
se
ed
ith

r-
rt
the
ral
llel
n-
ed
se
ity.

w

a-
ist-

he
r
m-
om
e-
cial

as
ion
se
ata-
ion

el-
of

QL

w
its
ses
sys-
an

lly,

User-Defined Table Operators:
Enhancing Extensibility for ORDBMS

Bernhard Mitschang

IPVR, University of Stuttgart, Germany

Bernhard.Mitschang@informatik.uni-stuttgart.de

Michael Jaedicke

SFB342, Technische Universität München, Germany

jaedicke@in.tum.de
Abstract

Currently parallel object-relational database
technology is setting the direction for the future of data
management. A central enhancement of object-
relational database technology is the possibility to
execute arbitrary user-defined functions within SQL
statements. We show the limits of this approach and
propose user-defined table operators as a new concept
that allows the definition and implementation of
arbitrary user-defined N-ary database operators, which
can be programmed using SQL or Embedded SQL
(with some extensions). Our approach leads to a new
dimension of extensibility that allows to push more
application code into the server with full support for
efficient execution and parallel processing.
Furthermore it allows performance enhancements of
orders of magnitude for the evaluation of many queries
with complex user-defined functions as we show for
two concrete examples. Finally, our implementation
perception guarantees that this approach fits well into
the architectures of commercial object-relational
database management systems.

1. Introduction

Object-relational DBMS (ORDBMS) are the next great wave
([36], [7]). They have been proposed for all applications that need
both complex queries and complex data types. Since the data vol-
umes that come along with new data types like satellite images,
videos, CAD objects, etc. are gigantic and the queries are com-

plex, parallel database technology is essential for many of the
applications. As commercial ORDBMS are based on matur
parallel RDBMS, these systems are well positioned to cope w
large data volumes.

But being able to handle large data volumes efficiently in pa
allel is not sufficient to process complex queries with sho
response times. For queries that apply complex algorithms to
data and especially for those that correlate data from seve
tables, it is essential to enable an efficient and completely para
evaluation of these algorithms within the DBMS. However, exte
sions of object-relational execution systems are currently limit
to user-defined functions that are invoked by built-in databa
operators. This concept does not provide the necessary flexibil

Our main contribution in this paper is to propose a ne
approach touser-defined database operators.The main goals of
our design were to provide extensibility with respect to new dat
base operators, and to ensure that the design fits well to the ex
ing technology. Especially, it should be possible to integrate t
technology into current commercial ORDBMS without a majo
change of the system architecture. Though some ORDBMS co
ponents must be extended no component must be rewritten fr
scratch. Furthermore, we considered full support for parallel ex
cution and ease of use for developers of new operators as cru
requirements.

In contrast to previous work our approach is to allow tables
arguments for user-defined routines and to allow the manipulat
of these input tables by SQL DML commands in the body of the
routines. Moreover, these routines are internally used as new d
base operators. One could at first expect that such an extens
would lead to an increased complexity with respect to the dev
opment of such routines. But this is not the case, since the body
these new routines can be implemented similar to embedded S
programs. This is a widely used programming concept.

The rest of this paper is organized as follows. We revie
today’s concept for user-defined functions and discuss the lim
of this concept in Section 2. Section 3 introduces and discus
user-defined table operators as an approach to make database
tems extensible by new operators. We discuss a spatial join and
aggregation as examples of new operators in Section 4. Fina

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.
494

e

re
re
s),
les
re

So
er-
lar
out
re
ults
We

ase
an

ct-
ro-
i-

er.

s
is

p
ub-
is
we discuss the related work in Section 5 and provide our conclu-
sions in Section 6.

2. User-Defined Functions in ORDBMS

In this Section we provide the basic concepts and definitions
that are used in this paper. We will focus on the concepts relevant
to our query processing problem and refer the reader to the litera-
ture for the general concepts of relational ([12], [11]) and object-
relational query processing ([36], [8]). After an introduction to
user-defined functions in Section 2.1, we discuss the problem that
we address here in Section 2.2.

2.1. User-Defined Functions and Predicates

Every RDBMS comes with a fixed set of built-in functions.
These functions can be either scalar functions or aggregate func-
tions. Ascalar functioncan be used in SQL queries wherever an
expression can be used. Typical scalar functions are arithmetic
functions like + and * orconcat for string concatenation. A sca-
lar function is applied to the values of some columns of a row of
an input table. In contrast, anaggregate functionis applied to the
values of a single column of either a group of rows or of all rows
of an input table. A group of rows occurs, if a GROUP-BY clause
is used. Therefore aggregate functions can be used in the projec-
tion part of SQL queries and in HAVING clauses.

In ORDBMS it is possible to use auser-defined function
(UDF) at nearly all places where a system provided built-in func-
tion can appear in SQL92. Thus there are two subsets of UDFs:
user-defined scalar functions (UDSFs) anduser-defined aggre-
gate functions(UDAFs). A UDSF that returns a boolean value
and is used as a predicate in the search condition of SQL com-
mands is auser-defined predicate(UDP). Finally, some
ORDBMS [18] offer the possibility to writeuser-defined table
functions(UDTFs), which can have (scalar) arguments of a col-
umn data type and return a table. UDTFs can be used as a table
expression in SQL commands. We use the termuser-defined rou-
tines (UDRs) as a generic term for UDFs, UDTFs, and other kinds
of user-defined operations like the user-defined table operators
that we define later in Section 3.

2.2. Limitations of Current ORDBMS with Respect to
New Database Operators

It is a well-known fact that new complex join operators can
increase performance for certain operations like spatial joins [31],
etc. by orders of magnitude. But, as we have already pointed out
in [22], it is currently not possible for developers of database
extensions to implement efficient user-defined join algorithms in
current commercial ORDBMS. In fact, one cannot implement any
new database operators. UDFs cannot be used to implement new
operators, as they are invoked by built-in database operators. The
limitation of UDTFs is obviously that - although they can produce
an entire output table - they can only have scalar arguments.
UDTFs are helpful in accessing external data sources [10] etc., but
cannot be used to implement a new database operator like a new

join algorithm. We propose a new solution for this problem in th
next Section.

3. User-Defined Table Operators: UDRs with
Table Arguments

When we review the existing concepts for UDRs from a mo
abstract point of view, we can observe the following: there a
routines that operate on a tuple and produce a tuple (UDSF
there are routines that are called for each tuple of a set of tup
and produce an aggregate value (UDAFs), and finally there a
routines that operate on a tuple and return a table (UDTFs).
obviously there is something missing: namely routines that op
ate on one or more tables (and have possibly additional sca
parameters) and can return a tuple or a table. We want to point
that the argument tables (input tables) for this kind of routines a
not restricted to be base tables. They can be intermediate res
of a query as well as base tables, table expressions, or views.
call these routinesuser-defined table operators(UDTOs), since
they can be used to define and implement new N-ary datab
operators. This classification is expressed in Table 1. As one c
observe, UDTOs increase the orthogonality of SQL.

In the following we will explain, how UDTOs can be defined
and how their processing can be integrated into parallel obje
relational execution engines based on the traditional query p
cessing framework [12]. However, we will first define a general
zation relationship for row types. This will allow the application
of a given UDTO to a broad range of tables, as we will see lat

3.1. A Generalization Relationship for Row Types

A row type R = (R1, R2, ... , RN) is a structured type that con-
sists of N attributes. Each of these attributes has a data type Ri. We
define that a row type S = (S1, S2, ... , SK) is asubtypeof R, if N
≤ K and there is a mapping f: {1, ... , N}→ {1, ... , K} such that
Ri = Sf(i) and f(i) ≠ f(j) for all 1 ≤ i, j ≤ N. In other words, S com-
prises all attributes of R, but may contain additional attribute
with arbitrary data types. The order of the attributes in R and S
not important. We say also that R is asupertypeof S. Please note
that each table has an associated row type.

We want to point out that this generalization relationshi
between subtypes is completely different from the supertable/s
table concept which describes a collection hierarchy and

Table 1: A classification of user-defined routines based
on their parameter types

output parameter types

scalar table

input
parameter

types

scalar UDSF UDTF
(UDTO)

table(s) UDAF
(UDTO)

UDTO
495

o
d

te
-

ote
e
e
are
fini-
s

we
y
er
ry

d
and
ld
ed

e
r a

ry
our
at

OL
ke
be

4).
ill
uss

in-
already available in some ORDBMS [19]. As we will describe in
the next Subsection, UDTOs can be defined in such a way that
they are applicable to all tables whose row types are subtypes of
the row types of the corresponding formal parameter input tables
of the UDTO.

3.2. Defining UDTOs

3.2.1. Underlying Concept

The basic idea of this approach is easy to understand: the effect
of a UDTO can be viewed as a mapping from a set of input tables
to a result table or a single result tuple. This is very similar to the
effect of a new algebraic operator. One fundamental difference is
that a user-defined operator usually does not need to have base
tables as input, but tables that represent intermediate results. It
also produces an intermediate result table that can be processed
further. Based on these observations, we propose to implement
UDTOs by means of an extended version of embedded SQL. To
enable this we propose the following extensions to user-defined
routines: the definition of N input tables and a single output table
is permitted and SQL DML commands in the body of this routine
are allowed to refer to these input tables.

Generally speaking, a new UDTO can be sequentially exe-
cuted as follows: All input tables are first materialized. That
means they can be furtheron accessed in a similar way as perma-
nently stored base tables. Then the UDTO is executed using these
input tables. The UDTO produces and materializes the output
table that represents the result of the UDTO and that can be pro-
cessed further. Of course, the input tables cannot be manipulated
and the only SQL command that is permitted for the manipulation
of the output table is the INSERT command. Later, we will
describe optimizations of this basic execution scheme that will
allow a much more efficient execution in many cases. Moreover,
in Section 3.4 we will describe how UDTOs can be processed in
parallel.

We distinguish two kinds of UDTOs that differ in the imple-
mentation of their body:procedural UDTOsandSQL macros.A
procedural UDTO is a UDTO whose body contains procedural
statements with embedded SQL statements. As for UDSFs one
can implement the body of a procedural UDTO in a programming
language (with embedded SQL) compile it, put it into a library
and register it with the DBMS. On the other hand, if the body of
a UDTO consists of a single INSERT statement or just a
RETURN statement we call this UDTO a SQL macro. This kind

of UDTO has some similarity to views, but the UDTO can refer t
the formal input tables of the UDTO and is therefore not limite
to references to base tables or views.

3.2.2. Language Extensions

Obviously, ORDBMS must provide a statement to crea
UDTOs. We describe the CREATE TABLE_OPERATOR state
ment in the syntax diagram shown in Figure 1 (we use | to den
beginning and end of a definition; terms in small ovals ar
described in additional syntax diagrams or in the text). After th
name of the table operator the argument list and the return type
described. The repeated use of table arguments enables the de
tion of N-ary table operators. The parallel execution option allow
to specify how the table operator can be executed in parallel (
will refer to parallelization later in Section 3.4). Finally, the bod
of the routine follows. Please note, that we have not shown oth
options in Figure 1, which are useful for other purposes like que
optimization but which are beyond the scope of this paper.

In Figure 2 we present the type description including input an
output tables. Each table is described by specifying the name
data type for each column. In Figure 2 the term ‘datatype’ shou
denote all allowed data types for columns, including user-defin
types. We will explain the notationtablename.+ later.

We do not provide a syntax diagram for the description of th
body, because we allow here embedded SQL program code o
single INSERT statement - with some extensions of SQL. We t
to use SQL/PSM as procedural language in our examples, but
concept is not limited to a particular procedural language. Th
means that all procedural languages like C, C++, Java or COB
can be used. In addition, proprietary APIs or other techniques li
database programming laguages (see for example [2]) could
used instead of the traditional embedded SQL.

3.2.3. Introductory Examples

In the following we give some definitions of UDTOs. These
examples are extremely simple and they arenot intended to dem-
onstrate the usefulness of the UDTO approach (cf. Section
They only serve to illustrate the concepts and the syntax. We w
refer to these examples also later in Section 3.3 when we disc
the application of UDTOs.

Example 1: the UDTOminimum

In the first example we create a UDTO that computes the m
imum for a table with an integer column:

type-description

CREATE TABLE_OPERATOR operator-name ()
,

RETURNS ()AS

type-description

parallel-exec

body-description

Figure 1: Syntax diagram of the CREATE TABLE_OPERATOR statement
496

te-

at
les

to
s.
re
.

he
t
the

to
le
ddi-

n

u-
le

t
ith

to
w
pe

ch
u-
CREATE TABLE_OPERATOR minimum
(TABLE Input (number INTEGER))
RETURNS INTEGER
AS {
RETURN(SELECT MIN(value)

FROM Input)
};

This example demonstrates how a new aggregation operator
can be defined. Of course there are many aggregate functions (like
MIN, MAX, and SUM) that should be programmed by the usual
iterator paradigm, since this allows to compute multiple aggre-
gates in a single pass over the input table. In case of aggregations,
there is usually no output table, but only an aggregate value.

Before we present further examples, we first introduce the fol-
lowing extensions of SQL within the body of UDTOs: First, all
SQL DML statements can read the input tables in the same man-
ner as base tables. Especially, an input table can be read by several
different SQL statements. Second, tuples can be appended to the
output table by INSERT commands. With these extensions, we
can define our next example.

Example 2: the UDTOhas_job

This UDTO performs a restriction of the input table and does
some decoding. Let us assume that a tableemployees
(emp_no, job) has been defined with an integer columnjob
that is used to code the job of the employees. We assume that the
names of the jobs and their codes are stored in a tablejobcodes
(code, jobname) . The UDTOhas_job selects the name
for a given code from the tablejobcodes and selects then all
jobs from the input table with this code. This UDTO is created as
follows:
CREATE TABLE_OPERATOR has_job
(TABLE Input (job INTEGER), jname VARCHAR)
RETURNS TABLE Output (job INTEGER)
AS {
INSERT INTO Output
SELECT I.job
FROM Input AS I, jobcodes AS C
WHERE I.job = C.code AND

C.jobname = jname
};

Please note that the database can be fully accessed from within
the body of the UDTO. In our example the tablejobcodes is
accessed. This supports information hiding, since the accessed
objects are not visible to the user of the UDTO. All side effects of
a UDTO evaluation belong to the associated transaction. That is

the UDTO is executed within the same transaction as the sta
ment that invokes it.

So far UDTOs can be applied reasonably only to tables th
match the row types of the corresponding formal parameter tab
exactly. For example, the UDTOhas_job can be applied to a
table with a single INTEGER column. Of course, it is desirable
allow the application of a UDTO to a more general class of table
Our goal is to allow all tables as input tables whose row types a
subtypes of the row types of the formal input table of the UDTO
The UDTO operates then only on attributes that appear within t
formal input table. All additional columns which may be presen
in the actual input tables are neglected or can be propagated to
output table, if this is desired (attribute propagation).

Therefore developers of UDTOs must have the possibility
determine that the additional columns of an actual input tup
have to be appended to the output tuple. We denote these a
tional columns by the expressiontable_name.+ (the ‘+’
denotes only theadditionalcolumns. By contrast,all columns are
usually denoted by the ‘*’ in SQL). That means, an expressio
like table_name.+ has to be replaced by all additional col-
umns of the corresponding input tabletable_name , which are
present in the actual argument table, but not in the formal arg
ment table of the UDTO. For example, if the actual argument tab
that is bound to the input tableinput1 has one additional col-
umn, theninput1.+ represents exactly this column. We permi
also a table variable instead of a table name in combination w
‘+’. Normally all additional columns of the input tables will be
appended to the output table. These additional columns have
appear also in the definition of the output table (that is the ro
type of the formal output table is then a supertype of the row ty
of the actual output table).

We can now redefine the UDTOhas_job with attribute
propagation as follows (changes are in bold face):
CREATE TABLE_OPERATOR has_job
(TABLE Input (job INTEGER), jname VARCHAR)
RETURNS
TABLE Output (job INTEGER , Input.+)
AS {
INSERT INTO Output
SELECT I.job , I.+
FROM Input AS I, jobcodes AS C
WHERE I.job = C.code AND

C.jobname = jname
};

As the example shows, we have to define the columns of ea
input table, but only those columns that are needed within the ro

TABLE
,

datatype

datatype

()

column-name

variable-name

table-name

table-name . +
Figure 2: Syntax diagram of the type description
497

x.
.

e:
O
tu-
of
se
-

ns

s
ut
e

o-
le
e

T1

l
is
, if
a
).
of

ut
he

ry
y

to
r-
tors
ra-
be
o-
ady
to
es
-

r
r-
be

, a
-

tine’s body should be defined. The expressionI.+ appends all
additional columns to the output. This allows the application of
the UDTOhas_job as a restriction operator, because a subset of
the rows of the input table is returned. The specification of the out-
put table contains the term ‘Input.+ ’ to enable type checking.

3.2.4. Row Identification

Finally, we want to propose here an extension that allows to
implement UDTOs more efficiently. Within the body of a UDTO
it can be necessary to have access to a unique identifier for each
row of an input table (cf. Section 4.1 for an example). To support
this, we introduce the special column data type ID for the type
description of table columns that are UDTO arguments. The spe-
cial type ID means that the column contains a unique identifier for
each row of an input table. Note that an ID can be either a primary
key or an internal identifier like a row identifier or a reference type
as proposed in SQL3. Such an ID can always be generated auto-
matically by the DBMS (this can be viewed as a kind of type pro-
motion for row types). An ID column could also be created
explicitly in the body of the UDTO by the developer, but if it is
defined as a column of an input table, the DBMS can use an
already existing identifier as an optimization. In general, it is not
useful to append a column value of type ID explicitly to the output
table. In case the primary key is used internally to represent the
ID, the system does this automatically, if the ‘+’ option has been
specified in the projection list of the subquery of the INSERT
statement.

3.3. The Different Usages of UDTOs

In this Subsection, we will describe two ways in which
UDTOs can be used: first they can be used explicitly by program-
mers within SQL commands. This allows to augment the func-
tionality of SQL in arbitrary ways. Second, UDTOs can be used
to augment the implementation of database operations which
involve UDFs. In this case the query optimizer has the task to use
the UDTO during the plan generation whenever the use of this
UDTO leads to a cheaper query execution plan. We discuss these
two applications now in greater detail.

3.3.1. Augmentation of SQL

The explicit usage of UDTOs in SQL statements allows to
extend the functionality of SQL by arbitrary new set operations,
or to say it in other words: UDTOs make object-relational query
processing universal in the sense that the set of database opera-
tions becomes extensible. For example, over time a lot of special
join operations have appeared: cross join, inner join, anti-join,
left, right, and full outer join, union join, etc. Moreover, other
operations like recursion or more application specific ones (for
data mining, etc.) have been proposed. UDTOs allow developers
to define a parallelizable implementation for such operators.
These operators can then be invoked in SQL commands by appli-
cation programmers, as we explain in the following.

A UDTO that returns a table can be used in all places within
SQL commands where a table expression is allowed. Moreover,

UDTOs with two input tables can be written in infix notation to
allow an easy integration into the current SQL command synta
For example, one could define a UDTO named ANTI_JOIN
Then one can write the following expression in a FROM claus
Table1 ANTI_JOIN Table2. In this case, conceptually, the UDT
is evaluated within the FROM clause. This means that concep
ally the Cartesian product of the output table of the UDTO and
all other tables, views, and table expressions in the FROM clau
is computed. In addition, UDTOs can also be written in infix nota
tion between two SELECT blocks like the usual set operatio
(UNION, INTERSECT, EXCEPT).

To allow the application of UDTOs to base tables and view
whose row type is a subtype of the row type of the formal inp
table, we propose the following syntax to bind columns of th
actual input table to columns of the formal input table. The pr
grammer can specify an ordered list of columns from a given tab
(or view) that is bound to the corresponding columns in th
parameter list of the UDTO. For example the expression TO1 (
USING (C1, C2, ..., CN)) describes that the columns named C1,
C2, ..., CN of table T1 are bound to the N columns of the forma
input table parameter of the UDTO TO1. The keyword USING
optional and can be left out. This notation can also be used
binary UDTOs are written in infix notation (it can be seen as
generalization of the ON clause for traditional join expressions
If input tables are given as table expressions then the columns
the resulting table are bound to the columns of the formal inp
table in exactly the order in which these columns appear in t
SELECT clause of the table expression.

The following statements illustrate this syntax. The first que
invokes the UDTOhas_job with a base table; the second quer
invokes it with a table expression:
SELECT *
FROM has_job(employees USING (job),‘manager’)

SELECT * FROM has_job(
(SELECT job, emp_no FROM employees),
‘manager’)

3.3.2. Augmentation of the Implementation of UDFs

In this Subsection we describe how UDTOs can be used
improve the performance for queries with UDFs. A very impo
tant usage of UDTOs is to define more efficient database opera
that can be used by the query optimizer during the plan gene
tion. While there might be some relational queries that can
enhanced by UDTOs, the move to object-relational query pr
cessing with UDFs creates a need for UDTOs as we have alre
outlined in Subsection 2.2. The reason is that UDTOs allow
implement database operations that involve UDFs sometim
more efficiently than in current ORDBMS, where a built-in data
base operator invokes the UDF.

UDTOs provide a different implementation technique fo
operations involving UDFs compared to the traditional iterato
based approach for UDF evaluation. For example, a UDSF can
used as a UDP in ajoin, i.e. in a restriction involving attributes
from different tables on top of a Cartesian product. In this case
UDTO will often allow a more efficient implementation. The rea
498

g-

e

at
to
e
or
sts
his

or
he
h
the

se,
we
n.
f
e
te

e
ed
be

n
ise,
sm
plit
son is that normally the UDP will be evaluated by a nested-loops
join operator which has quadratic complexity. By contrast there
might be implementation methods with much lower complexity.
Therefore joins are an important application of UDTOs, where
performance enhancements of orders of magnitude are possible
(often because nested-loops joins can be replaced by hash- or sort-
merge-based join algorithms; cf. Section 4.1). Furthermore,
UDTOs might sometimes be useful as aggregation, restriction, or
projection operators. For example, in case of UDAFs it can be
useful to provide an implementation by means of a UDTO, since
this allows access to the whole input table for the aggregation (cf.
Section 4.2 for an example).

The query optimizer has the task to decide when a UDTO
should be used. In a rule- and cost-based query optimizer ([13],
[15], [25]) this means the following: there must be a rule that gen-
erates a plan with the UDTO as an alternative implementation.
Such a rule has to be specified by the developer. This is not diffi-
cult because the UDTO is always associated with a specific UDF
for which it implements a specific database operator (for example
a join that has exactly this UDF as join predicate). Hence, the
developer must tell the query optimizer only that the UDTO can
be used to evaluate the UDF. For this purpose, the CREATE
FUNCTION statement that is used to register UDFs with the
DBMS can be extended. The statement should include the possi-
bility to specify that a UDTO can be used as an implementation
for a specific operation such as a join. For example one could
extend the CREATE FUNCTION statement as follows:

ALLOW <UDTO-name> AS
(JOIN | RESTRICTION | PROJECTION |

AGGREGATION) OPERATOR

The relationship between the UDF and the UDTO is stored in
the system tables and can be used by the query optimizer. The
query optimizer has to be extended by general rules that can do
these transformations for arbitrary UDFs. The optimizer uses
information from the system tables to decide whether the transfor-
mation is possible for a given UDF. Please note, that for some
functions like a UDAF, the UDTO might be the only implementa-
tion. In this case the UDTO is mandatory to execute the UDF.

Let us assume that we want to create a UDPhas_job for the
UDTO that we have introduced in Section 3.2. Then one can re
ister this UDP with the UDTOhas_job as restriction operator:
CREATE FUNCTION has_job (INTEGER, VARCHAR)
RETURNS BOOLEAN
ALLOW has_job AS RESTRICTION OPERATOR ...

After this registration the query optimizer considers th
UDTO has_job as an implementation for the restriction with
the UDPhas_job in the following query:
SELECT *
FROM employees AS E
WHERE has_job(E.job, ‘manager’)

Figure 3 illustrates how a traditional database operator th
invokes a UDF is replaced by a UDTO. First the operator has
be identified in the original query execution plan (QEP). Then th
optimizer replaces this operator either by a procedural UDTO
by a SQL macro. Because the body of a SQL macro consi
essentially of a QEP we can simply replace the operator by t
QEP (SQL macro expansion). However the QEP of the SQL
macro has to be modified so that it fits to the comprising QEP. F
example, proper attribute propagation has to be considered. T
result of this SQL macro expansion is a traditional QEP, whic
can be further optimized and evaluated as usual. Especially,
materialization of input and output tables can be avoided.

3.4. Parallel Processing of Procedural UDTOs

Nowadays new operators would not be a concept of great u
if these operators could not be executed in parallel. That’s why
will discuss the parallel execution of UDTOs in this Subsectio
Please note that all SQL DML commands within the body o
UDTOs of the implementation are parallelizable as usual. If th
UDTO is a SQL-macro, i.e. a single SQL statement, the comple
UDTO can be parallelized automatically by the DBMS. In th
more general case of a UDTO that is implemented by embedd
SQL, the developer must specify how a parallel execution can
done, if it is possible at all.

We provide a method that allows to specify, if an operator ca
be executed with data parallelism and, should the occasion ar
how the operator can be processed. Applying data paralleli
means that one or more of the input tables of an operator are s

procedural UDTO

QEP of a

optimize this
 operator

input tables

output table

original QEP

QEP with

Figure 3: Application of a procedural UDTO and a SQL macro during query optimization

SQL macro
 expanded
SQL macro

QEP with
procedural
UDTO
499

d
n.
of

o-
be
ped
-

that
ut
th
ti-
for

e
ed.
s-
r-

l
ic-
ify
he

e
is
horizontally into several partitions by means of a suitable parti-
tioning function. If one or more input tables can be partitioned but
not all, the other input tables are replicated. Then the operator is
executed once for each partition with the following input tables:
if the argument table is partitionable, the respective partition of
this table is used. If the argument table is not partitioned, then the
complete, replicated table is used as an argument. This means that
N instances of the operator are executed in parallel if one or more
input tables are split into N partitions. Hence, the degree of paral-
lelism is N. In this case, the final result is computed by combining
the N intermediate output tables by means of a union (without
elimination of duplicates). If no input table is partitioned, the
operator is executed without data parallelism - that is sequentially.
There can be several possibilities for the parallelization of an
operator, depending on which input tables are partitioned and
depending on how this partitioning is done.

Hence we must describe the set of all combinations of parti-
tioning functions that can be used to partition the input tables of a
given UDTO. We permit different partitioning functions for dif-
ferent tables, but all partitioned input tables must have the same
number of partitions. Therefore the partitioning functions must
have a parameter that allows to specify the number of generated
partitions. This parameter enables the optimizer to set the degree
of parallelism for a given UDTO. In some cases, it may be also
necessary to specify that exactly the same partitioning function
has to be used for some or all input tables. For example, this is
needed for equi joins in relational processing.

In [21] we have already proposed the following classes of par-
titioning functions:

1. ANY: the class of all partitioning functions. Round-robin
and random partitioning functions are examples of this
class which belong to no other class. All partitioning
functions that are not based on attribute values belong
only to this class.

2. EQUAL (column name): the class of partitioning
functions that map all rows of the input table with equal
values in the selected column into the same partition.
Examples of EQUAL functions are partitioning functions
that use hashing.

3. RANGE (column name): the class of partitioning

functions that map rows, whose values of the specifie
column belong to a certain range, into the same partitio
Obviously there must be a total order on the data type
the column (for further details see [21]).

In addition to these three partitioning classes we have pr
posed that a special user-defined partitioning function can
specified, too. Based on these considerations we have develo
the parallel execution option in the CREATE TABLE_OPERA
TOR statement that allows to specifyall parallel execution
schemes which are possible for a new operator. For operators
have multiple input tables there can be many possibilities. B
since we doubt that there will be many complex operators wi
more than two input tables in practice, we have not tried to op
mize the description for this special case. The syntax diagram
this option is shown in Figure 4.

If the partitioning class is notANY, we have to specify the col-
umns to which the partitioning function should be applied. Th
same is necessary, if a specific partitioning function must be us
We have left out these details in Figure 4. If no partitioning is po
sible for a given input table, this is denoted by ‘-’ (in case of pa
allel processing, this input table is replicated).

In the following, we will describe some examples of paralle
execution schemes for familiar (relational) operations: a restr
tion, a nested-loops join, a hash join, and a merge join. To simpl
the examples, we have left out the column specifications of t
input and the output tables and the bodies of the operators.
CREATE TABLE_OPERATOR restriction
(TABLE Input1(..))
RETURNS TABLE Output1(...)
ALLOW PARALLEL ((ANY))
AS { ... };

By specifying the classANY in the ALLOW PARALLEL
option, we have specified that all partitioning functions can b
used to partition the input table for the restriction operator that
defined in this example.
CREATE TABLE_OPERATOR nested_loops
(TABLE Input1(...), TABLE Input2(...))
RETURNS TABLE Output1(...)
ALLOW PARALLEL ((ANY,-), (-,ANY))
AS { ... };

ANY

,

ALLOW PARALLEL ()()

function-spec

equal-specEQUAL

RANGE

,

-

range-spec

Figure 4: Syntax diagram of the parallel execution option
500

e
sce-
o
in
AP,

a-
)

s
the
ng
on
ing

m

ut

d
nd
ts.
ble

ffi-
e
xi-
he
ct

his
ct
ut
is
d-
CREATE TABLE_OPERATOR hash_join
(TABLE Input1(...), TABLE Input2(...))
RETURNS TABLE Output1(...)
ALLOW PARALLEL
((EQUAL pf1(Column_List),

EQUAL pf1(Column_List)),
(ANY,-), (-,ANY))

AS { ... };

CREATE TABLE_OPERATOR merge_join
(TABLE Input1(...), TABLE Input2(...))
RETURNS TABLE Output1(...)
ALLOW PARALLEL

((EQUAL pf1(Column_List),
EQUAL pf1(Column_List)),

(ANY,-), (-,ANY))
AS { ... };

The options for the three join algorithms specify that if one
table is replicated, the other table can be partitioned with any par-
titioning function. In addition, the hash join can be parallelized
with the partitioning scheme(EQUAL pf1(Column_List),
EQUAL pf1(Column_List)) that means both input tables
are partitioned with thesamepartitioning functionpf1 . The same
holds for the merge join, if we restrict it to the computation of equi
joins. If we want to use the merge join for more general join pred-
icates - for example an interval join (to execute a predicate like ‘x
<= y + k or x >= y - k’ more efficiently) - then we need a partition-
ing with a function of classRANGE(k), that is the option should
beALLOW PARALLEL (RANGE(k) pf1(Column_List),
RANGE(k) pf1(Column_List)) . The parameter k could be
an argument of this join operator (The corresponding UDP would
be used as fol lows:interval_join(table1.x,
table2.y, k)).

3.5. Extension to Multiple Output Tables

We can provide even more extensibility, if we allow multiple
output tables for UDTFs: one application could be to return a set
of tables perhaps holding complex objects that are linked via
OIDs. This is something like pushing Starburst’s XNF ([27], [33])
into the middle of SQL commands. Using such a UDTO at the top
of a query would allow for composite objects as result, which
might be interesting for querying XML data ([3], [4]), for exam-
ple. Internally, the top operator of queries has to be extended, to
allow the direct output of several tables as a result of a query.
Another use of multiple output tables could be to support a nest-
ing of complex UDTOs. The output tables of one UDTO can then
serve as input tables for other UDTOs.

UDTOs with multiple output tables can be used within the
FROM clause of queries but not in the WHERE clause, since they
do not return a table expression. The renaming of the result tables
and their columns should be allowed. UDTOs with multiple out-
put tables can be evaluated in the same manner as UDTOs with a
single output table, but they produce multiple output tables. These
output tables can be processed further. The result tables in case of
a parallel evaluation are obtained by a union of all corresponding
partial result tables.

4. Applicability and Expressive Power of the
UDTO Concept

The broad applicability and the high expressive power of th
UDTO concept can be easily assessed by means of example
narios. We present the realization of complex operations in tw
different processing scenarios: one is the well-known spatial jo
and the other refers to a complex aggregation as needed in OL
for example.

4.1. Computing a Spatial Join

In our first example we use the UDTO concept to define a sp
tial join based on the partition-based spatial merge-join (PBSM
algorithm [31]. Thus we show that the UDTO concept allow
among other things a much more elegant implementation than
multi-operator method [22], which we have demonstrated usi
the same example scenario. We consider the following polyg
intersection query (that searches for all gold deposits intersect
lakes) as a concrete example of a spatial join:
SELECT*
FROM Lakes as L, Gold_Deposits as G
WHEREoverlaps(L.poly_geometry,
G.poly_geometry)

The predicateoverlaps (polygon, polygon) returns
TRUE, if the two polygons overlap geometrically andFALSEoth-
erwise. In order to define a UDTO foroverlaps based on the
PBSM algorithm [31] we create the following UDFs:

• bbox(polygon) :
This UDSF creates and returns a bounding box (minimu
bounding rectangle) for a given polygon.

• bbox_overlaps(bbox1, bbox2):
This UDP returns TRUE, if both bounding boxes overlap.

• exact_overlaps(polygon1, polygon2) :
This UDP returns TRUE, if the exact geometries of the inp
polygons overlap.

• bucket_no(bbox) :
This UDTF divides the spatial universe into B equally size
rectangular regions called buckets. Then it computes a
returns all buckets, which the input bounding box intersec
Please note that this is a table function. That is it returns a ta
with a single column of type integer.

With these UDFs we are prepared to create the UDTOover-
laps . This operator uses three techniques to improve the e
ciency of the join algorithm. First, it uses a simple filter-and-refin
scheme [30]. The filtering step uses bounding boxes as appro
mations of the polygons. This means that we test whether t
bounding boxes overlap, before we check whether the exa
geometries overlap. Second, spatial partitioning is used. T
allows to join only the corresponding buckets. Third, the exa
geometry is eliminated to reduce the data volumes of the inp
tables of the join. For the refinement the exact geometry
retrieved. This results in the implementation of the overlaps pre
501

L
s-

n
e
e
all

ti-
ket
if-
it
e

n,
is-
o
sys-
ner
log
w-
at
ave
be
A

s in
nd
ng.

nt.

r-
ce-
icate by means of a new join operator that shown in Figure 5. We
discuss this implementation in the following.

The subqueries in the WITH clause generate two temporary
tables with the bounding boxes and the bucket numbers for spatial
partitioning. Since the UDTFbucket_no is used in the FROM
clause with a correlated tuple variable, the Cartesian product with
the corresponding tuple is generated, that is we replicate the tuple
for each intersecting bucket and append the bucket number (a sin-
gle polygon can intersect several buckets [31]). This allows later
on to join the temporary tables on the bucket number
(Temp1.bucket = Temp2.bucket in the innermost
SELECT query). Thus the functionbbox_overlaps is only
evaluated on the Cartesian product of all polygons within the
same bucket. Next, duplicate candidate pairs, which might have
been introduced by the spatial partitioning, are eliminated.
Finally, in the outermost SELECT statement, the UDF
exact_overlaps is processed on the exact polygon geome-
tries that are fetched from the input tables using an equi join on
the unique values of the ID columns.

We want to add some remarks on this example. The UDTO
overlaps is a SQL macro and can be parallelized automati-
cally. Thus there is no need to specify an option for parallel exe-
cution. In order to process the join with data parallelism the
bucket number would be selected as a partitioning column due to
the equi join on the bucket number. Therefore no specific user-
defined partitioning function is needed for parallel processing, as
the usual partitioning functions can be applied to the bucket num-
ber which is an INTEGER value. Please note, that if the join on
the bucket number is done via a hash join with linear complexity,
the overall complexity of the UDTO is still linear. This ismuch
better than the quadratic complexity of the Cartesian product that
has to be used, if no UDTO is provided.

We did measurements with a prototypical implementation of a
spatial join with a similar SQL macro and observed an improve-
ment by a factor of 238 for a table with 10 000 polygons. More-

over, we could achieve a speedup of 2.5 for the plan with the SQ
macro on a four processor SMP (cf. [23] for a detailed discu
sion).

A final but important point concerns the functionbucket_
no that in effect does a spatial partitioning. Actually this functio
is too simple for practice. The reason is that it is crucial for th
performance of the algorithm to find a suitable partitioning of th
spatial universe. The spatial universe is the area which contains
polygons from both relations. The task is to find a suitable par
tioning of the spatial universe into buckets such that each buc
contains roughly the same number of polygons (or at least the d
ferences are not extreme). This task is very difficult, because
should ideally take the following parameters into account: th
number of polygons in each input table, their spatial locatio
their area, the number of points per polygon and their spatial d
tribution. For traditional relational queries the optimizer tries t
use more or less sophisticated statistics that are stored in the
tem tables to estimate value distributions, etc. In the same man
one could now use such meta data from (user-defined) cata
tables to compute parameters for the spatial partitioning. Ho
ever, the fundamental problem with this approach would be th
the input tables do not correspond to base relations and may h
therefore different value distributions (as usual there might
also the problem that the statistics might not be up to date).
more sophisticated approach would be to analyze the polygon
the input tables by extracting statistics on the bounding boxes a
to use these statistics to derive an appropriate spatial partitioni
UDTOs provide full support for this method (cf. [24] for the
extended example). Therefore UDTOs supportrun-time optimiza-
tion that takes the actual content of the input tables into accou

4.2. Computing the Median: an Aggregation Operator

In this Section we will show how a complex aggregation ope
ation can be implemented in a clean and efficient way as a pro

CREATE TABLE_OPERATOR overlaps
(TABLE Input1(id1 ID, poly1 POLYGON), TABLE Input2(id2 ID, poly2 POLYGON))
RETURNS TABLE Output1(poly1 POLYGON, Input1.+, poly2 POLYGON, Input2.+)
AS {
INSERT INTO Output1
WITH Temp1(id, bbox, bucket) AS

(SELECT id1, bbox(poly1), bucket FROM Input1, TABLE(bucket_no(bbox(poly1))) AS B(bucket)),
Temp2(id, bbox, bucket) AS
(SELECT id2, bbox(poly2), bucket FROM Input2, TABLE (bucket_no(bbox(poly2))) AS B(bucket))

SELECT poly1, Input1.+, poly2, Input2.+
FROM (SELECT DISTINCT Temp1.id AS id1, Temp2.id AS id2 FROM Temp1, Temp2

WHERE Temp1.bucket = Temp2.bucket AND
bbox_overlaps(Temp1.bbox,Temp2.bbox)) AS Temp3, Input1, Input2

WHERE Temp3.id1 = Input1.id1 AND Temp3.id2 = Input2.id2 AND
exact_overlaps(Input1.poly1, Input2.poly2)

};

CREATE FUNCTION overlaps (POLYGON, POLYGON) RETURNS BOOLEAN
ALLOW overlaps AS JOIN OPERATOR ...

Figure 5: Definition of a SQL macro as join operator for the UDP overlaps
502

ry
ata
ies
pti-
or
in,
ex
d to
unc-
h

st

es
f a

ng
see

of
ry
-
ed.
n-

ial
e-
l

a-
ch

s
w-
a-
a
to-
-
ng
st
r-
ur
te-

ell
use
le
d to

ten-
e-

e

ft-
a
u-
dural UDTO. As a concrete example, we consider theMedian
aggregate function that computes the(N+1)/2 largest element of
a set with N elements. A query finding the median of a set is not
very intuitively expressible in SQL92. For example, the simple
query to select the median of the ages of certain persons could be
formulated as shown in Figure 6. Of course one would prefer a
query using a UDAFMedian as shown in Figure 7. This query

is not only easy to write, but will also run more efficiently (orders
of magnitude for a large input table), because theMedian func-
tion can be implemented with lower complexity than the SQL
statement in Figure 6. For example, in our UDTO the median is
simply computed by fetching values from the sorted input table,
until the position of the median is reached. This position is first
determined by counting the input table. Here are the statements to
create the UDTOmedian and the corresponding UDAF:

CREATE TABLE_OPERATOR median
(TABLE Input1(value INTEGER))
RETURNS INTEGER
AS {
DECLARE count, cardinality,

median_pos, result INTEGER;
SET count = 1;
SELECT COUNT(*) FROM Input1 INTO cardinality;
SET median_pos = ceiling ((cardinality + 1) / 2);
F1: FOR result AS

SELECT * FROM Input1 ORDER BY value ASC
DO
IF (count = median_pos) THEN

LEAVE F1;
SET count = count + 1;

END FOR;
RETURN result;
};

CREATE AGGREGATE Median (INTEGER)
RETURNS INTEGER
ALLOW median AS AGGREGATION OPERATOR ...

This example demonstrates how SQL DML statements and
procedural statements can be mixed in the body of a UDTO.
While this implementation does not use the most efficient algo-
rithm known to compute the median, the algorithm is easy to

implement based on SQL and allows a computation for arbitra
large data sets, as it does not rely on explicit intermediate d
storage in main memory. Moreover, both embedded SQL quer
can be evaluated in parallel as usual. That means that the o
mizer can automatically decide to perform the sort operation f
the ORDER BY clause in parallel. This example shows aga
how our technique can enable a parallel execution of compl
user-defined operators. This is a significant progress compare
other approaches. Implementing the median as an aggregate f
tion based on the usual iterator paradigm for UDAFs is muc
more difficult as we have already pointed out in [21]. Using a fir
prototypical implementation of procedural UDTOs in an
ORDBMS, we computed the median on a table with 20 000 tupl
and measured an improvement by a factor of 2550 by means o
UDTO (cf. [23] for details).

5. Related work

User-Defined Functions (UDFs) have attracted increasi
interest of researchers as well as the industry in recent years (
e.g. [1], [9], [16], [17], [26], [28], [29], [34], [35], [36]). However,
most of the work discusses only the non-parallel execution
UDFs, special implementation techniques like caching, or que
optimization for UDFs. In [32] support for the parallel implemen
tation of UDFs in the area of geo-spatial applications is discuss
It is remarked that in this area complex operations are commo
place. Also special new join techniques [31] and other spec
implementation techniques have been proposed, but no fram
work for extensibility that allows the integration of such specia
processing in parallel ORDBMS was mentioned.

An approach that offered extensibility by means of new dat
base operators and that is superior in functionality to our approa
is that of the EXODUS project [6]. In EXODUS new operator
could be programmed with the E programming language. Ho
ever, the EXODUS approach differs from our approach fund
mentally, since the goal of EXODUS was not to provide
complete DBMS. Rather the goal was to enable the semi-au
matic construction of an application specific DBMS. Thus EXO
DUS was a database software engineering project providi
software tools for DBMS construction by vendors. By contra
our approach allows to extend a complete ORDBMS by third pa
ties like independent software vendors. We believe that o
approach to program new operators with embedded SQL sta
ments provides more support for parallel execution and fits w
into current system architectures. In addition, developers can
a familiar technique to program UDTOs. UDTOs are less flexib
than built-in database operators, because they cannot be applie
tables with arbitrary row types. However, they fit perfectly to
UDFs. Hence they are the ideal concept to support database ex
sions for class libraries by third parties as well as application sp
cific extensions. See [14] for a formal approach to th
specification of database operations.

In [34] E-ADTs are proposed as a new approach to the so
ware architecture of ORDBMS. An ORDBMS is envisioned as
collection of E-ADTs (enhanced ADTs). These E-ADTs encaps

Figure 6: Computing the median in SQL

SELECT MIN(Age)
FROM Persons AS P
WHERE
(SELECT Ceiling((COUNT(*)+1/2)

FROM Persons)
<=
(SELECT COUNT(*) FROM Persons AS R

WHERE R.Age <= P.Age)

SELECT Median (P.Age)
FROM Persons AS P

Figure 7: Computing the median with a UDTO
503

he

o
os
ce
in
is
ror-
-

can
of
sual

l,
pro-

e.
s
e

r
era-

s by
e
as
sed
-
ry

d
ng

e
m-
of

fi-

ns
on
s

for-
of

nt
on
ta-
te

d

se
late the complete functionality and implementation of ADTs. We
believe that this is an interesting approach that is in general more
ambitious than UDTOs. In contrast to the E-ADT approach,
UDTOs fit very well into the architectures of current commercial
ORDBMS. Thus UDTOs leverage existing technology. Moreover,
UDTOs are designed to support parallel execution.

We have already mentioned that SQL macros can be viewed as
a generalization of views [37]. The difference is that views can
refer only to existing base tables and other views, but not to the
results of subqueries or table expressions and that views cannot
have parameters. As we have described, SQL macros can be used
to implement database operations with UDFs more efficiently.
Hence, SQL macros differ in their functionality from views.

In [21] we proposed a framework for parallel processing of
user-defined scalar and aggregate functions in ORDBMS. We
introduced the concept of partitioning classes there to support the
parallel execution of user-defined scalar and aggregate functions.
In this paper we have generalized this work to enable data paral-
lelism for N-ary user-defined table operators. In [22] we proposed
the multi-operator method to allow the implementation of com-
plex UDFs like parallel join algorithms for UDPs. However, we
view UDTOs in the form of SQL macros as the more appropriate
implementation technique. Moreover, procedural UDTOs are a
much more powerful concept than the multi-operator method.

6. Summary, Conclusions and Future Work

In this paper we have proposed UDTOs as a novel approach to
extensibility with regard to the execution engine and the query
optimizer of ORDBMS. While current user-defined functions are
used within the traditional database operators, our approach
allows to develop user-defined database operators.This technol-
ogy will provide a new dimension of extensibility for ORDBMS.

We have presented the following core issues of UDTOs:

• the possibility to define M input tables and N output tables for a
user-defined routine

• the access to and the manipulation of these tables by means of
SQL commands that are embedded into procedural code (pro-
cedural UDTOs) or by means of a single SQL statement (SQL
macro)

• attribute propagation to allow the application of UDTOs to a
broad range of input tables based on a generalization relation-
ship between row types

• a method to specify parallel execution schemes for UDTOs and
the general algorithm for their parallel processing

• the explicit application of UDTOs within SQL and their use as
high performance implementations for operations involving
UDFs.

We believe that the possibility to define new operators is very
promising, especially since the SQL-based implementation tech-
nique is in our view elegant and easy to understand for developers.
In addition, sophisticated optimization technology can be used to

produce high-quality plans that are automatically fine tuned to t
estimated data volumes.

With regard to SQL macros the UDTO approach is similar t
pushing views into the middle of SQL statements. SQL macr
allow to push code into a new operator, where it is defined on
(e.g. in a DBMS class library) and available for general use
SQL. Hence only a single definition has to be maintained. Th
eases the task of the application programmer, makes it less er
prone, improves the declarative character of SQL DML com
mands and enhances the readability. Moreover, SQL macros
always be completely integrated into the query execution plans
SQL statements by macro expansion. As a consequence, the u
parallelization techniques can be used.

The concept of procedural UDTOs is much more powerfu
because one can execute a query on the input tables and use a
cedural language like SQL PSM to implement complex cod
This is especially of interest in combination with an API that i
provided for the development of DBMS class libraries by som
ORDBMS ([19], [20]). This offers the possibility to implement
new algorithms like join algorithms, for example. Moreover, ou
approach supports data parallelism for these new database op
tors. Besides being able to define parallel processing scheme
specifying allowed partitioning functions, the possibility to us
SQL goes a long way towards enabling as much parallelism
possible, since all embedded SQL statements can be proces
automatically in parallel. An additional advantage of our SQL
based approach to the implementation of UDTOs is that que
optimization can be fully exploited.

Areas of future work are optimization issues for UDTOs an
case studies for their application in other scenarios: promisi
areas of interest are OLAP, data mining, image analysis, tim
series processing, genome analysis, or querying XML, for exa
ple. Moreover, if several SQL statements are used in the body
the UDTO, multi-query optimization techniques could be bene
cial. First results can be found in [24].

Currently, an implementation of UDTOs in MIDAS [5], a pro-
totype of a parallel ORDBMS, is under way. The core extensio
have been completed and in a future paper [23] we will report
this effort and describe implementation concepts for UDTOs. A
we have mentioned, first measurements demonstrated per
mance improvements of orders of magnitude by means
UDTOs.

Acknowledgments
We gratefully acknowledge the help of our master stude

Sebastian Heupel with the implementation and his comments
the draft of this paper which helped us to improve the presen
tion. We also acknowledge the cooperation with the comple
MIDAS team and the valuable comments from the referees.

7. References

[1] Antoshenkov, G., Ziauddin, G.: Query Processing an
Optimization in Oracle Rdb. VLDB Journal 5(4): 229-237
(1996).

[2] Bancilhon, F., Buneman, P. (Eds.): Advances in Databa
504

s

of
al

d
-

.:
in

al
rt,

r

-

.,
as

.,
.,
d
.

se

ng
D

e

ll,
o,

on,

.:

or

a

l
s,

s

Programming Languages. ACM Press / Addison-Wesley
1990, ISBN 0-201-50257-7, Papers from DBPL-1,
September 1987, Roscoff, France.

[3] Beech, D.: Position Paper on Query Languages for the Web,
Oracle Corp., http://www.xml.com/xml/pub/Guide/
Query_Languages.

[4] Bosworth, A. et al.: Microsoft’s Query Language 98
Position Paper, Microsoft Corp., http://www.xml.com/xml/
pub/Guide/Query_Languages.

[5] Bozas, G., Jaedicke, M., Listl, A., Mitschang, B., Reiser, A.,
Zimmermann, S.: On Transforming a Sequential SQL-
DBMS into a Parallel One: First Results and Experiences of
the MIDAS-Project, Proc. of 2nd Int. Euro-Par Conf., LNCS
1123, Springer, 1996.

[6] Carey, M. J., DeWitt, D.J., Graefe, G., Haight, D. M.,
Richardson, J. E., Schuh, D. T., Shekita, E. J., Vandenberg,
S. L.: The EXODUS Extensible DBMS Project: An
Overview, in: Zdonik, S., Maier, D. (eds.): Readings in
Object-Oriented Databases, Morgan-Kaufmann, 1990.

[7] Carey, M. J., Mattos, N., Nori, A.: Object-Relational

Database Systems: Principles, Products, and Challenges

(Tutorial). SIGMOD 1997: 502.

[8] Chamberlin, D.: A Complete Guide to DB2 Universal
Database, Morgan Kaufman Publishers, San Francisco,
1998.

[9] Chaudhuri, S., Shim, K.: Optimization of Queries with User-
defined Predicates. VLDB 1996: 87-98.

[10] Deßloch, S., Mattos, N.: Integrating SQL Databases with
Content-Specific Search Engines. VLDB 1997: 528-537.

[11] DeWitt, D., Gray, J.: Parallel Database Systems: The Future
of High Performance Database Systems, In: CACM, Vol.35,
No.6, 85-98, 1992.

[12] Graefe, G.: Query Evaluation Techniques for Large
Databases. Computing Surveys 25(2): 73-170 (1993).

[13] Graefe, G.: The Cascades Framework for Query
Optimization. Data Engineering Bulletin 18(3): 19-29
(1995).

[14] Güting, R. H.: Second-Order Signature: A Tool for
Specifying Data Models, Query Processing, and
Optimization, SIGMOD Conference 1993: 277-286.

[15] Haas, L. M., Freytag, J.C., Lohman, G. M. , Pirahesh, H.:
Extensible Query Processing in Starburst. SIGMOD 1989:
377-388.

[16] Hellerstein, J. M., Stonebraker, M.: Predicate Migration:
Optimizing Queries with Expensive Predicates. SIGMOD
1993: 267-276.

[17] Hellerstein, J. M., Naughton, J. F.: Query Execution
Techniques for Caching Expensive Methods. SIGMOD
1996: 423-434.

[18] IBM DB2 Universal Database SQL Reference Version 5,
Document Number S10J-8165-00, 1997: 441-453.

[19] Illustra User’s Guide, Illustra Information Technologies,
Inc., 1995.

[20] Informix Universal Server, DataBlade API Programmer’
Manual Vers. 9.12, Informix Software Inc., 1997.

[21] Jaedicke, M., Mitschang, B.: On Parallel Processing
Aggregate and Scalar Functions in Object-Relation
DBMS, SIGMOD 1998: 379-389.

[22] Jaedicke, M., Mitschang, B.: The Multi-Operator Metho
for the Efficient Parallel Evaluation of Complex User
Defined Predicates, Technical Report, to appear 1999.

[23] Jaedicke, M., Zimmermann, S., Nippl, C., Mitschang, B
The Implementation of User-Defined Table Operators
MIDAS, (submitted) 1999.

[24] Jaedicke, M.: New Concepts for Parallel Object-Relation
Query Processing, Ph.D. Thesis, University of Stuttga
1999.

[25] Lohman, G. M.: Grammar-like Functional Rules fo
Representing Query Optimization Alternatives. SIGMOD
1988: 18-27.

[26] Mattos, N., Deßloch, S., DeMichiel, L., Carey, M.: Object
Relational DB2, IBM White Paper, July 1996.

[27] Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B. G
Südkamp, N.: SQL/XNF - Processing Composite Objects
Abstractions over Relational Data. ICDE 1993: 272-282

[28] O’Connell, W., Ieong, I.T., Schrader, D., Watson, C., Au, G
Biliris, A., Choo, S., Colin, P., Linderman, G., Panagos, E
Wang, J., Walters, T.: Prospector: A Content-Base
Multimedia Server for Massively Parallel Architectures
SIGMOD 1996: 68-78.

[29] Olson, M. A., Hong, W. M., Ubell, M., Stonebraker, M.:
Query Processing in a Parallel Object-Relational Databa
System, Data Engineering Bulletin, 12/1996.

[30] Orenstein, J. A.: A Comparison of Spatial Query Processi
Techniques for Native and Parameter Spaces. SIGMO
Conf. 1990: 343-352.

[31] Patel, J. M., DeWitt, D. J.: Partition Based Spatial-Merg
Join. SIGMOD Conf. 1996: 259-270.

[32] Patel, J., Yu, J. Kabra, N., Tufte, K., Nag, B., Burger, J., Ha
N., Ramasamy, K., Lueder, R., Ellman, C., Kupsch, J., Gu
S., DeWitt, D. J., Naughton, J.: Building A Scalable
GeoSpatial Database System: Technology, Implementati
and Evaluation, SIGMOD 1997: 336-347.

[33] Pirahesh, H., Mitschang, B. Südkamp, N., Lindsay, B. G
Composite-Object Views in Relational DBMS: An
Implementation Perspective. EDBT 1994: 23-30.

[34] Seshadri, P., Livny, M., Ramakrishnan, R.: The Case f
Enhanced Abstract Data Types. VLDB 1997: 66-75.

[35] Stonebraker, M.: Inclusion of New Types in Relational Dat
Base Systems. ICDE 1986: 262-269.

[36] Stonebraker, M., Brown, P., Moore, D.: Object-Relationa
DBMSs, Second Edition, Morgan Kaufmann Publisher
1998.

[37] Stonebraker, M.: Implementation of Integrity Constraint
and Views by Query Modification. SIGMOD Conf. 1975:
65-78.
505

	Abstract
	Currently parallel object-relational database technology is setting the direction for the future ...
	1. Introduction
	2. User-Defined Functions in ORDBMS
	2.1. User-Defined Functions and Predicates
	2.2. Limitations of Current ORDBMS with Respect to New Database Operators

	3. User-Defined Table Operators: UDRs with Table Arguments
	Table 1 : A classification of user-defined routines based on their parameter types

	input parameter types
	scalar
	UDSF
	UDTF (UDTO)
	table(s)
	UDAF (UDTO)
	UDTO
	3.1. A Generalization Relationship for Row Types
	3.2. Defining UDTOs
	3.2.1. Underlying Concept
	3.2.2. Language Extensions

	Figure 1 : Syntax diagram of the CREATE TABLE_OPERATOR statement
	3.2.3. Introductory Examples

	Figure 2 : Syntax diagram of the type description
	3.2.4. Row Identification
	3.3. The Different Usages of UDTOs
	3.3.1. Augmentation of SQL
	3.3.2. Augmentation of the Implementation of UDFs

	Figure 3 : Application of a procedural UDTO and a SQL macro during query optimization
	3.4. Parallel Processing of Procedural UDTOs

	Figure 4 : Syntax diagram of the parallel execution option
	1. ANY: the class of all partitioning functions. Round-robin and random partitioning functions ar...
	2. EQUAL (column name): the class of partitioning functions that map all rows of the input table ...
	3. RANGE (column name): the class of partitioning functions that map rows, whose values of the sp...
	3.5. Extension to Multiple Output Tables

	4. Applicability and Expressive Power of the UDTO Concept
	4.1. Computing a Spatial Join
	Figure 5 : Definition of a SQL macro as join operator for the UDP overlaps
	4.2. Computing the Median: an Aggregation Operator

	Figure 6 : Computing the median in SQL
	Figure 7 : Computing the median with a UDTO

	5. Related work
	6. Summary, Conclusions and Future Work
	7. References
	[1] Antoshenkov, G., Ziauddin, G.: Query Processing and Optimization in Oracle Rdb. VLDB Journal ...
	[2] Bancilhon, F., Buneman, P. (Eds.): Advances in Database Programming Languages. ACM Press / Ad...
	[3] Beech, D.: Position Paper on Query Languages for the Web, Oracle Corp., http://www.xml.com/xm...
	[4] Bosworth, A. et al.: Microsoft’s Query Language 98 Position Paper, Microsoft Corp., http://ww...
	[5] Bozas, G., Jaedicke, M., Listl, A., Mitschang, B., Reiser, A., Zimmermann, S.: On Transformin...
	[6] Carey, M. J., DeWitt, D.J., Graefe, G., Haight, D. M., Richardson, J. E., Schuh, D. T., Sheki...
	[7] Carey, M. J., Mattos, N., Nori, A.: Object-Relational Database Systems: Principles, Products,...
	[8] Chamberlin, D.: A Complete Guide to DB2 Universal Database, Morgan Kaufman Publishers, San Fr...
	[9] Chaudhuri, S., Shim, K.: Optimization of Queries with User- defined Predicates. VLDB 1996: 87...
	[10] Deßloch, S., Mattos, N.: Integrating SQL Databases with Content-Specific Search Engines. VLD...
	[11] DeWitt, D., Gray, J.: Parallel Database Systems: The Future of High Performance Database Sys...
	[12] Graefe, G.: Query Evaluation Techniques for Large Databases. Computing Surveys 25(2): 73-170...
	[13] Graefe, G.: The Cascades Framework for Query Optimization. Data Engineering Bulletin 18(3): ...
	[14] Güting, R. H.: Second-Order Signature: A Tool for Specifying Data Models, Query Processing, ...
	[15] Haas, L. M., Freytag, J.C., Lohman, G. M. , Pirahesh, H.: Extensible Query Processing in Sta...
	[16] Hellerstein, J. M., Stonebraker, M.: Predicate Migration: Optimizing Queries with Expensive ...
	[17] Hellerstein, J. M., Naughton, J. F.: Query Execution Techniques for Caching Expensive Method...
	[18] IBM DB2 Universal Database SQL Reference Version 5, Document Number S10J-8165-00, 1997: 441-...
	[19] Illustra User’s Guide, Illustra Information Technologies, Inc., 1995.
	[20] Informix Universal Server, DataBlade API Programmer’s Manual Vers. 9.12, Informix Software I...
	[21] Jaedicke, M., Mitschang, B.: On Parallel Processing of Aggregate and Scalar Functions in Obj...
	[22] Jaedicke, M., Mitschang, B.: The Multi-Operator Method for the Efficient Parallel Evaluation...
	[23] Jaedicke, M., Zimmermann, S., Nippl, C., Mitschang, B.: The Implementation of User-Defined T...
	[24] Jaedicke, M.: New Concepts for Parallel Object-Relational Query Processing, Ph.D. Thesis, Un...
	[25] Lohman, G. M.: Grammar-like Functional Rules for Representing Query Optimization Alternative...
	[26] Mattos, N., Deßloch, S., DeMichiel, L., Carey, M.: Object- Relational DB2, IBM White Paper, ...
	[27] Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B. G., Südkamp, N.: SQL/XNF - Processing C...
	[28] O’Connell, W., Ieong, I.T., Schrader, D., Watson, C., Au, G., Biliris, A., Choo, S., Colin, ...
	[29] Olson, M. A., Hong, W. M., Ubell, M., Stonebraker, M.: Query Processing in a Parallel Object...
	[30] Orenstein, J. A.: A Comparison of Spatial Query Processing Techniques for Native and Paramet...
	[31] Patel, J. M., DeWitt, D. J.: Partition Based Spatial-Merge Join. SIGMOD Conf. 1996: 259-270.
	[32] Patel, J., Yu, J. Kabra, N., Tufte, K., Nag, B., Burger, J., Hall, N., Ramasamy, K., Lueder,...
	[33] Pirahesh, H., Mitschang, B. Südkamp, N., Lindsay, B. G.: Composite-Object Views in Relationa...
	[34] Seshadri, P., Livny, M., Ramakrishnan, R.: The Case for Enhanced Abstract Data Types. VLDB 1...
	[35] Stonebraker, M.: Inclusion of New Types in Relational Data Base Systems. ICDE 1986: 262-269.
	[36] Stonebraker, M., Brown, P., Moore, D.: Object-Relational DBMSs, Second Edition, Morgan Kaufm...
	[37] Stonebraker, M.: Implementation of Integrity Constraints and Views by Query Modification. SI...

	User-Defined Table Operators: Enhancing Extensibility for ORDBMS
	Bernhard Mitschang IPVR, University of Stuttgart, Germany Bernhard.Mitschang@informatik.uni-stutt...
	Michael Jaedicke SFB342, Technische Universität München, Germany jaedicke@in.tum.de

