Cost Models DO Matter: Providing Cost Information for Diverse
Data Sources in a Federated Systern

Mary Tork RotH FatmaOzcart Laura M. Haa%

IBM Almaden Research Center, San Jose CA 95120

the capabilities of the data sources and the costs of operations
performed by those sources. Standard database optimizers
Abstract have built-in knowledge of their (sole) store’s capabilities and
performance characteristics. However, in a world where the
An important issue for federated systems of diverse data optimizer must deal with a great diversity of sources, this de-
sources is optimizing cross-source queries, without build- tailed, built-in modeling is clearly impractical.

ing knowledge of individual sources into the optimizer. Garlic is a federated system for diverse data sources. Gar-
This paper describes a framework through which a fed- |ic’s architecture is typical of many heterogeneous database
erated system can obtain the necessary costand cardinal- systems, such as TSIMMIS [PGMW895], DISCO [TRV96],
ity information for optimization. Our framework makes it and HERMES [ACPS96]. Garlic is a query proces-

easy to provide costinformation for diverse data sources, sor [HFLP89]; it optimizes and executes queries over diverse
requires few changes to a conventional optimizer and is data sources posed in an extension of SQL. Data sources are
easily extensible to a broad range of sources. We believe integrated by means of wrapper [RS97]. In [HKWY97,

our framework for costing is the first to allow accurate RS97], we described how the optimizer and wrappers cooper-
cost estimates for diverse sources within the contextof a ate to determine alternative plans for a query, and how the op-
traditional cost-based optimizer. timizer can select the least cost plan, assuming it has accurate
information on the costs of each alternative plan. This paper
1 Introduction addresses how wrappers supply information on the costs and

Increasingly, companies need to be able to interrelate infor(_:ardinalities of their portions of a query plan and describes
gy, P the framework that we provide to ease that task. This infor-

mation from diverse data sources such as document manage- . L
. . tion allows the optimizer to compute the cost of a plan
ment systems, web sites, image management systems, an

without modifying its cost formulas or building in knowledge

domain-specific application systems (€.g., chemical structurgf the execution strategies of the external sources. We also

stores, CAD/CAM systems) in ways that exploit these SYSShow that cost-based optimizatimmecessary in a heteroge-

tems’ special search capabilities. They need applications that

not onl nitiol rces. but that ask queries over theneous environment; heuristic approaches that push as much
0 only access mliple Sources, bul q . ~work as possible to the data sources can err dramatically.
entire pool of available data as if it were all part of one vir-

. . r roach h veral advantages. It provides suffi-

tual database. One importantissue for such federated systemsou. approach has several 9 P
. - . cient information for an optimizer to choose good plans, but
is how to optimize cross-source queries to ensure that the . . :
. o . _.requires minimal work from wrapper writers. Wrappers for
are processed efficiently. To make good decisions about join

RS oy . r91imple sources can provide cost information without writing
strategies, join orders, etc., an optimizer must consider bot .
any code, and wrappers for more complex sources build on

This work was partially supported by DARPA contract F33615-93-1-13the facilities provided to produce moaecurate information
39. as needed. Our framework requires few changes to a con-

forkroth@almaden.ibom.com . - . o
fatma@cs.umd.edu; current address: DepartmentofComputerSciencg,entlonal bOttom'Up optimizer. As a result, in addition to

University of Maryland; partial funding provided by Army Research Labo- €xamining the full space of possible plans, we get the ben-
ratog Con"aft DdAAL9b1'97'K0135- efits of any advances in optimizer technology for free. The
ura@almaden.ibm.com framework is flexible enough taccommodate a broad range

Permission to copy without fee all or part of this material is granted provided .
that the copies are not made or distributed for direct commercial advantagepf sources easily, and does not assume that sources conform

the VLDB copyright notice and the title of thablication and its date appear, t0 any particular execution model. We believe that our frame-
and notice is given that copying is by permission of the Very Large Data Basa?/ork for costing is the first to allow accurate cost estimates

Endowment. To copy otherwise, or to republish, requires a fee and/or speci . o .
permission from thgi’;ndowmem_ P a Pe“%or diverse sources within the context of a traditional cost-

Proceedings of the 25th VLDB Conference, based optimizer.
Edinburgh, Scotland, 1999. The remainder of the paper is structured as follows. Sec-

599

tion 2 discusses the traditional approach to costing query
plans. In Section 3, we present a framework by which these
costing techniques can be extended to a heterogeneous envi-
ronment. Section 4 shows how a set of four wrappers with di-
verse capabilities adapt this framework to provide cost infor-
mation for their data sources. In Section 5, we present exper;
iments that demonstrate the importance of cost informatig Eggmm
in choosing good plans, the flexibility of our framework, thé
accuracy it allows, and finally, that it works — the optimizer

l re-execution cost l<7 l total cost]~\

Cost
Formulas

. Figure 1: Traditional ost-based optimization
is able to choose good plans even for complex Cross-sourGg 5 get of statistics that describe the data. At the next layer,

gueries. Section 6 discusses related work, and in Section

X o these statistics feed cost formulas to compute selectivity esti-
we conclude with some thoughts about future directions.

mates, CPU and I/O costs. Finally, in the outer layer, operator
costs are computed from the cost formulas, and these operator

2 Costing in a Traditional Optimizer costs ultimately result in plan costs.

In a traditional bottom-up query optimizer [SAC9], the
cost of a query plan is the cumulative cost of the operator$ Costing Query Plans in a Heterogeneous En-
in the plan (plan operators, BIOP9. Since every operator in vironment

the plan is the root of a subplan, its cost includes the cost o{.

o) his section focuses on the process of costing query plans in
its input operators. Hence, the cost of a plan is the cost of th P gquery p

§ heterogeneous environment. Two significant challenges in

tolpmost op;ergtoc; n thg fplan.thleeV\:jl§e, Itth € ?ird'mah:y of Zadapting a traditional cost-based optimizer to a heterogenous
plan operatoris derived from the cardinality ot ts INpUts, anBy 5y ment are first, to identifishatadditional information

the. cardinality of the topmost operator represents the cardtl;5 required to cost the portions of a query plan executed by
nality of the query result.

remote sources, and secohadwto obtain such information.

In order to derive the cumulative costs and cardinality €Sgaction 3.1 addresses thenat, by introducing a framework

timates for a query plan, three |mportapt cost numbers artor wrappers to provide information necessary to extend tra-
tracked for each PORotal cost(the cost in seconds to ex-

ditional plan costing to a heterogeneous environment. Sec-
ecute that operator and get a complete set of resutts),

. . tion 3.2 addresses theow, by describing a default adapta-
execution cosfthe cost in seconds to execute the POP a se y g P

Sion of the framework and facilities that a wrapper may use to
ond time), anctardinality (the estimated result cardinality of PP y

. . compute cost and cardinality information for its data source.
the POP). The difference between total and re-execution cost P y

is the cost of any initialization that may need to occur thefirstz 1 A Framework for Costing in a Heterogeneous Envi-
time an operator is executed. For example, the total cost of onment

a POP to scan a temporary collection includes both the cost

to populate and scan the collection, but its re-execution codfvhile the flow of information from base statistics to plan op-
includes only the scan cost. erator costs described in Section 2 works well in a traditional

The total cost, re-execution cost, and cardinality of a pogrelational) environment, it is incomplete for a heterogeneous
are computed us,ing)st formulaghat model the runtime be- €Nvironment. Given the diversity of data sources involved
havior of the operator. Cost formulas model the details of & duery, it is impossible to build cost formulas into the
CPU usage and I/O (and in some systems, messages) as aclptimizer to compute the costs of operations performed by

rately as possible. A special subset of the formulas estimatdB0Se data sources. Furthermore, since the data sources are
predicate selectivity. autonomous, a single strategy cannot be used to scan the base

Cost formulas. of course. have variables that must be indata to gather and store the statistics the optimizer needs to

stantiated to arrive at a cost. These include the cardinalitfe€d its formulas. Clearly, a cost-based optimizer cannot ac-

of the input streams to the operator, astdtisticsabout the ~ cUrately cost plans without cooperation from wrappers. In

data to which the operator is being applied. Cardinality ofthis section, we describe what mformgtlo'n is needed from

the input streams is either computed using cost formulas fof'raPPers to extend cost-based optimization to a heteroge-

the input operators or is a statistic if the input is a base tabld?€0US €nvironment.

Her!ce, statistics are a’F thg heart o'f any cqst-based optlmlze:j(: 11 Cost Model

Typically, these statistics include information about collec-

tions, such as the base cardinality, and about attributes, sudthe first challenge for an optimizer in a heterogeneous envi-

as information about the distribution of data values. A tradi-ronment is to integrate the costs of work done by a remote

tional optimizer also has statistics about the physical systerdata source into the cost of the query plan. In Garlic, the

on which the data is stored, usually captured as a set of comportions of a query plan executed by data sources are encap-

stant weights (e.g., CPU speed, disk transfer rate, etc.). sulated a®USHDOWROPs. Such POPs show up as leaves
Figure 1 summarizes this flow of information. At the core of the query plan tree. As a result, total cost, re-execution

600

cost, and result cardinality are all that is needed to integrat8.1.3 Statistics
the costs of ®USHDOWRDP into the cost of the query plan. o o)
Fortunately, these three estimates provide an intuitive levePOth the optimizer and the wrappers need statistics as input to

of abstraction for wrappers to provide cost information aboufh€ir costformulas. Ina heterogeneous environment, the base
their plans to the optimizer. On one hand, these estimatedata is managed by external data sources, and so it becomes

give the optimizer enough information to integrate the cost® Wrapper's task to gather these statistics. Since wrappers

of a PUSHDOWROP into the cost of the global query plan provide the cost estimates for operations performed by their
without having to modify any of its cost formulas or under- data sources, the optimizer requires ofdgical statistics
stand anything about the execution strategy of the externadibout the external data. Statistics that describe the physical
data source. On the other hand, wrappers can compute tgharacteristics of either the data or the hardware of the un-
tal cost, re-execution cost, and result cardinality in whatevef€'lYing systems are not necessary or even helpful; unless the
way is appropriate for their sources, without having to Cc)m_.op'[|m|zer actually models the operatlo'ns.of the data sources,
prehend the details of the optimizer's internal cost formulas. It Would not know how to use such statistics.
A traditional optimizer’s collection statistics include base

3.1.2 Cost Formulas cardinality, as well as physical characteristics (such as the

il q ¢ | heir bl number of pages it occupies), which are used to estimate the
erlppers \;V' nele CO,SIt ormu aito compqtet eirp ;’:m CfOS;SI’IO required to read the collection. In a heterogeneous envi-
and most formulas tailored to the execution models of t Gonment, the optimizer still needs base cardinality statistics to

built-in operators will typically not be appropriate. On the compute cardinality estimates for its operators.

other hand, some of the optimizer’s formulas may be widely
. For attributes, optimizers typically keep statistics that can
applicable. For example, the formula to compute the selec:

tivity of a set of predicates depends on the predicates and a?—.e u.sed'to compute predicate selectlery assuming a uniform
. L . distribution of values, and some physical statistics such as
tribute value distributions, and not on the execution model

. : he average length of the attribute’s values. More sophisti-
Wrappers should be able to pick from among available cos gl . . L
. : cated optimizers keep detailed distribution statistics for oft-

formulas those that are appropriate for their data sources, and
. . queried attributes. In a heterogeneous environment, an opti-
if necessary, develop their own formulas to model the execu- . : . oo
: ' . mizer still needs some attribute statistics in order to compute
tion strategies of their data sources more accurately.

- . accurate cardiddy estimates. In Garlic, wrappers are asked
Additionally, wrappers may need to provide formulas to ay PP

to provide uniform distribution statistics (number of distinct

help the optimizer cost new built-in POPs specific to a hEteroilalues, second highest and second lowest values). They may

geneous environment. For example, traditional query proceso'é)tionally provide more detailed distribution statistics, and

sors often assume that all required attributes can be extract? & optimizer will make use of them. Physical statistics such

from a base collection at the same time. In Garlic, wrap- .
as average column length are not required, although they may

pers are not required to perform arbltrary'prOIectlons n the'r?e helpful to estimate the cost to operate on the data once it
plans. However, they must be able to retrieve any attribute o;

. : A : is returned to Garlic. If not provided, the optimizer estimates
an object given the object’s id. If a wrapper is unable to SUPinese costs based on data type

ply all requested attributes as part of its plan, the optimizer N | h o ded for th L

attaches &ETCHoperator to retrieve the missing attributes. Otl only are these statistics neede or the optlm!zer§

The retrieval cost may vary greatly between data sources, aﬁ‘armu as, but wrappers may need them as mput to their pri-
Jvate cost formulas. In addition, wrappers may introdoee

even between attributes of the same object, making it impo tics th v thei p | h -
sible to estimate using standard cost formulas. Thus, to aIIov%t""t'StICSt at'on yt e", cost formulas use. Such statistics may
be for collections, attributes, or methods. For example, the

the optimizer to estimate the cost of tHi&ETCHoperator, 3 .

wrappers are asked to provide a cost formula that Capturec‘Sost formulas a wrapper must provide to estimate the total and

theaccess codb retrieve the attributes of its objects re-execution costs of its methods are likely to require some
pinformation as input. Thus, as with cost formulas, the set of

As another example, wrappers are allowed to export met . . .
ods that model the non-traditional capabilities of their datastatlstlcs in a heterogeneous environment must be extensible.

sources, and such methods can be invoked by Garlic’'s query To summarize, Figure 2 shows the extended flow of infor-
engine. Methods may be extremely complex, and their costmation needed for an optimizer in a heterogeneous environ-
may vary greatly depending on the input arguments. Againment. White objects represent information that is produced
accurately estimating such costs using generic formulas is imand used by the optimizer. Objects with horizontal lines (e.g.,
possible. Wrappers are asked to provide two formulas to meahe formula to compute predicate selectivity) are provided by
sure a method’s costsotal method cosfthe cost to execute the optimizer and made available to the wrappers. Those with
the method once), ang-execution method cofthe cost to vertical lines are provided by the wrappers, and used by both
execute the method a second time). These formulas providée optimizer and the wrappers. Statistics and cost formulas
an intuitive level of abstraction for the wrapper, yet give theshown shaded in gray are introduced by and available only
optimizer enough information to integrate method invocatiornto wrappers. The outer circle shows that wrappers are asked
costs into its operator costs. to report the total cost, re-execution cost, and result cardi-

601

[provided and used by optimizer
Built-in POP cost estimates B :\:‘;‘i/l;i;g ?Q?V;S;pdet)sy optimizer, | | Cost Model |

| oo P1 | plantotal_cost = resetcost + advancecost x
P[]

((resultcardinality+ 1) /BLOCK SIZE)
P2 | planreexecutioncost= plantotal_cost— resetcost
rioute access ot P3 | planresultcardinality =
estimates

[1L;BASECARD x applied predicatesselectivity

stas

method cost
estimates

Table 1: Default cost model estimates for wrapper plans

Standard cost
formulas

ties. They can iterate over the objects in their collections, and
perhaps apply basic predicates. They do not perform joins or
other complex SQL operations. This limited set of capabili-
ties often means that their execution strategy is both straight-
forward and predictable. These characteristics make it easy to
develop a general purpose cost model. Second, an important
goal of Garlic is to ensure that writing a wrapper is as easy
as possible. If the default cost model is complete enough to
model very basic capabilities, then wrapper writers for simple
ammeer anawramnes - data sources need not proviakey code for computing costs.
B powessmasavysmes e default cost model is anchored around the execution
model of a runtime operator. Regardless of whether a runtime
operator represents a built-in POP oPESHDOWROP, its

rlmal!ty for their plqns Armed with this mformatlon,'t © 9P" \vork can be divided into two basic taskseset which repre-
timizer can combine the costs BUSHDOWROPS with the . .
sents the work that is necessary to initialize the operator, and

costs of built-in POPs to compute the cost of the query plan: . i
. . advancewhich represents the work necessary to retrieve the
In the next circle, wrappers are asked to provide formulas to
) . next result. Thus, the total cost of a POP can be computed as
compute attribute access costs and method costs. Itiadd o :
L combination of the reset and advance costs. As shownin Ta-
they can make use of some existing cost formulas, and a . . .
. . : e 1, the default model exploits this observation to compute
new formulas to model the execution strategies of their dat .
. . . . e total and re-execution costs of a wrapper plan.
sources. Finally, in the inner circle, wrappers are asked to P1). the f la t te the total t of lan
provide the basic statistics about their collections and the at- (t r), the Sanli/?rOfC(:(mputii JSF?DaO\(/:\(/EDFC’) oicpe):a ’
tributes of their objects that the optimizer needs as input to it aptures the behavior of executing :

formulas. They may also compute and store statistics that art%r;eczrr):rfg?er rrglsjjtt t;ztr(e sﬁ[s Z:C:la;zgnﬁ\:ggf ?c? dtgt(;(rart:ii\;e
required by their own formulas. P P

that all results have been retrieve®). OCK_SIZE represents

the number of results that are retrieved at a time. Default
formulas to compute reset and advance costs are described
Figure 2 shows how our framework extends the traditionain Section 3.2.2 below. The re-execution cost (P2) is com-
flow of cost information to include wrapper input at all lev- puted by factoring out the initialization costs from the to-
els. To make it easy to provide such information (particularlytal cost estimate. SindRUSHDOWROPs are leaf POPs of

for simple data sources), the framework also provides a dethe query plan tree, the result cardinality estimate (P3) is
fault cost model, default cost formulas, and a facility to gathetcomputed by multiplying the cross product of thecollec-
statistics. The framework is completely flexible; wrapperstion base cardinalitieaccessed by the plan by the selectiv-
may use any of the defaults provided, or choose to providéty of the applied predicates. As described in Section 3.2.3,

attribute
stats,

Statistics

wrapper
stats

wrapper cost 2
gstimates

|| oot /

PUSHDOWN POP cost estimate

Wrapper cost
formulas

re~execution cost

result cardinality

Figure 2: Heterogeneous cost-based optimization

3.2 Completing the Framework

their own implementations. BASECARD s the basic collection cardinality statistic, and
applied predicatesselectivitycan be computed using the
3.2.1 Extending the Cost Model standard selectivity formula provided by the optimizer.

As described in Section 3.1.1, a wrapper’s first job is to re-

port total cost, re-execution cost, and result cardinality for3'2'2 Extended Cost Formulas

its plans. To make this task as easy as possible, the fram@ur framework provides default implementations of all the

work includes a default cost model which wrappers can usgost formulas wrappers need to supply (including those intro-
to model the execution strategies of their data sources. Wrap-

i it 10our model actually has three tasks; we are omitting discussion of the
Pers can take advantage of this cost model, or, if it is noLind task to simplify expason. Bind represents the work needed to provide

sufficient, replace it with a cost model of their own. the next set of parameter values to a data source, and can be used, for exam-
The default cost model was designed with simple dataple, to push join predicate evaluation down to a wrapper. However, simple

. . . . ources typically don’t accept bindings, as they cannot handle parameterized
sources in mind. We chose this approach for two Import""'@ueries. Our relational wrapper does accept bindings, and provides cost for-

reasons. First, simple data sources have very basic capabithulas to calculate their cost.

602

| | Cost formula | [Category] Statistic [Query template |

F1 | accesxos{A) = AVGACCESSCOShax + (N — 1) x Collection] BASE.CARD select count(*) from
OVERHEADx AV GACCESSCOSThax collection
F2 | methodtotal_cosf = AV GTOTALMETHCOST AVG_RESET.COST, select ¢.OID from col-
F3 | methodreexecutiorcost = AV GREEXMETH.COST AVG_ADVANCE_COST lection ¢
F4 | resetcost= AVGRESETCOST Attribute | NUM_DISTINCT_VALUES select count(distinct
F5 | advancecost= AV GADVANCECOST c.attribute) from col-
lection ¢
Table 2: Default cost formulas 2ND-HIGH_VALUE select c.attribute from
collection c order by 1
. . It desc
duced in Section 3:1.2) as well as those needed by the de.fauu SND LOWVALUE elect Catiibute from
cost model of Section 3.2.1. These formulas are summarized collection ¢ order by 1
in Table 2, and we will describe each formula in greater detai G ACCESSCOST asf e
below. They rely on a new set of statistics, and Section 3.2.3 iglgﬁtigﬁ té” ute from
describes how these statistics are computed and stored. Method | AVG_TOTAL_METH_COST, select c.method(args
(F1) is the default definition of the attributecess cost AVG_REEXMETH.COST from collection ¢

formula. Arepresents a set ofattributes to be retrieved by a
FETCHPOP. Typically there is a significant charge to retrieve

the first attribute, but only an incremental charge to retrievg,|5r data source (and they won't be for more capable sources),

additional attributes once the first attribute has been retrieved, wrapper writer may provide formulas that more accurately
AVGACCESSCOST is a new attribute statistic that measures gfiect the execution strategy of the data source. In fact, our

the cost to retrieve attributg and AVGACCESSCOSTax framework for providing cost formulas is completely exten-
is the most expensive attribute retrieved by BETCH gjpje: wrappers may use the optimizer's predicate selectivity
OVERHEADS a constant multiplier between 0 and 1 that rep-gormy|as, any of the default formulas used by the default cost
resents the additional cost to retrieve an attribute, assumin,glodeL or add their own formulas. Wrapper-specific formulas
that the most expensive attribute Anhas already been re- 4, feed the formulas that compute operator costs and cardi-
trieved. Wrappers may adjust this value as appropriate. jities, and their implementations can make use of the base

(F2) and (F3) represent the default definitions providedsiagistics, and any statistics wrappers choose to introduce.
by the framework for the optimizer's method cost formulas.

AVG_TOTAI._MET H.COSTand AV GREEXMETH.COST are 3.2.3 Gathering Statistics
new statistics that represent measures of the average total and
re-execution costs to invoke a method. This information isAs described in Section 3.1.3, both the standard cost for-
similar to the information standard optimizers keep for usermulas and wrapper-provided cost formulas are fueled by
defined functions [Cor97]. These statistics are extremely simstatistics about the base data. Garlic provides a gengric
ple, and do not, for example, take into account the set of ardatestatisticsfacility that wrappers can use to gather and
guments that are passed in to the method. As we will illusstore the necessary statistics. The updadgistics facility in-
trate in Section 4.2, wrappers that use methods to export thdudes a set of routines that execute a workload of queries
nontraditional capabilities of a data source may provide newagainst the data managed by a wrapper, and uses the results
definitions that match the execution strategy of their underof these queries to compute various statistics. Wrappers may
lying data source more accurately, including any dependencyse this facility “as-is”, tailor the query workload to gain a
on the method’s arguments. more representative view of the data source’s capabilities and

Formulas (F4) and (F5) are the default cost formulas usedata, or augment the facility with their own routines to com-
by the default cost model to compute plan costs. For simplgute the standard set of statistics and their own statistics.
wrappers with limited capabilities, computing average times Table 3 describes the default query workloads that are used
over the range of queries that the data source supports may compute various statistics. From the table, it should be
often be sufficient to obtain accurate cost estimates. The delear how the standard statistics are computed. However,
fault cost formulas to compute plan costs use this approachihe calculations for the newly introduced statistics (marked
While these formulas are admittedly naive, in Section 5.2with an asterisk) bear further description. For collections,
we show that they work remarkably well for the simple datathe default cost model described in Section 3.2.1 relies on
sources in our experiments. Since simple wrappers typicallgtatistics that measure the average time to initialize and ad-
do not perform joins, the reset and advance costs are convance a wrapper operator. These measures are derived by
puted to be the average reset and advance costs of the siexecuting a workload of single-collection queries defined by
gle collectionc accessed by the plaAvGRESETCOSTand the wrapper writer (or DBA) that characterizes the wrap-
AV GADVANCECOSTare new collection statistics that repre- per's capabilities. For example, for a simple wrapper, the
sent measures of the average time spent initializating and revorkload may contain a single simplsélect c.OID
trieving the results for queries executed against a collection.from collection ¢ " query, executed multiple times.

If these default cost formulas are not sufficient for a partic-Running averages of the time spent in reset and advance

Table 3: Statistics generated by updatatistics facility

603

of its simplicity, the wrapper uses the default cost model to

Wrapper Code | Cost Cost formulas Statistics . L .
model compute its plan costs and cardinality estimates, and uses
ObjectStore| 0 | default Jdefault Jdefault the updatestatistics facility “as-is” to compute and store the
Lotus Notes| 0 | default default default statistics required to fuel the default formulas, as well as those
QBIC 700 | default L%’;'t""cf:s;”tetg%f ;de‘:ﬁg g used by the optimizer to cost the appended Garlic POPs. We
vance formulas | statistics will see in Section 5.2 that the default model is indeed well-
Relational | 400 | default replaces reset| added col- suited to this very basic wrapper.
?Odr‘r'r?l:'lgi Let;i'igtr;cs We also implemented a more capable wrapper for Lotus

Notes databases. It can project an arbitrary set of attributes
Table 4: Wrapper adaptations of framework and apply combinations of predicates that contain logical,
comparison and arithmetic operators. It cannot perform joins.
of the wrapper's runtime operator are computed for thisye have observed that the execution strategy for Lotus Notes
workload of queries, and those measures are stored as t@famy predictable. For any given query with a set of at-
AV GRESETCOSTandAV GADVANCECOSTSstatistics. Note ripytes to project and set of predicates to apply, Lotus will
that these times include network costs, so the plan cost fokgtrieve each object from the collection, apply the predicates,
mulas do not have to consider network costs explicitly. and return the requested set of attributes from those objects
To compute the new attribute statist¢G ACCESSCOST hat survive the predicates.
(used by the default cost formula to compute attribute access \we intended to demonstrate with this wrapper that only a
cost), a single query which projects the attribute is executeta,y modifications by the wrapper were needed to tailor the
and the optimizer is forced to choose a plan that includes gefault cost model to a more capable wrapper. However, as
FETCHoperator to retrieve the attribute. This query is exe-yye will show in Section 5.2, we discovered that although the
cuted multiple times, and a running average of the time Spe%rapper for Lotus Notes is much more capable than the Ob-
retrieving the attribute is computed, including network COStS-jectStore wrapper, the behavior of its underlying data source
For the new method statistics, a workload of queries whichs predictable enough that the simple default cost model is still
invoke the method with representative sets of arguments (SURyitable. The wrapper writer was only required to tailor the
plied by the wrapper writer) is executed multiple times. Run-,orkload of queries used to generate HveG.RESETCOST
ning averages are computed to track the average time (includs, 4 av G ADVANCECOST collection statistics so that they
ing network costs) to execute the method both the first timey,ore accurately represented the data source’s dijesh

and multiple subsequent times. These averages are stored\gg ysed a simple workload of queries; techniques described
the AV GTOTALMETH.COSTand AVGREEXMETH.COST i, [zL.98] might do a better job of choosing the appropriate

statistics, respectively. sample queries.

4 Wrapper Adaptations of the Framework 4.2 Data Sources with Interesting Capabilities

Figure 2 shows how our framework enables wrapper input i"QBIC [N*+93] is an image server that manages collections of
each concentric circle. In this section, we describe how a SE?Fnages. These images may be retrieved and ordered accord-
of wrappers have adapted this framework to report cost in1‘orl~ng to features such as average color, color histogram, shape,
mation about their data sources to the optimizer. These WraRexture, etc. We have built a wrapper for QBIC that mod-
pers represent a broad spectrum of capabilities, from the very|s the average color and color histogram feature searches
limited capabilities of our complex object repository wrapper 55 methods on image objects. Each method takes a sample
to the very powerful capabilities of our wrapper for relational image as an argument, and returns a “score” that indicates
databases. Table 4 summarizes how these different wrappgig well the image object on which the method was invoked
adapted the framework to their data sources, as well as th@atched the sample image; the lower the score, the better the
number of lines of code involved in the effort. match. These methods may be applied to individual image
objects via the Garlic method invocation mechanism. In ad-
dition, the QBIC wrapper will produce plans that apply these
We use ObjectStore as a repository to store complex objectsethods to all image objects in a collection, and return the
which Garlic clients can use to bind together existing object®bjects ordered from best match to worst match. It can also
from other data sources. This wrapper is intentionally simpleproduce plans that return the image objects in an arbitrary
as we want to be able to replace the underlying data souraerder. It does not apply predicates, project arbitrary sets of
without much effort. This wrapper will only generate plans attributes, or perform joins.

that return the objects in the collections it manages, i.e., itwill Both the average color feature searches and color his-
only