User-Defined Table Operators:
Enhancing Extensibility for ORDBMS

Michael Jaedicke
SFB342, Technische Universitat Minchen, Germany

jaedicke@in.tum.de

Abstract

Currently ~ parallel object-relational database
technology is setting the direction for the future of data
management. A central enhancement of object-
relational database technology is the possibility to
execute arbitrary user-defined functions within SQL
statements. We show the limits of this approach and
propose user-defined table operators as a new concept
that allows the definition and implementation of
arbitrary user-defined N-ary database operators, which
can be programmed using SQL or Embedded SQL
(with some extensions). Our approach leads to a new
dimension of extensibility that allows to push more
application code into the server with full support for
efficient execution and parallel processing.
Furthermore it allows performance enhancements of
orders of magnitude for the evaluation of many queries
with complex user-defined functions as we show for
two concrete examples. Finally, our implementation
perception guarantees that this approach fits well into
the architectures of commercial object-relational
database management systems.

Bernhard Mitschang
IPVR, University of Stuttgart, Germany

Bernhard.Mitschang@informatik.uni-stuttgart.de

plex, parallel database technology is essential for many of these
applications. As commercial ORDBMS are based on matured

parallel RDBMS, these systems are well positioned to cope with

large data volumes.

But being able to handle large data volumes efficiently in par-
allel is not sufficient to process complex queries with short
response times. For queries that apply complex algorithms to the
data and especially for those that correlate data from several
tables, it is essential to enable an efficient and completely parallel
evaluation of these algorithms within the DBMS. However, exten-
sions of object-relational execution systems are currently limited
to user-defined functions that are invoked by built-in database
operators. This concept does not provide the necessary flexibility.

Our main contribution in this paper is to propose a new
approach taser-defined database operatofhe main goals of
our design were to provide extensibility with respect to new data-
base operators, and to ensure that the design fits well to the exist-
ing technology. Especially, it should be possible to integrate the
technology into current commercial ORDBMS without a major
change of the system architecture. Though some ORDBMS com-
ponents must be extended no component must be rewritten from
scratch. Furthermore, we considered full support for parallel exe-
cution and ease of use for developers of new operators as crucial

1. Introduction requirements.

_ _ In contrast to previous work our approach is to allow tables as

Object-relational DBMS (ORDBMS) are the next great wave arquments for user-defined routines and to allow the manipulation
([36], [7]). They ha_/e been proposed for all apphc_atlons that needhf these input tables by SQL DML commands in the body of these
both complex queries and complex data types. Since the data Vol tines. Moreover, these routines are internally used as new data-
umes that come along with new data types like satellite imagesyse operators. One could at first expect that such an extension
videos, CAD objects, etc. are gigantic and the queries are comyoy|d lead to an increased complexity with respect to the devel-

Permission to copy without fee all or part of this material is OPment of such routines. But this is not the case, since the body of
granted provided that the copies are not made or distributed fo these new routines can be implemented similar to embedded SQL
direct commercial advantage, the VLDB copyright notice and thePrograms. This is a widely used programming concept.
title of the pUb”CﬁtiOﬂ and its date appeatr, and notice is given The rest of this paper is organized as follows. We review
that copying is by permission of the Very Large Data Basetoday's concept for user-defined functions and discuss the limits
Endowment. To copy otherwise, or to republish, requires a feeyf this concept in Section 2. Section 3 introduces and discusses
and/or special permission from the Endowment. user-defined table operators as an approach to make database sys-
Proceedings of the 25th VLDB Conference, tems extensible by new operators. We discuss a spatial join and an
Edinburgh, Scotland, 1999. aggregation as examples of new operators in Section 4. Finally,

494

we discuss the related work in Section 5 and provide our conclujoin algorithm. We propose a new solution for this problem in the
sions in Section 6. next Section.

2. User-Defined Functions in ORDBMS 3. User-Defined Table Operators: UDRs with

In this Section we provide the basic concepts and definitions Table Arguments
that are used in this paper. We will focus on the concepts relgvant When we review the existing concepts for UDRS from a more
to our query processing problem and refer the reader to the literassiract point of view, we can observe the following: there are
ture for the general concepts of relational ([12], [11]) and object-roytines that operate on a tuple and produce a tuple (UDSFs),
relational query processing ([36], [8]). After an introduction {0 here are routines that are called for each tuple of a set of tuples
user-defined funcyons |n'Sect|on 2.1, we discuss the problem that,, 4 produce an aggregate value (UDAFs), and finally there are
we address here in Section 2.2. routines that operate on a tuple and return a table (UDTFs). So

.) . obviously there is something missing: namely routines that oper-
2.1. User-Defined Functions and Predicates ate on one or more tables (and have possibly additional scalar

Every RDBMS comes with a fixed set of built-in functions. parameters) and can return a tuple or a table. We want to point out
These functions can be either scalar functions or aggregate funéhat the argument tables (input tables) for this kind of routines are
tions. Ascalar functioncan be used in SQL queries wherever an not restricted to be base tables. They can be intermediate results
expression can be used. Typical scalar functions are arithmetigf a query as well as base tables, table expressions, or views. We
functions like + and * oconcat for string concatenation. Asca- call these routinesser-defined table operato(¢/DTOs), since
lar function is applied to the values of some columns of a row ofthey can be used to define and implement new N-ary database
an input table. In contrast, aygregate functiois applied to the ~ operators. This classification is expressed in Table 1. As one can
values of a single column of either a group of rows or of all rows 0bserve, UDTOs increase the orthogonality of SQL.
of an input table. A group of rows occurs, if a GROUP-BY clause o))
is used. Therefore aggregate functions can be used in the project@Ple 1: A classification of user-defined routines based
tion part of SQL queries and in HAVING clauses. on their parameter types

In ORDBMS it is possible to use aser-defined function

output parameter types
(UDF) at nearly all places where a system provided built-in func- putp P

tion can appear in SQL92. Thus there are two subsets of UDFs: scalar table

user-defined scalar functions)PSFs) anduser-defined aggre- scalar UDSF UDTF
gate functiondUDAFs). A UDSF that returns a boolean value input (UDTO)
and is used as a predicate in the search condition of SQL com- Parameter

mands is auser-defined predicat¢UDP). Finally, some types table(s) (UUDD_I_AOF) ubTO

ORDBMS [18] offer the possibility to writeiser-defined table
functions(UDTFs), which can have (scalar) arguments of a col- .) . .
umn data type and return a table. UDTFs can be used as a table !N the following we will explain, how UDTOs can be defined
expression in SQL commands. We use the taser-defined rou- and how their processing can be integrated into parallel object-
tines (UDRS) as a generic term for UDFs, UDTFs, and other kinds relational execution engines based on the traditional query pro-

of user-defined operations like the user-defined table operator§essing framework [12]. However, we will first define a generali-
that we define later in Section 3. zation relationship for row types. This will allow the application

of a given UDTO to a broad range of tables, as we will see later.

2.2. Limitations of Current ORDBMS with Respect to
New Database Operators 3.1. A Generalization Relationship for Row Types

It is a well-known fact that new complex join operators can ~ Arowtype R=(R, Ry, ..., Ry) is a structured type that con-
increase performance for certain operations like spatial joins [31]sists of N attributes. Each of these attributes has a data typgeR
etc. by orders of magnitude. But, as we have already pointed oudefine that a row type S = (SS,, ..., &) is asubtypeof R, if N
in [22], it is currently not possible for developers of database< K and there is a mapping f: {1, ... , N} {1, ..., K} such that
extensions to implement efficient user-defined join algorithms inR; = &) and f(i) # f(j) for all 1 <i, j < N. In other words, S com-
current commercial ORDBMS. In fact, one cannot implement anyprises all attributes of R, but may contain additional attributes
new database operators. UDFs cannot be used to implement nedith arbitrary data types. The order of the attributes in R and S is
operators, as they are invoked by built-in database operators. Theot important. We say also that R isapertypeof S. Please note
limitation of UDTFs is obviously that - although they can produce that each table has an associated row type.
an entire output table - they can only have scalar arguments. We want to point out that this generalization relationship
UDTFs are helpful in accessing external data sources [10] etc., butetween subtypes is completely different from the supertable/sub-
cannot be used to implement a new database operator like a netgble concept which describes a collection hierarchy and is

495

|— CREATE TABLE_OPERATOR operator-name () —

—LCtype-description >_L
Ir parallel-exec
— RETURNS —(type-description) As— (—(body-description }—)—|

Figure 1: Syntax diagram of the CREATE TABLE_OPERATOR statement

already available in some ORDBMS [19]. As we will describe in of UDTO has some similarity to views, but the UDTO can refer to
the next Subsection, UDTOs can be defined in such a way thate formal input tables of the UDTO and is therefore not limited
they are applicable to all tables whose row types are subtypes db references to base tables or views.

the row types of the corresponding formal parameter input tables
of the UDTO. 3.2.2. Language Extensions

Obviously, ORDBMS must provide a statement to create
3.2. Defining UDTOs UDTOs. We describe the CREATE TABLE_OPERATOR state-
ment in the syntax diagram shown in Figure 1 (we use | to denote
beginning and end of a definition; terms in small ovals are

The basic idea of this approach is easy to understand: the effedescribed in additional syntax diagrams or in the text). After the

of a UDTO can be viewed as a mapping from a set of input table@ame_Of the table operator the argument list and the return type are
to a result table or a single result tuple. This is very similar to thed€Scribed. The repeated use of table arguments enables the defini-

effect of a new algebraic operator. One fundamental difference i§ON ©f N-ary table operators. The parallel execution option allows
that a user-defined operator usually does not need to have bal SPecify how the table operator can be executed in parallel (we
tables as input, but tables that represent intermediate results. {fill refer to parallelization later in Section 3.4). Finally, the body
also produces an intermediate result table that can be process@fithe routine follows. Please note, that we have not shown other
further. Based on these observations, we propose to implemePtions in Figure 1, which are useful for other purposes like query
UDTOs by means of an extended version of embedded SQL. T@Ptimization but which are beyond the scope of this paper.
enable this we propose the following extensions to user-defined In Figure 2 we present the type description including input and
routines: the definition of N input tables and a single output tableoutput tables. Each table is described by specifying the name and
is permitted and SQL DML commands in the body of this routine data type for each column. In Figure 2 the term ‘datatype’ should
are allowed to refer to these input tables. denote all allowed data types for columns, including user-defined

Generally speaking, a new UDTO can be sequentially exelYPes. We will explain the notatigablename.+ later.
cuted as follows: All input tables are first materialized. That We do not provide a syntax diagram for the description of the
means they can be furtheron accessed in a similar way as permbedy, because we allow here embedded SQL program code or a
nently stored base tables. Then the UDTO is executed using thesingle INSERT statement - with some extensions of SQL. We try
input tables. The UDTO produces and materializes the outputo use SQL/PSM as procedural language in our examples, but our
table that represents the result of the UDTO and that can be prazoncept is not limited to a particular procedural language. That
cessed further. Of course, the input tables cannot be manipulatadeans that all procedural languages like C, C++, Java or COBOL
and the only SQL command that is permitted for the manipulationcan be used. In addition, proprietary APIs or other techniques like
of the output table is the INSERT command. Later, we will database programming laguages (see for example [2]) could be
describe optimizations of this basic execution scheme that wilused instead of the traditional embedded SQL.
allow a much more efficient execution in many cases. Moreover,
in Section 3.4 we will describe how UDTOs can be processed i3-2.3. Introductory Examples
parallel.

3.2.1. Underlying Concept

o) -) In the following we give some definitions of UDTOs. These
We distinguish two kinds of UDTOs that differ in the imple- examples are extremely simple and theyraotintended to dem-
mentation of their bodyprocedural UDTO@andSQL macrosA gpstrate the usefulness of the UDTO approach (cf. Section 4).
procedural UDTO is a UDTO whose body contains proceduratrney only serve to illustrate the concepts and the syntax. We will

statements with embedded SQL statements. As for UDSFS 0ngfer to these examples also later in Section 3.3 when we discuss
can implement the body of a procedural UDTO in a programmingpe application of UDTOs.

language (with embedded SQL) compile it, put it into a library .

and register it with the DBMS. On the other hand, if the body of ~ EX@mPple 1: the UDT@ninimum

a UDTO consists of a single INSERT statement or just a In the first example we create a UDTO that computes the min-
RETURN statement we call this UDTO a SQL macro. This kind imum for a table with an integer column:

496

li variable-name —|
datatype
- TaBLE — table-name— ()J—bl

{column-name —— datatype *’—L
table-name . +

Figure 2: Syntax diagram of the type description

CREATE TABLE_OPERATOR minimum the UDTO is executed within the same transaction as the state-
(TABLE Input (number INTEGER)) ment that invokes it.

RETURNS INTEGER So far UDTOs can be applied reasonably only to tables that
AS { match the row types of the corresponding formal parameter tables
RETURN(SI:iL()Eh(;TnhSL%(vaIue) exactly For example, the UDT®ias_job ~ can be applied to a

. table with a single INTEGER column. Of course, it is desirable to

allow the application of a UDTO to a more general class of tables.
This example demonstrates how a new aggregation operataur goal is to allow all tables as input tables whose row types are
can be defined. Of course there are many aggregate functions (likeubtypes of the row types of the formal input table of the UDTO.
MIN, MAX, and SUM) that should be programmed by the usual The UDTO operates then only on attributes that appear within the
iterator paradigm, since this allows to compute multiple aggre-formal input table. All additional columns which may be present
gates in a single pass over the input table. In case of aggregationis, the actual input tables are neglected or can be propagated to the
there is usually no output table, but only an aggregate value. output table, if this is desiredtfribute propagatioh

Before we present further examples, we first introduce the fol- ~ Therefore developers of UDTOs must have the possibility to
lowing extensions of SQL within the body of UDTOs: First, all determine that the additional columns of an actual input tuple
SQL DML statements can read the input tables in the same marhave to be appended to the output tuple. We denote these addi-
ner as base tables. Especially, an input table can be read by sevefiginal columns by the expressidable_name.+ (the '+’
different SQL statements. Second, tuples can be appended to tiggnotes only thadditionalcolumns. By contrassll columns are
output table by INSERT commands. With these extensions, waisually denoted by the *" in SQL). That means, an expression
can define our next example. like table_name.+ has to be replaced by all additional col-

Example 2: the UDT®as_job umns of the corresponding input taliéble_name , which are
present in the actual argument table, but not in the formal argu-
some decoding. Let us assume that a tabieployees menFtabIe ofthe UDTO. For example, if the actual argumenttable
(emp__no, job) ' has been defined with an integer colujo that is bound to the input tablaputl has one additional col-

- umn, theninputl.+ represents exactly this column. We permit

that is used tq code the Jo.b of the employees_. We assume that tr5‘?50 a table variable instead of a table name in combination with
names of the jobs and their codes are stored in a jabt®des

.) ‘+'. Normally all additional columns of the input tables will be
(code,. jobname) . The UDTOhas_job selects the name appended to the output table. These additional columns have to
for a given code from the tabiebcodes and selects then all

. : o . : appear also in the definition of the output table (that is the row
Jfgﬁzv]:/rs?m the input table with this code. This UDTO is created astype of the formal output table is then a supertype of the row type

_ of the actual output table).
CREATE TABLE_OPERATOR has_job We can now redefine the UDT®@as_job with attribute
(TABLE Input (job INTEGER), jname VARCHAR)

. propagation as follows (changes are in bold face):
RETURNS TABLE Output (job INTEGER) CREATE TABLE_ OPERATOR has, job

This UDTO performs a restriction of the input table and does

AS { , .
INSERT INTO Output (TABLE Input (job INTEGER), jname VARCHAR)
SELECT I.job RETURNS

FROM Input AS I, jobcodes AS C Xg?{LE Output (job INTEGER , Input+)

WHERE l.job = C.code AND

C.jobname = jname INSERT INTO Output

SELECT ljob , I+

g FROM Input AS I, jobcodes AS C
Please note that the database can be fully accessed from withWYHERE 1.job = C.code AND
the body of the UDTO. In our example the taldcodes is C.jobname = jname

accessed. This supports information hiding, since the accesséd
objects are not visible to the user of the UDTO. All side effects of ~ As the example shows, we have to define the columns of each
a UDTO evaluation belong to the associated transaction. That isput table, but only those columns that are needed within the rou-

497

tine’s body should be defined. The expression appends all UDTOs with two input tables can be written in infix notation to
additional columns to the output. This allows the application ofallow an easy integration into the current SQL command syntax.
the UDTOhas_job as a restriction operator, because a subset ofFor example, one could define a UDTO named ANTI_JOIN.
the rows of the input table is returned. The specification of the outThen one can write the following expression in a FROM clause:
put table contains the terrimput.+ ’to enable type checking. Tablel ANTI_JOIN Table2. In this case, conceptually, the UDTO
is evaluated within the FROM clause. This means that conceptu-
ally the Cartesian product of the output table of the UDTO and of
Finally, we want to propose here an extension that allows toall other tables, views, and table expressions in the FROM clause
implement UDTOs more efficiently. Within the body of a UDTO is computed. In addition, UDTOs can also be written in infix nota-
it can be necessary to have access to a unique identifier for eadton between two SELECT blocks like the usual set operations
row of an input table (cf. Section 4.1 for an example). To support(UNION, INTERSECT, EXCEPT).
this, we introduce the special column data type ID for the type To allow the application of UDTOs to base tables and views
description of table columns that are UDTO arguments. The spewhose row type is a subtype of the row type of the formal input
cial type ID means that the column contains a unique identifier fortable, we propose the following syntax to bind columns of the
each row of an input table. Note that an ID can be either a primanactual input table to columns of the formal input table. The pro-
key or an internal identifier like a row identifier or a reference type grammer can specify an ordered list of columns from a given table
as proposed in SQL3. Such an ID can always be generated autéer view) that is bound to the corresponding columns in the
matically by the DBMS (this can be viewed as a kind of type pro- parameter list of the UDTO. For example the expression TO1 (T1
motion for row types). An ID column could also be created USING (C, C,, ..., Gy)) describes that the columns nameg C
explicitly in the body of the UDTO by the developer, but if itis C,, ..., Gy of table T1 are bound to the N columns of the formal
defined as a column of an input table, the DBMS can use arinput table parameter of the UDTO TO1. The keyword USING is
already existing identifier as an optimization. In general, it is notoptional and can be left out. This notation can also be used, if
useful to append a column value of type ID explicitly to the output binary UDTOs are written in infix notation (it can be seen as a
table. In case the primary key is used internally to represent thgeneralization of the ON clause for traditional join expressions).
ID, the system does this automatically, if the ‘+' option has beenlf input tables are given as table expressions then the columns of
specified in the projection list of the subquery of the INSERT the resulting table are bound to the columns of the formal input

3.2.4. Row ldentification

statement. table in exactly the order in which these columns appear in the
SELECT clause of the table expression.
3.3. The Different Usages of UDTOs The following statements illustrate this syntax. The first query

)])]) _invokes the UDT(has_job with a base table; the second query
In this Subsection, we will describe two ways in which i, okes it with a table expression:

UDTOs can be used: first they can be used explicitly by programgg| gct *
mers within SQL commands. This allows to augment the func-FrRoM has_job(employees USING (job),' manager’)
e ACOaELECT - FROM s o
h . o (SELECT job, emp_no FROM employees),
involve UDFs. In this case the query optimizer has the task to use ‘manager’)
the UDTO during the plan generation whenever the use of this] .
UDTO leads to a cheaper query execution plan. We discuss these3-2. Augmentation of the Implementation of UDFs
two applications now in greater detail. In this Subsection we describe how UDTOs can be used to
3.3.1. Augmentation of SQL improve the performa}nce for.queries with .UDFs. A very impor-
tant usage of UDTOs is to define more efficient database operators
The explicit usage of UDTOs in SQL statements allows tothat can be used by the query optimizer during the plan genera-
extend the functionality of SQL by arbitrary new set operations,tion. While there might be some relational queries that can be
or to say it in other words: UDTOs make object-relational queryenhanced by UDTOs, the move to object-relational query pro-
processing universal in the sense that the set of database opetgessing with UDFs creates a need for UDTOs as we have already
tions becomes extensible. For example, over time a lot of speciadutlined in Subsection 2.2. The reason is that UDTOs allow to
join operations have appeared: cross join, inner join, anti-joinimplement database operations that involve UDFs sometimes
left, right, and full outer join, union join, etc. Moreover, other more efficiently than in current ORDBMS, where a built-in data-
operations like recursion or more application specific ones (forbase operator invokes the UDF.
data mining, etc.) have been proposed. UDTOs allow developers UDTOs provide a different implementation technique for
to define a parallelizable implementation for such operators.operations involving UDFs compared to the traditional iterator-
These operators can then be invoked in SQL commands by applbased approach for UDF evaluation. For example, a UDSF can be
cation programmers, as we explain in the following. used as a UDP in min, i.e. in a restriction involving attributes
A UDTO that returns a table can be used in all places withinfrom different tables on top of a Cartesian product. In this case, a
SQL commands where a table expression is allowed. Moreovet)DTO will often allow a more efficientimplementation. The rea-

498

output table

procedural UDTO Sr%cpe\éivgpal
* UDTO
optimize this /
pera[or é

original QEP
QEP with
EP of a expanded
QL macro SQL macro

input tables
Figure 3: Application of a procedural UDTO and a SQL macro during query optimization

son is that normally the UDP will be evaluated by a nested-loops Let us assume that we want to create a UiaB_job for the

join operator which has quadratic complexity. By contrast thereUDTO that we have introduced in Section 3.2. Then one can reg-
might be implementation methods with much lower complexity. ister this UDP with the UDT®as_job as restriction operator:
Therefore joins are an important application of UDTOs, whereCREATE FUNCTION has_job (INTEGER, VARCHAR)
performance enhancements of orders of magnitude are possibRETURNS BOOLEAN

(often because nested-loops joins can be replaced by hash- or soft--OW has_job AS RESTRICTION OPERATOR ...
merge-based join algorithms; cf. Section 4.1). Furthermore, After this registration the query optimizer considers the
UDTOs might sometimes be useful as aggregation, restriction, oDTO has_job as an implementation for the restriction with
projection operators. For example, in case of UDAFs it can bethe UDPhas_job in the following query:

useful to provide an implementation by means of a UDTO, since>ELECT *

this allows access to the whole input table for the aggregation (cf-ROM employees AS E
. WHERE has_job(E.job, ‘manager’)
Section 4.2 for an example).

o _ Figure 3 illustrates how a traditional database operator that

The query optimizer has the task to decide when a UDTOy, ka5 4 UDF is replaced by a UDTO. First the operator has to
should be used. In a rule- and cost-based query optimizer ([13}¢ jgentified in the original query execution plan (QEP). Then the
[15], [25]) this means the following: there must be a rule that gen-gtimizer replaces this operator either by a procedural UDTO or
erates a plan with the UDTO as an alternative implementationby a SQL macro. Because the body of a SQL macro consists
Such a rule has to be specified by the developer. This is not difﬁessentially of a QEP we can simply replace the operator by this
cult because the UDTO is always associated with a specific UDREp QL macro expansignHowever the QEP of the SQL
for which itimplements a specific database operator (for examplenacro has to be modified so that it fits to the comprising QEP. For
a join that has exactly this UDF as join predicate). Hence, theexample, proper attribute propagation has to be considered. The
developer must tell the query optimizer only that the UDTO canresult of this SQL macro expansion is a traditional QEP, which
be used to evaluate the UDF. For this purpose, the CREATEan be further optimized and evaluated as usual. Especially, the
FUNCTION statement that is used to register UDFs with thematerialization of input and output tables can be avoided.
DBMS can be extended. The statement should include the possi-
bility to specify that a UDTO can be used as an implementation3.4. Parallel Processing of Procedural UDTOs

for a specific operation such as a join. For example one could Nowadays new operators would not be a concept of great use,
extend the CREATE FUNCTION statement as follows: if these operators could not be executed in parallel. That's why we

ALLOW <UDTO-name> AS will discuss the parallel execution of UDTOs in this Subsection.
(JOIN | RESTRICTION | PROJECTION | Please note that all SQL DML commands within the body of
AGGREGATION) OPERATOR UDTOs of the implementation are parallelizable as usual. If the

‘ . _ ~ UDTO is a SQL-macro, i.e. a single SQL statement, the complete
The relationship between the UDF and the UDTO is stored inyDTO can be parallelized automatically by the DBMS. In the
the system tables and can be used by the query optimizer. Th@ore general case of a UDTO that is implemented by embedded

query optimizer has to be extended by general rules that can dgQL, the developer must specify how a parallel execution can be
these transformations for arbitrary UDFs. The optimizer usesione, if it is possible at all.

information from the system tables to decide whether the transfor- - We provide a method that allows to specify, if an operator can

mation is possible for a given UDF. Please note, that for somebe executed with data parallelism and, should the occasion arise,
functions like a UDAF, the UDTO might be the only implementa- how the operator can be processed. Applying data parallelism
tion. In this case the UDTO is mandatory to execute the UDF. means that one or more of the input tables of an operator are split

499

v ’)J—) >

— ALLOW PARALLEL ((ANY
—— EQUAL — equal-spec— |
—— RANGE — range-spec————]

— function-spec

Figure 4: Syntax diagram of the parallel execution option

horizontally into several partitions by means of a suitable parti- functions that map rows, whose values of the specified
tioning function. If one or more input tables can be partitioned but column belong to a certain range, into the same partition.
not all, the other input tables are replicated. Then the operator is Obviously there must be a total order on the data type of
executed once for each partition with the following input tables: the column (for further details see [21]).

if the argument table is partitionable, the respective partition of In addition to these three partitioning classes we have pro-
this table is used. If the argument table is not partitioned, then th@osed that a special user-defined partitioning function can be
complete, replicated table is used as an argument. This means thgecified, too. Based on these considerations we have developed
N instances of the operator are executed in parallel if one or moréne parallel execution option in the CREATE TABLE_OPERA-
input tables are splitinto N partitions. Hence, the degree of paralTOR statement that allows to speci@l parallel execution
lelismis N. In this case, the final result is computed by combiningschemes which are possible for a new operator. For operators that
the N intermediate output tables by means of a union (withouthave multiple input tables there can be many possibilities. But
elimination of duplicates). If no input table is partitioned, the since we doubt that there will be many complex operators with
operator is executed without data parallelism - that is sequentiallymore than two input tables in practice, we have not tried to opti-
There can be several possibilities for the parallelization of anmize the description for this special case. The syntax diagram for
operator, depending on which input tables are partitioned anthis option is shown in Figure 4.
depending on how this partitioning is done. If the partitioning class is NGANY we have to specify the col-
Hence we must describe the set of all combinations of partiumns to which the partitioning function should be applied. The
tioning functions that can be used to partition the input tables of a&same is necessary, if a specific partitioning function must be used.
given UDTO. We permit different partitioning functions for dif- e have left out these details in Figure 4. If no partitioning is pos-
ferent tables, but all partitioned input tables must have the Samegiple for a given input table, this is denoted by L (|n case of par-
number of partitions. Therefore the partitioning functions mustg]le| processing, this input table is replicated).
have a parameter that allows to specify the number of generated |, the following, we will describe some examples of parallel
partitions. This parameter enables the optimizer to set the degregcecution schemes for familiar (relational) operations: a restric-
of parallelism for a given UDTO. In some cases, it may be alsotjon, a nested-loops join, a hash join, and a merge join. To simplify
necessary to specify that exactly the same partitioning functiofhe examples, we have left out the column specifications of the
has to be used for some or all input tables. For example, this igyout and the output tables and the bodies of the operators.

needed for equi joins in relational processing. CREATE TABLE OPERATOR restriction
In [21] we have already proposed the following classes of par(TABLE Input(..))
titioning functions: RETURNS TABLE Outputi(...)

1. ANY: the class of all partitioning functions. Round-robin ALLOW PARALLEL ((ANY))
and random partitioning functions are examples of thisAS { ... };

class_ which belong to no other cla§s. All partitioning By specifying the claséNYin the ALLOW PARALLEL
functions that are not based on attribute values belong,stion we have specified that all partitioning functions can be

only to this class. _. . used to partition the input table for the restriction operator that is
2. EQUAL (column name): the class of partitioning yefined in this example.

funcnon; that map all rows of thg input table with qual CREATE TABLE_OPERATOR nested_loops
values in the selected column into the same partition. T AgLE Inputi(...), TABLE Input2(...))
Examples of EQUAL functions are partitioning functions RETURNS TABLE Outputiy...)
that use hashing. ALLOW PARALLEL ((ANY,-), (-,ANY))

3. RANGE (column name): the class of partitioning AS{... };

500

CREATE TABLE_OPERATOR hash_join 4. Applicability and Expressive Power of the

(TABLE Inputl(...), TABLE Input2(...))
RETURNS TABLE Outputi(...) UDTO Concept

ALLOW PARALLEL

((EQUAL pfi(Column_List), The broad applicability and the high expressive power of the

EQUAL pf1(Column_List)) UDTO concept can be easily a§sessed by means of gxample sce-
(ANY,), ANY)) ’ narios. We present the rea!lzatlon qf complex operations in two
AS{..} different processing scenarios: one is the well-known spatial join
and the other refers to a complex aggregation as needed in OLAP,

CREATE TABLE_OPERATOR merge_join for example

(TABLE Inputl(...), TABLE Input2(...))
RETURNS TABLE Outputl(...)) i)
ALLOW PARALLEL 4.1. Computing a Spatial Join

((EQUAL pfi(Column_List), . ' i
EQUAL pf1(Column,_List)), In our first example we use the UDTO concept to define a spa

tial join based on the partition-based spatial merge-join (PBSM)
(ANY,-), (-, ANY)))
AS{..}: algorithm [31]. Thus we show that the UDTO concept allows
- .) . _ among other things a much more elegant implementation than the
The options for the three join algorithms specify that if one ,i_operator method [22], which we have demonstrated using
table is replicated, the other table can be partitioned with any parg,e same example scenario. We consider the following polygon

titioning function. In addition, the hash join can be parallelized e rsection query (that searches for all gold deposits intersecting
with the partitioning schem@&EQUAL pfl(Column_List), lakes) as a concrete example of a spatial join:
EQUAL pfl(Column_List)) that means both input tables SELECT*

are partitioned with theamepartitioning functiorpfl . Thesame oM Lakes as L, Gold_Deposits as G
holds for the merge join, if we restrict it to the computation of equi \wHEREoverlaps(L.poly_geometry,
joins. If we want to use the merge join for more general join pred-G_poly _geometry)

icates - for example an interval join (to execute a predicate like ‘x

<=y +korx>=y -k more efficiently) - then we need a partition- TR‘LI'Jhe_predicat@vlerlaps (pol)l/gon, polygpn)n R AngurES
ing with a function of clasRANGE(K), that is the option should | RUE If the two polygons overlap geometrically a oth-
beALLOW PARALLEL (RANGE(K) pfL(Column_List) erwise. In order to define a UDTO faverlaps based on the

RANGE(K) pfL(Column_List)) . The parameter k could be PBSM algorithm [31] we create the following UDFs:

an argument of this join operator (The corresponding UDP woulds bbox(polygon)

be used as followsinterval_join(tablel.x, This UDSF creates and returns a bounding box (minimum
table2.y, k)). bounding rectangle) for a given polygon.

. . * bbox_overlaps(bbox1, bbox2):

3.5. Extension to Multiple Output Tables This UDP returns TRUE, if both bounding boxes overlap.

We can provide even more extensibility, if we allow multiple , ayact overlaps(polygon1, polygon2)
output tables for UDTFs: one application could be to return a set This UDP returns TRUE, if the exact geometries of the input
of tables perhaps holding complex objects that are linked via ho|yg0ns overlap.
OIDs. This is something like pushing Starburst’s XNF ([27], [33])
into the middle of SQL commands. Using such a UDTO at the top® PUcket_no(bbox) o , ,
of a query would allow for composite objects as result, which This UDTF dIVIqu the spatial universe into .B equally sized
might be interesting for querying XML data ([3], [4]), for exam- rectangular regions ca}lled bu.ckets. Theq it computes and
ple. Internally, the top operator of queries has to be extended, to €UMS all buckets, which the input bounding box intersects.
allow the direct output of several tables as a result of a query. P[ease pote that this is atablg function. That s it returns a table
Another use of multiple output tables could be to support a nest- With @ single column of type integer.
ing of complex UDTOs. The output tables of one UDTO canthen ~ With these UDFs we are prepared to create the UDVEr-
serve as input tables for other UDTOs. laps . This operator uses three techniques to improve the effi-

UDTOs with multiple output tables can be used within the ciency of the join algorithm. First, it uses a simple filter-and-refine
FROM clause of queries but not in the WHERE clause, since theyscheme [30]. The filtering step uses bounding boxes as approxi-
do not return a table expression. The renaming of the result tablesations of the polygons. This means that we test whether the
and their columns should be allowed. UDTOs with multiple out- bounding boxes overlap, before we check whether the exact
put tables can be evaluated in the same manner as UDTOs withgeometries overlap. Second, spatial partitioning is used. This
single output table, but they produce multiple output tables. Thesallows to join only the corresponding buckets. Third, the exact
output tables can be processed further. The result tables in case geometry is eliminated to reduce the data volumes of the input
a parallel evaluation are obtained by a union of all correspondindgables of the join. For the refinement the exact geometry is
partial result tables. retrieved. This results in the implementation of the overlaps pred-

501

CREATE TABLE_OPERATOR overlaps
(TABLE Inputl(id1 ID, polyl POLYGON), TABLE Input2(id2 ID, poly2 POLYGON))
RETURNS TABLE Output1(polyl POLYGON, Inputl.+, poly2 POLYGON, Input2.+)
AS {
INSERT INTO Outputl
WITH Templ(id, bbox, bucket) AS
(SELECT id1, bbox(poly1), bucket FROM Inputl, TABLE(bucket_no(bbox(polyl1))) AS B(bucket)),
Temp2(id, bbox, bucket) AS
(SELECT id2, bbox(poly2), bucket FROM Input2, TABLE (bucket_no(bbox(poly2))) AS B(bucket))
SELECT polyl, Inputl.+, poly2, Input2.+
FROM (SELECT DISTINCT Templ.id AS id1, Temp2.id AS id2 FROM Temp1, Temp2
WHERE Temp1l.bucket = Temp2.bucket AND
bbox_overlaps(Templ.bbox, Temp2.bbox)) AS Temp3, Inputl, Input2
WHERE Temp3.id1 = Inputl.idl AND Temp3.id2 = Input2.id2 AND
exact_overlaps(Inputl.polyl, Input2.poly?2)
2
CREATE FUNCTION overlaps (POLYGON, POLYGON) RETURNS BOOLEAN
ALLOW overlaps AS JOIN OPERATOR ...

Figure 5: Definition of a SQL macro as join operator for the UDP overlaps

icate by means of a new join operator that shown in Figure 5. Weover, we could achieve a speedup of 2.5 for the plan with the SQL
discuss this implementation in the following. macro on a four processor SMP (cf. [23] for a detailed discus-
The subqueries in the WITH clause generate two temporarsion).
tables with the bounding boxes and the bucket numbers for spatial A final but important point concerns the functimuncket
partitioning. Since the UDTBucket_no is used inthe FROM ng that in effect does a spatial partitioning. Actually this function
clause with a correlated tuple variable, the Cartesian product withs too simple for practice. The reason is that it is crucial for the
the corresponding tuple is generated, that is we replicate the tuplgerformance of the algorithm to find a suitable partitioning of the
for each intersecting bucket and append the bucket number (a sidpatial universe. The spatial universe is the area which contains all
gle polygon can intersect several buckets [31]). This allows lateolygons from both relations. The task is to find a suitable parti-
on to join the temporary tables on the bucket numbertioning of the spatial universe into buckets such that each bucket
(Templ.bucket = Temp2.bucket in the innermost contains roughly the same number of polygons (or at least the dif-
SELECT query). Thus the functiombox_overlaps isonly ferences are not extreme). This task is very difficult, because it
evaluated on the Cartesian product of all polygons within theshould ideally take the following parameters into account: the
same bucket. Next, duplicate candidate pairs, which might haveumber of polygons in each input table, their spatial location,
been introduced by the spatial partitioning, are eliminated their area, the number of points per polygon and their spatial dis-
Finally, in the outermost SELECT statement, the UDF tripution. For traditional relational queries the optimizer tries to
exact_overlaps s processed on the exact polygon geome-yse more or less sophisticated statistics that are stored in the sys-
tries that are fetched from the input tables using an equi join oftem tables to estimate value distributions, etc. In the same manner
the unique values of the ID columns. one could now use such meta data from (user-defined) catalog
We want to add some remarks on this example. The UDTOraples to compute parameters for the spatial partitioning. How-
overlaps is a SQL macro and can be parallelized automati-ever, the fundamental problem with this approach would be that
cally. Thus there is no need to specify an option for parallel exethe input tables do not correspond to base relations and may have
cution. In order to process the join with data parallelism thetherefore different value distributions (as usual there might be
bucket number would be selected as a partitioning column due tg|so the problem that the statistics might not be up to date). A
the equi join on the bucket number. Therefore no specific usermore sophisticated approach would be to analyze the polygons in
defined partitioning function is needed for parallel processing, ashe input tables by extracting statistics on the bounding boxes and
the usual partitioning functions can be applied to the bucket numtg yse these statistics to derive an appropriate spatial partitioning.
ber which is an INTEGER value. Please note, that if the jOin onyYDTOs provide full Support for this method (Cf [24] for the
the bUCket number iS done Via a haSh jOiI’I W|th Iinear Complexity,extended examp|e). Therefore UDTOs Suppmm'_.time Optimiza_

the overall complexity of the UDTO is still linear. This such tion that takes the actual content of the input tables into account.
better than the quadratic complexity of the Cartesian product that

has to be used, if no UDTO is provided.

We did measurements with a prototypical implementation of a
spatial join with a similar SQL macro and observed an improve- In this Section we will show how a complex aggregation oper-
ment by a factor of 238 for a table with 10 000 polygons. More- ation can be implemented in a clean and efficient way as a proce-

4.2. Computing the Median: an Aggregation Operator

502

SELECT MIN(Age) implement based on SQL and allows a com_p_ut_ation for grbitrary
FROM Persons AS P large data sets, as it does not rely on explicit intermediate data
WHERE storage in main memory. Moreover, both embedded SQL queries
(SELECT Ceiling((COUNT(*)+1/2) can be evaluated in parallel as usual. That means that the opti-
FROM Persons) mizer can automatically decide to perform the sort operation for
<= the ORDER BY clause in parallel. This example shows again,
(SELECT COUNT(*) FROM Persons AS R how our technique can enable a parallel execution of complex
WHERE R.Age <= P.Age) user-defined operators. This is a significant progress compared to
other approaches. Implementing the median as an aggregate func-
tion based on the usual iterator paradigm for UDAFs is much

dural UDTO. As a concrete example, we consider Median more difficult as we have already pOinted outin [21] USing afirst
aggregate function that computes fiid+1)/2argest element of ~ Prototypical implementation of procedural UDTOs in an

a set with N elements. A query finding the median of a set is no®RDBMS, we computed the median on a table with 20 000 tuples
very intuitively expressible in SQL92. For example, the simple @hd measured an improvement by a factor of 2550 by means of a
query to select the median of the ages of certain persons could B4DTO (cf. [23] for details).

formulated as shown in Figure 6. Of course one would prefer a

query using a UDARMedian as shown in Figure 7. This query 5. Related work

Figure 6: Computing the median in SQL

User-Defined Functions (UDFs) have attracted increasing
interest of researchers as well as the industry in recent years (see
e.g. [1], [9], [16], [17], [26], [28], [29], [34], [35], [36]). However,
most of the work discusses only the non-parallel execution of
is not only easy to write, but will also run more efficiently (orders YPFS, special implementation techniques like caching, or query
of magnitude for a large input table), becauseNeglian func- op_t|m|zat|on fo_r UDFs. In[32] support_for the_par_allel _|mp_lemen-
tion can be implemented with lower complexity than the SQLta_non of UDFsin tht_e area of geo-spatial apphca_tlons is discussed.
statement in Figure 6. For example, in our UDTO the median is't IS remarked that in this area complex operations are common-
simply computed by fetching values from the sorted input table Place. Also special new join techniques [31] and other special
until the position of the median is reached. This position is firstiMPlementation techniques have been proposed, but no frame-
determined by counting the input table. Here are the statements {01k for extensibility that allows the integration of such special
create the UDTGnedian and the corresponding UDAF: processing in parallel ORDBMS was mentioned.

SELECT Median (P.Age)
FROM Persons AS P

Figure 7: Computing the median with a UDTO

CREATE TABLE_OPERATOR median
(TABLE Inputl(value INTEGERY))
RETURNS INTEGER
AS{
DECLARE count, cardinality,
median_pos, result INTEGER;
SET count=1;
SELECT COUNT(*) FROM Inputl INTO cardinality;
SET median_pos = ceiling ((cardinality + 1) / 2);
F1. FORresult AS
SELECT * FROM Inputl ORDER BY value ASC
DO
IF (count = median_pos) THEN
LEAVE F1;
SET count = count + 1;
END FOR;
RETURN result;

b
CREATE AGGREGATE Median (INTEGER)

RETURNS INTEGER
ALLOW median AS AGGREGATION OPERATOR ...

An approach that offered extensibility by means of new data-
base operators and that is superior in functionality to our approach
is that of the EXODUS project [6]. In EXODUS new operators
could be programmed with the E programming language. How-
ever, the EXODUS approach differs from our approach funda-
mentally, since the goal of EXODUS was not to provide a
complete DBMS. Rather the goal was to enable the semi-auto-
matic construction of an application specific DBMS. Thus EXO-
DUS was a database software engineering project providing
software tools for DBMS construction by vendors. By contrast
our approach allows to extend a complete ORDBMS by third par-
ties like independent software vendors. We believe that our
approach to program new operators with embedded SQL state-
ments provides more support for parallel execution and fits well
into current system architectures. In addition, developers can use
a familiar technique to program UDTOs. UDTOs are less flexible
than built-in database operators, because they cannot be applied to
tables with arbitrary row types. However, they fit perfectly to
UDFs. Hence they are the ideal concept to support database exten-
sions for class libraries by third parties as well as application spe-
cific extensions. See [14] for a formal approach to the

This example demonstrates how SQL DML statements andpecification of database operations.
procedural statements can be mixed in the body of a UDTO. In [34] E-ADTs are proposed as a new approach to the soft-
While this implementation does not use the most efficient algo-ware architecture of ORDBMS. An ORDBMS is envisioned as a
rithm known to compute the median, the algorithm is easy tocollection of E-ADTs (enhanced ADTSs). These E-ADTs encapsu-

503

late the complete functionality and implementation of ADTs. We produce high-quality plans that are automatically fine tuned to the
believe that this is an interesting approach that is in general morestimated data volumes.

ambitious than UDTOs. In contrast to the E-ADT approach, With regard to SQL macros the UDTO approach is similar to

UDTOs fit very well into the architectures of current commercial pushing views into the middle of SQL statements. SQL macros
ORDBMS. Thus UDTOs leverage existing technology. Moreover,allow to push code into a new operator, where it is defined once
UDTOs are designed to support parallel execution. (e.g. in a DBMS class library) and available for general use in

We have already mentioned that SQL macros can be viewed a8QL. Hence only a single definition has to be maintained. This
a generalization of views [37]. The difference is that views caneases the task of the application programmer, makes it less error-
refer only to existing base tables and other views, but not to thé@rone, improves the declarative character of SQL DML com-
results of subqueries or table expressions and that views canngtands and enhances the readability. Moreover, SQL macros can
have parameters. As we have described, SQL macros can be usekivays be completely integrated into the query execution plans of
to implement database operations with UDFs more efficiently. SQL statements by macro expansion. As a consequence, the usual
Hence, SQL macros differ in their functionality from views. parallelization techniques can be used.

In [21] we proposed a framework for parallel processing of ~ 1he concept of procedural UDTOs is much more powerful,
user-defined scalar and aggregate functions in ORDBMS. W&€Cause one can execute a query on the input tables and use a pro-
introduced the concept of partitioning classes there to support thgedural language like SQL PSM to implement complex code.
parallel execution of user-defined scalar and aggregate functiondNiS is especially of interest in combination with an API that is
In this paper we have generalized this work to enable data paraProvided for the development of DBMS class libraries by some
lelism for N-ary user-defined table operators. In [22] we proposed®RDBMS ([19], [20]). This offers the possibility to implement
the multi-operator method to allow the implementation of com- New algorithms like join algorithms, for example. Moreover, our
plex UDFs like parallel join algorithms for UDPs. However, we @PProach supports data parallelism for these new database opera-
view UDTOs in the form of SQL macros as the more appropriate!©rs- Besides being able to define parallel processing schemes by
implementation technique. Moreover, procedural UDTOs are specifying allowed partitioning functions, the possibility to use

much more powerful concept than the multi-operator method. SQL goes a long way towards enabling as much parallelism as
possible, since all embedded SQL statements can be processed

automatically in parallel. An additional advantage of our SQL-
based approach to the implementation of UDTOs is that query

: ptimization can be fully exploited.
In th_|s_ paper we have proposed UDTOS asa novel approach § Areas of future work are optimization issues for UDTOs and
extensibility with regard to the execution engine and the queryC e studies for thei lication in other scenarios: bromisi
optimizer of ORDBMS. While current user-defined functions are ase studies for their application | f scenarios. promising

used within the traditional database operators, our approacﬁreaS of interest are OLAP, data mining, image analysis, time

allows to develop user-defined database operators.This techno?fé'eﬁgfg\?;rs';i’eggp;n;e aLn:tg/tzagr:tguai;yll?sge?j(,:/rl]Lt,hfgrb?))((jan;}
ogy will provide a new dimension of extensibility for ORDBMS. pe. ’ Q y

We h d the followi _ ¢ UDTOS: the UDTO, multi-query optimization techniques could be benefi-
e have presented the following core issues o s cial. First results can be found in [24].

« the possibility to define M input tables and N output tables fora Currently, an implementation of UDTOs in MIDAS [5], a pro-
user-defined routine totype of a parallel ORDBMS, is under way. The core extensions

« the access to and the manipulation of these tables by means §Ve been completed and in a future paper [23] we will report on
SQL commands that are embedded into procedural code (pr&_hls effort and describe implementation concepts for UDTOs. As

cedural UDTOs) or by means of a single SQL statement (SQLwe have mentioned, first measurements demonstrated perfor-
macro) mance improvements of orders of magnitude by means of

UDTOs.
* attribute propagation to allow the application of UDTOs to @ Acknowledgments

broad range of input tables based on a generalization relation- \ye gratefully acknowledge the help of our master student

6. Summary, Conclusions and Future Work

ship between row types Sebastian Heupel with the implementation and his comments on
« a method to specify parallel execution schemes for UDTOs andhe draft of this paper which helped us to improve the presenta-
the general algorithm for their parallel processing tion. We also acknowledge the cooperation with the complete

« the explicit application of UDTOs within SQL and their use as MIDAS team and the valuable comments from the referees.

high performance implementations for operations involving
UDFs. 7. References

We believe that the possibility to define new operators is very[1l] Antoshenkov, G., Ziauddin, G.: Query Processing and
promising, especially since the SQL-based implementation tech- ~ Optimization in Oracle Rdb. VLDB Journal 5(4): 229-237
nique is in our view elegant and easy to understand for developers. (1996).

In addition, sophisticated optimization technology can be used tg2] Bancilhon, F., Buneman, P. (Eds.): Advances in Database

504

Programming Languages. ACM Press / Addison-Wesley[20] Informix Universal Server, DataBlade API Programmer’s
1990, ISBN 0-201-50257-7, Papers from DBPL-1, Manual Vers. 9.12, Informix Software Inc., 1997.
September 1987, Roscoff, France. [21] Jaedicke, M., Mitschang, B.: On Parallel Processing of
[3] Beech, D.: Position Paper on Query Languages for the Web, Aggregate and Scalar Functions in Object-Relational
Oracle Corp., http://www.xml.com/xml/pub/Guide/ DBMS, SIGMOD 1998: 379-389.
Query_Languages. [22] Jaedicke, M., Mitschang, B.: The Multi-Operator Method
[4] Bosworth, A. et al.: Microsoft's Query Language 98 for the Efficient Parallel Evaluation of Complex User-
Position Paper, Microsoft Corp., http:/fwww.xml.com/xml/ Defined Predicates, Technical Report, to appear 1999.
pub/Guide/Query_Languages. [23] Jaedicke, M., Zimmermann, S., Nippl, C., Mitschang, B.:
[5] Bozas, G., Jaedicke, M., Listl, A., Mitschang, B., Reiser, A., The Implementation of User-Defined Table Operators in
Zimmermann, S.: On Transforming a Sequential SQL- MIDAS, (submitted) 1999.
DBMS into a Parallel One: First Results and Experiences of[24] Jaedicke, M.: New Concepts for Parallel Object-Relational
the MIDAS-Project, Proc. of 2nd Int. Euro-Par Conf., LNCS Query Processing, Ph.D. Thesis, University of Stuttgart,
1123, Springer, 1996. 1999,
(6] Carey, M. J., DeWitt, D.J., Graefe, G., Haight, D. M., [25] Lohman, G. M.. Grammar-like Functional Rules for
Richardson, J. E., Schuh, D. T., Shekita, E. J., Vandenberd, Representing Query Optimization Alternatives. SIGMOD
S. L.: The EXODUS Extensible DBMS Project: An 1988: 18-27.

Overview, in: Zdonik, S., Maier, D. (eds.): Readings in [5q) Mattos, N., DeRloch, S., DeMichiel, L., Carey, M.: Object-
Object-Oriented Databases, Morgan-Kaufmann, 1990. Relational DB2, IBM White Paper, July 1996.

[7] Carey, M. J., Mattos, _N'_' Nori, A Object-Relational [27] Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B. G.,
Database Systems: Principles, Products, and Challenges siidkamp, N.: SQL/XNF - Processing Composite Objects as
(Tutorial). SIGMOD 1997: 502. Abstractions over Relational Data. ICDE 1993: 272-282

[8] Chamberlin, D.: A Complete Guide to DB2 Universal [28] O’Connell, W., leong, I.T., Schrader, D., Watson, C., Au, G.,
Database, Morgan Kaufman Publishers, San Francisco, Biliris, A., Choo, S., Colin, P., Linderman, G., Panagos, E.,

1998. Wang, J., Walters, T.. Prospector: A Content-Based
[9] Chaudhuri, S., Shim, K.: Optimization of Queries with User- Multimedia Server for Massively Parallel Architectures.
defined Predicates. VLDB 1996: 87-98. SIGMOD 1996: 68-78.
[10] DeRloch, S., Mattos, N.: Integrating SQL Databases with[29] Olson, M. A, Hong, W. M., Ubell, M., Stonebraker, M.:
Content-Specific Search Engines. VLDB 1997: 528-537. Query Processing in a Parallel Object-Relational Database

[11] DeWitt, D., Gray, J.: Parallel Database Systems: The Future ~ System, Data Engineering Bulletin, 12/1996.
of High Performance Database Systems, In: CACM, Vol.35,[30] Orenstein, J. A.: A Comparison of Spatial Query Processing
No.6, 85-98, 1992. Techniques for Native and Parameter Spaces. SIGMOD

[12] Graefe, G.. Query Evaluation Techniques for Large Conf. 1990:343-352.

Databases. Computing Surveys 25(2): 73-170 (1993). [31] Patel, J. M., DeWitt, D. J.: Partition Based Spatial-Merge

[13] Graefe, G.: The Cascades Framework for Query Join. SIGMOD Conf. 1996: 259-270.

Optimization. Data Engineering Bulletin 18(3): 19-29 [32] Patel,J., Yu, J. Kabra, N., Tufte, K., Nag, B., Burger, J., Hall,
(1995). N., Ramasamy, K., Lueder, R., Ellman, C., Kupsch, J., Guo,

[14] Giiting, R. H.: Second-Order Signature: A Tool for S., Dewitt, D. J.,, Naughton, J.: Building A Scalable
Specifying Data Models, Query Processing, and GeoSpatial Database System: Technology, Implementation,
Optimization, SIGMOD Conference 1993: 277-286. and Evaluation, SIGMOD 1997: 336-347.

[15] Haas, L. M., Freytag, J.C., Lohman, G. M. , Pirahesh, H.:[33] Pirahesh, H., Mitschang, B. Sidkamp, N., Lindsay, B. G.:
Extensible Query Processing in Starburst. SIGMOD 1989: Composite-Object Views in Relational DBMS: An
377-388. Implementation Perspective. EDBT 1994: 23-30.

[16] Hellerstein, J. M., Stonebraker, M.: Predicate Migration: [34] Seshadri, P., Livny, M., Ramakrishnan, R.: The Case for
Optimizing Queries with Expensive Predicates. SIGMOD Enhanced Abstract Data Types. VLDB 1997: 66-75.

1993: 267-276. [35] Stonebraker, M.: Inclusion of New Types in Relational Data

[17] Hellerstein, J. M., Naughton, J. F.: Query Execution Base Systems. ICDE 1986: 262-269.

Techniques for Caching Expensive Methods. SIGMOD[36] Stonebraker, M., Brown, P., Moore, D.: Object-Relational

1996: 423-434. DBMSs, Second Edition, Morgan Kaufmann Publishers,
[18] IBM DB2 Universal Database SQL Reference Version 5, 1998.

Document Number S10J-8165-00, 1997: 441-453. [37] Stonebraker, M.: Implementation of Integrity Constraints
[19] Nlustra User's Guide, lllustra Information Technologies, and Views by Query Modification. SIGMOD Conf. 1975:

Inc., 1995. 65-78.

505

	Abstract
	Currently parallel object-relational database technology is setting the direction for the future ...
	1. Introduction
	2. User-Defined Functions in ORDBMS
	2.1. User-Defined Functions and Predicates
	2.2. Limitations of Current ORDBMS with Respect to New Database Operators

	3. User-Defined Table Operators: UDRs with Table Arguments
	Table 1 : A classification of user-defined routines based on their parameter types

	input parameter types
	scalar
	UDSF
	UDTF (UDTO)
	table(s)
	UDAF (UDTO)
	UDTO
	3.1. A Generalization Relationship for Row Types
	3.2. Defining UDTOs
	3.2.1. Underlying Concept
	3.2.2. Language Extensions

	Figure 1 : Syntax diagram of the CREATE TABLE_OPERATOR statement
	3.2.3. Introductory Examples

	Figure 2 : Syntax diagram of the type description
	3.2.4. Row Identification
	3.3. The Different Usages of UDTOs
	3.3.1. Augmentation of SQL
	3.3.2. Augmentation of the Implementation of UDFs

	Figure 3 : Application of a procedural UDTO and a SQL macro during query optimization
	3.4. Parallel Processing of Procedural UDTOs

	Figure 4 : Syntax diagram of the parallel execution option
	1. ANY: the class of all partitioning functions. Round-robin and random partitioning functions ar...
	2. EQUAL (column name): the class of partitioning functions that map all rows of the input table ...
	3. RANGE (column name): the class of partitioning functions that map rows, whose values of the sp...
	3.5. Extension to Multiple Output Tables

	4. Applicability and Expressive Power of the UDTO Concept
	4.1. Computing a Spatial Join
	Figure 5 : Definition of a SQL macro as join operator for the UDP overlaps
	4.2. Computing the Median: an Aggregation Operator

	Figure 6 : Computing the median in SQL
	Figure 7 : Computing the median with a UDTO

	5. Related work
	6. Summary, Conclusions and Future Work
	7. References
	[1] Antoshenkov, G., Ziauddin, G.: Query Processing and Optimization in Oracle Rdb. VLDB Journal ...
	[2] Bancilhon, F., Buneman, P. (Eds.): Advances in Database Programming Languages. ACM Press / Ad...
	[3] Beech, D.: Position Paper on Query Languages for the Web, Oracle Corp., http://www.xml.com/xm...
	[4] Bosworth, A. et al.: Microsoft’s Query Language 98 Position Paper, Microsoft Corp., http://ww...
	[5] Bozas, G., Jaedicke, M., Listl, A., Mitschang, B., Reiser, A., Zimmermann, S.: On Transformin...
	[6] Carey, M. J., DeWitt, D.J., Graefe, G., Haight, D. M., Richardson, J. E., Schuh, D. T., Sheki...
	[7] Carey, M. J., Mattos, N., Nori, A.: Object-Relational Database Systems: Principles, Products,...
	[8] Chamberlin, D.: A Complete Guide to DB2 Universal Database, Morgan Kaufman Publishers, San Fr...
	[9] Chaudhuri, S., Shim, K.: Optimization of Queries with User- defined Predicates. VLDB 1996: 87...
	[10] Deßloch, S., Mattos, N.: Integrating SQL Databases with Content-Specific Search Engines. VLD...
	[11] DeWitt, D., Gray, J.: Parallel Database Systems: The Future of High Performance Database Sys...
	[12] Graefe, G.: Query Evaluation Techniques for Large Databases. Computing Surveys 25(2): 73-170...
	[13] Graefe, G.: The Cascades Framework for Query Optimization. Data Engineering Bulletin 18(3): ...
	[14] Güting, R. H.: Second-Order Signature: A Tool for Specifying Data Models, Query Processing, ...
	[15] Haas, L. M., Freytag, J.C., Lohman, G. M. , Pirahesh, H.: Extensible Query Processing in Sta...
	[16] Hellerstein, J. M., Stonebraker, M.: Predicate Migration: Optimizing Queries with Expensive ...
	[17] Hellerstein, J. M., Naughton, J. F.: Query Execution Techniques for Caching Expensive Method...
	[18] IBM DB2 Universal Database SQL Reference Version 5, Document Number S10J-8165-00, 1997: 441-...
	[19] Illustra User’s Guide, Illustra Information Technologies, Inc., 1995.
	[20] Informix Universal Server, DataBlade API Programmer’s Manual Vers. 9.12, Informix Software I...
	[21] Jaedicke, M., Mitschang, B.: On Parallel Processing of Aggregate and Scalar Functions in Obj...
	[22] Jaedicke, M., Mitschang, B.: The Multi-Operator Method for the Efficient Parallel Evaluation...
	[23] Jaedicke, M., Zimmermann, S., Nippl, C., Mitschang, B.: The Implementation of User-Defined T...
	[24] Jaedicke, M.: New Concepts for Parallel Object-Relational Query Processing, Ph.D. Thesis, Un...
	[25] Lohman, G. M.: Grammar-like Functional Rules for Representing Query Optimization Alternative...
	[26] Mattos, N., Deßloch, S., DeMichiel, L., Carey, M.: Object- Relational DB2, IBM White Paper, ...
	[27] Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B. G., Südkamp, N.: SQL/XNF - Processing C...
	[28] O’Connell, W., Ieong, I.T., Schrader, D., Watson, C., Au, G., Biliris, A., Choo, S., Colin, ...
	[29] Olson, M. A., Hong, W. M., Ubell, M., Stonebraker, M.: Query Processing in a Parallel Object...
	[30] Orenstein, J. A.: A Comparison of Spatial Query Processing Techniques for Native and Paramet...
	[31] Patel, J. M., DeWitt, D. J.: Partition Based Spatial-Merge Join. SIGMOD Conf. 1996: 259-270.
	[32] Patel, J., Yu, J. Kabra, N., Tufte, K., Nag, B., Burger, J., Hall, N., Ramasamy, K., Lueder,...
	[33] Pirahesh, H., Mitschang, B. Südkamp, N., Lindsay, B. G.: Composite-Object Views in Relationa...
	[34] Seshadri, P., Livny, M., Ramakrishnan, R.: The Case for Enhanced Abstract Data Types. VLDB 1...
	[35] Stonebraker, M.: Inclusion of New Types in Relational Data Base Systems. ICDE 1986: 262-269.
	[36] Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs, Second Edition, Morgan Kaufm...
	[37] Stonebraker, M.: Implementation of Integrity Constraints and Views by Query Modification. SI...

	User-Defined Table Operators: Enhancing Extensibility for ORDBMS
	Bernhard Mitschang IPVR, University of Stuttgart, Germany Bernhard.Mitschang@informatik.uni-stutt...
	Michael Jaedicke SFB342, Technische Universität München, Germany jaedicke@in.tum.de

