-
ers and stores using the updatatistics facility. The wrap- ecute the query, anﬂetchcost represents the cos:.t to fetch
per uses curve fitting techniques and a workload of querieg1e results. At a high IevelprepLgost gnd execgtloncost
with different sizes for the sample image to compute both th&!€Pend on the number of collections involved in the query,
A/ G.COLORSLOPEaNdAV G.COLORINT ERCE PTstatistics. and fetch.cost depends on the number of results. The re-

AV GCOLORCOMPARE represents the average time to com- lational wrapper used curve fitting techniques and the up-

pare an image, and an estimate for itis derived using the Sanpeatestatistics facility to compute and store cost coefficients
workload of qL;eries for these formulas. The total number of lines to implement

In a color histogram feature search, the color value repIhIS was Ie§s .than 400'_ . , i
While this is an admittedly naive implementation, the esti-

resents a histogram distribution of the colors in an image. .
In this case, the execution time is dominated by the secmates produced by this formula are more accurate than those

ond step. For the typical case in which the number of Col_from the default model, and provide the.optimizer wit'h ac.-
ors is less than six, QBIC employs an algorithm in whichcurate enough information to make the right plap choices in
the execution time of the first step is relatively constant, andn@ny cases. However, we do not claim that our implementa-
the execution time of the second step is linear in the numtion |s. sufficient forthe general case. We believe many of the
ber of colors in the sample image. The second entry of Tatéchniques applied in [DKS92] and the approaches of more
ble 5 shows the formulas the wrapper uses to compute th@Cent work of [ZL98] could be adapted to work within the
cost of color histogram searchesV G HISTOGRAMEVAL context of the relational wrapper, and present an interesting
HISTOGRAMSLOPE and HISTOGRAMINTERCEPT are ~ &réaof research to pursue.

new statistics, anchumberof_colors represents the num- .

ber of colors in the sample image. Again, the wrapper5 Experiments and Results
uses curve fitting and a workload of queries with differ- In this section, we describe the results of experiments that
ent numbers of colors for the sample image to computeshow that the information provided by wrappers through our

searchcost= sampleeval.cost+ mx comparisoncost

In this formula,sampleeval_costrepresents the cost to com-
pute the color value of the sample imagem parisoncost

resetcost= prepcost
advancecost= executioncost+ fetchcost

605

ID | Department Professor Cardinality
Query Pushdown| Garlic Card predicate | predicate

join time | join time =
(secs) (secs) Q3 dn0< 1 |d = 101 O
Q1 | selectp.id, pLid 369.47 1550.52 | 605401 Q4 | dno<b51|id=101 50
from professor p, professor|pl Q5 | dno< 101 | id=101 100
Nt 1 status Q6 | dno< 151 | id =101 150
and p.aysalary> 115000 Q7 | dno< 201 | id=101 200
and pl.aysalary>- 115000 Q8 id < 102 250
Q2 selectp.id, p1.id 6332.14 1766.11 | 2783677 Q9 id < 103 500

from professor p, professor|pl .
where p.id < pl.id Q10 !d <105 1000
and p.status< pl.status Q11 id < 107 1500
and p.aysalary> 115000 Q12 id < 109 2000

and pl.aysalary> 115000

Table 7: UDB professordepartment predicates

defined in Table 6. (Q1) finds all pairs of similarly ranked
framework is critical for the optimizer to choose quality exe- Professors that make more than $115,000 a year. (Q2) finds,
cution plans. Without wrapper input, the optimizer can (andfor all professors that make at least $115,000 a year, the set
will) choose bad plans. However, with wrapper input, the Op_of professors of a lower rank that also make at least $115,000
timizer is able to accurately estimate the cost of plans. A& year. The professor collection is managed by the rela-
with any traditional cost-based optimizer, it may not a|\,\,aystional wrapper. There are two obvious plans to execute these
choose the optimal plan. However, for most cases, it choosdiueries: push both the join and the predicate evaluation down
a good plan and avoids bad plans. tothe UDB wrapper, or push the predicate evaluation down to

We adapted the schema and data from the BUCKY benchhe wrapper but perform the join in Garlic. Table 6 also shows
mark [CF97] to a scenario suitable for a federated system_the result cardinality and execution times for these 2 plans. In
We used only the relational schema, distributed it across §R1), the equi-join predicate on status restricts the amount of
number of sources, and added to it a collection of imageQata retrieved from the data source, so the pushdown joinis a
representing department buildings. We developed our owRetter plan. However, in (Q2), the join predicates actually in-
set of test queries that focus on showing how the optimizefr€ase the amount of data retrieved from the data source, so it
performs when data is distributed among a diverse set of dats faster to execute the join in Garlic. These queries represent
sources. The test data is distributed among four data sourcd¥¥© Points in a query family that ranges from an equi-join
an IBM DB2 Universal Database (UDB) relational database (P-Status= pl.status) to a cross product (no predicate on sta-
a Lotus Notes version 4.5 database, a QBIC image servetts)- At some pointin this query family, there is@ssover
and an ObjectStore version 4.0 object database. For the eRointat which itno longer makes sense to push the join down.
periments, the query engine executed on one machine, thhe crossover point depends on different factors, such as the
UDB database, QBIC image server, and ObjectStore databadgount of data, the distribution of data values, the perfor-
all resided on a second server machine, and the Notes ser/&ance of both query engines, network costs, etc. Cost-based
resided on a third machine. All were connected via a high_optimizers use such information to compare plan alternatives
speed network. When an execution plan included a join, wdo identify where such crossover points exist, while heuristic
limited the optimizer’s choices to nested loop join and push-2PProaches can only guess.
down join. This did not affect performance, and allowed us
to illustrate the tradeoffs in executing a join in Garlic or at a®
data source without having to consider countless alternativghe previous example motivated the need for cost-based opti-
plans. It should be noted that Garlic is an experimental protomization in a federated system by showing that pushing down
type, and as such, the Garlic execution engine is slower thais much work as possible to the data sources is not always a
most commercial relational database product engines. Howyinning strategy. In this experiment, we show that accurate
ever, it is significantly faster than Notes. Hence, we believanformation is crucial for a cost-based optimizer to identify
our test environment is representative of a real world environcrossover points. For this set of experiments, we chose a fam-
ment in which some sources are slower and some faster thaly of queries over the UDB department and professor collec-
the middleware, and hence, is a fair testbed for our study. tions. To control result cardinality, we used a cross product
with local predicates (shown in Table 7) on each table.

To predict plan costs accurately, a cost-based optimizer de-
This first set of experiments addresses the need for cost-baspdnds heavily on the availability amdcuracy of statistics. If
optimization in an extensible federated database system. #tatistics are not available, the optimizer uses default values
has been suggested [ACPS96, EDNO97, LOG93, 088K for these parameters. Withcatcurate information, the opti-
SBM95] that heuristics that push as much work as possiblenizer will sometimes choose a good plan, and sometimes it
to the data sources are sufficient. Consider the two queriesill not. In our environment, in the absence of wrapper input,

Table 6: A comparison of execution times for 2 join queries

1.1 Working without wrapper input

5.1 The Need for Wrapper Input

606

155 © Pushdown join execution 209 : u(dashed) Pushdown join estimate with wrapper input
. L. . : a(solid shd L R
1= GaﬂICjOII’] execution ogzoa;éd':),uGarlciMcjr:){glgaﬁxr:;tue}lv?/nh vy_rapperinput
] > Optimizer’s choice x o, S omEEAMUIE o (solid) Garlic join execution -
WIthOUt Wrapper inpl‘It I F’us!i»dowr\c -> Garlic join estimate wins . ’
1.5 &\r:naewms 4
1.0+ x
8 g
[J] = oy
£] £
l_
0.5+
1 x
x
0.0-
0 50100 150 200 250 500 1000 1500 2000 100 500 2000
Cardinality Cardinality
Figure 3: Optimizer choices without wrapper input Figure 4: Optimizer estimates with statistics
the optimizer’s parameters have been tuned to favor pushingn further experiments to identify the range more accurately.
as much work down to the data sources as possible. These experiments used a few more predicates to allow us to

For the set of queries in Table 7, the crossover point atontrol the result cardinality more precisely. We found that
which it makes sense to execute the join in Garlic occurs bethe execution crossover point is at cardinadity51, and the
tween queries (Q8) and (Q9), or when the result cardinalityyptimizer identifies the crossover point in the 278-298 range.
is between 250 and 500. Figure 3 shows the execution timephus, the range in which the optimizer will make the wrong
for executing these queries with both the pushdown join anéhoice is between 251 and at most 298. In this narrow range,
Garlic join plans. For each query, anmarks the plan that the execution times of the plans are so close that the wrong
was chosen by the optimizer. Since the optimizer does nqgslan choice is not significant.
have the benefit of wrapper input, it relies on its defaults, and
favors the pushdown join plan in all cases. With only de-5.2 Adaptability of the Framework
fault values, the cardinalities of the base collections look the]]) o
same, and all local predicates (e.g., d.¢nd01 or p.id< !n the prewous'se'ctlon, we showed that wrapper mput is prlt-
102) have the same selectivity estimates. Without more adC@l for the optimizer to choose good plans. In this section,
curate information, the optimizer cannot easily discriminateVe Show that our framework makes it easy for wrappers to
between plans. proylde accurateniput. We look at 3 wrappers in particular:

ObjectStore, Notes, and QBIC.
5.1.2 Working with wrapper input

. . . _ 5.2.1 Wrappers that Use the Default Cost Model
Consider the same set of queries, only this time with input

from the UDB wrapper, using the cost model and formulasAs described in Section 4.1, the ObjectStore wrapper is our
described in Section 4.3. Figure 4 shows both the optimizer'snost basic wrapper and uses the default cost model without
estimates and the execution times for both the pushdown arodification. [ROH99] shows the optimizer’s estimates and
Garlic join plans. The graph shows that while the optimizer'sactual execution times for a set of queries that exercise the
estimates differ by 10% to 45% from the actual executionwrapper’s capabilities. The experiments show that the de-
costs, the wrapper input allows the optimizer to compare théaults are well suited for the ObjectStore wrapper; the opti-
relative cost of the two plans. Keep in mind that the cost for- mizer’s estimates differ from the actual execution time by no
mulas implemented by the UDB wrapper are fairly naive; if more than 10%.
the wrapper writer invested more effort in implementing cost Recall that alhough Notes is a more capable wrapper, the
formulas reflecting the execution strategies of UDB, the opti{Notes wrapper also uses the default cost model, formulas, and
mizer’s estimates would be more accurate. statistics. Again, [ROH99] shows that for a set of queries
Now instead of favoring the pushdown plan in all casesthat exercise the wrapper’s capabilities, the optimizer’s esti-
the optimizer recognizes a crossover point in which it makesnates are “in the ballpark”, ranging from a 13% to 40% dif-
sense to execute the join in Garlic. The vertical dotted linderence from the actual execution time. For the experiments
on the graph shows the actual crossover point. The verticalith more complicated queries, the optimizer’s estimates are
solid line on the graph shows the optimizer’'s estimate of theoff by more than 30%. Further analysis showed that a signif-
crossover point. The area between the two lines representsant percentage of this difference can be attributed to result
the range in which the optimizer may make the wrong choicecardinality underestimates, which were off by 21% for both
Since we didn’'t have a data pointin this area of the graph, wef these queries. Such inaccuracies areumtsual for cost-

607

. . . N n
207 o Estimate without wrapper input 2004 | = Optimizer's choice without wrapper input
= Estimate with wrapper input W W [= (Ud X (Q X Ny) X Uc
= (N X Q) X Udxc
= (Udxc X N) X Q

1501 = QX (N X Udxc)
_ = ((UdX N) X Q) X Uc
g = QX ((N X Ud) X Uc)
< 100 . * Optimizer's choice with wrapper input
E
=

50
N
00 N %
1x1 131x70 275x214 465x160 600x211 411x496
Queries 0

Q13 Q14 . Qs
Figure 5: QBIC avg color query plan 4 way join querles
based optimizers, and are the result of imperfect cost formu-

e X R Figure 6: 4-way cross-repository join queries
las and deviations in the data from the distribution assump-

tions. To make up the difference between the estimate and the | Query template |
actual execution time that cannot be attributed #courate selecti.o,

result cardinality estimates, the wrapper writer could provide i.avg color('767x582image.gif"),
formulas that model the predicate application strategy of Lo- i.avg color('1xLimage.gif’)

tus Notes more accurately. However, we do not believe such from images i, noteslepartments ,
effort is necessary. Analysis to be presented in section 5.3 udb.course uc, udhdepartment wd
shows that even for this more capable wrapper, the default where n_d.building= i.imagefile_name
cost formulas provide estimates that are close enough for the and u_c.dno= u_d.OID

optimizer to choose good plans in most instances. and u.d.dno= n.d.dno

Table 8: 4-way join query template

query template is a 4-way join between the department and

For data sources with unusual capabilities, such as QBIC, th((?Ourse collections managed by the UDB wrapper, the Notes
default model is not sufficient. As described in Section 4.2

o 'department collection, and the QBIC image collection. To
the execution time for an average color search depends Aknerate the family, we added predicates on the UDB depart-

the s1z€ Of;he sarr|1ple image. 'Flgur? S SthW§I optf|m|zer ®Shent collection and the UDB course collection that control

timates an acFua' execupon times for a amily ol averaggy, o cardinality of the results. These predicates and the result
color queries with |.ncreasmgly Iarger.predlcate Images. Th%ardinalities are shown in Table 9. The queries also contain 2
x-axis shows the size of the sample image. The first bar foElverage colorimage searches, one of which is for a 1x1 image

each qugry represents the optimizer's cost e':st?ma,tbomtt (cheap), while the other is for a 767x598 image (expensive).
wrapper input, the second bar shows the optimizer’s cost es- The number of possible plans for executing this query fam-

timate 'W|th'wrapper input, and the third bar shows the actuahy is over 200. However, a large number of these plans are
execution time.

: . . clearly bad choices, as they would require computing large
Without wrapper input, the optimizer has no Imow'edgecross-produc’[s. We enumerated and forced the execution of
fhe 20 most promising plans, including the ones the optimizer

5.2.2 Wrappers with Interesting Capabilities

it must rely on default estimates, which can in no way ap-
. average color search down and evaluate the other by method
proximate the real cost of the search or the plan. However, .
. . L . invocation because the QBIC wrapper returns plans that exe-
with wrapper input, the optimizer's estimates do reflect the :
cute only one search at a time.

dependency on the image predicate size, and its estimates areF, 6 sh h . , £ 7 0l ¢ h
extremely accurate, with most being within 4% of the actual 'gure & Shows the execution time of 7 p ans for eac
cost. An analysis of color histogram queries yields similard4e": The first bar represents the plan the optimizer chose

without statistics or wrapper input. The other 6 bars are rep-

results. As we will see in Section 5.3, such input from wrap- i
resentative plans from the set that we analyzed. The plans are

pers with unusual capabilities is crucial for the optimizer to

choose good plans when data from that source is joined with LD | Predicates [Card |
data from other sources. Q13| u.d.budget < 10000000 and 456
u-c.cno< 102
5.3 Cross-Repository Optimization Q14| u.d.budget < 6000000 and 258
i } . u.c.cno< 102
Our final experiment shows that our framework provides suf- Q15| u_d.budget < 2000000 and 23
ficient information for the optimizer to choose good plans for u.c.cno= 102
complex queries. For this experiment, we used the query N _
template given in Table 8 to generate a query family. The Table 9: 4-way join query predicates

608

denoted by the order in which the joins are evaluated. A col- For (Q15), the UDB department predicate is even more
lection is identified by the first character of the wrapper thatrestrictive, filtering out over 90% of the tuples. In this case, it
manages it. The UDB collections are further marked by thds a good idea to use it to filter out both the Notes department
first character of each collection. Ampper case X indicates tuples and UDB course tuples as soon as possible. Thus, the
that the join was done in Garlic, and a lower case x indicateswo best plans push the join between the UDB collections
the join was pushed down to the UDB wrapper. A * over adown to the wrapper, and immediately join the result with
bar indicates that the optimizer, working with wrapper input,Notes. The two worst plans failed to take advantage of this.
chose the corresponding plan. Plan 2 in the figure arranged these collections out of order,

For all three queries, the optimizer picked the best plan ofnd plan 3 joined the entire Notes department collection with
the alternatives we studied, and, we believe, of all possibl&@BIC image before the join with the UDB collections.

plans. Note that thi's r'nay.not happen in general;.the PUTPOSE Thege experiments show that cost-based optimization is
of a cost-based optlmlzgr Is not to choose the optimal plan fofndeed critical to choose quality execution plans in a hetero-
every query, but to consistently choose good plans and avoiyeq5 environment. Using our framework, wrappers can

bad ones. provide enough information for the optimizer to cost wrap-
The graph once again reinforces the assertion that Wragser plans with a sufficient degree of accuracy. By combining

per input is crucial for the optimizer to choose the right plan.gych cost information with standard cost formulas for built-in

Without wrapper input, the optimizer chose the same plan fopperators, traditional costing techniques are easily extended

all three queries, which was to push the join between the UDBq cost complex cross-source queries in a heterogeneous en-
collections down to the UDB wrapper, join the result of that;;onment.

with the Notes department collection, and join that result with
the image collection. Without information from the QBIC
wrapper about the relative costs of the two image searche?, Related Work

it arbitrarily picked one of them to push down, and the otheras federated systems have gained in popularity, researchers
to perform via method invocation. In this case, the optimizethave given greater attention to the problem of optimizing
made a bad choice, pushing the cheap search of the 1x1 irgueries over diverse sources. Relevant work in this area in-
age down to the QBIC wrapper, and executing the expensiveludes work on multidatabase query optimization [LOG93,
search via method invocation on the objects that survive theSp95, SBM95, EDNO97, ONK96] and early work on het-

join predicates. This plan is a bad choice for all three querieserogeneous optimization [Day85, SC94], both of which fo-
with execution times well over 1000 seconds. cus on approaches to reduce the flow of data for cross-source

When the optimizer was given input from the QBIC wrap- queries, and not on estimation of costs. More recent ap-
per about the relative cost of the two average color searcheproaches [PGH96, LRO96] describe various methods to rep-
it chose correctly to push the expensive search down to theesent source capabilities. Optimizing queries with foreign
QBIC wrapper and perform the cheap search via method infunctions[CS93, HS93] is related, but these papers have fo-
vocation. Thisis true for all plans we looked at for all queries,cused on optimization algorithms, and again, not on estimat-
and brings the execution times for all of our sample plans tang costs. [UFA98] describes orthogonal work to incorporate
under 200 seconds. cost-based query optimization into query scrambling.

This experiment also shows that pushing down as much Work on frameworks for providing cost information and
work as possible to the data sources does not always lead @n developing cost models for data sources is, of course,
the best plan. For (Q13) and (Q15), the best plan did in fachighly relevant. OLE DB [Bla96] defines a protocol by which
include pushing the join between the UDB collections downfederated systems can interact with external data sources,
to the UDB wrapper. However, for (Q14), the best plan actu-but it does not address cross-source query optimization, and
ally split these two collections, and joined UDB departmentpresumes a common execution model. The most complete
with Notes department as soon as possible. In this plan, thisamework for providing cost information to date is In-
predicate on the UDB department collectiondibudget< formix’s DataBlades [Cor97] architecture. DataBlades inte-
6000000) restricted the number of UDB department tuplegrates individual tables, rather than data sources, and the op-
by 50%. Joining this collection with the Notes departmenttimizer computes the cost of an external scan using formulas
collection first also reduced the number of tuples that needethat assume the same execution model as for built-in scans.
to be joined with the image collection by 50%. For (Q13), Various approaches have been proposed to develop cost
the UDB department predicate (Lbudgek: 10000000) was models for external data sources. These approaches can be
not as restrictive. In this case, it would have only reduced thgrouped into four categories: calibration [DKS92, GST96],
number of tuples that needed to be joined with the image colregression [ZL98], caching [ACPS96], anuybrid tech-
lection by 9%, which was not a significant enough savings taniques [NGT98]. The calibration and regression approaches
make this alternative attractive. Instead, it was better to groupypically assume a common execution model for their sources
UDB department and UDB course together and push the joiwhich doesn't work for heterogeneous federations), but may
down to the UDB wrapper. be useful in developing wrapper cost models for particular

609

sources. Both [ACPS96] and [NGT98] deal with diverse datgHFLP89]
sources, but neither approach employs standard dynamic pro-
gramming optimization techniques.

L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible
query processing in starburst. Rroc. of the ACM SIGMOD
Conf. on Management of Datpages 377—-388, Portland, OR,
USA, May 1989.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J .Yang. Optimizing

7 Conclusion

We have demonstrated the need for cost-based optimizatiqns%]
in federated systems of diverse data sources, and we pre-
sented a complete yet simple framework that extends the ben-
efits of a traditional cost-based optimizer to such a federated
system. Our approach requires only minor changes to trad[-LOGg?’]
tional cost-based optimization techniques, allowing us to eas-

ily take advantage of advances in optimization technology.

Our framework provides enough information to the optimizerl-RO96]
for it to make good plan choices, and yet, it is easy for wrap-

pers to adapt. In the future, we intend to continue testing our
framework on a broad range of data sources. We would likgN*93]
to add templates to support classes of data sources that share

a common execution model, and test our framework for ho
well it handles object-relational features such as path expres-
sions and nested sets.

GT98]

[ONK*96]
8 Acknowledgements

We thank Peter Haas, Donald Kossmann, Mike Carey, Eu-
gene Shekita, Peter Schwarz, Jim Hafner, loana Ursu an[cFi)GH%]
Bart Niswonger for their help in preparing this paper, and V.S.
Subrahmanian for his support.

References

[ACPS96] S. Adali, K. Candan, Y. Papakonstantinou,and V. S. Subrahma-
nian. Query caching and optimization in distributed mediator
systems. IrProc. of the ACM SIGMOD Conf. on Management

of Data, pages 137-148, Montreal, Canada, June 1996.

J. Blakely. Data access for the masses through ole dbrde.
of the ACM SIGMOD Conf. on Managementof Dattontreal,
Canada, June 1996.

M. Carey et al. The bucky object-relational benchmark. In
Proc. of the ACM SIGMOD Conf. on Management of Data
pages 135-146, Tucson, Arizona, US, May 1997.

Informix Corporation. Guide to the virtual table interface.
Manual, 1997.

S. Chaudhuriand K. Shim. Query optimization in the presenc
of foreign functions. IrProc. of the Conf. on Very Large Data
Bases (VLDB)pages 529-542, Dublin, Ireland, 1993.

U. Dayal. Query processing in a ftidatabase system. In
W. Kim, D. S. Reiner, and D. S. Batory, editoQuery Pro-
cessing in Database Systemages 81-108. Springer, 1985.

W. Du, R. Krishnamurthy, and M.-C. Shan. Query opti-
mization in heterogeneous DBMS. Rroc. of the Conf. on
Very Large Data Bases (VLDBpages 277-291, Vancouver,
Canada, 1992.

W. Du, M.-C. Shan, and U. Dayal. Reducing multidatabase

query response time by tree balancing. Aroc. of the ACM

SIGMOD Conf. on Management of Dafzages 293—-303, San

Jose, CA, USA, May 1995. [UFA98]

C. Evrendilek, A. Dogac, S. Nural, and F. Ozcan. Mul-
tidatabase query optimization. Distributed and Parallel
Databases5(1):77-114,1997.

G. Gardarin, F. Sha, and Z.-H. Tang. Calibrating the query[ZL98]
optimizer cost model of IRO-DB, an object-oriented feder-

ated database system. Rroc. of the Conf. on Very Large

Data Bases (VLDB)pages 378-389, Bombay, India, Septem-

ber 1996.

[ROH99]
[Blag6]
[RS97]
[C*97]
[SAC*79]
[Cor97]
[CS93] SsBM95]

[Day85]
[SC94]
[DKS92]

[TRV96]
[DSD95]

[EDNO97]

[GST96]

610

queries across diverse data sourcesProc. of the Conf. on
Very Large Data Bases (VLDBAthens, Greece, August 1997.

J. M. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates.Phoc. of the
ACM SIGMOD Conf. on Management of Dapeages 267-276,
Washington, DC, USA, May 1993.

H. Lu, B.C. Ooi, and C.H. Goh. Multidatabase query optimiza-
tion: Issues and solutions. Rroc. of the Intl. Workshop on
Research Issues in Data Engineering: Interoperability in Mul-
tidatabase Systemgages 137-143,1993.

A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous
information sources using source descriptionsPiac. of the
Conf.on Very Large Data Bases (VLDPBpages 251-262, Bom-
bay, India, September 1996.

W. Niblack et al. The QBIC project: Querying images by con-
tent using color, texture and shape. Rroc. SPIE San Jose,
CA, USA, February 1993.

H. Naacke, G. Gardarin, and A. Tomasic. Leveraging mediator
cost models with heterogeneous data sourcePrée. IEEE
Conf. on Data Engineeringrlando, Florida, USA, 1998.

F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac.
Dynamic query optimization on a distributed object manage-
ment platform. InProc. of the International Conference on
Information and Knowledge Management (CIKMages 117—
124, Rockille, MD, USA, 1996.

Y. Papakonstantinou, A. Gupta, and L. Haas. Ciifas-
based query rewriting in mediator systems. Rroc. of the
Intl. IEEE Conf. on Parallel and Distributed Information Sys-
tems Miami, Fl, USA, December 1996.

[PGMW095] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object

exchange across heterogeneous information sourcegrotn
IEEE Conf. on Data Engineeringages 251-260, Taipeh, Tai-
wan, 1995.

M. Tork Roth, F. Ozcan, and L. Haas. Cost models do matter:
Providing cost information for diverse data sources in a feder-
ated systemlBM Technical Report RJ10141999.

M. Tork Roth and P. Schwarz. Don't scrap it, wrap it! A wrap-
per architecture for legacy data sourcesRtac. of the Conf. on
Very Large Data Bases (VLDBAMthens, Greece, August 1997.

P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price.
Access path selection in a relational database management sys-
tem. InProc. of the ACM SIGMOD Conf. on Management of
Data, pages 23-34, Boston, USA, May 1979.

S. Salza, G. Barone, and T. Morzy. Distributed query optimiza-
tion in loosly coupled mitidatabase systems. Proc. of the
Intl. Conf. on Database Theory (ICDTpages 40-53, Prague,
Czech Republic, January 1995.

P. Scheuermann and E. I. Chong. Role-based query processing
in multidatabase systems. froc. of the Intl. Conf. on Extend-

ing Database Technology (EDBTpages 95-108, Cambridge,
England, March 1994.

A. Tomasic, L. Raschid, and P. Valduriez. Scaling heteroge-
neous databases and the design of DISC@rtr. of the Intl.
Conf on Distributed Computing Systems (ICDO8hsterdam,
The Netherlands, 1996.

T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query
scrambling for initial delays. IfProc. of the ACM SIGMOD
Conf. on Management of Datpages 130-141, Stla, WA,
USA, June 1998.

Q. Zhu and P. Larson. Solving local cost estimation problem
for global query optimization in multidatabase systerbgs-
tributed and Parallel Database$§:1-51, 1998.

