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Abstract

In this paper, we describe our recent experi-
ences in adding a number of object-relational
extensions to the DB2 Universal Database
(UDB) system as part of a research and devel-
opment project at the IBM Almaden Research
Center. In particular, we have enhanced DB2
UDB with support for structured types and
tables of these types, type and table hierar-
chies, references, path expressions, and object
views. In doing so, we have taken care to de-
sign and implement the extensions in such a
way as to retain DB2's ability to fully optimize
queries and (in our next step) to support busi-
ness rules and procedures through the provi-
sion of constraints and triggers. We describe
each of the SQL language extensions that we
have made, discuss the key performance trade-
o�s related to the design and implementation
of these features, and explain the approach
that we ended up choosing (and why). Most of
the features described here are currently ship-
ping as part of Version 5.2 of the DB2 UDB
product. We end this paper with a summary
of the current status of our work and a discus-
sion of what we plan to tackle next.

1 Introduction

The introduction of the relational model [6] revolu-
tionized the information systems world by providing
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a simple, high-level data model and the foundation
for declarative query interfaces. Relational database
systems, with their separation of the logical schema
(tables) from the underlying physical schema (stor-
age and index structures), together with their sup-
port for alternative views of a given logical schema,
have been very successful in providing a high level
of data independence that has led to signi�cant pro-
ductivity gains for both application programmers and
end users. The past 15{20 years of research in the
database area, initiated by the relational revolution,
have brought us to an era where most modern rela-
tional database systems o�er e�cient query optimiza-
tion and execution strategies, excellent levels of multi-
user performance and robustness through well-tuned
bu�er and transaction management subsystems, view
facilities for alternative conceptual schemas and 
ex-
ible authorization, and native business logic support
through the provision of declarative constraints, trig-
gers, and stored procedures [12]. Finally, the declara-
tive nature and set-orientation of relational query lan-
guages laid a natural foundation for research on paral-
lelization of database operations; as a result, parallel
relational database systems have become what is by
far the most signi�cant commercial success story in
the area of parallel computing [7].

Despite this success story, the world has continued
to place ever-increasing demands on database technol-
ogy. One reason for this is the appearance of interest-
ing new data types (text, images, audio, video, spa-
tial data) and applications wishing to use database
systems to manage them in large quantities. A sec-
ond reason is the mismatch between the complexity
of modern enterprises and the spartan simplicity of
the relational model: enterprises have entities and re-
lationships (versus tables), variations within a given
kind of entity (versus the homogeneity of relational
tables), and both single- and multi-valued attributes
(versus relational normalization rules). A third rea-
son is commercial growth in applications that wish
to use database systems to manage large quantities
of highly complex interrelated data objects, including
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CAD/CAM systems, web servers, and digital libraries,
to name a few. This has led the research community to
look for new solutions, particularly through \objects,"
for the past decade or so [1]. In particular, this growth
has led relational database system researchers and ven-
dors to look at the option of adding object-oriented
extensions to the relational model and its query lan-
guages. As a result, relational database systems are
evolving into object-relational database systems that
provide such features as an extensible type system, in-
heritance, support for complex objects, and rules [13].

IBM's DB2 Universal Database system, IBM's ver-
sion of DB2 for Unix, NT, Windows, and OS/2 plat-
forms (both serial and parallel), has been making the
transition into an object-relational database system
since the debut of DB2 Version 2 for Common Servers
in 1995. DB2 V2 incorporated various new technolo-
gies developed in the context of the Starburst research
project at IBM Almaden [8]. In terms of object-
relational extensions, DB2 V2 included signi�cant new
features in the areas of user-de�ned column types
(UDTs, also referred to as \distinct types"), user-
de�ned functions (UDFs), and triggers. The DB2 Uni-
versal Database (UDB) System, which became avail-
able as DB2 Version 5 in late 1997, added new sup-
port for utilizing these features on parallel platforms
by merging DB2 V2 with DB2 Parallel Edition, a pre-
viously separate product for MPP hardware platforms.
In addition, DB2 UDB includes a set of \extenders"
for dealing with commonly interesting new data types
including text, image, and audio; these extenders cur-
rently use a mix of UDTs, UDFs, and triggers to pro-
vide their functionality.

For about two years now, the OSF (\Object Strike
Force") project, a joint e�ort between the IBM Al-
maden Research Center and the IBM Database Tech-
nology Institute, has been working to add another
dimension of object-relational functionality to DB2
UDB. In particular, we have been extending UDB with
support for user-de�ned structured types with inheri-
tance, tables and subtables of these types, object ids
and references, path expressions, and object views.
This support made its public debut in DB2 UDB Ver-
sion 5.2 in September of 1998, and more is coming.
In adding these features to UDB, we have taken care
to ensure that our extensions provide a step forward
in UDB's data modeling and data manipulation func-
tionality without dictating a corresponding step back-
ward in terms of its performance or the provision of
advanced features such as automatic query optimiza-
tion, constraints, or triggers [14, 10]. Our end goal
is to evolve UDB into a strong platform for general-
purpose complex object management. In this paper,
we share some of the experiences that we have had
so far in the process. We describe the SQL exten-
sions that we have made, discuss some performance
tradeo�s that we have faced in the design and imple-

mentation of these extensions, and discuss particular
choices that we made (and why) in adding these fea-
tures to UDB at Almaden. Our hope is that this paper
will be of interest to database students and practition-
ers; it should also be of interest to researchers inter-
ested in monitoring commercial progress in the area
of object-relational databases. In addition, we have
been heavily involved in reshaping the SQL99 (known
as SQL3 until recently) standard over the past 1{2
years, and the bulk of our DB2 extensions are SQL99-
compliant; thus, this paper also provides a look at the
object model and query facilities in SQL99 as it stands
today.

The remainder of this paper is organized as follows:
In the next few sections, we discuss our SQL language
extensions; we start with our basic DDL extensions,
turn to the associated DML extensions, and then turn
to advanced features such as object views, constraints,
and triggers. Throughout, we discuss the design con-
siderations that led us to make the choices that we
made. Following the language sections, the next sec-
tion of the paper discusses how we approached the im-
plementation of certain key object features. Again, we
attempt to share some of the reasoning that led to the
choices that we ended up making. Finally, the last two
sections of the paper discuss where we are with UDB
today, roughly how the resulting system compares to
other vendors' o�erings, and lists some new features
that we are either currently exploring or planning to
explore.

2 Basic SQL Data De�nition Language
Extensions

We have extended SQL's data de�nition language
(DDL) into object-oriented (O-O) territory by adding
a number of features commonly found in O-O database
systems. In this section we describe our extensions by
example, using a very simple university database.

One of the fundamental features that we have added
to UDB is a facility that allows users to de�ne struc-
tured types via a new create type statement. Two
basic entity types in a university schema are people
(Person t) and departments (Dept t). University peo-
ple come in various 
avors, such as university employ-
ees (Emp t) and students (Student t). Within employ-
ees, there may again be various 
avors; let's suppose
that there are just regular employees and professors
(Prof t). Let's assume that each employee works in a
department, and that each department is managed by
an employee. (We ignore the many other relationships
that might exist among these types to keep the exam-
ple simple.) Figure 1(a) shows the resulting entity and
relationship types graphically.

Our O-O extensions to SQL's DDL enable the
user to directly translate the entities and relationships
above into a set of structured types and subtypes with
references. In UDB, these type de�nitions would be
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(a) Schematic of university entities and relationships

create type Person t as (
name Varchar(40), birthyear Integer

) mode db2sql;

create type Emp t under Person t as (
salary Integer

) mode db2sql;

create type Prof t under Emp t as (
rank Varchar(10), specialty Varchar(20)

) mode db2sql;

create type Student t under Person t as (
major Varchar(20), gpa Decimal(5,2)

) mode db2sql;

create type Dept t as (
name Varchar(20), budget Integer,
headcnt Integer, mgr Ref(Emp t)

) mode db2sql;

alter type Emp t add attribute dept Ref(Dept t);

(b) DDL statements to create the university types

Figure 1: A structured-type hierarchy

speci�ed (�lling in their attribute details) as shown
in Figure 1(b). The �rst statement creates the type
Person t with attributes name and birthyear.1 The
next statement creates the type Emp t as a subtype of
Person t, adding the attribute salary. Looking ahead
for a moment, the �nal data de�nition statement in
Figure 1(b) adds a second additional attribute, dept,
to the type Emp t. This attribute is a reference at-
tribute that refers to (i.e., uniquely identi�es) an ob-
ject of type Dept t; its de�nition is deferred until after
the type Dept t is de�ned because the types Emp t
and Dept t refer to one another (creating a circularity
which the alter type statement breaks). The data
de�nition statement following the creation of Emp t
creates type Prof t as a subtype of Emp t, adding rank
and specialty attributes; an instance of type Prof t will

1The clause mode db2sql can be ignored; it protects UDB
Version 5.2 applications from future changes that could occur in
the SQL99 standard before it is �nalized and published in late
1999.

create table person of Person t
(ref is oid user generated);

create table emp of Emp t under person
inherit select privileges;

create table prof of Prof t under emp
inherit select privileges;

create table student of Student t under person
inherit select privileges;

create table dept of Dept t
(ref is oid user generated,
mgr with options scope emp);

alter table emp alter column dept add scope dept;

Figure 2: DDL for creating a table hierarchy

thus have a total of six attributes: name, birthyear,
salary, dept, rank, and specialty. The fourth statement
de�nes one last subtype of Person t, namely Student t.
These four structured types, Person t, Emp t, Prof t,
and Student t, together form the Person t type hier-
archy. The �nal type de�nition in the �gure de�nes
the type Dept t. Note that this type also contains a
reference attribute, mgr, which references an object of
type Emp t.

Given these types, we now need places to store their
instances. Like rows in the relational world, typed ob-
jects reside in tables de�ned within a DB2 database.
UDB supports a variation of the SQL create table
statement that creates a typed table. To store instances
of subtypes, one creates typed subtables as well; one
can create multiple typed tables of a given type if de-
sired. To provide homes for objects of the types de-
�ned above, we could write the table de�nitions of
Figure 2.

The �rst de�nition in Figure 2 creates a typed ta-
ble (or object table) named person that can hold Per-
son t objects. Object table de�nitions are required to
specify a column name that can be used to refer to
the object id of their contained objects; thus, the per-
son table will appear to have three columns, an object
id column called oid (the name speci�ed in the ref
is clause of the table de�nition) plus one column for
each attribute of Person t (name and birthyear). The
phrase user generated tells the system that the ob-
ject id values for objects in this table will be provided
by the user when objects are initially inserted into the
table.2 Object id values must be unique within the
table plus all of its supertables and subtables; the sys-
tem enforces this requirement at insert time. Object
id values can only be provided at insert time, when
an object is initially created; the object id associated
with an existing object is considered immutable and is
thus not updatable.

The next three de�nitions create subtables of the

2The alternativewould be system generated, in which case
the system would be expected to automatically generate an ob-
ject id for each inserted row.
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person root table; emp and student are immediate sub-
tables of person, and prof is a subtable of the emp ta-
ble. Subtables inherit the columns of their supertables,
so no object id column is speci�ed in those de�nitions;
they inherit their oid column from the root table per-
son. Each subtable's type must be an immediate sub-
type of its supertable's type, and a given table can have
only one subtable of any particular type. The per-
son table and subtables in the �gure, taken together,
form the person table hierarchy and are closely related
by the \substitutable" DML behavior that we will de-
scribe in the next section. They are also managed as
a unit for certain purposes, e.g., when certain admin-
istrative commands and utilities are invoked (against
the root table). For most purposes, a good mental
model for a table hierarchy is to think of its root table
(e.g., person) as essentially being a heterogeneous col-
lection of objects of its underlying type (e.g., Person t
objects) and subtypes thereof (e.g., Emp t, Prof t, and
Student t objects). The clause inherit select privi-
leges in each subtable creation statement tells the sys-
tem that users who hold select privileges on the root
table (person) when the subtables are created should
be granted those same initial privileges on the subta-
bles. The �nal table creation statement above creates
a separate typed table named dept to hold Dept t ob-
jects; it too has an object id column that we have
chosen to call oid.

One other data de�nition feature that is very im-
portant in our SQL DDL extensions is the notion of
reference scope. The create table statement for the
dept table contains a clause of the form \mgr with
options scope emp". This clause tells the system
that the Emp t objects referred to from the reference
column mgr of the dept table will reside in the emp ta-
ble or any subtable thereof, e.g., the prof table in our
example. (The with options clause is a new addition
to the create table statement in UDB. It is needed
to provide an opportunity to specify any table-speci�c
properties for columns that arise from attributes of
the table's type; reference scopes are a very important
example of such a property.) Similarly, the last DDL
statement in the �gure, the alter table statement,
tells the system that Dept t objects referred to from
the reference column dept of the emp table (and its
subtables) will reside in the dept table.

Scope information is used by the system when pro-
cessing queries involving the dereference operator (�>)
discussed in the next section. As we will discuss later,
scope information is used both for performance rea-
sons, to facilitate query optimization, and for autho-
rization reasons, to allow static authorization check-
ing for queries that involve dereferences. It should
be noted that scopes are not a substitute for referen-
tial integrity; scopes simply provide information (for
dereferencing) about the intended target table of a ref-
erence column. Referential integrity (i.e., prevention

of dangling references) can be supported for reference
columns via UDB's pre-existing referential integrity
enforcement facilities, which work for columns of any
type. Scopes and referential integrity have been kept
orthogonal to allow users to choose whether or not
to pay the performance price of referential integrity;
some applications inherently ensure it, making any ex-
tra checking overhead redundant and undesirable. In
the future, we plan to infer scopes from referential in-
tegrity constraints (but not vice versa) when possible
for reference columns.

3 SQL Data Manipulation Language
Extensions

The DDL extensions just described have a set of cor-
responding DML extensions. In particular, the basic
SQL DML statements|insert, select, update, and
delete|have been extended to deal with typed ta-
ble hierarchies, and path expression support has been
added to the language to enable convenient and natu-
ral traversal of object references (a la GEM [16]). The
insert statement, when applied to a table or subtable,
creates a new typed object in the speci�ed table or
subtable and initializes its attributes using the values
provided by the insert statement. The select, up-
date, and delete statements, when applied to a table
or subtable, operate on the requested attributes from
the target table or subtable and all of its subtables|
that is, they treat subtable rows as being substitutable
for supertable rows. If the all-columns operator, �, is
speci�ed, the returned attributes are those de�ned at
the targeted table or subtable's level of the table hier-
archy. Similarly, all columns mentioned by name in a
query that targets an object table or subtable must be
de�ned at (or above) the targeted table's level of the
type hierarchy. For path expressions, an arrow oper-
ator analogous to that of C++ is provided, and path
expressions involving one or more uses of this opera-
tor can appear just about anywhere a value expression
is permitted in SQL. Finally, we have also added fea-
tures to SQL to facilitate the manipulation of objects
based on their runtime type. These features are best
illustrated via a series of examples.

To add a new Emp t object to the database with oid
o100, name Smith, birth year 1968, and salary $65,000,
assigning the new employee to work in the CS depart-
ment, we would use an SQL insert statement to create
the employee in the emp subtable of the person table:

insert into emp (oid, name, birthyear, salary, dept)
values (Emp t('o100'), 'Smith', 1968, 65000,

(select oid from dept where name = 'CS'));

The object id for the object created above is provided
by typecasting a Varchar constant into a Ref (Emp t)
value (because references are strongly typed). The cast
is accomplished using a cast function that the system
automatically generates when a new structured type is
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created; again, the system will check to ensure that the
newly inserted object has an object id that is unique
within the person table hierarchy. Finally, notice that
the new employee's department reference is obtained
using a subquery that selects the object id of the de-
sired department.

As mentioned above, the select, update, and
delete statements all operate on table hierarchies in a
manner that is based on the principle of substitutabil-
ity (or equivalently, on the mental model of hetero-
geneous collections of objects). Thus, for example,
we could select the oid, name, birth year, salary, and
department reference of employees of all types (i.e.,
Emp t and/or Prof t objects) born after 1970 who earn
more than $50,000 per year via the following query:

select E.�
from emp E
where E.birthyear > 1970 and E.salary > 50000;

Similarly, we could change the birth year for the per-
son (who might happen to be a regular person, an
employee, a professor, or a student) whose oid is o200
to be 1969 via an update statement:

update person P
set P.birthyear = 1969
where P.oid = Person t('o200');

Since this statement targets the person table, it can
only mention columns de�ned at the person level of
the table hierarchy (e.g., it cannot mention Emp t,
Student t, or Prof t columns). Finally, we could delete
all employees (both regular and professors) who earn
too much money via:

delete from emp E where E.salary > 500000;

Of course, to execute these statements, the user must
have the proper SQL authorizations. UDB requires
explicit authorization on the statement's target sub-
table; to perform a delete on the emp table, the user
would have to hold the delete privilege there. It is
possible (and sometimes desirable) to grant di�erent
privileges at di�erent levels of a table hierarchy. As
a result, the person table creator might grant a full
set of privileges to some user, but that user will not
be able to explicitly operate on the emp subtable by
virtue of holding person privileges. Instead, the emp
subtable creator would have to decide which privileges
to give out in order to protect the attributes (e.g.,
salary) introduced at the emp level of the person table
hierarchy.

UDB's support for path expressions greatly simpli-
�es queries that select attributes from a set of related
objects by permitting relationships to be explicitly tra-
versed using the dereference operator �>. For exam-
ple, to �nd the employee name and salary, as well as
the corresponding department name and budget, for
all employees who work in departments that have bud-
gets that exceed $150,000 per person, we could simply
say:

select E.name, E.salary, E.dept�>name,
E.dept�>budget

from emp E
where E.dept�>budget > 150000 � E.dept�>headcnt;

In the case where a qualifying employee has no depart-
ment (because its dept reference attribute is null or
dangling), the path expression yields null (a la GEM
[16], and unlike OQL [5], which would raise a user-
unfriendly runtime exception). Path expressions are
similar in this regard to left outer joins. As another
example of how path expressions can simplify a query,
we could �nd the names of all of the employees whose
manager's manager is Jones, which would require writ-
ing a �ve-way join query in the absence of path expres-
sion support, by simply saying:

select E.name
from emp E
where E.dept�>mgr�>dept�>mgr�>name = 'Jones';

In addition to the aforementioned extensions, UDB
also makes it possible to restrict a query's attention to
objects of a particular type (or types) and to inquire
about an object's type. For example, to select the oid,
name, birth year, salary, and department reference of
employees who are exactly of type Emp t (i.e., objects
that reside in the emp table, not a subtable of emp)
and who work in a department with a budget of more
than $10M, we could say:

select E.�
from only(emp) E
where E.dept�>budget > 10000000;

We expect this to be the most commonly used form
of type restriction, which is why it has a special syn-
tax (only). For more general cases, UDB supports a
type predicate in its dialect of SQL. The type predicate
compares the runtime data type of a structured type
instance (obtained by dereferencing a reference value)
with a list of types and returns true if its runtime type
is one of those in the list. As an example, we could
use a type predicate to select the oid, name, and birth
year of people born before 1965 who are either of type
Student t or else exactly of type Person t:3

select P.�
from person P
where P.birthyear < 1965 and

deref(P.oid) is of (Student t, only Person t);

Finally, one other SQL extension that UDB provides
is the ability to query the outer union of a table hi-
erarchy. For example, the next query selects the type
name, object id, and all possible attributes of the lucky
employee whose oid is o013. By all possible attributes,
we mean all attributes that an employee object might
have (as an instance of Emp t or its subtype Prof t) de-
pending on its runtime type. The outer union returns

3The reader can think of this example's type predicate as
\. . . and P is of (Student t, only Person t) . . . ", which is the
syntax we would have preferred. Unfortunately, we were unable
to �nd a way to make this nicer syntax acceptable in the full
context of SQL99.
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null values for inapplicable attributes (e.g., for employ-
ees who are not professors, rank and specialty will be
null). Duplicate attribute names within the hierarchy,
if they arise, can be disambiguated using SQL's from
clause column renaming feature (as). The example
query is:

select type name(deref(E.oid)), E.�
from outer(emp) E
where E.oid = Emp t('o013');

The type name function is similar to the type pred-
icate, but instead of testing the runtime type of an
object, it returns the runtime type name. (There is
also a type schema function that returns the name of
the schema in which the runtime type resides, and
a type id function that returns the type's database-
speci�c internal id.) Given an object id, this form
of query is especially useful for obtaining all of the
data associated with the referenced object, including
its runtime type, through a single call to a dynamic
query API like ODBC or JDBC.

4 Advanced SQL Data De�nition Lan-
guage Extensions

As described in the introduction, relational database
systems have a number of advanced features that users
have come to rely on for providing alternative views
of their base data and expressing business rules and
logic. As argued in [14, 10], object-relational database
systems must fully support such features, as other-
wise they will be a step backwards in some important
ways. This section describes how UDB addresses this
requirement (plus several other DDL requirements).

4.1 Object Views and View Hierarchies

In relational databases, views are virtual tables whose
contents are de�ned by a query; to a user's application
or query, a view looks just like a table. In UDB, we
support object views and object view hierarchies that
provide this same transparency and 
exibility for users
of typed tables and table hierarchies. In particular, we
support the creation of typed object views, and these
views can either be root views or subviews of other
object views. The body of an object view is a query
whose select list is type-compatible with the declared
type of the view. As prescribed in a seminal paper on
views of object databases [9], UDB supports networks
of object views that reference one another to form view
schemas. UDB's object view facility was in
uenced by
the Garlic object-centered view concept [4], which in
turn was in
uenced by prior work on object views.

Again, we will explain this UDB feature using an
example. Suppose that we wished to construct a set of
interrelated object views that could be shown to users
instead of the base tables and subtables de�ned ear-
lier. Further suppose that we only wished to include
non-academic employees and well-funded departments

VEmp_t

VPerson_tVDept_t

dept

mgr

(a) Schematic of view entities and relationships

create type VDept t as (
name Varchar(20)

) mode db2sql;

create type VPerson t as (
name Varchar(40)

) mode db2sql;

create type VEmp t under VPerson t as (
dept Ref(VDept t)

) mode db2sql;

alter type VDept t add attribute mgr Ref(VEmp t);

(b) DDL statements for creating the view types

Figure 3: A hierarchy of view types

(those with a budget greater than $1M) in our views.
UDB's object views are based on the same type sys-
tem as its regular object tables. Figure 3(a) depicts
a set of view types, and Figure 3(b) gives a set of
type de�nitions to create these view types. Except for
the missing attributes, these look similar to our pre-
vious type de�nitions. It is important to notice, how-
ever, that these types are interrelated among them-
selves: the dept attribute of type VEmp t is of type
Ref (VDept t), and the mgr attribute of type VDept t
is of type Ref (VEmp t).

Given these type de�nitions, we can create the de-
sired object view hierarchy as shown in Figure 4. The
�rst two object view de�nitions are similar. Each de-
�nes a typed view in much the same way that typed
tables were de�ned earlier, and then each provides a
query that selects the appropriate set of view objects.
Note that objects in an object view have object ids
that are created by typecasting their base object ids
to be view object ids. (The intermediate cast to Var-
char is required because a reference to one type cannot
be cast to be a reference to an unrelated type without
violating strong reference typing.) The third de�ni-
tion creates a subview vemp of the object view vper-
son. The query associated with the subview selects the
same �rst two columns as its parent view (subtyping
the object id appropriately), extending them with the
additional attribute that VEmp t instances have as
compared to VPerson t objects. In UDB V5.2, all ob-
ject views in an object view hierarchy are required to
be de�ned over the same underlying table or table hi-
erarchy, with the same column being used as the basis
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create view vdept of VDept t mode db2sql

(ref is oid user generated)
as select VDept t(Varchar(oid)), name,

VEmp t(Varchar(mgr))
from only(dept)
where budget > 1000000;

create view vperson of VPerson t mode db2sql
(ref is oid user generated)
as select VPerson t(Varchar(oid)), name

from only(person);

create view vemp of VEmp t mode db2sql

under vperson inherit select privileges
(dept with options scope vdept)
as select VEmp t(Varchar(oid)), name,

VDept t(Varchar(dept))
from only(emp);

alter view vdept alter column mgr add scope vemp;

Figure 4: DDL for creating a view hierarchy

for the view's object id column, and the sets of objects
identi�ed by the body (query) of each view/subview
are required to be disjoint. These rules are enforced
by UDB at subview de�nition time to ensure that the
contents of views/subviews in a view hierarchy have
the same logical properties as do tables/subtables in a
table hierarchy. Finally, note that reference columns
of object views are scoped, just like reference columns
of object tables, and that their scopes can be other
object views. (The dept column of the vemp view has
vdept as its scope in our example, and the reference
column vdept.mgr has vemp as its scope).

Once de�ned, object views can be queried, used in
path queries, and even updated if their de�ning se-
lect statements are of an updatable nature (which
they are in our example). For instance, the follow-
ing query �nds the names and department names of
view employees who work in a view department whose
name starts with D; professors will not be considered
due to the nature of the vemp view de�nition, and de-
partments with small budgets will be �ltered by the
vdept view de�nition (thereby making references to
such departments behave like dangling references, re-
turning null values in the context of the query's path
expressions). Because of the scopes given in the view
de�nitions, the SQL expression dept�>name is a path
expression that follows references from vemp.dept to
get the corresponding vdept.name values:

select E.name, E.dept�>name
from vemp E
where E.dept�>name like 'D%';

Type predicates can be used with object views as
well, as shown by the following query for �nding the
names of Scottish people who are regular (i.e., non-
professorial) employees of the university:

select P.name
from vperson P
where deref(P.oid) is of (only VEmp t) and

P.name like 'Mc%';

While our example showed object views of object
tables, it is important to note that UDB's object view
facilities can also be used to create object views and
view hierarchies out of existing relational (i.e., non-
object) tables. This provides an important migration
path for users who have legacy relational data but wish
to begin exploiting object-relational modeling in new
applications. To provide even better support for such
users, we have recently added (but not yet shipped)
a new clause, ref using, that can be added to a cre-
ate type statement to direct UDB to use a speci�ed
data type to represent object ids for that type and its
subtypes. This is useful when creating object views of
legacy tables, as di�erent tables often use di�erent pri-
mary key types. We have also recently relaxed some of
the V5.2 restrictions on object view de�nitions (e.g.,
so that view hierarchies can be de�ned over multiple
legacy tables).

4.2 Constraints, Triggers, and Other Features

As mentioned earlier, it is important that support for
constraints and triggers be extended to the object-
relational world as well. To be consistent with the in-
heritance model that table hierarchies imply, such fea-
tures must be de�nable on tables or subtables within
a hierarchy and they must be inherited by any subta-
bles of the table upon which they are de�ned. In UDB,
support is provided for de�ning not null and unique
constraints, as well as for providing default values and
de�ning indexes, on tables in a table hierarchy. One
can de�ne a not null constraint on a column at the
point in the table hierarchy where it �rst appears (i.e.,
when de�ning the subtable that introduces the col-
umn into the hierarchy), and default values and non-
unique indexes can be speci�ed for columns at that
same point. UDB also supports unique constraints
and unique indexes (but presently only permits them
to be de�ned on the root table of a table hierarchy).
In all cases, these features are implicitly inherited by
subtables; the corresponding columns of subtables are
thus subject to the same rules and indexing. For ex-
ample, if the emp subtable in our original person table
hierarchy included a not null constraint on its dept
column, this constraint would also be enforced for rows
of its prof subtable.

Support for more general constraint and trigger in-
heritance is presently under development at IBM Al-
maden. We have check constraints working on ta-
ble hierarchies, and foreign key constraints are in
progress. As an example, it is now possible for the
emp subtable in our person table hierarchy to include
the constraint \check (salary > 0)" to ensure salary
validity, and it will be possible shortly to have a con-
straint of the form \foreign key (dept) references
dept(oid)" to maintain referential integrity for employ-
ees' department references. Once de�ned, these con-
straints are inherited and enforced for prof as well as
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emp rows. Similarly, if the dept table had the con-
straint \foreign key (mgr) references emp(oid)",
UDB would ensure that every department has a corre-
sponding manager who is an employee (or some sub-
type thereof, of course, but not just a person or a
student). Again, we remind the reader that scope
clauses do not make such referential integrity con-
straints redundant|scope clauses provide reference
target table information, but they do not by them-
selves tell the system to actively prevent dangling ref-
erences.

We are currently working on trigger inheritance at
Almaden as well. A trigger de�ned on a supertable
will be automatically inherited by its subtables and
then �red whenever a triggering modi�cation occurs
to either the table upon which it is de�ned or to any
of that table's subtables. (It is worth noting that type
predicates can be used to limit this behavior in those|
rare, we believe|cases where inheritance by subtables
is not the trigger de�ner's desire; of course, the same
technique can be used to limit inheritance of check
constraints if so desired.)

5 Implementation Issues

In this section, we provide a high-level summary of
some of the key design tradeo�s, considerations, and
decisions that we faced while designing and imple-
menting these new UDB object-relational extensions.
The main principles that guided our thinking and
decision-making were:

1. Performance of all features needs to be at least as
good as their relational equivalents.

2. The design must be amenable to future work on
schema- and instance-level type migration.

3. The bulk of the initial UDB changes should be in
the query compiler if possible.

4. Structured type instances must eventually be
storable in columns as well as rows of tables.

The �rst principle almost goes without saying|we felt
it would be unacceptable to o�er \cool new object-
relational features" that caused customer applications
to perform worse than equivalent relational solutions.
The second principle was a result of looking ahead at
some \must have" functionality that we did not have
time to deliver in our �rst release, but which we knew
would be critical in the not-too-distant future. The
third consideration was motivated by a desire to local-
ize our changes as much as possible, at least initially,
and to get as much functionality \for free" as we could.
Essentially, we wanted UDB's indexing mechanisms,
query rewrite technology, query optimizer and sup-
porting statistics, parallel query execution algorithms,
and so on, to work for data in table hierarchies with
as few changes as possible. The fourth principle was

another future thought; we wanted to avoid making
any decisions that would somehow preclude structured
type column values in the long run.

5.1 Representing Table Hierarchies

An early question that we faced was how to physically
represent table hierarchies. In light of our third de-
sign principle, we seriously considered three possible
storage alternatives. (We refer the interested reader
to [15, 11] for other analyses of storage options for
systems with type hierarchies.) Note that in each
case, the implementation decision would be invisible
to end users; e.g., regardless of UDB's internal storage
method, users would see our example person table and
its emp, prof, and student subtables as separate (but
related) typed tables.

One approach that we considered was the hierar-
chy table approach, where each table hierarchy (as a
whole) corresponds to one physical implementation ta-
ble under the covers; this table contains the union of
the columns required to store rows of any subtable in
the hierarchy. For example, the hierarchy table for
the person table hierarchy would contain a type tag
column (to distinguish among rows of di�erent subta-
bles), an object id column, the name and birthyear
columns for person rows, the additional salary and
dept columns for emp rows, the rank and specialty
columns for prof rows, and the major and gpa columns
for student rows. Any given row would have a type
tag indicating whether it is a Person t, Emp t, Prof t,
or Student t row, and the inapplicable columns for a
given row would simply contain null values.

The second approach that we considered was verti-
cal partitioning. This approach would have one physi-
cal \delta table" for each table in the table hierarchy.
The physical person table would contain a type tag and
and object id plus the person name and birthyear at-
tribute values. The physical emp table would have an
object id column plus just the additional (\delta") at-
tributes of employees, i.e., salary and dept. The phys-
ical prof table would contain three columns, an object
id plus rank and specialty. The physical student ta-
ble would contain three columns as well, namely, oid,
major, and gpa. With this approach, an object of
type Prof t would be physically spread over the per-
son, emp, and prof delta tables (with its parts being
linked by their oids).

The �nal table hierarchy storage option that we
considered using was horizontal partitioning. This ap-
proach would also utilize one physical table for each
table in the table hierarchy, but in this case each phys-
ical table would contain all of the columns for rows of
that table of the table hierarchy. For example, the prof
table would have a total of six columns: oid, name,
birthyear, salary, dept, rank, and specialty. No type
tag column would be needed since all the instances
of each type present in the table hierarchy would be
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stored together in a separate physical table; the type
of each row is implied by the particular storage table
that it resides in.

After studying the pros and cons of the three alter-
natives, we rejected the vertical partitioning approach
because of the joins required to fully materialize a row
of a subtable|we were afraid that they would make
query performance unacceptable, violating our �rst
guiding principle. (Similar reasoning caused GEM's
designers to reject this alternative as well [15].) In
addition to query performance concerns, we antici-
pated problems supporting multi-column constraints
and multi-column indexes under the vertically parti-
tioned scheme. For example, a simple check constraint
involving both inherited and non-inherited columns
could not be checked without extending UDB to do
joins during constraint checking; teaching UDB's stor-
age manager to index columns split across multiple
tables would have been even more of a challenge.

We also rejected the horizontal partitioning ap-
proach for UDB, though not as quickly. One reason for
rejecting horizontal partitioning was the di�culty that
would arise in checking the uniqueness of user-provided
object id values (or other unique-constrained columns)
across subtables within a table hierarchy, as we would
have to ensure their uniqueness across multiple phys-
ical tables. Perhaps more seriously, we were also con-
cerned about the costs that this approach would imply
for small lookups or joins of table hierarchies. For ex-
ample, without a multi-table indexing method, a sim-
ple query to �nd the person named Codd would im-
ply four physical lookups (person, emp, prof, student).
Similarly, a query to �nd pairs of people born in the
same year, joining person with itself, would internally
require either joining two four-way unions or perform-
ing all individual pairwise joins of the four underlying
physical tables and unioning the results. We were wor-
ried that such situations would be fairly common and
would lead to poor query performance, again violating
our �rst guiding principle.

As a result of this analysis, we settled on the hi-
erarchy table approach for storing table hierarchies in
UDB. We were convinced that the hierarchy table al-
ternative would provide the best initial performance
with the fewest problems and restrictions. Since each
row contains all attributes (both inherited and non-
inherited), no joins are needed to assemble object in-
stances for queries or constraints; indexing combina-
tions of inherited and non-inherited columns poses no
problem either. Since all objects in a table hierarchy
live in the same physical table, it is easy to properly
enforce unique constraints on oids and user-speci�ed
columns. A query that selects an object from a ta-
ble hierarchy maps to a simple lookup in one index on
the hierarchy table, and a query that joins a pair of
hierarchies together maps to a simple two-way physi-
cal join|which nicely satis�es both our �rst and third

design principles. The hierarchy table approach also
simpli�es the migration issues that are the focus of
our second design principle|migrating an object from
one type to another within a table hierarchy becomes
a simple type tag update under the covers, and modi-
fying a type can be accomplished at the physical level
via an alter table operation on the a�ected hierar-
chy tables. Thus, the hierarchy table approach pro-
vided an expedient path to having a fully functional
�rst implementation of table hierarchies that met our
design goals. The main downside of the approach is
its potential tuple width, as the width of a hierar-
chy table's rows is a function of the size of the hi-
erarchy rather than of its individual types. However,
null values can be represented e�ciently in modern
data managers [12], and UDB already handles nulls
e�ciently for variable-length columns (which tend to
be the largest columns), so this drawback seemed less
serious than those of the other storage approaches.

To quantify some of the tradeo�s discussed above,
we have conducted a small set of preliminary experi-
ments comparing the hierarchy table approach to the
horizontal and vertical partitioning alternatives. We
constructed a three-level type hierarchy with a root
type, two subtypes of the root, and two subtypes of
each intermediate type (yielding seven types in all).
We constructed a corresponding table hierarchy with
40,000 rows of each type; the overall database con-
tained 280,000 rows and constituted approximately
64MB of data. The root type had an integer attribute
plus a 200-byte padding attribute; each additional sub-
type added another integer attribute to those of its
supertype. We stored this data using UDB V5.2's im-
plementation approach (the hierarchy table) as well as
in sets of relational tables modeled after the other two
alternatives. The integer attributes and oid attributes
were all indexed, the data was loaded top down by
type, and we gathered optimizer statistics for all three
approaches before running our tests.

Figure 5 shows the results from running seven dif-
ferent queries of interest against our test database.
The test platform was an IBM ThinkPad 770 machine
with 128MB of memory running DB2 Version 5.2 un-
der Windows NT. Space precludes a careful analysis
of all of the queries and results; hopefully the reader
will �nd them fairly self-explanatory. The root-level
queries operate on the root of the table hierarchy and
access rows of the root table and all subtables, while
the leaf-level queries operate on a leaf table and access
its rows only. From the results, it is evident that ver-
tical partitioning pays a price due to joins for the leaf
queries, while horizontal partitioning pays a price due
to unions for the join queries. The sums of the times
at the bottom of the table, while not especially mean-
ingful in absolute terms, suggest that the hierarchy ta-
ble approach has the most stable overall performance
characteristics.
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Query
Hierarchy Vertical Horizontal
Table Partitioning Partitioning

1. count all rows (root) 1.70 sec 1.92 sec 2.16 sec
2. select 1 row (root) 0.27 0.26 0.25
3. select 1 row (leaf) 0.20 0.25 0.18
4. select 1 row and join (root) 0.22 0.27 24.48
5. select 1 row and join (leaf) 0.20 0.33 1.98
6. join all rows (root) 22.75 15.54 86.72
7. join all rows (leaf) 8.51 39.63 8.87

sum of 1{7 33.85 sec 58.20 sec 124.64 sec

Figure 5: Performance comparison of storage alternatives

5.2 References and Path Expressions

One of the major facets of our UDB extensions is sup-
port for references and path expressions. Semantically,
a path expression is similar to a subquery. For exam-
ple, consider:

select E.name, E.dept�>name
from emp E
where E.salary > 90000;

If the system knows that the scope of emp.dept is the
dept table, this is essentially equivalent to:

select E.name, (select D.name
from dept D
where D.oid = E.dept)

from emp E
where E.salary > 90000;

The subquery, like the corresponding path expression,
returns the name of the matching department if there
is one, returning null otherwise.

As we mentioned earlier, UDB requires a reference
to have a scope if it is dereferenced. One reason for this
was the (lack of) performance observed for unscoped
references in the BUCKY benchmark [2]. In partic-
ular, when a path expression appears in a predicate,
knowing the target table for a reference enables the
system to fully optimize the query as a join rather than
performing naive pointer-chasing. (The latter is what
happened to a target system of the BUCKY work; it is
also howmany object database systems process queries
in the absence of type extents or path indices.) By
simply requiring references to be scoped, we avoid this
problem and ensure that we will be able to answer
users' queries e�ciently (a la guiding principle num-
ber one). In addition, scope information enables us
to check authorizations statically for path queries, as
we can always identify the tables involved in a query
at compile time rather than waiting until runtime to
(more slowly, on a row-by-row basis) check whether or
not the user has the appropriate authorizations.

It is worth noting that having scopes at the schema
level allows reference values to be kept relatively small
in size and simpli�es the implementation of user-
de�ned references. With scopes, stored reference val-
ues do not need to contain table names|they must

simply contain enough information to uniquely iden-
tify a row within a given table hierarchy, with query
compilation ensuring (via an internal type-tag predi-
cate) that only rows of the targeted table/subtables
are actually picked up by a dereference operation.
Keeping references small is bene�cial for keeping the
size of complex object-relational databases reasonable.
Not storing type or subtable information in refer-
ences has another very important advantage as well|
it means that UDB will have no trouble e�ciently sup-
porting type migration (e.g., promoting a Person t ob-
ject to be an Emp t), whereas systems that place such
information in references will have to track down all
a�ected references (if that is even possible) and update
their target type or subtable indicators.

Given scope information, a possible approach for
implementing path expressions would be to simply
translate each one internally into an independent sub-
query. However, there are several problems with this
approach. First, it is ine�cient, particularly in cases
where there are similar path expressions in a given
query (e.g., if a number of dept attributes had been
requested in the path query above). Second, if the
query is run at a non-serializable level of consistency
(e.g., cursor stability), independent subqueries could
produce surprising results in the face of concurrent
updates. As a result, we �rst translate path expres-
sions internally into a special form of shared sub-
queries. UDB's query rewrite component then trans-
lates these shared subqueries into outer joins when
possible; moreover, it rewrites them into inner joins
in many cases, such as when a given path appears in
the query's where clause. From there, UDB's query
optimizer is free to consider all of its usual join orders,
join methods, parallel execution options, and so on.

Also on the topic of references, UDB V5.2 sup-
ports only user-generated object id values, though we
have prototyped system-generated object ids as well.
There are several reasons for our decision to ship user-
generated object ids �rst. One factor was a series of
discussions with a UDB customer who wanted to mi-
grate from an object mapping layer that they had im-
plemented on top of a pure relational system to exploit
the (then) forthcoming UDB object support. That
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customer already had a number of existing \legacy"
objects, with existing ids that appeared externally in
operating system �les as well as in databases. The
prospect of being forced to re-identify all of their
legacy objects posed a problem for them. Another con-
sideration was our desire to support the e�cient ini-
tial loading of object-relational data in cases where the
user has a convenient way to generate object ids out-
side of UDB. In the BUCKY benchmark, the object-
relational load times were an order of magnitude worse
than relational load times [2] because each object that
contains system-generated references had to be con-
nected (joined) to the objects that it refers to, and
these connections cannot be �nalized until their object
ids have been generated by creating the objects them-
selves. In contrast, user-generated object ids allow
the loading of data from �les|including references|
into typed tables at full relational speeds. A related
consideration was database creation in external ob-
ject caches. We wanted to provide e�cient support
for applications where a graph of objects is created
externally, in a cache, and then handed to the sys-
tem. If the only way to generate object ids is for the
system to do it as objects are inserted, this process
becomes messy (e.g., one must topologically sort the
cached object graph) and/or expensive (because one
must backpatch object references between objects af-
ter insertion). UDB will of course support system-
generated object ids as well in the future, but we have
come to believe that user-generated object ids are in
fact preferable in a number of common situations.

6 Relationship to Other Work and Sys-
tems

As alluded to earlier, our work has been in
uenced
by a number of previous papers and systems (too nu-
merous to cite and do justice to here). The seminal
work on GEM [16, 15] heavily in
uenced our model
for path expressions as well as some of our thinking
with respect to hierarchy storage. We were also heav-
ily in
uenced by past experiences in the University of
Wisconsin EXODUS project [3] as well as those from
a number of other projects from the same era [1] and
by various \manifestos" on next-generation database
system requirements [14, 10].

It is also appropriate to compare UDB to other ven-
dors' systems; we do so very brie
y here. Both In-
formix and Oracle o�er object-relational features as
well. Informix supports user-de�ned structured types
and hierarchies of tables; however, to the best of our
knowledge, Informix does not yet include support for
references, path expressions, or object views. Oracle
8 supports user-de�ned structured types and object
views, but does not provide any support for inheri-
tance or table/view hierarchies. Informix and Oracle 8
both provide degrees of support for methods, nesting
of structured types, and collection-valued attributes,

features not yet provided in the released version (V5.2)
of UDB. Some of the unique aspects of UDB are its
support for user-generated object ids, its aggressive
approach to scopes and consequently to path query
optimization, and its unique support for object views
including view hierarchies. Method and nested struc-
tured type support for UDB are working in the lab
(speci�cally, IBM's Santa Teresa Laboratory), and we
are currently exploring collection type support at IBM
Almaden.

7 Status and Future Plans

Most of the object-relational features that have been
covered in this paper are available today in Version
5.2 of the DB2 UDB product. These features include
structured types, object tables, type and table hier-
archies, references, path expressions, and object views
and view hierarchies. These features are available on
all supported V5.2 platforms, which include a wide va-
riety of operating systems (most common variants of
Unix, NT, Windows95, and OS/2) and a variety of se-
rial and parallel (SMP and MPP) hardware platforms.
Thus, DB2 UDB now provides a solid initial founda-
tion for the management of complex object data.

We are currently extending this work in several
ways. As mentioned earlier, we have check constraints
working on table hierarchies and are completing our
work on referential integrity and triggers for table hier-
archies. Near-term things that we plan to address next
include type migration, type evolution, and system-
generated oid support. Other topics of current interest
include support for collection types, e.g., collection-
valued attributes a la ODMG [5], and ways to connect
object-relational data to the web using XML or exten-
sions thereof.
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