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Abstract

The nearest- or near-neighbor query problems

arise in a large variety of database applications,
usually in the context of similarity searching. Of
late, there has been increasing interest in build-

ing search/index structures for performing simi-
larity search over high-dimensional data, e.g., im-
age databases, document collections, time-series

databases, and genome databases. Unfortunately,
all known techniques for solving this problem fall
prey to the \curse of dimensionality." That is,

the data structures scale poorly with data dimen-
sionality; in fact, if the number of dimensions
exceeds 10 to 20, searching in k-d trees and re-

lated structures involves the inspection of a large
fraction of the database, thereby doing no better
than brute-force linear search. It has been sug-

gested that since the selection of features and the
choice of a distance metric in typical applications
is rather heuristic, determining an approximate
nearest neighbor should su�ce for most practi-

cal purposes. In this paper, we examine a novel
scheme for approximate similarity search based
on hashing. The basic idea is to hash the points
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from the database so as to ensure that the prob-
ability of collision is much higher for objects that
are close to each other than for those that are far

apart. We provide experimental evidence that our
method gives signi�cant improvement in running
time over other methods for searching in high-
dimensional spaces based on hierarchical tree de-

composition. Experimental results also indicate
that our scheme scales well even for a relatively
large number of dimensions (more than 50).

1 Introduction

A similarity search problem involves a collection of ob-
jects (e.g., documents, images) that are characterized
by a collection of relevant features and represented
as points in a high-dimensional attribute space; given
queries in the form of points in this space, we are re-
quired to �nd the nearest (most similar) object to the
query. The particularly interesting and well-studied
case is the d-dimensional Euclidean space. The prob-
lem is of major importance to a variety of applications;
some examples are: data compression [20]; databases
and data mining [21]; information retrieval [11, 16, 38];
image and video databases [15, 17, 37, 42]; machine
learning [7]; pattern recognition [9, 13]; and, statistics
and data analysis [12, 27]. Typically, the features of
the objects of interest are represented as points in <d
and a distance metric is used to measure similarity of
objects. The basic problem then is to perform indexing
or similarity searching for query objects. The number
of features (i.e., the dimensionality) ranges anywhere
from tens to thousands. For example, in multimedia
applications such as IBM's QBIC (Query by Image
Content), the number of features could be several hun-
dreds [15, 17]. In information retrieval for text doc-
uments, vector-space representations involve several
thousands of dimensions, and it is considered to be a
dramatic improvement that dimension-reduction tech-
niques, such as the Karhunen-Lo�eve transform [26, 30]
(also known as principal components analysis [22] or
latent semantic indexing [11]), can reduce the dimen-
sionality to a mere few hundreds!
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The low-dimensional case (say, for d equal to 2 or
3) is well-solved [14], so the main issue is that of deal-
ing with a large number of dimensions, the so-called
\curse of dimensionality." Despite decades of inten-
sive e�ort, the current solutions are not entirely sat-
isfactory; in fact, for large enough d, in theory or in
practice, they provide little improvement over a linear
algorithm which compares a query to each point from
the database. In particular, it was shown in [45] that,
both empirically and theoretically, all current index-
ing techniques (based on space partitioning) degrade
to linear search for su�ciently high dimensions. This
situation poses a serious obstacle to the future develop-
ment of large scale similarity search systems. Imagine
for example a search engine which enables content-
based image retrieval on the World-Wide Web. If the
system was to index a signi�cant fraction of the web,
the number of images to index would be at least of
the order tens (if not hundreds) of million. Clearly, no
indexing method exhibiting linear (or close to linear)
dependence on the data size could manage such a huge
data set.

The premise of this paper is that in many cases
it is not necessary to insist on the exact answer; in-
stead, determining an approximate answer should suf-
�ce (refer to Section 2 for a formal de�nition). This
observation underlies a large body of recent research
in databases, including using random sampling for his-
togram estimation [8] and median approximation [33],
using wavelets for selectivity estimation [34] and ap-
proximate SVD [25]. We observe that there are many
applications of nearest neighbor search where an ap-
proximate answer is good enough. For example, it
often happens (e.g., see [23]) that the relevant answers
are much closer to the query point than the irrele-
vant ones; in fact, this is a desirable property of a
good similarity measure. In such cases, the approxi-
mate algorithm (with a suitable approximation factor)
will return the same result as an exact algorithm. In
other situations, an approximate algorithm provides
the user with a time-quality tradeo� | the user can
decide whether to spend more time waiting for the
exact answer, or to be satis�ed with a much quicker
approximation (e.g., see [5]).

The above arguments rely on the assumption that
approximate similarity search can be performed much
faster than the exact one. In this paper we show that
this is indeed the case. Speci�cally, we introduce a
new indexing method for approximate nearest neigh-
bor with a truly sublinear dependence on the data size
even for high-dimensional data. Instead of using space
partitioning, it relies on a new method called locality-
sensitive hashing (LSH). The key idea is to hash the
points using several hash functions so as to ensure that,
for each function, the probability of collision is much
higher for objects which are close to each other than
for those which are far apart. Then, one can deter-

mine near neighbors by hashing the query point and
retrieving elements stored in buckets containing that
point. We provide such locality-sensitive hash func-
tions that are simple and easy to implement; they can
also be naturally extended to the dynamic setting, i.e.,
when insertion and deletion operations also need to be
supported. Although in this paper we are focused on
Euclidean spaces, di�erent LSH functions can be also
used for other similarity measures, such as dot prod-
uct [5].

Locality-Sensitive Hashing was introduced by Indyk
and Motwani [24] for the purposes of devising main
memory algorithms for nearest neighbor search; in par-
ticular, it enabled us to achieve worst-case O(dn1=�)-
time for approximate nearest neighbor query over an
n-point database. In this paper we improve that tech-
nique and achieve a signi�cantly improved query time
of O(dn1=(1+�)). This yields an approximate nearest
neighbor algorithm running in sublinear time for any
� > 0. Furthermore, we generalize the algorithm and
its analysis to the case of external memory.

We support our theoretical arguments by empiri-
cal evidence. We performed experiments on two data
sets. The �rst contains 20,000 histograms of color
images, where each histogram was represented as a
point in d-dimensional space, for d up to 64. The sec-
ond contains around 270,000 points representing tex-
ture information of blocks of large aerial photographs.
All our tables were stored on disk. We compared
the performance of our algorithm with the perfor-
mance of the Sphere/Rectangle-tree (SR-tree) [28], a
recent data structure which was shown to be com-
parable to or signi�cantly more e�cient than other
tree-decomposition-based indexing methods for spa-
tial data. The experiments show that our algorithm is
signi�cantly faster than the earlier methods, in some
cases even by several orders of magnitude. It also
scales well as the data size and dimensionality increase.
Thus, it enables a new approach to high-performance
similarity search | fast retrieval of approximate an-
swer, possibly followed by a slower but more accurate
computation in the few cases where the user is not
satis�ed with the approximate answer.

The rest of this paper is organized as follows. In
Section 2 we introduce the notation and give formal
de�nitions of the similarity search problems. Then in
Section 3 we describe locality-sensitive hashing and
show how to apply it to nearest neighbor search. In
Section 4 we report the results of experiments with
LSH. The related work is described in Section 5. Fi-
nally, in Section 6 we present conclusions and ideas for
future research.

2 Preliminaries

We use ldp to denote the Euclidean space <d under the
lp norm, i.e., when the length of a vector (x1; : : :xd) is

de�ned as (jx1jp + : : :+ jxdjp)1=p. Further, dp(p; q) =
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jjp�qjjp denotes the distance between the points p and
q in ldp . We use Hd to denote the Hamming metric
space of dimension d, i.e., the space of binary vectors
of length d under the standard Hamming metric. We
use dH (p; q) denote the Hamming distance, i.e., the
number of bits on which p and q di�er.

The nearest neighbor search problem is de�ned as
follows:

De�nition 1 (Nearest Neighbor Search (NNS))
Given a set P of n objects represented as points in a
normed space ldp , preprocess P so as to e�ciently an-
swer queries by �nding the point in P closest to a query
point q.

The de�nition generalizes naturally to the case
where we want to return K > 1 points. Speci�cally, in
the K-Nearest Neighbors Search (K-NNS), we wish to
return the K points in the database that are closest to
the query point. The approximate version of the NNS
problem is de�ned as follows:

De�nition 2 (�-Nearest Neighbor Search (�-NNS))
Given a set P of points in a normed space ldp , prepro-
cess P so as to e�ciently return a point p 2 P for any
given query point q, such that d(q; p) � (1 + �)d(q; P ),
where d(q; P ) is the distance of q to the its closest point
in P .

Again, this de�nition generalizes naturally to �nd-
ing K > 1 approximate nearest neighbors. In the Ap-
proximate K-NNS problem, we wish to �nd K points
p1; : : : ; pK such that the distance of pi to the query q is
at most (1+ �) times the distance from the ith nearest
point to q.

3 The Algorithm

In this section we present e�cient solutions to the ap-
proximate versions of the NNS problem. Without sig-
ni�cant loss of generality, we will make the following
two assumptions about the data:

1. the distance is de�ned by the l1 norm (see com-
ments below),

2. all coordinates of points in P are positive integers.

The �rst assumption is not very restrictive, as usu-
ally there is no clear advantage in, or even di�erence
between, using l2 or l1 norm for similarity search. For
example, the experiments done for the Webseek [43]
project (see [40], chapter 4) show that comparing color
histograms using l1 and l2 norms yields very similar
results (l1 is marginally better). Both our data sets
(see Section 4) have a similar property. Speci�cally,
we observed that a nearest neighbor of an average
query point computed under the l1 norm was also an
�-approximate neighbor under the l2 norm with an av-
erage value of � less than 3% (this observation holds

for both data sets). Moreover, in most cases (i.e., for
67% of the queries in the �rst set and 73% in the sec-
ond set) the nearest neighbors under l1 and l2 norms
were exactly the same. This observation is interest-
ing in its own right, and can be partially explained
via the theorem by Figiel et al (see [19] and references
therein). They showed analytically that by simply ap-
plying scaling and random rotation to the space l2,
we can make the distances induced by the l1 and l2
norms almost equal up to an arbitrarily small factor.
It seems plausible that real data is already randomly
rotated, thus the di�erence between l1 and l2 norm
is very small. Moreover, for the data sets for which
this property does not hold, we are guaranteed that
after performing scaling and random rotation our al-
gorithms can be used for the l2 norm with arbitrarily
small loss of precision.

As far as the second assumption is concerned,
clearly all coordinates can be made positive by prop-
erly translating the origin of <d. We can then con-
vert all coordinates to integers by multiplying them
by a suitably large number and rounding to the near-
est integer. It can be easily veri�ed that by choosing
proper parameters, the error induced by rounding can
be made arbitrarily small. Notice that after this oper-
ation the minimum interpoint distance is 1.

3.1 Locality-Sensitive Hashing

In this section we present locality-sensitive hashing
(LSH). This technique was originally introduced by
Indyk and Motwani [24] for the purposes of devising
mainmemory algorithms for the �-NNS problem. Here
we give an improved version of their algorithm. The
new algorithm is in many respects more natural than
the earlier one: it does not require the hash buckets to
store only one point; it has better running time guar-
antees; and, the analysis is generalized to the case of
secondary memory.

Let C be the largest coordinate in all points in P .
Then, as per [29], we can embed P into the Hamming

cube Hd0

with d0 = Cd, by transforming each point
p = (x1; : : :xd) into a binary vector

v(p) = UnaryC(x1) : : :UnaryC(xd);

where UnaryC(x) denotes the unary representation of
x, i.e., is a sequence of x ones followed by C�x zeroes.

Fact 1 For any pair of points p; q with coordinates in
the set f1 : : :Cg,

d1(p; q) = dH(v(p); v(q)):

That is, the embedding preserves the distances be-
tween the points. Therefore, in the sequel we can
concentrate on solving �-NNS in the Hamming space
Hd0

. However, we emphasize that we do not need to
actually convert the data to the unary representation,
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which could be expensive when C is large; in fact, all
our algorithms can be made to run in time indepen-
dent on C. Rather, the unary representation provides
us with a convenient framework for description of the
algorithms which would be more complicated other-
wise.

We de�ne the hash functions as follows. For an inte-
ger l to be speci�ed later, choose l subsets I1; : : : ; Il of
f1; : : : ; d0g. Let pjI denote the projection of vector p on
the coordinate set I, i.e., we compute pjI by selecting
the coordinate positions as per I and concatenating
the bits in those positions. Denote gj(p) = pjIj . For
the preprocessing, we store each p 2 P in the bucket
gj(p), for j = 1; : : : ; l. As the total number of buckets
may be large, we compress the buckets by resorting
to standard hashing. Thus, we use two levels of hash-
ing: the LSH function maps a point p to bucket gj(p),
and a standard hash function maps the contents of
these buckets into a hash table of size M . The maxi-
mal bucket size of the latter hash table is denoted by
B. For the algorithm's analysis, we will assume hash-
ing with chaining, i.e., when the number of points in
a bucket exceeds B, a new bucket (also of size B) is
allocated and linked to and from the old bucket. How-
ever, our implementation does not employ chaining,
but relies on a simpler approach: if a bucket in a given
index is full, a new point cannot be added to it, since
it will be added to some other index with high prob-
ability. This saves us the overhead of maintaining the
link structure.

The number n of points, the size M of the hash
table, and the maximum bucket size B are related by
the following equation:

M = �
n

B
;

where � is the memory utilization parameter, i.e., the
ratio of the memory allocated for the index to the size
of the data set.

To process a query q, we search all indices
g1(q); : : : ; gl(q) until we either encounter at least c � l
points (for c speci�ed later) or use all l indices. Clearly,
the number of disk accesses is always upper bounded
by the number of indices, which is equal to l. Let
p1; : : : ; pt be the points encountered in the process.
For Approximate K-NNS, we output the K points pi
closest to q; in general, we may return fewer points if
the number of points encountered is less than K.

It remains to specify the choice of the subsets Ij.
For each j 2 f1; : : : ; lg, the set Ij consists of k ele-
ments from f1; : : : ; d0g sampled uniformly at random
with replacement. The optimal value of k is chosen to
maximize the probability that a point p \close" to q
will fall into the same bucket as q, and also to mini-
mize the probability that a point p0 \far away" from q
will fall into the same bucket. The choice of the values
of l and k is deferred to the next section.

Algorithm Preprocessing
Input A set of points P ,
l (number of hash tables),

Output Hash tables Ti, i = 1; : : : ; l
Foreach i = 1; : : : ; l
Initialize hash table Ti by generating
a random hash function gi(�)

Foreach i = 1; : : : ; l
Foreach j = 1; : : : ; n
Store point pj on bucket gi(pj) of hash table Ti

Figure 1: Preprocessing algorithm for points already
embedded in the Hamming cube.

Algorithm Approximate Nearest Neighbor Query
Input A query point q,
K (number of appr. nearest neighbors)

Access To hash tables Ti, i = 1; : : : ; l
generated by the preprocessing algorithm

Output K (or less) appr. nearest neighbors
S  �
Foreach i = 1; : : : ; l
S  S [ fpoints found in gi(q) bucket of table Tig

Return the K nearest neighbors of q found in set S
/* Can be found by main memory linear search */

Figure 2: Approximate Nearest Neighbor query an-
swering algorithm.

Although we are mainly interested in the I/O com-
plexity of our scheme, it is worth pointing out that
the hash functions can be e�ciently computed if the
data set is obtained by mapping ld1 into d

0-dimensional
Hamming space. Let p be any point from the data set
and let p0 denote its image after the mapping. Let I
be the set of coordinates and recall that we need to
compute p0jI. For i = 1; : : : ; d, let Iji denote, in sorted

order, the coordinates in I which correspond to the
ith coordinate of p. Observe, that projecting p0 on Iji
results in a sequence of bits which is monotone, i.e.,
consists of a number, say oi, of ones followed by ze-
ros. Therefore, in order to represent p0I it is su�cient
to compute oi for i = 1; : : : ; d. However, the latter
task is equivalent to �nding the number of elements
in the sorted array Iji which are smaller than a given
value, i.e., the ith coordinate of p. This can be done
via binary search in logC time, or even in constant
time using a precomputed array of C bits. Thus, the
total time needed to compute the function is either
O(d logC) or O(d), depending on resources used. In
our experimental section, the value of C can be made
very small, and therefore we will resort to the second
method.

For quick reference we summarize the preprocessing
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and query answering algorithms in Figures 1 and 2.

3.2 Analysis of Locality-Sensitive Hashing

The principle behind our method is that the probabil-
ity of collision of two points p and q is closely related
to the distance between them. Speci�cally, the larger
the distance, the smaller the collision probability. This
intuition is formalized as follows [24]. Let D(�; �) be a
distance function of elements from a set S, and for
any p 2 S let B(p; r) denote the set of elements from
S within the distance r from p.

De�nition 3 A family H of functions from S to U
is called (r1; r2; p1; p2)-sensitive for D(�; �) if for any
q; p 2 S
� if p 2 B(q; r1) then PrH[h(q) = h(p)] � p1,

� if p =2 B(q; r2) then PrH[h(q) = h(p)] � p2.

In the above de�nition, probabilities are considered
with respect to the random choice of a function h from
the family H. In order for a locality-sensitive family
to be useful, it has to satisfy the inequalities p1 > p2
and r1 < r2.

Observe that if D(�; �) is the Hamming distance
dH(�; �), then the family of projections on one coor-
dinate is locality-sensitive. More speci�cally:

Fact 2 Let S be Hd0

(the d0-dimensional Ham-
ming cube) and D(p; q) = dH(p; q) for p; q 2
Hd0

. Then for any r, � > 0, the family Hd0 =
fhi : hi((b1; : : : ; bd0)) = bi; for i = 1; : : : ; d0g is�
r; r(1 + �); 1� r

d0
; 1� r(1+�)

d0

�
-sensitive.

We now generalize the algorithm from the previ-
ous section to an arbitrary locality-sensitive family
H. Thus, the algorithm is equally applicable to other
locality-sensitive hash functions (e.g., see [5]). The
generalization is simple: the functions g are now de-
�ned to be of the form

gi(p) = (hi1(p); hi2(p); : : : ; hik(p));

where the functions hi1 ; : : : ; hik are randomly chosen
from H with replacement. As before, we choose l such
functions g1; : : : ; gl. In the case when the familyHd0 is
used, i.e., each function selects one bit of an argument,
the resulting values of gj(p) are essentially equivalent
to pjIj .

We now show that the LSH algorithm can be used to
solve what we call the (r; �)-Neighbor problem: deter-
mine whether there exists a point p within a �xed dis-
tance r1 = r of q, or whether all points in the database
are at least a distance r2 = r(1+�) away from q; in the
�rst case, the algorithm is required to return a point
p0 within distance at most (1 + �)r from q. In par-
ticular, we argue that the LSH algorithm solves this
problem for a proper choice of k and l, depending on

r and �. Then we show how to apply the solution to
this problem to solve �-NNS.

Denote by P 0 the set of all points p0 2 P such that
d(q; p0) > r2. We observe that the algorithm correctly
solves the (r; �)-Neighbor problem if the following two
properties hold:

P1 If there exists p� such that p� 2 B(q; r1), then
gj(p�) = gj(q) for some j = 1; : : : ; l.

P2 The total number of blocks pointed to by q and
containing only points from P 0 is less than cl.

Assume that H is a (r1; r2; p1; p2)-sensitive family;

de�ne � = ln 1=p1
ln 1=p2

. The correctness of the LSH algo-

rithm follows from the following theorem.

Theorem 1 Setting k = log1=p2(n=B) and l =
�
n
B

��
guarantees that properties P1 and P2 hold with prob-
ability at least 1

2 � 1
e � 0:132.

Remark 1 Note that by repeating the LSH algorithm
O(1=�) times, we can amplify the probability of success
in at least one trial to 1� �, for any � > 0.

Proof: Let property P1 hold with probability P1,
and property P2 hold with probability P2. We will
show that both P1 and P2 are large. Assume that there
exists a point p� within distance r1 of q; the proof is
quite similar otherwise. Set k = log1=p2(n=B). The
probability that g(p0) = g(q) for p 2 P � B(q; r2) is at
most pk2 =

B
n . Denote the set of all points p

0 =2 B(q; r2)
by P 0. The expected number of blocks allocated for gj
which contain exclusively points from P 0 does not ex-
ceed 2. The expected number of such blocks allocated
for all gj is at most 2l. Thus, by the Markov inequal-
ity [35], the probability that this number exceeds 4l is
less than 1=2. If we choose c = 4, the probability that
the property P2 holds is P2 > 1=2.

Consider now the probability of gj(p
�) = gj(q).

Clearly, it is bounded from below by

pk1 = p
log1=p2 n=B

1 = (n=B)
�

log 1=p1
log 1=p2 = (n=B)��:

By setting l =
�
n
B

��
, we bound from above the prob-

ability that gj(p�) 6= gj(q) for all j = 1; : : : ; l by 1=e.
Thus the probability that one such gj exists is at least
P1 � 1� 1=e.

Therefore, the probability that both properties P1
and P2 hold is at least 1 � [(1 � P1) + (1 � P2)] =
P1 + P2 � 1 � 1

2 � 1
e
. The theorem follows. 2

In the following we consider the LSH family for the
Hammingmetric of dimension d0 as speci�ed in Fact 2.
For this case, we show that � � 1

1+�
assuming that

r < d0

ln n ; the latter assumption can be easily satis�ed
by increasing the dimensionality by padding a su�-
ciently long string of 0s at the end of each point's rep-
resentation.
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Fact 3 Let r < d0

lnn . If p1 = 1� r
d0

and p2 = 1� r(1+�)
d0

,

then � = ln 1=p1
ln 1=p2

� 1
1+� .

Proof: Observe that

� =
ln 1=p1
ln 1=p2

=
ln 1

1�r=d0

ln 1
1�(1+�)r=d0

=
ln(1� r=d0)

ln(1� (1 + �)r=d0)
:

Multiplying both the numerator and the denominator
by d0

r
, we obtain:

� =
d0

r ln(1� r=d0)
d0

r
ln(1 � (1 + �)r=d0)

=
ln(1� r=d0)d

0=r

ln(1� (1 + �)r=d0)d0=r
=

U

L

In order to upper bound �, we need to bound U from
below and L from above; note that both U and L are
negative. To this end we use the following inequali-
ties [35]:

(1� (1 + �)r=d0)d
0=r < e�(1+�)

and �
1� r

d0

�d0=r

> e�1

�
1� 1

d0=r

�
:

Therefore,

U

L
<

ln(e�1(1� 1
d0=r ))

ln e�(1+�)

=
�1 + ln(1� 1

d0=r )

�(1 + �)

= 1=(1 + �)�
ln(1� 1

d0=r
)

1 + �
< 1=(1 + �)� ln(1� 1= lnn)

where the last step uses the assumptions that � > 0
and r < d0

lnn . We conclude that

n� < n1=(1+�)n� ln(1�1= lnn)

= n1=(1+�)(1� 1= lnn)� ln n = O(n1=(1+�))

2

We now return to the �-NNS problem. First, we
observe that we could reduce it to the (r; �)-Neighbor
problem by building several data structures for the
latter problem with di�erent values of r. More specif-
ically, we could explore r equal to r0, r0(1 + �),
r0(1 + �)2; : : : ; rmax, where r0 and rmax are the small-
est and the largest possible distance between the query
and the data point, respectively. We remark that the
number of di�erent radii could be further reduced [24]
at the cost of increasing running time and space re-
quirement. On the other hand, we observed that in
practice choosing only one value of r is su�cient to

produce answers of good quality. This can be ex-
plained as in [10] where it was observed that the distri-
bution of distances between a query point and the data
set in most cases does not depend on the speci�c query
point, but on the intrinsic properties of the data set.
Under the assumption of distribution invariance, the
same parameter r is likely to work for a vast majority
of queries. Therefore in the experimental section we
adopt a �xed choice of r and therefore also of k and l.

4 Experiments

In this section we report the results of our experiments
with locality-sensitive hashing method. We performed
experiments on two data sets. The �rst one contains
up to 20,000 histograms of color images from COREL
Draw library, where each histogram was represented
as a point in d-dimensional space, for d up to 64. The
second one contains around 270,000 points of dimen-
sion 60 representing texture information of blocks of
large large aerial photographs. We describe the data
sets in more detail later in the section.

We decided not to use randomly-chosen synthetic
data in our experiments. Though such data is often
used to measure the performance of exact similarity
search algorithms, we found it unsuitable for evalua-
tion of approximate algorithms for the high data di-
mensionality. The main reason is as follows. Assume
a data set consisting of points chosen independently
at random from the same distribution. Most distri-
butions (notably uniform) used in the literature as-
sume that all coordinates of each point are chosen in-
dependently. In such a case, for any pair of points p; q
the distance d(p; q) is sharply concentrated around the
mean; for example, for the uniform distribution over
the unit cube, the expected distance is O(d), while

the standard deviation is only O(
p
d). Thus almost

all pairs are approximately within the same distance,
so the notion of approximate nearest neighbor is not
meaningful | almost every point is an approximate
nearest neighbor.
Implementation. We implement the LSH algo-

rithm as speci�ed in Section 3. The LSH functions
can be computed as described in Section 3.1. Denote
the resulting vector of coordinates by (v1; : : : ; vk). For
the second level mapping we use functions of the form

h(v1; : : : ; vk) = a1 � v1 + � � �+ ad � vk mod M;

where M is the size of the hash table and a1; : : : ; ak
are random numbers from interval [0 : : :M�1]. These
functions can be computed using only 2k � 1 oper-
ations, and are su�ciently random for our purposes,
i.e., give low probability of collision. Each second level
bucket is then directly mapped to a disk block. We as-
sumed that each block is 8KB of data. As each coordi-
nate in our data sets can be represented using 1 byte,
we can store up to 8192=d d-dimensional points per
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block. Therefore, we assume the bucket size B = 100
for d = 64 or d = 60, B = 300 for d = 27 and B = 1000
for d = 8.

For the SR-tree, we used the implementation by
Katayama, available from his web page [28]. As above,
we allow it to store about 8192 coordinates per disk
block.
Performance measures. The goal of our exper-

iments was to estimate two performance measures:
speed (for both SR-tree and LSH) and accuracy (for
LSH). The speed is measured by the number of disk
blocks accessed in order to answer a query. We count
all disk accesses, thus ignoring the issue of caching.
Observe that in case of LSH this number is easy to
predict as it is clearly equal to the number of indices
used. As the number of indices also determines the
storage overhead, it is a natural parameter to opti-
mize.

The error of LSH is measured as follows. Follow-
ing [2] we de�ne (for the Approximate 1-NNS problem)
the e�ective error as

E =
1

jQj
X

query q2Q

dLSH
d�

;

where dLSH denotes the distance from a query point q
to a point found by LSH, d� is the distance from q to
the closest point, and the sum is taken of all queries
for which a nonempty index was found. We also mea-
sure the (small) fraction of queries for which no non-
empty bucket was found; we call this quantity miss
ratio. For the Approximate K-NNS we measure sep-
arately the distance ratios between the closest points
found to the nearest neighbor, the 2nd closest one to
the 2nd nearest neighbor and so on; then we average
the ratios. The miss ratio is de�ned to be the fraction
of cases when less than K points were found.
Data Sets. Our �rst data set consists of 20,000

histograms of color thumbnail-sized images of vari-
ous contents taken from the COREL library. The
histograms were extracted after transforming the pix-
els of the images to the 3-dimensional CIE-Lab color
space [44]; the property of this space is that the dis-
tance between each pair of points corresponds to the
perceptual dissimilarity between the colors that the
two points represent. Then we partitioned the color
space into a grid of smaller cubes, and given an image,
we create the color histogram of the image by counting
how many pixels fall into each of these cubes. By di-
viding each axis into u intervals we obtain a total of u3

cubes. For most experiments, we assumed u = 4 ob-
taining a 64-dimensional space. Each histogram cube
(i.e., color) then corresponds to a dimension of space
representing the images. Finally, quantization is per-
formed in order to �t each coordinate in 1 byte. For
each point representing an image each coordinate ef-
fectively counts the number of the image's pixels of a
speci�c color. All coordinates are clearly non-negative
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Figure 3: The pro�les of the data sets.

integers, as assumed in Section 3. The distribution of
interpoint distances in our point sets is shown in Fig-
ure 3. Both graphs were obtained by computing all
interpoint distances of random subsets of 200 points,
normalizing the maximal value to 1.

The second data set contains 275,465 feature vec-
tors of dimension 60 representing texture information
of blocks of large aerial photographs. This data set
was provided by B.S. Manjunath [31, 32]; its size and
dimensionality \provides challenging problems in high
dimensional indexing" [31]. These features are ob-
tained from Gabor �ltering of the image tiles. The
Gabor �lter bank consists of 5 scales and 6 orien-
tations of �lters, thus the total number of �lters is
5� 6 = 30. The mean and standard deviation of each
�ltered output are used to constructed the feature vec-
tor (d = 30 � 2 = 60). These texture features are ex-
tracted from 40 large air photos. Before the feature
extraction, each airphoto is �rst partitioned into non-
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overlapping tiles of size 64 times 64, from which the
feature vectors are computed.
Query Sets. The di�culty in evaluating similarity

searching algorithms is the lack of a publicly available
database containing typical query points. Therefore,
we had to construct the query set from the data set
itself. Our construction is as follows: we split the data
set randomly into two disjoint parts (call them S1 and
S2). For the �rst data set the size of S1 is 19,000 while
the size of S2 is 1000. The set S1 forms a database of
images, while the �rst 500 points from S2 (denoted
by Q) are used as query points (we use the other 500
points for various veri�cation purposes). For the sec-
ond data set we chose S1 to be of size 270,000, and
we use 1000 of the remaining 5,465 points as a query
set. The numbers are slightly di�erent for the scala-
bility experiments as they require varying the size of
the data set. In this case we chose a random subset of
S1 of required size.

4.1 Experimental Results

In this section we describe the results of our experi-
ments. For both data sets they consist essentially of
the following three steps. In the �rst phase we have to
make the following choice: the value of k (the number
of sampled bits) to choose for a given data set and the
given number of indices l in order to minimize the ef-
fective error. It turned out that the optimal value of k
is essentially independent of n and d and thus we can
use the same value for di�erent values of these param-
eters. In the second phase, we estimate the in
uence
of the number of indices l on the error. Finally, we
measure the performance of LSH by computing (for
a variety of data sets) the minimal number of indices
needed to achieve a speci�ed value of error. When ap-
plicable, we also compare this performance with that
of SR-trees.

4.2 Color histograms

For this data set, we performed several experiments
aimed at understanding the behavior of LSH algorithm
and its performance relative to SR-tree. As mentioned
above, we started with an observation that the optimal
value of sampled bits k is essentially independent of n
and d and approximately equal to 700 for d = 64. The
lack of dependence on n can be explained by the fact
that the smaller data sets were obtained by sampling
the large one and therefore all of the sets have similar
structure; we believe the lack of dependence on d is also
in
uenced by the structure of the data. Therefore the
following experiments were done assuming k = 700.

Our next observation was that the value of stor-
age overhead � does not exert much in
uence over the
performance of the algorithm (we tried �'s from the
interval [2; 5]); thus, in the following we set � = 2.

In the next step we estimated the in
uence of l on
E. The results (for n = 19; 000, d = 64, K = 1) are
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Figure 4: Error vs. the number of indices.

shown on Figure 4. As expected, one index is not su�-
cient to achieve reasonably small error | the e�ective
error can easily exceed 50%. The error however de-
creases very fast as l increases. This is due to the fact
that the probabilities of �nding empty bucket are in-
dependent for di�erent indices and therefore the prob-
ability that all buckets are empty decays exponentially
in l.

In order to compare the performance of LSH with
SR-tree, we computed (for a variety of data sets) the
minimal number of indices needed to achieve a speci-
�ed value of error E equal to 2%, 5% , 10% or 20%.
Then we investigated the performance of the two al-
gorithms while varying the dimension and data size.
Dependence on Data Size. We performed the

simulations for d = 64 and the data sets of sizes 1000,
2000, 5000, 10000 and 19000. To achieve better under-
standing of scalability of our algorithms, we did run
the experiments twice: for Approximate 1-NNS and
for Approximate 10-NNS. The results are presented
on Figure 5.

Notice the strongly sublinear dependence exhibited
by LSH: although for smallE = 2% it matches SR-tree
for n = 1000 with 5 blocks accessed (for K = 1), it
requires 3 accesses more for a data set 19 times larger.
At the same time the I/O activity of SR-tree increases
by more than 200%. For larger errors the LSH curves
are nearly 
at, i.e., exhibit little dependence on the size
of the data. Similar or even better behavior occurs for
Approximate 10-NNS.

We also computed the miss ratios, i.e., the fraction
of queries for which no answer was found. The results
are presented on Figure 6. We used the parameters
from the previous experiment. On can observe that
for say E = 5% and Approximate 1-NNS, the miss
ratios are quite high (10%) for small n, but decrease
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Figure 5: Number of indices vs. data size.

to around 1% for n = 19; 000 .

Dependence on Dimension. We performed the
simulations for d = 23; 33 and 43; the choice of d's was
limited to cubes of natural numbers because of the way
the data has been created. Again, we performed the
comparison for Approximate 1-NNS and Approximate
10-NNS; the results are shown on Figure 7. Note that
LSH scales very well with the increase of dimension-
ality: for E = 5% the change from d = 8 to d = 64
increases the number of indices only by 2. The miss
ratio was always below 6% for all dimensions.

This completes the comparison of LSH with SR-
tree. For a better understanding of the behavior of
LSH, we performed an additional experiment on LSH
only. Figure 8 presents the performance of LSH when
the number of nearest neighbors to retrieve vary from
1 to 100.
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Figure 6: Miss ratio vs. data size.

4.3 Texture features

The experiments with texture feature data were de-
signed to measure the performance of the LSH algo-
rithm on large data sets; note that the size of the
texture �le (270,000 points) is an order of magnitude
larger than the size of the histogram data set (20,000
points). The �rst step (i.e., the choice of the number
of sampled bits k) was very similar to the previous
experiment, therefore we skip the detailed description
here. We just state that we assumed that the number
of sampled bits k = 65, with other parameters being:
the storage overhead � = 1, block size B = 100, and
the number of nearest neighbors equal to 10. As stated
above, the value of n was equal to 270,000.

We varied the number of indices from 3 to 100,
which resulted in error from 50% to 15% (see Fig-
ure 9 (a)). The shape of the curve is similar as in
the previous experiment. The miss ratio was roughly
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Figure 7: Number of indices vs. dimension.

4% for 3 indices, 1% for 5 indices, and 0% otherwise.

To compare with SR-tree, we implemented that lat-
ter on random subsets of the whole data set of sizes
from 10; 000 to 200; 000. For n = 200; 000 the average
number of blocks accessed per query by SR-tree was
1310, which is one to two orders of magnitude larger
than the number of blocks accessed by our algorithm
(see Figure 9 (b) where we show the running times of
LSH for e�ective error 15%). Observe though that an
SR-tree computes exact answers while LSH provides
only an approximation. Thus in order to perform an
accurate evaluation of LSH, we decided to compare
it with a modi�ed SR-tree algorithm which produces
approximate answers. The modi�cation is simple: in-
stead of running SR-tree on the whole data set, we run
it on a randomly chosen subset of it. In this way we
achieve a speed-up of the algorithm (as the random
sample of the data set is smaller than the original set)
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Figure 8: Number of indices vs. number of nearest
neighbors.

while incurring some error.
The query cost versus error tradeo� obtained in this

way (for the entire data set) is depicted on Figure 9;
we also include a similar graph for LSH.

Observe that using random sampling results in con-
siderable speed-up for the SR-tree algorithm, while
keeping the error relatively low. However, even in
this case the LSH algorithm o�ers considerably out-
performs SR-trees, being up to an order of magnitude
faster.

5 Previous Work

There is considerable literature on various versions of
the nearest neighbor problem. Due to lack of space we
omit detailed description of related work; the reader
is advised to read [39] for a survey of a variety of data
structures for nearest neighbors in geometric spaces,
including variants of k-d trees, R-trees, and structures
based on space-�lling curves. The more recent results
are surveyed in [41]; see also an excellent survey by [4].
Recent theoretical work in nearest neighbor search is
brie
y surveyed in [24].

6 Conclusions

We presented a novel scheme for approximate simi-
larity search based on locality-sensitive hashing. We
compared the performance of this technique and SR-
tree, a good representative of tree-based spatial data
structures. We showed that by allowing small error
and additional storage overhead, we can considerably
improve the query time. Experimental results also in-
dicate that our scheme scales well to even a large num-
ber of dimensions and data size. An additional advan-
tage of our data structure is that its running time is
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Figure 9: (a) number of indices vs. error and (b) num-
ber of indices vs. size.

essentially determined in advance. All these properties
make LSH a suitable candidate for high-performance
and real-time systems.

In recent work [5, 23], we explore applications of
LSH-type techniques to data mining and search for
copyrighted video data. Our experience suggests that
there is a lot of potential for further improvement of
the performance of the LSH algorithm. For example,
our data structures are created using a randomized
procedure. It would be interesting if there was a more
systematic method for performing this task; such a
method could take additional advantage of the struc-
ture of the data set. We also believe that investiga-
tion of hybrid data structures obtained by merging the
tree-based and hashing-based approaches is a fruitful
direction for further research.
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