
PM3: An Orthogonally Persistent Systems Programming
Language – Design, Implementation, Performance

Antony L. Hosking
hosking@cs.purdue.edu

Jiawan Chen
chenj@cs.purdue.edu

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398
U.S.A.

Abstract

PM3 is an orthogonally persistent extension of the
Modula-3 systems programming language, sup-
porting persistence by reachability from named
persistent roots. We describe the design and im-
plementation of the PM3 prototype, and show
that its performance is competitive with its non-
orthogonal counterparts by direct comparison
with the SHORE/C++ language binding to the
SHORE object store. Experimental results, using
the traversal portions of the OO7 benchmark, re-
veal that the overheads of orthogonal persistence
are not inherently more expensive than for non-
orthogonal persistence, and justify our claim that
orthogonal persistence deserves a level of accep-
tance similar to that now emerging for automatic
memory management (i.e., “garbage collection”),
even in performance-conscious settings. The con-
sequence will be safer and more flexible persistent
systems that do not compromise performance.

1 Introduction

PM3 is an extension of the Modula-3 systems program-
ming language [Cardelli et al. 1991] that supportsorthogo-
nal persistence[Atkinson and Morrison 1995], which man-
ifests itself as a model of persistence by reachability from
designated persistent roots. Persistent storage is viewed as
a transparent extension of the Modula-3 dynamic allocation
heap; all heap-allocated data are potentially persistent. The
merits of orthogonal persistence have been argued for many
years, yet performance-conscious implementations of per-
sistence have been lacking. Indeed, most implementations
of orthogonally persistent programming languages have re-
lied on an execution model that involves interpretation by

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999

a virtual machine, rather than compilation to native code.
This trend continues today with Java.

In contrast, persistent extensions of systems program-
ming languages have traditionally shunned orthogonal per-
sistence as too expensive, or perhaps too difficult to imple-
ment. The primary reason for this is its implied reliance
on garbage collection to effectpersistence by reachabil-
ity. Yet garbage collection is now gaining in acceptance,
even in the systems programming realm. Evidence for this
comes not just from the increased level of research activity
related to garbage collection [ISMM 1998], but also from
the commercial success in the C++ market of garbage col-
lector vendors such as Chicago’s Geodesic Systems. In this
paper, we lay to rest the notion that orthogonal persistence
is a luxury that a “real” systems programming language
cannot afford.

We organize the remainder of the paper as follows. Sec-
tion 2 more precisely defines what we mean by the term
orthogonal persistenceand outlines its advantages for pro-
grammers of large persistent applications, while also con-
sidering the performance problems it poses. Section 3 dis-
cusses related work in the area of persistent programming
languages. In Section 4 we describe our design and imple-
mentation of PM3, followed in Section 5 by a description of
our experimental framework for comparison of PM3 with
SHORE/C++, our experimental results, and their detailed
implications. Section 6 summarizes our conclusions and
points towards future research directions.

2 Orthogonal persistence

Orthogonally persistent object systems[Atkinson and Mor-
rison 1995] provide an abstraction of permanent data stor-
age that hides the underlying storage hierarchy of the hard-
ware platform (fast access volatile storage, slower access
stable secondary storage, even slower access tertiary stor-
age, etc.). This abstraction is achieved by binding a pro-
gramming language to an object store, such that persistent
objects will automatically be cached in volatile memory for
manipulation by applications and updates propagated back

587

to stable storage in a fault-tolerant manner to guard against
crashes. The resultingpersistent programming language
and object store together preserveobject identity: every ob-
ject has a unique persistent identifier (in essence an address,
possibly abstract, in the store), objects can refer to other ob-
jects, forming graph structures, and they can be modified,
with such modifications visible in future accesses using the
same unique object identifier.

In definingorthogonalpersistence Atkinson and Morri-
son [1995] cite three design principles that are desirable in
any persistent programming language design, enabling the
full power of the persistence abstraction:

1. Persistence independence: the language should allow
the programmer to write code independently of the
persistence (or potential persistence) of the data that
code manipulates. From the programmer’s perspec-
tive access to persistent objects istransparent, with no
need to write explicit code to transfer objects between
stable and volatile storage.

2. Data type orthogonality: persistence should be a prop-
erty independent of type. Thus, an object’s type
should not dictate its longevity.

3. Persistence designation: the way in which persistent
objects are identified should be orthogonal to all other
elements of discourse in the language. Neither the
method nor scope of its allocation, nor the type system
(e.g., the class inheritance hierarchy), should affect an
object’s longevity.

The advantages that accrue through application of these
principles to the design of persistent programming lan-
guages are many. Persistence independence allows pro-
grammers to focus on the important problem of writing cor-
rect code, regardless of the longevity of the data that code
manipulates. Moreover, the code will function equally well
for both transient and persistent data.

Data type orthogonality allows full use of data abstrac-
tion throughout an application, since a type can be applied
in any programming context. This permits the development
of programming systems based on rich libraries of useful
abstract types that can be applied to data of all lifetimes.

Finally, persistence designation gives every data item
the right to the full range of persistence without requiring
that its precise longevity be specified in advance. Again,
this aids programming modularity since the producer of
data need not be concerned with the ultimate degree of
longevity to which a consumer might subject that data.
In sum, orthogonal persistence promotes the programming
virtues of modularity and abstraction; both are crucial to
the construction of large persistent applications.

2.1 Practicalities

Complete persistence independence typically cannot be
achieved, and even if it can, it may not be desirable, since
one usually wants to offer a degree of control to the pro-
grammer. For example, in using a transaction mechanism
one must generally specify at least the placement of trans-
action boundaries (begin/end). Nevertheless, a language

design would not be transparent if it required different ex-
pression for the usual manipulation of persistent and non-
persistent objects; i.e., for operations such as method invo-
cation, field access, parameter passing, etc.

Similarly, perfect type orthogonality may not be achiev-
able and may not even be desirable. For example, some
data structures refer to strictly transient entities (e.g., open
file channels or network sockets), whose saving to persis-
tent storage is not even meaningful (they cannot generally
be recovered after a crash or system shutdown). Whether
thread stacks and code can persist is a trickier question. In
many languages these objects are not entirely first class,
and supporting persistence for them may also be challeng-
ing to implement. Thus, perfect type orthogonality, in the
sense that any instance of any type can persist, is not so de-
sirable as that any instance of any typethat needs to persist
can persist.

The principle of persistence designation means that any
allocatedinstanceof a type is potentially persistent, so that
programmers are not required to indicate persistence at ob-
ject allocation time. Languages in which the extent of an
object can differ from its scope usually allocate objects on a
heap, where they are retained as long as necessary. Deallo-
cation of an object may be performed explicitly by the pro-
grammer, or automatically by the system when it detects
that there are no outstanding references to the object. This
can be determined by agarbage collector[Jones 1996] by
computing the transitive closure of all objects reachable (by
following references) from some set of system roots. In
systems that support garbage collection, persistence desig-
nation is most naturally determined byreachability from
some set of knownpersistentroots.

2.2 Performance

Orthogonal persistence exacerbates problems of perfor-
mance by unifying the persistent and transient object ad-
dress spaces such thatany given reference may refer to
either a persistent or transient object. Since every access
(read or write) might be to a persistent object, they must
all be protected by an appropriatebarrier. Thus, the per-
sistenceread barrier ensures that an object is resident in
memory, and faults it in if not, before any read operation
can proceed. Similarly, the persistencewrite barrier sup-
ports efficient migration of updates back to stable storage,
either when updated objects are replaced in volatile mem-
ory or during explicit stabilization of the persistent store, by
maintaining a record of which objects in volatile memory
are dirty. In general the read and write barriers can sub-
sume additional functionality, such as negotiation of locks
on shared objects for concurrency control.

The read and write barriers may be implemented in
hardware or software. Hardware support for barriers, utiliz-
ing the memory management hardware of the CPU, is usu-
ally implemented via the virtual memory protection prim-
itives of the underlying operating system [Appel and Li
1991; Lamb et al. 1991; Singhal et al. 1992; Wilson and
Kakkad 1992; White and DeWitt 1994], though the cost

588

of fielding the resulting protection traps in some operating
systems can be expensive [Hosking and Moss 1993]. In
the absence of hardware-based solutions, or because of the
performance shortcomings, barriers can be implemented in
software. Typically, the language compiler or interpreter
must arrange for appropriate checks to be performed ex-
plicitly before each operation that may access or update a
persistent object. Alternatively, some languages (such as
C++) support overloading of access operations to include
the checks. These explicit software barriers can represent
significant overhead to the execution of any persistent pro-
gram, especially if written in an orthogonally persistent
language where every access might be to a persistent ob-
ject.

There are several approaches to mitigating these per-
formance problems.Pointer swizzling[Moss 1992] is a
technique that allows accesses to resident persistent objects
to proceed at volatile memory hardware speeds by arrang-
ing for references to resident persistent objects to be rep-
resented as direct virtual memory addresses, as opposed to
the persistent identifier format by which they are referenced
in stable storage. A read barrier may still be necessary to
ensure that a given reference is in swizzled format before
it can be directly used. Unnecessary software barriers can
also be eliminated by taking advantage of language exe-
cution semantics and compile-time program analysis and
optimization.1

3 Related work
The notion of orthogonal persistence has a long history
[Atkinson and Buneman 1987], traced through the devel-
opment of persistent programming languages such as PS-
Algol [Atkinson et al. 1982; Atkinson et al. 1983; Atkin-
son et al. 1983] and Napier88 [Morrison et al. 1990; Dearle
et al. 1990], and extensions to existing languages such as
Smalltalk [Kaehler and Krasner 1983; Kaehler 1986; Straw
et al. 1989; Hosking 1995] and Java [Atkinson et al. 1997;
Atkinson et al. 1996]. It is important to note that all of
these persistent languages rely on support for persistence
from an underlying virtual machine, implemented as an ab-
stract bytecode interpreter. While dynamic translation (i.e.,
“just-in-time” JIT compilation) can improve performance
in these systems, neither performance nor features for sys-
tems programming were a design goal. On the other hand,
abstraction of the execution engine as a virtual machine can
more easily permit orthogonal persistence of active exe-
cution states (i.e., threads); certainly Napier88, Smalltalk
and Tycoon [Matthes and Schmidt 1994] are noteworthy
for this capability.

Performance-conscious persistent programming lan-
guages have historically almost exclusively been based
upon C++, which at its outset was hostile to ideas of auto-
matic storage management on the grounds that it compro-
mised performance. Hence, most C++-based persistence

1[Richardson 1990; Hosking and Moss 1990; 1991; Moss and Hosking
1995; Hosking 1995; 1997; Hosking et al. 1999; Nystrom 1998; Nystrom
et al. 1998; Brahnmath 1998; Brahnmath et al. 1999]

extensions have adopted models of persistence that violate
orthogonality in one or more dimensions. In E [Richardson
and Carey 1987; 1990] and SHORE/C++ there is a dis-
tinction between database types and standard C++ types;
only database types can persist. O++ [Agrawal and Gehani
1989; 1990] and Texas [Singhal et al. 1992; Wilson and
Kakkad 1992], along with several commercial offerings
[Lamb et al. 1991], adopt a different approach, requiring
designation of persistence at allocation time. Indeed, the
object database standard for C++ persistence defined by
the Object Data Management Group (ODMG) is not or-
thogonal [Alagić 1997]. Until our own work [Hosking and
Novianto 1997; Hosking and Chen 1999] we are unaware
of any attempt to bring orthogonal persistence into the C++
domain. This is not to say that C++ itself will not succumb
to orthogonal persistence. In fact, we are also exploring
this possibility through extension of Texas with persistence
by reachability, by marrying a garbage collector to Texas’s
portable run-time type descriptors [Kakkad et al. 1998] to
obtain accurate information on the location of references
stored in the heap.

It is worth noting that orthogonal persistence can be sup-
ported without redesign and reimplementation of the pro-
gramming language if one is prepared instead to layer sup-
port for persistence into the operating system. Several ex-
perimental projects have taken this approach: support for
persistence is targeted explicitly in Grasshopper [Dearle
et al. 1994; Rosenberg et al. 1996] and Mungi [Elphin-
stone et al. 1997; Heiser et al. 1998], but the rudiments
are there in other experimental operating systems such as
Opal [Chase et al. 1994; Chase et al. 1992], among others.
Of course, our interest here focuses on efficient support for
orthogonal persistence on stock operating systems.

4 PM3: Orthogonally persistent Modula-3

To serve as a platform for research into compiler sup-
port for orthogonally persistent programming languages
we have designed and implemented an extension of the
Modula-3 programming language [Cardelli et al. 1991] that
supports orthogonal persistence.

Modula-3 is a modern, portable, systems programming
language in the Algol family, whose other representatives
include Pascal, Ada, Modula-2, and Oberon. Modula-
3 also adopts selected features from the BCPL family of
languages (C and C++ are the current specimens) in or-
der to provide support for low-level systems programming,
while retaining a strong type system that avoids dangerous
and machine-dependent features. Modula-3 also supports
threads (lightweight processes in a single address space),
exception handling and information-hiding features such
as objects, interfaces, opaque types and generics. Provi-
sion for garbage collection recognizes the high degree of
safety afforded by automatic storage reclamation, which is
achievable even in open runtime environments that allow
interaction with non-Modula-3 code.

Modula-3 is strongly-typed: every expression has a
unique type, and assignability and type compatibility are

589

INTERFACE Transaction;
EXCEPTION

TransactionInProgress;
TransactionNotInProgress;

TYPE
T <: Public;
Public = OBJECT METHODS

begin()
RAISES { TransactionInProgress };
(* Starts (opens) a transaction.

Raises TransactionInProgress if
nested transactions are not
supported. *)

commit()
RAISES { TransactionNotInProgress };
(* Commits and closes a transaction *)

chain()
RAISES { TransactionNotInProgress };
(* Commits and reopens transaction;

retains locks if possible *)
abort()

RAISES { TransactionNotInProgress };
(* Aborts and closes a transaction *)

checkpoint()
RAISES { TransactionNotInProgress };
(* Checkpoints updates, retains locks

and leaves transaction open *)
isOpen(): BOOLEAN;

(* Returns true if this transaction
is open, otherwise false *)

END;
END Transaction.

Figure 1: The Transaction interface

defined in terms of a single syntactically specified subtype
relation, written<:. There are specific subtype rules for
ordinal types (integers, enumerations, and subranges), ref-
erences and arrays.

A tracedreference typeREFT refers to heap-allocated
storage (of typeT) that is automatically reclaimed by the
garbage collector whenever there are no longer any refer-
ences to it.2 The typeREFANYcontains all references. The
typeNULL contains only the reference valueNIL . Object
types are also reference types. Anobject is eitherNIL or
a reference to a data record paired with a set of procedures
(methods) that will each accept the object as a first argu-
ment. Every object type has a supertype,inheritsthe super-
type’s representation and implementation, and optionally
may extend them by providing additional fields and meth-
ods, or overriding the methods it inherits with different (but
type-correct) implementations. This scheme is designed so
that it is (physically) reasonable to interpret an object as
an instance of one of its supertypes. That is, a subtype is
guaranteed to have all the fields and methods defined by its
supertype, but possibly more, and it may override its super-
type’s method implementations with its own.

4.1 Design

Persistence in PM3 is achieved by allowing traced refer-
ences to refer not only to transient data, but also to per-
sistent data. Allocated storage persists by virtue of its
reachability by following traced references from the roots
of named PM3 databases. The PM3 implementation is re-
sponsible for automatic caching of persistent data in mem-
ory, and for automatic mediation of accesses to cached data

2Modula-3 also supportsuntracedreferences to storage allocated in a
separate heap that is not subject to garbage collection; untraced storage
must be deallocated explicitly.

INTERFACE Database;
FROM Transaction IMPORT

TransactionInProgress,
TransactionNotInProgress;

EXCEPTION
DatabaseExists;
DatabaseNotFound;
DatabaseOpen;

PROCEDURE Create(name: TEXT)
RAISES { DatabaseExists,

TransactionInProgress };
PROCEDURE Open(name: TEXT): T

RAISES { DatabaseNotFound, DatabaseOpen,
TransactionInProgress };

TYPE
T <: Public;
Public = OBJECT METHODS

getRoot(): REFANY
RAISES { TransactionNotInProgress };

setRoot(object: REFANY)
RAISES { TransactionNotInProgress };

END;
END Database.

Figure 2: The Database interface

to enforce concurrency control.
Persistence functionality is introduced by way of the

new library interfacesTransactionandDatabase; their es-
sentials are presented in Figures 1 and 2. They are sim-
ilar to their namesakes from the ODMG standard [Cat-
tell et al. 1997], with databases and transactions abstracted
as Modula-3 objects. Each named database has a dis-
tinguished root, from which other persistent data can be
reached. Databases can be shared by multiple users and
operating system processes, with locking and concurrency
control enforcing serializability of transactions. Unlike the
ODMG transaction model, we do not necessarily enforce
isolation between threads executing in the same virtual ad-
dress space, though we do require that a thread execute in at
most one transaction at any time, and that it enter a transac-
tion before attempting to interact with a database. The de-
sign permits transactions to nest, though our current imple-
mentation does not. We are also exploring extended seman-
tics for combining transactions and threads in PM3, along
the lines of the Venari transaction model for ML [Haines
et al. 1994].

4.2 Implementation

The current PM3 implementation is based on the Digi-
tal (now Compaq) Systems Research Center’s version 3.6
Modula-3 compiler, runtime system and libraries (all writ-
ten in Modula-3). The compiler is a loosely-coupled front-
end to the GNU C compiler, and generates efficient opti-
mized native code. It also produces compact, executable
type descriptors for heap-allocated data, in support of both
garbage collection and persistence. The PM3 Modula-
3 compiler is essentially unchanged from the original; it
generates code that isexactlythe same as that generated
by the non-persistent Modula-3 compiler. Instead of ex-
plicit compiler-generated read and write barriers, our cur-
rent implementation relies on the operating system’s virtual
memory primitives, triggering fault handling routines in the
PM3 runtime system to retrieve objects, note updates, and
obtain locks.

The PM3 runtime system manages the volatile heap,

590

supporting allocation of space for new and cached persis-
tent data, and garbage collection to free unreachable space.
Since PM3 persistence designation is by reachability, sta-
bilization of the persistent store on transaction commit is
driven by the garbage collector, on which we have focused
the bulk of our effort so far. We have extended the existing
incremental, generational, mostly-copying garbage collec-
tor [Bartlett 1988; 1989] to manage both transient objects
and resident persistent objects, and to compute the reach-
ability closure for mostly-copying stabilization. Heap ob-
jects, whether persistent or transient, have the same size
and layout as the original non-persistent Modula-3 imple-
mentation. In short, heap objects are clustered into heap
pages, which are some small multiple of the virtual mem-
ory page size. On the SPARC heap pages are 8K bytes.
These are the unit of transfer between volatile memory and
stable storage, and the unit of management of persistent
data in the volatile heap. Pages are also currently the unit
of locking for concurrency control, but we plan also to in-
vestigate object-level locking along the lines of Carey et al.
[1994]. Stabilization copies newly-persistent objects from
the transient pages of the heap into persistent pages, which
are then committed to the object store. See Hosking and
Chen [1999] for the precise details of the stabilization al-
gorithm.

4.2.1 Pointer swizzling

Each database is treated as a distinct virtual address space:
an array of pages bounded by the address range of the hard-
ware platform. Each database has a distinguished root ob-
ject, at a known address in its address space. The run-
time system simply maps pages from any number of open
databases into the volatile heap as references to the (persis-
tent) objects on those pages arediscovered. Requesting the
root object of a database is one way to discover a reference;
another way is to fault in a page containing references to
other persistent pages. Naturally, when a reference is dis-
covered it must be swizzled to point to a mapped (though
not necessarily resident) page in the volatile heap; map-
pings are created on demand as references are swizzled. All
mapped but non-resident pages are protected from access
using the virtual memory protection primitives. Thus, any
access to a protected page in the heap will trap and trigger
a page fault: the heap page is unprotected, the data is read
into it from the corresponding mapped database page, all
references within the heap page are discovered and swiz-
zled, the access is resumed and execution proceeds. As ex-
ecution proceeds, volatile heap page frames are reserved in
a “wave-front” just ahead of the most recently faulted and
swizzled pages, guaranteeing that the application will only
ever see virtual memory addresses [Singhal et al. 1992;
Wilson and Kakkad 1992].

We also track updates to persistent data by protecting
heap pages from writes. On the first write to the page we set
a dirty bit for it, unprotect the page and resume the write.

Note that at any point in time an application can address
only as much persistent data as can be mapped into its vir-

tual address space. Data from multiple databases can be
mapped at the same time. However, there is no restriction
on the total volume of unmapped persistent data. Cross-
database references are also permitted.

4.2.2 Persistent storage

The current PM3 implementation uses the University of
Wisconsin’s SHORE object repository [Carey et al. 1994]
as a simple transactional page server. Each page is de-
scribed in the SHORE data language (SDL) as a sin-
gle SHORE text object, with simple read and write ac-
cess implemented via the SHORE/C++ binding. Concur-
rency control and recovery support are inherited directly
from SHORE, with the PM3 runtime system acquiring read
locks on pages as they are faulted and write locks on first
update. We also support interaction with a version of the
GRAS3 [Kiesel et al. 1995; Baumann 1997] transactional
page server that permits nested transactions, and which is
implemented purely in Modula-3.

4.2.3 Types and metadata

To ensure type safety each persistent object must also store
some representation of its type. The type is used to lo-
cate pointers within the object when it is swizzled, and for
run-time type checking. Rather than store a full type de-
scriptor, we take advantage of Modula-3’s implementation
of structural type equivalence, which computes a charac-
teristic 64-bit fingerprint for every type that can be mapped
to its descriptor at run time. Every database contains an
index for the fingerprints of all the objects in the database;
each object is stored with the key of its type’s fingerprint
entry in this index. This approach also means that we can
avoid storing object methods (i.e., code) in the persistent
store. Instead, objects are reunited with their methods as
their contents are swizzled. The advantage of this is that
we can continue to use traditional file-based program de-
velopment tools such such compilers, assemblers, linkers
and loaders. In the future, persistence-aware development
tools that operate on code stored in the database will allow
a tighter integration of code with data.

The type index is one example of metadata stored in
every database. All metadata in PM3 is implemented as
Modula-3 data structures, and stored transparently using
the existing mechanisms for orthogonal persistence. This
sleight of hand derives from our stabilization algorithm,
which permits metadata to be treated just like other orthog-
onally persistent data. We believe PM3 to be unique among
persistent programming languages in that it is implemented
entirely in Modula-3, with explicit I/O only to read/write
persistent pages from/to the page server.

5 Experiments
We compare the performance of the traversal portions of
our PM3 implementation of the OO7 benchmark [Carey
et al. 1993] against the SHORE/C++ implementation of
OO7 distributed with SHORE. The traversal portions of

591

Modules 1
Assembly levels 7
Subassemblies per complex assembly 3
Composite parts per base assembly 3
Composite parts per module 500
Atomic parts per composite part 20
Connections per atomic part 3
Document size (bytes) 2000
Manual size (bytes) 100000
Total composite parts 500
Total atomic parts 10000

Table 1: Small OO7 database configuration

OO7 are numbered T1 through T9, though we do not
present results for all of them here.

5.1 The OO7 benchmark

The OO7 benchmarks [Carey et al. 1993] are an accepted
test of object-oriented database performance. They operate
on a synthetic design database, consisting of a keyed set
of composite parts. Associated with each composite part
is adocumentationobject consisting of a small amount of
text. Each composite part consists of a graph ofatomic
partswith one of the atomic parts designated as theroot of
the graph. Each atomic part has a set of attributes, and is
connected via a bi-directional association to several other
atomic parts. The connections are implemented by inter-
posing a separate connection object between each pair of
connected atomic parts. Composite parts are arranged in
anassemblyhierarchy; each assembly is either made up of
composite parts (abaseassembly) or other assemblies (a
complexassembly). Each assembly hierarchy is called a
module, and has an associatedmanualobject consisting of
a large amount of text. Our results are all obtained with the
smallOO7 database, configured as in Table 1.

5.2 Hardware

Our experiments were run under Solaris 2.5.1 on a 170MHz
Sun SPARCstation 5, with 64M bytes RAM. The processor
implementation is the Fujitsu TurboSPARC, with direct-
mapped instruction and data caches of 16K bytes apiece.
Both caches are virtually-addressed, guaranteeing consis-
tent performance regardless of the virtual-to-physical page
mapping. This means that elapsed time measurements ob-
tained on this platform are not subject to jitter relating to
variations in page mappings from one process incarnation
to the next. The local disk is a SUN0535 SCSI disk of
535M bytes.

Since we were uninterested in measuring network la-
tencies both the SHORE server and the client were run
on the same machine. This results in much improved
client-server communication, with communication through
shared memory where possible, and also more fully ex-
poses the underlying overheads of the salient persistence
mechanisms of interest to us.

5.3 Software

We use release 1.1.1 of SHORE as the underlying object
store for PM3. SHORE objects are lighter-weight than a
Unix file, but still more heavyweight than the typical fine-
grained data structures coded in ordinary programming lan-
guages. For example, a SHORE object may be extended
with a variable-sized heap, in which variable-sized compo-
nents (e.g., strings, variable arrays, sets) of its value can
be stored. The heap can also contain dynamic values that
do not have independent identity; these may be linked to-
gether withlocal references, which are stored on disk as
offsets from the start of the heap, but are swizzled in mem-
ory to actual memory addresses. SHORE also provides a
variety ofbulk types, including sets, lists and sequences.

The SHORE/C++ language binding allows methods for
objects defined in the SHORE data language to be imple-
mented in C++. An application, such as the SHORE/C++
implementation of the OO7 benchmark which we measure,
is created as follows. First, one must write a description
of the application’s types in the SHORE data language
(SDL), which the SDL compiler processes to create cor-
responding type objects as metadata in the SHORE repos-
itory. The SDL compiler also generates a set of C++ class
declarations and special-purpose function definitions from
the SDL types, in the form of a C++ header file. This
header file is included in both the C++ source files that sup-
ply the implementation of the methods declared for each
SDL type, and in source files that manipulate instances of
those types. Some SDL types (e.g., integers) correspond
directly to C++ types. Others, such as sets and object ref-
erences (i.e., SHORE object identifiers) are represented in
C++ using template classes (i.e., parameterized C++ types).
C++ overloading features make SHORE object references
appear to behave like ordinary C++ pointers, though with
slower performance due to the software read and write bar-
riers built into the overloaded operations.

Our PM3 implementation of OO7 is a direct translit-
eration of the SHORE/C++ implementation, but with the
OO7 types implemented directly in Modula-3. Where the
benchmark specifies the use of an index, we used a trans-
parently persistent B+-tree coded in Modula-3. Moreover,
the PM3 compiler is based on the same GNU compiler ver-
sion 2.7.2 used to compile SHORE/C++ programs. Thus,
we can directly compare the performance of PM3 with the
SHORE/C++ binding. Both versions of OO7 were com-
piled with optimization turned on (i.e., gcc -O2). The PM3
Modula-3 compiler was also invoked with a flag that dis-
ables runtime checks on indexing arrays out of bounds and
to catch certain type errors, so as to give a fairer compari-
son with C++.

We took great care to match the SHORE/C++ imple-
mentation as closely as possible, including using the same
C library random number generator and initializing it with
the same seed so as to generate the same sequence of ran-
dom numbers used to build the OO7 benchmark database
and to drive the benchmark traversals.

592

5.4 Results

The results were obtained from runs on the small OO7
benchmark database, which is small enough to fit entirely
in main memory, including copies being cached in both the
server and the client. We report the elapsed time in seconds
broken down into three components: user and system CPU
time in the client, plus other remaining elapsed time which
we charge to interactions with the server for data transfer,
concurrency control, etc. (identified in the figures asuser,
system andserver, respectively). As in the original spec-
ification of OO7 [Carey et al. 1993] we obtain results for
traversals running both “cold” and “hot”. A cold traver-
sal begins with no data cached anywhere in the client or
the server, nor in the operating system’s file system buffers
(this is achieved by reading from a very large file in such
a way as to flush the buffers of any useful data). The cold
traversal is then followed immediately by four successive
iterations of the exact same query, with the results from the
middle three taken as the hot measure. We ran the succes-
sive iterations in two modes: as a single transaction com-
mitting only after the last iteration (one), and as a sequence
of chained transactions (many). The result for the last iter-
ation is omitted so that the overhead of commit processing
is not included in the single-transaction hot times.

In contrast to the original OO7 specification, we report
thesumof the results for the three hot traversals. The rea-
son for this is that PM3’s incremental garbage collector in-
duces random variable behavior from one hot iteration to
the next, which would otherwise be obscured by averaging.

5.4.1 Traversal T1: Raw traversal speed

Traverse the assembly hierarchy. As each base assem-
bly is visited, visit each of its referenced unshared com-
posite parts. As each composite part is visited, per-
form a depth-first search on its graph of atomic parts.
Return a count of the number of atomic parts visited
when done.

This is a test of raw pointer traversal speed. Figure 3(a)
shows the cold T1 results. PM3 outperforms SHORE/C++
in both the traversal without commit (one) and the traver-
sal with commit (many), despite the overhead for PM3 of
the virtual memory page protection traps, as measured by
thesystem CPU time, and the cost of swizzling as part of
theuser CPU time. PM3 fields 385 protection traps to fault
296 pages. The difference of 89 protection traps is due to
the use of page protection primitives to implement barriers
for PM3’s incremental and generational garbage collector.
Implementing barriers in PM3 with explicit checks instead
would remove most of thesystem overhead for cold traver-
sals, though they would add some to theuser overhead; the
compiler can attack this by optimizing away many checks
if they are redundant [Cutts and Hosking 1997; Brahnmath
1998; Brahnmath et al. 1999].

SHORE/C++ fetches 41 594 objects into the client-side
cache for a total of approximately 3M bytes, compared
to PM3’s 296 objects (the heap pages) for approximately

0

5

10

15

20

25

30

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 2.25 17.05 2.45 8.63

System 0.52 0.58 1.39 1.41

User 5.82 6.77 3.96 4.02

C++ one C++ many PM3 one PM3 many

(a) Cold

0

1

2

3

4

5

6

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.015 0.044 0.012 0.000

System 0.003 0.011 1.216 0.038

User 2.773 4.810 3.009 2.253

C++ one C++ many PM3 one PM3 many

(b) Hot: 3 iterations

Figure 3: Traversal T1

2.4M bytes. This demonstrates the compactness of PM3’s
object representation compared to SHORE/C++.

Despite T1 being a read-only traversal, SHORE still
imposes overhead for commits, as revealed in the results
which include commit processing (many). The server
overhead is higher for SHORE/C++ than PM3 since the
cold commit requires a separate client-server communica-
tion request for each object in the client-side cache (41 594
versus 296); hot chained commits do not pay this overhead.
We assume an explanation as follows: on first chained com-
mit the client must communicate the state (clean or dirty)
of any objects it is caching into the next transaction; sub-
sequent chained commits need only update the server with
any differences in status from the previous commit (in this
case none).

The hot T1 results appear in Figure 3(b). Here, the ben-
efits of client caching are apparent for both SHORE/C++
and PM3. Run in a single transaction, sandwiched be-
tween the cold and last iteration, total elapsed time for

593

PM3 for the three hot iterations (PM3 one) is slower than
for SHORE/C++ (C++ one). Indeed, there is noticeable
system overhead to field protection traps (225 in fact) re-
lated to read barriers for the incremental garbage collector;
each of these also results in some non-trivialuser-charged
garbage collector overhead, as well as contaminating the
hardware caches and slowing down subsequent memory
accesses. Inspection of the individual results for each of
the three hot iterations reveals that response times for two
of the three PM3 hot iterations are actuallyfasterthan the
fastest SHORE/C++ hot iteration – 0.89s and 0.72s versus
0.93s, respectively – when PM3 is able to run with little
or no garbage-collector overhead. Unfortunately, the last
PM3 hot iteration includes a major garbage collection re-
sulting in a response time of 2.6s. We could have turned
off garbage collection for the experiments, but since the
swizzling and faulting mechanisms are integrated with the
garbage collector we felt it would be inappropriate to ig-
nore its impact.

When the iterations are run as separate chaining trans-
actions (many), the client caching is apparent for both
SHORE/C++ and PM3 since they are able to cache all ob-
jects across the chaining commits into successive transac-
tions. The hot commits impose negligible server-side over-
head since the clients determine that no updates have oc-
curred and restrict communication with the server only to
signal the commit; nor are they subject to the communica-
tion overhead noted for cold commits. There is significant
client-side commit overhead for SHORE/C++, almost dou-
bling the elapsed time. Again, the client must check each
cached object to see if its status has changed from the pre-
vious chained commit, in which case it must communicate
that fact to the server; there are simply more objects cached
for SHORE/C++ than heap pages for PM3.

At first glance it might seem strange that the total
elapsed time for the threePM3 many hot traversals, which
include commits, is less than that for thePM3 one and
SHORE/C++ hot traversals, which operate without com-
mits. This is explained once again by considering garbage
collection overhead. Since a heap stabilization involves a
full heap garbage collection (to compute the reachability
closure), commits leave the heap in a clean state for the next
iteration so that it can proceed without additional traps and
processing overhead due to incremental collection. With
no updates occurring, no write protection traps are encoun-
tered, and the garbage collector can very quickly decide
that heap stabilization is trivial; hence also is the commit.
Indeed, none of the threePM3 many hot traversals is faster
than the fastestPM3 one hot traversal.

As in the original OO7 paper we henceforth omit re-
porting results for read-only traversals run as a sequence
of chained transactions, and report only the cold and hot
times for read-only traversals run as a single transaction;
the effect of client caching across transaction boundaries is
duplicated in every operation of the benchmark.

0

5

10

15

20

25

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 15.31 5.43

System 0.56 1.10

User 5.07 2.02

C++ one PM3 one

(a) Cold

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.011 0.007

System 0.002 0.107

User 0.350 0.208

C++ one PM3 one

(b) Hot: 3 iterations

Figure 4: Traversal T6

5.4.2 Traversal T6: Sparse traversal speed

Traverse the assembly hierarchy. As each base assem-
bly is visited, visit each of its referenced unshared com-
posite parts. As each composite part is visited, visit
the root atomic part. Return a count of the number of
atomic parts visited when done.

Carey et al. [1993] intended this traversal to provide
insight into the costs and benefits of a full swizzling ap-
proach, since it is sparse and follows only a small frac-
tion of swizzled references; one expects full swizzling to
be penalized for expending swizzling effort to little or no
benefit.3 However, our elapsed time results do not tell the
expected story. For the cold T6 traversal (Figure 4(a)) PM3
appears to pay littleuser-level swizzling penalty, though
thesystem overhead to field the read barrier traps remains.

3One might suspect this to be the reason for ODI’s withdrawal from the
original OO7 study, since their faulting and swizzling strategy is similar
to ours.

594

The truth of the matter turns out to be related to cluster-
ing. SHORE/C++ fetches 41 346 objects (3M bytes) versus
PM3’s 158 heap pages (1.2M bytes). That SHORE/C++
fetches almost as many objects and as much data for this
sparse traversal as for the dense T1 traversal suggests ex-
tremely poor clustering. PM3 does much better because
its promotion into persistent pages of objects discovered
to be persistent during stabilization, via what amounts
to breadth-first search [Cheney 1970], yields much bet-
ter clustering [Schkolnick 1977]. Only an orthogonally
persistent system has sufficient flexibility to place objects
by reachability, instead of at allocation time, since place-
ment is decoupled from allocation and deferred instead un-
til commit time when the heap is stabilized via reachability.

The hot results (Figure 4(b)) again reveal the superior-
ity of full swizzling for hot operations, with PM3 markedly
outperforming SHORE/C++ on theuser component. In
this case, SHORE/C++ suffers from the overhead of hav-
ing to issue 5468 paired pin/unpin operations for each ac-
cess to an object in the cache; PM3 accesses incur no such
overhead. Overall, PM3 only just edges out SHORE/C++
because of incremental garbage collection overheads, as re-
vealed by thesystem component.

5.4.3 Traversal T2: Updates

Repeat traversal T1, but update objects during the
traversal. There are three types of update patterns in
this traversal. In each, a single update to an atomic
part consists of swapping its(x;y) attributes. The three
types of updates are:

A Update one atomic part per composite part.
B Update every atomic part as it is encountered.
C Update each atomic part in a composite part

four times.

When done, return the number of update operations
that were actually performed.

Since these are update traversals the cold traversals with
commit are more interesting than without, as presented in
Figure 5(a). Again, despite the overhead of trap-driven read
barriers, PM3 exhibits superior cold performance. Both
SHORE/C++ and PM3 display higherserver overhead for
the dense update T2B and T2C traversals than the sparse
update T2A. Despite the compactness of the PM3 object
representation it incurs slightly higherserver overhead for
the dense updates because of the need to consult a SHORE
index for each updated page to map its PM3 page identifier
to its corresponding SHORE identifier.

Figure 5(b) presents results for the hot T2 traversals
without commits (one), showing the raw overhead to up-
date the objects. The trap-based write barrier poses signifi-
cant overhead to PM3 for the sparse update T2A traversal,
with PM3 just edging out SHORE/C++. For the denser
T2B traversals the overhead to PM3 of each trap is amor-
tized over more updates, for significantly faster response
than for SHORE/C++. With T2C PM3 is a definite win-
ner since it pays the same trap overhead as for T2B, while
SHORE/C++ incurs overhead on every update, even if to a
part that has already been updated.

0

10

20

30

40

50

60

70

80

90

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 21.94 62.89 63.20 21.08 70.17 69.86

System 0.80 4.92 4.94 1.41 1.81 1.84

User 7.00 11.81 12.19 4.64 6.68 6.61

C++
many
T2A

C++
many
T2B

C++
many
T2C

PM3
many
T2A

PM3
many
T2B

PM3
many
T2C

(a) Cold

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.035 0.042 0.045 0.029 0.028 0.030

System 0.003 0.003 0.003 0.328 0.526 0.523

User 2.816 3.676 4.683 2.382 2.722 2.773

C++ one
T2A

C++ one
T2B

C++ one
T2C

PM3 one
T2A

PM3 one
T2B

PM3 one
T2C

(b) Hot: 3 iterations

Figure 5: Traversal T2

5.4.4 Traversal T3: Indexed field updates

Repeat traversal T2, except that now the update is on
the date field, which is indexed. The specific update
is to increment the date if it is odd, and decrement the
date if it is even.

Figure 6 gives results for T3. It turns out SHORE/C++
uses indexes that are centralized on the server so every in-
dexed update requires interaction with the server, at very
high cost. In fact, the overhead is so high that we were
only able to run SHORE/C++ for the sparse T3A; for our
configuration of SHORE the dense indexed updates result
in the log overflowing and the transaction aborting. In con-
trast, our indexes for Modula-3 are implemented natively
as orthogonally persistent B+-trees so their pages can be
cached and updated at the client. PM3 wins on all 3 in-
dexed traversals. Keeping the index at the server may per-
mit more concurrency, so perhaps the comparison in this
instance is not entirely fair. Nevertheless, the difference in
performance is staggering.

595

0

10

20

30

40

50

60

70

80

90

100
re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

Server 49.75 25.06 79.25 79.22

System 1.88 1.72 1.93 1.90

User 8.40 4.92 8.13 10.17

C++ many
T3A

PM3 many
T3A

PM3 many
T3B

PM3 many
T3C

(a) Cold

0

10

20

30

40

50

60

70

80

90

100

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 83.853 0.014 0.030 0.049

System 3.280 0.334 0.609 0.521

User 7.299 2.563 5.844 12.459

C++ one T3A PM3 one T3A PM3 one T3B PM3 one T3C

(b) Hot: 3 iterations

Figure 6: Traversal T3

5.4.5 Traversal T9: Operations on manual

Traversal T9 checks the manual object to see if the first
and last character in the manual object are the same.

The results for the read-only T9 traversal presented
in Figure 7 are for traversals without commits. The
cold query results are somewhat inconclusive, mostly be-
cause the query accesses so little data in the small OO7
database (there is only one manual) as to be subject to
spurious variations in system behavior. For example, the
cold SHORE/C++ query incurs 17 virtual memory page
faults requiring physical I/O to PM3’s one, which ac-
counts for a significant fraction of theserver component
for SHORE/C++ in Figure 7(a). The client CPU overheads
seem more trustworthy, reflecting the high cost of PM3’s
trap-based read barrier and full swizzling when accessing
so little data. For the hot iterations (Figure 7(b)), the high
server component for SHORE/C++ results from its receiv-
ing a message from the server on each iteration. The cause

0

0.2

0.4

0.6

0.8

1

1.2

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.96 0.61

System 0.02 0.06

User 0.01 0.06

C++ one PM3 one

(a) Cold

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Server 0.007 0.000

System 0.001 0.002

User 0.007 0.002

C++ one PM3 one

(b) Hot: 3 iterations

Figure 7: Traversal T9

of this anomaly can only be related to the difference in the
underlying representation of the manual object. In PM3,
a manual is simply a “large” heap object stored as a se-
quence of not-necessarily contiguous pages, although these
pages are retrieved and mapped contiguously into the PM3
heap. For SHORE/C++ the manual is a large SHORE ob-
ject, stored contiguously.

5.4.6 Traversals omitted

We have omitted several traversals in addition to those
omitted in the original OO7 study Carey et al. [1993], no-
tably traversals T8 (an operation on the manual) and CU
(cached update). Unfortunately, we were unable to get the
SHORE/C++ T8 traversal to run without crashing, and so
could not obtain a comparison. In the case of CU, its goals
are amply covered by the results for the other traversals as
we have presented them here; nor does it contradict them.
In all other cases, while the results for both SHORE/C++
and PM3 are available they do not provide further insights.

596

6 Conclusions and future work
We have demonstrated through implementation and exper-
imentation that PM3, an orthogonally persistent systems
programming language, can provide performance that is
highly competitive with its non-orthogonal peers. Thus,
the superior software engineering support that orthogonal
persistence provides should not be withheld simply on the
basis of prejudice against its reachability-based approach.
In fact, there is no technical reason why more accepted
systems programming languages such as C++ cannot be
retrofitted with orthogonal persistence, as opposed to the
non-orthogonal realizations of persistence currently im-
posed on them.

Our future work with PM3 will address the one remain-
ing thorny issue in our results – the overhead of trap-based
barrier implementations – by introducing explicit software
barriers and using the compiler to optimize away any that
are redundant. We also plan to explore the integration of
buffer management with volatile heap management, disk
garbage collection and extended transaction support.

Acknowledgments
This research is supported in part by the National Science
Foundation under Grant No.CCR-9711673 and by gifts
from Sun Microsystems, Inc. We thank Tony Printezis and
the anonymous referees, whose comments spurred several
improvements to this presentation.

References
AGRAWAL, R. AND GEHANI , N. H. 1989. ODE (Object Database

and Environment): The language and the data model. In
Proceedings of the ACM International Conference on
Management of Data (Portland, Oregon, May).ACM SIGMOD
Record 18,2 (June), 36–45.

AGRAWAL, R. AND GEHANI , N. H. 1990. Rationale for the design
of persistence and query processing facilities in the database
language O++. See Hull et al. [1990], 25–40.

ALAGI Ć, S. 1997. The odmg object model: does it make sense? In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (Atlanta,
Georgia, Oct.).ACM SIGPLAN Notices 32,10 (Oct.), 253–270.

APPEL, A. W. AND L I , K. 1991. Virtual memory primitives for user
programs. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (Santa Clara, California, Apr.).ACM
SIGPLAN Notices 26,4 (Apr.), 96–107.

ATKINSON, M., CHISOLM, K., AND COCKSHOTT, P. 1982.
PS-Algol: an Algol with a persistent heap.ACM SIGPLAN
Notices 17,7 (July), 24–31.

ATKINSON, M. P., BAILEY, P. J., CHISHOLM, K. J., COCKSHOTT,
P. W.,AND MORRISON, R. 1983. An approach to persistent
programming.The Computer Journal 26,4 (Nov.), 360–365.

ATKINSON, M. P. AND BUNEMAN, O. P. 1987. Types and
persistence in database programming languages.ACM Comput.
Surv. 19,2 (June), 105–190.

ATKINSON, M. P., CHISHOLM, K. J., COCKSHOTT, W. P.,AND

MARSHALL, R. M. 1983. Algorithms for a persistent heap.
Software: Practice and Experience 13,7 (Mar.), 259–271.

ATKINSON, M. P., DAYN ÈS, L., JORDAN, M. J., PRINTEZIS, T.,
AND SPENCE, S. 1996. An orthogonally persistent Java.ACM
SIGMOD Record 25,4 (Dec.), 68–75.

ATKINSON, M. P., JORDAN, M. J., DAYN ÈS, L., AND SPENCE, S.
1997. Design issues for persistent Java: A type-safe
object-oriented, orthogonally persistent system. See Connor and
Nettles [1997], 33–47.

ATKINSON, M. P. AND MORRISON, R. 1995. Orthogonally
persistent object systems.International Journal on Very Large
Data Bases 4,3, 319–401.

BARTLETT, J. F. 1988. Compacting garbage collection with
ambiguous roots. Research Report 88/2, Western Research
Laboratory, Digital Equipment Corporation. Feb.

BARTLETT, J. F. 1989. Mostly-copying garbage collection picks up
generations and C++. Technical Note TN-12, Western Research
Laboratory, Digital Equipment Corporation. Oct.

BAUMANN , R. 1997. Client/server distribution in a structure-oriented
database management system. Tech. Rep. AIB 97-14, RWTH
Aachen, Germany.

BRAHNMATH , K., NYSTROM, N., HOSKING, A. L., AND CUTTS,
Q. 1999. Swizzle barrier optimizations for orthogonal persistence
in Java. InProceedings of the Third International Workshop on
Persistence and Java(Tiburon, California, August 1998),
R. Morrison, M. Jordan, and M. Atkinson, Eds. Advances in
Persistent Object Systems. Morgan Kaufmann, 268–278.

BRAHNMATH , K. J. 1998. Optimizing orthogonal persistence for
Java. M.S. thesis, Purdue University.

CARDELLI , L., DONAHUE, J., GLASSMAN, L., JORDAN, M.,
KALSOW, B., AND NELSON, G. 1991. Modula-3 language
definition. InSystems Programming with Modula-3, G. Nelson,
Ed. Prentice Hall, Chapter 2, 11–66.

CAREY, M. J., DEWITT, D. J., FRANKLIN , M. J., HALL , N. E.,
MCAULIFFE, M. L., NAUGHTON, J. E., SCHUH, D. T.,
SOLOMON, M. H., TAN, C. K., TSATALOS, O. G., WHITE,
S. J.,AND ZWILLING , M. J. 1994. Shoring up persistent
applications. See SIGMOD [1994], 383–394.

CAREY, M. J., DEWITT, D. J.,AND NAUGHTON, J. F. 1993. The
OO7 benchmark. In Proceedings of the ACM International
Conference on Management of Data (Washington, DC, May).
ACM SIGMOD Record 22,2 (June), 12–21.

CAREY, M. J., FRANKLIN , M. J.,AND ZAHARIOUDAKIS , M. 1994.
Fine-grained sharing in a page server OODBMS. See SIGMOD
[1994], 359–370.

CATTELL , R. G. G., BARRY, D., BARTELS, D., BERLER, M.,
EASTMAN, J., GAMERMAN , S., JORDAN, D., SPRINGER, A.,
STRICKLAND , H., AND WADE, D., Eds. 1997.The Object
Database Standard: ODMG 2.0. Morgan Kaufmann.

CHASE, J. S., LEVY, H. M., FEELEY, M. J.,AND LAZOWSKA,
E. D. 1994. Sharing and protection in a single-address space
operating system.ACM Trans. Comput. Syst. 12,4 (Nov.),
271–307.

CHASE, J. S., LEVY, H. M., LAZOWSKA, E. D.,AND

BAKER-HARVEY, M. 1992. Lightweight shared objects in a
64-bit operating system. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications (Vancouver, Canada, Oct.).ACM SIGPLAN
Notices 27,10 (Oct.), 397–413.

CHENEY, C. J. 1970. A nonrecursive list compacting algorithm.
Commun. ACM 13,11 (Nov.), 677–678.

CONNOR, R. AND NETTLES, S., Eds. 1997.Proceedings of the
Seventh International Workshop on Persistent Object Systems
(Cape May, New Jersey, May 1996). Persistent Object Systems:
Principles and Practice. Morgan Kaufmann.

CUTTS, Q. AND HOSKING, A. L. 1997. Analysing, profiling and
optimising orthogonal persistence for Java. InProceedings of the
Second International Workshop on Persistence and Java(Half
Moon Bay, California, Aug.), M. P. Atkinson and M. J. Jordan,
Eds. Sun Microsystems Laboratories Technical Report 97-63,
107–115.

DEARLE, A., CONNER, R., BROWN, F.,AND MORRISON, R. 1990.
Napier88—A database programming language? See Hull et al.
[1990], 179–195.

597

DEARLE, A., DI BONA, R., FARROW, J., HENSKENS, F.,
L INDSTRÖM, A., ROSENBERG, J.,AND VAUGHAN, F. 1994.
Grasshopper: An orthogonally persistent operating system.
Computer Systems 7,3 (Summer), 289–312.

DEARLE, A., SHAW, G. M., AND ZDONIK, S. B., Eds. 1990.
Proceedings of the Fourth International Workshop on Persistent
Object Systems(Martha’s Vineyard, Massachusetts, Sept.).
Implementing Persistent Object Bases: Principles and Practice.
Morgan Kaufmann, 1991.

ELPHINSTONE, K., RUSSELL, S., HEISER, G.,AND L IEDTKE, J.
1997. Supporting persistent object systems in a single address
space. See Connor and Nettles [1997], 111–119.

HAINES, N., KINDRED, D., MORRISETT, J. G., NETTLES, S. M.,
AND WING, J. M. 1994. Composing first-class transactions.
ACM Trans. Program. Lang. Syst. 16,6 (Nov.), 1719–1736.

HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL, S.,
AND L IEDTKE, J. 1998. The Mungi single-address-space
operating system.Software: Practice and Experience 28,9
(July), 901–928.

HOSKING, A. L. 1995. Lightweight support for fine-grained
persistence on stock hardware. Ph.D. thesis, University of
Massachusetts at Amherst. Available as Computer Science
Technical Report 95-02.

HOSKING, A. L. 1997. Residency check elimination for
object-oriented persistent languages. See Connor and Nettles
[1997], 174–183.

HOSKING, A. L. AND CHEN, J. 1999. Mostly-copying
reachability-based orthogonal persistence. InProceedings of the
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications(Denver, Colorado, Nov.).

HOSKING, A. L. AND MOSS, J. E. B. 1990. Towards compile-time
optimisations for persistence. See Dearle et al. [1990], 17–27.

HOSKING, A. L. AND MOSS, J. E. B. 1991. Compiler support for
persistent programming. Tech. Rep. 91-25, Department of
Computer Science, University of Massachusetts at Amherst. Mar.

HOSKING, A. L. AND MOSS, J. E. B. 1993. Protection traps and
alternatives for memory management of an object-oriented
language. In Proceedings of the ACM Symposium on Operating
Systems Principles (Asheville, North Carolina, Dec.).ACM
Operating Systems Review 27,5 (Dec.), 106–119.

HOSKING, A. L. AND NOVIANTO, A. P. 1997. Reachability-based
orthogonal persistence for C, C++ and other intransigents. In
Proceedings of the OOPSLA Workshop on Memory Management
and Garbage Collection(Atlanta, Georgia, Oct.).
http://www.dcs.gla.ac.uk/˜ huw/oopsla97/gc/papers.html.

HOSKING, A. L., NYSTROM, N., CUTTS, Q.,AND BRAHNMATH ,
K. 1999. Optimizing the read and write barriers for orthogonal
persistence. InProceedings of the Eighth International Workshop
on Persistent Object Systems(Tiburon, California, August 1998),
R. Morrison, M. Jordan, and M. Atkinson, Eds. Advances in
Persistent Object Systems. Morgan Kaufmann, 149–159.

HULL , R., MORRISON, R.,AND STEMPLE, D., Eds. 1990.
Proceedings of the Second International Workshop on Database
Programming Languages(Salishan Lodge, Gleneden Beach,
Oregon, June 1989). Morgan Kaufmann.

ISMM 1998.Proceedings of the ACM International Symposium on
Memory Management(Vancouver, Canada, Oct.). ACM.

JONES, R. 1996.Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley. With a chapter by
R. Lins.

KAEHLER, T. 1986. Virtual memory on a narrow machine for an
object-oriented language. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Portland, Oregon, Sept.).ACM
SIGPLAN Notices 21,11 (Nov.), 87–106.

KAEHLER, T. AND KRASNER, G. 1983. LOOM—large
object-oriented memory for Smalltalk-80 systems. In
Smalltalk-80: Bits of History, Words of Advice, G. Krasner, Ed.
Addison-Wesley, Chapter 14, 251–270.

KAKKAD , S. V., JOHNSTONE, M. S.,AND WILSON, P. R. 1998.
Portable run-time type description for conventional compilers.
See ISMM [1998], 146–153.

KIESEL, N., SCHÜRR, A., AND WESTFECHTEL, B. 1995. GRAS, a
graph-oriented (software) engineering database system.
Information Systems 20,1, 21–52.

LAMB , C., LANDIS, G., ORENSTEIN, J.,AND WEINREB, D. 1991.
The ObjectStore database system.Commun. ACM 34,10 (Oct.),
50–63.

MATTHES, F. AND SCHMIDT, J. W. 1994. Persistent threads. In
Proceedings of the International Conference on Very Large Data
Bases(Santiago, Chile, Sept.). Morgan Kaufmann, 403–414.

MORRISON, R., BROWN, A., CARRICK, R., CONNOR, R.,
DEARLE, A., AND ATKINSON, M. P. 1990. The Napier type
system. InProceedings of the Third International Workshop on
Persistent Object Systems(Newcastle, New South Wales,
Australia, Jan. 1989), J. Rosenberg and D. Koch, Eds. Workshops
in Computing. Springer-Verlag, 3–18.

MOSS, J. E. B. 1992. Working with persistent objects: To swizzle or
not to swizzle.IEEE Trans. Softw. Eng. 18,8 (Aug.), 657–673.

MOSS, J. E. B.AND HOSKING, A. L. 1995. Expressing object
residency optimizations using pointer type annotations. In
Proceedings of the Sixth International Workshop on Persistent
Object Systems(Tarascon, France, Sept. 1994), M. Atkinson,
D. Maier, and V. Benzaken, Eds. Workshops in Computing.
Springer-Verlag, 3–15.

NYSTROM, N., HOSKING, A. L., WHITLOCK, D., CUTTS, Q.,AND

DIWAN , A. 1998. Partial redundancy elimination for access path
expressions. Tech. Rep. 98-044, Department of Computer
Sciences, Purdue University. Oct. Submitted for publication.

NYSTROM, N. J. 1998. Bytecode level analysis and optimization of
Java classes. M.S. thesis, Purdue University.

RICHARDSON, J. E. 1990. Compiled item faulting: A new technique
for managing I/O in a persistent language. See Dearle et al.
[1990], 3–16.

RICHARDSON, J. E.AND CAREY, M. J. 1987. Programming
constructs for database implementations in EXODUS. In
Proceedings of the ACM International Conference on
Management of Data (San Francisco, California, May).ACM
SIGMOD Record 16,3 (Dec.), 208–219.

RICHARDSON, J. E.AND CAREY, M. J. 1990. Persistence in the E
language: Issues and implementation.Software: Practice and
Experience 19,12 (Dec.), 1115–1150.

ROSENBERG, J., DEARLE, A., HULSE, D., LINDSTRÖM, A., AND

NORRIS, S. 1996. Operating system support for persistent and
recoverable computations.Commun. ACM 39,9 (Sept.), 62–69.

SCHKOLNICK, M. 1977. A clustering algorithm for hierarchical
structures.ACM Trans. Database Syst. 2,1 (Mar.), 27–44.

SIGMOD 1994.Proceedings of the ACM International Conference on
Management of Data(Minneapolis, Minnesota, May).ACM
SIGMOD Record 23,2 (June).

SINGHAL , V., KAKKAD , S. V.,AND WILSON, P. R. 1992. Texas, an
efficient, portable persistent store. InProceedings of the Fifth
International Workshop on Persistent Object Systems(San
Miniato (Pisa), Italy, Sept.), A. Albano and R. Morrison, Eds.
Workshops in Computing. Springer-Verlag, 11–33.

STRAW, A., MELLENDER, F.,AND RIEGEL, S. 1989. Object
management in a persistent Smalltalk system.Software: Practice
and Experience 19,8 (Aug.), 719–737.

WHITE, S. J.AND DEWITT, D. J. 1994. QuickStore: A high
performance mapped object store. See SIGMOD [1994],
395–406.

WILSON, P. R.AND KAKKAD , S. V. 1992. Pointer swizzling at page
fault time: Efficiently and compatibly supporting huge address
spaces on standard hardware. InProceedings of the 1992
International Workshop on Object Orientation in Operating
Systems(Paris, France, Sept.). IEEE Computer Society, 364–377.

598

