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Abstract

Integrated access to information that is spread
over multiple, distributed, and heterogeneous
sources is an important problem in many sci-
enti�c and commercial domains. While much
work has been done on query processing and
choosing plans under cost criteria, very little is
known about the important problem of incor-
porating the information quality aspect into
query planning.

In this paper we describe a framework for
multidatabase query processing that fully in-
cludes the quality of information in many
facets, such as completeness, timeliness, accu-
racy, etc. We seamlessly include information
quality into a multidatabase query processor
based on a view-rewriting mechanism. We
model information quality at di�erent levels
to ultimately �nd a set of high-quality query-
answering plans.

1 Introduction

Integrated access to information that is spread over
multiple, distributed and heterogeneous sources is an
important problem in many scienti�c and commer-
cial domains. For instance, a current list of molec-
ular biology information systems (MBIS) enumerates
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more than 400 entries [Inf98] of publicly available data
sources. These can be both intensionally and exten-
sionally overlapping, replicated, or disjoint. If we are
interested in data about human genes, which has many
facets, such as related diseases, genomic location, nu-
cleotide sequence etc., we will �nd many potentially
interesting data sources [LLRC98]. Considering them
all is expensive and often infeasible.

Therefore, one of the most important tasks of data
integration in such a setting is the selection of good
data sources. We observed that the main user criterion
for selecting sources by hand is not response time, but
the expected quality of the data. Clearly, MBIS infor-
mation sources store data of varying quality. Molec-
ular biology researchers are particularly sensitive to
criteria such as timeliness, completeness or accuracy
of data. Results become outdated quickly, and the
intrinsic imprecision of many experimental techniques
leads to fuzzy data, where the degree of fuzziness often
varies with the quality standards of the data source.
But the result of the integration process is directly
in
uenced by data quality. For example, a large com-
pany has reported, that up to 60% of the information
integrated to their data warehouse was unusable due
to the poor quality of the input data [Orr98].

In this work we describe a data integration system
based on a global schema. The contents of data sources
are described with respect to this schema in the form
of assertions in a top-down fashion. The salient fea-
ture of our approach is the tight integration of classi-
cal query planning and the assessment and considera-
tion of information quality (IQ). We extend an existing
framework for query planning which is based on rules
that de�ne the semantic relationship between queries.
These rules { and hence queries, not entire sources or
relations { are the main targets for quality assessment.
This level of granularity is necessary since many infor-
mation quality criteria can neither be assigned to an
entire source nor to single classes.
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For instance, consider a source that stores data
about genes and their location on chromosomes. This
source might use two di�erent classes to store the data,
one for gene information and one for the location in-
formation. We now observe that the gene informa-
tion is frequently updated, as is the location informa-
tion for the X chromosome. However, data on loca-
tions of genes on the Y chromosome are treated less
thoroughly. The timeliness of the data of this source
can neither be described with one value for the en-
tire source nor with one value per class. Instead, we
want to assign quality measures to queries : a high IQ
score to queries for X chromosome locations and for
gene information, and a low IQ score to queries for
Y chromosome locations.

Another example is a source which o�ers two di�er-
ent interfaces, for instance a simple WWW interface
and a direct SQL channel. Logical query planning will
consider that the SQL interface might be capable of
answering more complex queries than the WWW in-
terface - planning based on information quality will
capture the update frequency, accuracy, completeness
etc. of the data presented in the two interfaces.

The purpose of our system is to answer a global
query by using only queries that are executable by
some data source. We use a view rewrite mechanism
for this purpose [Les99]. We here improve the logical
planning algorithm by adding two steps: First we re-
duce the overall number of sources in a pre-processing
phase, since certain sources are often worse than others
in all criteria. We ensure not to lose any source that
is unique in some aspect, i.e., the only source storing
data about a certain attribute. Filtering sources is
important since the planning algorithm inevitably has
a time-complexity which is worst-case exponential in
the number of rules and hence indirectly in the num-
ber of sources. Second, we rank all plans produced
in the planning phase by evaluating query-speci�c and
attribute-speci�c IQ scores following the join-structure
of a plan. Eventually we execute plans with the high-
est information quality until a stop criterion is reached:
either some best percentage of plans or until some over-
all quality threshold is reached.

1.1 Related work.

Despite the fact that there is much research showing
the importance of information quality for businesses
and users [WS96, Red98], and that many techniques
have been proposed to improve and maintain quality
of individual information sources [Wan98], we are not
aware of any project that tries to use this quality data
for structured information integration.

Database interoperability and data integration for
molecular biology databases is addressed in a num-
ber of projects, such as OPM [CKM+98] or bioKleisli
[DOTW97]. Usually these are loose federations in the
sense of [SL90], i.e., they do not o�er a global uni�ed

schema, and no project regards information quality.

Several research projects such as the GlOSS sys-
tem [GGMT94] or work reported in [FKL97] focussed
on the problem of source selection for text based in-
formation systems. However, selection is typically
con�ned to criteria used in information retrieval sys-
tems, such as word-counting measures, or to tradi-
tional DBMS criteria such as response time. Within
the DWQ project Jeusfeld et al. proposed a quality
meta model to store IQ metadata [JQJ98]. However,
their approach is guided by data warehouse quality re-
quirements and a data warehouse architecture which
is a special case of our mediator architecture.

Our planning method uses a local-as-view approach
[Ull97] similar to the Information Manifold [LRO96].
Our notion of query correspondence assertions is an ex-
tension to query capability records as described there,
in that it combines local-as-view with global-as-view
modeling. In [Les98] we presented an improved algo-
rithm for the query planning problem in this frame-
work, which we now enhance with quality considera-
tions.

1.2 Example.

We will use the following example throughout the pa-
per. Our mediator is designed to provide information
about genes and is modeled in its global relational
schema (see Figure 1). A gene (Gn) is, very roughly
speaking, a part of the human genome which is related
to some property of humans (see [Rob94] for a thor-
ough discussion on what is a gene from a computer
scientist's point-of-view). Genes which are known to
be related to a disease (Di) are particularly interest-
ing. We are also interested in the sequence (Se) of a
gene, which is essentially a string. Determining a se-
quence is a complicated and costly process. The qual-
ity of the result varies with the institution that carries
out the experiments. We store this as its origin (Or).
Interesting properties of a sequence, for instance the
occurrence of repeats, are stored as annotation (An).
Again, the quality of annotation depends highly on the
e�ort that is invested in its analysis and di�ers from
source to source.

genename (Gn)
cDNAname (Dn)

annotation (An)
origin (Or)
sequence (Se)
genename (Gn)

disease (Di)

chromosome (Ch)
position (Po)
primer1 (P1)
primer2 (P2)

cDNA

Gene

cDNAcluster

Sequence

cDNAname (Dn)

genename (Gn)

Figure 1: Information model of the mediator.
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Most parts of the sequence of a human being do not
contain genes. One possibility to �nd genes is to cre-
ate pieces of so-called complementary DNA (cDNA).
Locating a cDNA on a chromosome requires knowl-
edge of two primers (P1, P2) which are short pieces
of its sequence. Di�erent cDNAs are often overlap-
ping. They are therefore clustered into larger sections.
cDNAclusters are then related to genes.

The mediator can query the �ve di�erent sources
which are listed below. The sources have overlapping
scopes and varying information quality. For their in-
terface relations as exposed by a wrapper see Table 1.
Since this work focuses on planning using information
quality, we make some simpli�cations, such as the use
of object names as global keys.

� Source S1 stores sequences which it copies infre-
quently from other sites, sometimes introducing
parsing errors.

� Source S2 also copies sequence data from other
sites, also infrequently updated, but uses more
sites and is hence more complete.

� Source S3 is the WWW server of an institute which
does its own sequencing. Sequence data is highly
up-to-date, but few annotations are provided.
The server is frequently unavailable.

� Source S4 is a renowned commercial provider of
cDNA data. It provides two interfaces: 1. A free
WWW server with a slow connection. Only the
chromosome location is retrievable. 2. A fast SQL
connection through which clients can retrieve all
attributes, but there is a charge per query. Primer
sequences are available for most of their cDNAs,
chromosome positions only some.

� Source S5 is a directly accessible relational data-
base which stores mapping and sequence data for
genes. The schema (not given here) is di�er-
ent from our global schema. The mediator uses
two queries: one relates genes and sequences, the
other relates genes to their cDNAclusters.

1.3 Structure of this paper.

We describe the logical query planning in Section 2.
Section 3 formally introduces information quality as a
set of properties, which we classify for use in Section 4.
There, we show how IQ plays a decisive role in query
processing and leads to high quality results. We con-
clude in Section 5 and give a brief outlook to future
work.

2 Logical Description of Information
Sources

Our approach is based on a standard wrapper-
mediator architecture (see Figure 2) with the relational

model as canonical data model [Wie92]. Each informa-
tion source is wrapped by one or more source-speci�c
modules, the wrappers, which o�er a relational export
schema and query interface, hiding the particular data
model, access path, and interface technology of the
source. Wrappers are used by a mediator which o�ers
an integrated access through its global schema. In this
section we describe the logical planning of user queries.
Details can be found in [Les98] and [NLF99].

Wrapper Wrapper Wrapper

Mediator

Data source Data source

QCAs

QCAs

QCAs

SQL http CORBA

Figure 2: Principal architecture. The content of
sources is described with sets of QCAs. Sources can
be accessed through one or more interfaces.

To answer queries and to select sources, a media-
tor must know the content of each source with respect
to its own schema. This semantic knowledge is de�ned
by an administrator through query correspondence as-
sertions (QCAs), which are set-oriented equations be-
tween queries against one wrapper and queries against
the mediator schema. We always assume inner-join
semantics. A QCA has the general form

MQ Si:vj  WQ

where MQ (mediator query) is a conjunctive query
against the mediator schema, WQ (wrapper query) is
a conjunctive query against the schema of one wrapper
and Si:vj is a view which must be safe in both direc-
tions, i.e., variables in the view must appear in both
queries. They are called exported variables. Si is the
source that is addressed through the QCA; internally,
the mediator also bears in memory the wrapper that
is used. By de�ning a QCA, the administrator asserts
the intensional equivalence of the results of both MQ
and WQ, restricted to the variables appearing in the
view.

Example. The following simple QCA describes the
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content of S1:

sequence(Gn,Se,Or,An)

 S1:v1(Gn; Se;Or;An)

 seq(Gn,Se,Or,An)

Note that this rule does not mean that S1 is the only
source storing sequence data. Others can contribute
to the global relation as well.

Describing S5 requires two QCAs, one for each of
the two queries used by the mediator:

gene(Gn,Di), sequence(Gn,Se,-,An)

 S5:v1(Gn;Di; Se;An)

 genes(GID,Gn,Di), genepart(GID,PID),

part(PID,Se,An)

gene(Gn,-), cDNAcluster(Gn,Dn),

cDNA(Dn,Ch,-,P1,P2)

 S5:v2(Gn;Dn;Ch; P1; P2)

 clustering(Gn,Dn,CID), cluster(CID,Ch),

primers(Dn,P1,P2)

The �rst QCA could be used for global queries asking
for gene sequences, but not for queries asking for the
origin of gene sequences, since this attribute is not
exported through the view. See Table 1 for the list of
QCAs that describe the content of the di�erent sources
in our example. 2

For a given user query against the mediator schema,
the mediator tries to �nd combinations of QCAs that
are semantically contained [ASU79] in the user query
and hence provably compute only correct results. We
call such combinations plans. In Section 4.2 we de-
scribe our algorithm to �nd all correct plans. The
complete answer to a user query with respect to the
given QCAs is the union over the answers of all correct
plans. For instance, the global extension of sequence
would be the union over the extension of the three
\seq"-queries in sources S1, S2, and S3 (Table 1).

However, there can be prohibitively many correct
plans. Consider a query asking for the sequence of a
speci�c gene. The mediator detects that S5 can be
used for the gene part of the query and S1, S2, and S3
for the sequence-part. This already sums up to three
di�erent plans. Suppose there were two more sources
storing genes, then the number of correct plans would
increase to nine. But if the user was, for instance,
particularly interested in complete annotation, plans
using S3 are not very promising; if highly up-to-date
data is required, S1 could probably be ignored.

Note that query planning as described here is funda-
mentally di�erent from classical query optimization for
a relational DBMS. Our planning �nds plans that are

S1: QCA1 sequence(Gn, Se, Or, An)
 S1:v1(Gn; Se;Or;An)
 seq(Gn, Se, Or, An)

S2: QCA2 sequence(Gn, Se, Or, An)
 S2:v1(Gn; Se;Or;An)
 seq(Gn, Se, Or, An)

S3: QCA3 sequence(Gn, Se, Or, An)
 S3:v1(Gn; Se;Or;An)
 seq(Gn, Se, Or, An)

S4: QCA4 cDNA(Dn, Ch, {, {, {)
 S4:v1(Dn;Ch)
 www(Dn, Ch)

QCA5 cDNA(Dn, Ch, Po, P1, P2)
 S4:v2(Dn;Ch; Po; P1; P2)
 direct(Dn, Ch, Po, P1, P2)

S5: QCA6 gene(Gn, Di), seq.(Gn, Se, -, An)
 S5:v1(Gn;Di; Se;An)
 genes(GID, Gn, Di),

genepart(GID, PID, -),
part(PID, Se, An)

QCA7 gene(Gn, -), cDNAcluster(Gn, Dn),
cDNA(Dn, Ch, -, P1, P2)
 S5:v2(Gn;Dn;Ch; P1; P2)
 clustering(Gn, Dn, Cl, P1, P2),

cluster(Cl,Ch),primers(Dn,P1,P2)

Table 1: QCAs describing the semantics of the seven
possible wrapper queries.

correct, but possibly generate di�erent results, while
classical optimization considers plans that all produce
the same result.

3 Information Quality for Information
Sources

There is no agreed de�nition or measure for informa-
tion quality, except such general notions as \�tness
for use" [TB98]. In this section we de�ne information
quality (IQ) as a set of quality criteria. Information
sources and query plans achieve certain IQ scores in
each criterion. We aggregate the scores to determine a
total IQ score for each source and plan and then rank
sources and plans accordingly. Based on this ranking
we execute only the best plans over the best sources
disregarding the rest.

Wang and Strong have empirically identi�ed �fteen
IQ criteria regarded by data consumers as the most im-
portant [WS96]. They classi�ed the criteria into \in-
trinsic quality", \accessibility, \contextual quality",
and \representational quality". Their framework has
already been used e�ectively in industry and govern-
ment. We adapt this set of criteria to our integration
model and to the scope of molecular biology informa-
tion systems. However, we classify the criteria in a
di�erent manner to re
ect better our planning process.
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3.1 IQ Classi�cation.

It is not always su�cient to assign quality scores to en-
tire sources. Since our planning process already uses
QCAs and not entire sources as the basic level of cor-
respondence, it is natural to assign IQ scores to QCAs.
Furthermore, IQ scores can even apply at an attribute
level, as a source may provide high quality information
in one attribute, but lower quality in another. Thus,
we distinguish three classes of quality criteria:

� Source-speci�c criteria determine the overall
quality of an information source. Criteria of this
category, for instance reputation, apply to all in-
formation of the source, independently of how it
is obtained. IQ scores of this class stay unchanged
as long as the source itself does not dramatically
change.

� QCA-speci�c criteria determine quality as-
pects of speci�c queries that are computable by
a source. Using this �ner granularity, we can e.g.
model di�erent response times for di�erent types
of queries to the same source.

� Attribute-speci�c criteria assess the quality
of an information source in terms of its ability
to provide the attributes of a speci�c user query.
The IQ scores for these criteria depend on the at-
tributes speci�ed in the user query, and hence, the
scores for these criteria can only be determined
at \query time". For instance, we described S3
as having relatively few annotations attached to
the sequences they store. In such cases, we need
to de�ne speci�cally that the completeness of the
annotation attribute in QCA3 is not very high.

3.2 IQ Criteria.

We slightly modi�ed the set of IQ criteria by Wang
and Strong in [WS96], considering the speci�c needs of
biologists and the speci�c properties of existing infor-
mation systems. Some criteria that are not applicable
to our area of discourse or data integration model are
omitted. We added the two criteria reliability and price,
which play a important role for molecular biology in-
formation systems. Table 2 on the next page catego-
rizes and summarizes all our criteria. In accordance
with our integration and planning process we have
found three categories: Source-speci�c, QCA-speci�c,
and attribute-speci�c criteria. The criteria of each cat-
egory are dealt with di�erently. A more detailed de-
scription of each criterion can be found in [NLF99]. As
usual, we assume independence of the criteria.

Depending on the application domain and the struc-
ture of the available sources, the classi�cation of cri-
teria into the three classes may vary. For instance,
if sources charge the same amount of money for each
query, the price criterion should be only source-speci�c.
If, on the other hand, a source provides data with

di�erent update frequencies, the timeliness criterion
should be QCA-speci�c. Finally, if the information
of a source can be partitioned into sets with heavily
diverging IQ scores, the QCAs of this source can be
split according to this partitioning. Each of the new
QCAs will then receive individual IQ scores.

A problem that all projects addressing IQ are fac-
ing, is the ability to assign IQ scores in an objective
manner. Some of the criteria below can not be mea-
sured but are highly subjective, such as source repu-
tation. We suggest user pro�les, i.e., sets of IQ scores
for all subjective criteria that are set-up once by each
user and then used for all of his or her future queries.

4 Finding the Best Sources and Plans

Creating good execution plans for a user query in any
DBMS involves a search space of all plans and a cost
model to compare plans with one another. Building
on this analogy we de�ne the search space in our mul-
tidatabase environment as the set of all plans that an-
swer the user query in a semantically correct manner.
However, these plans produce extensionally di�erent
results as they may involve di�erent sources. Thus, in
general more than one plan should be executed to gain
a response that is as complete as possible. Due to the
heterogeneity of the information sources in quality and
cost we expand the traditional cost model to a quality
model to valuate the plans.

Phase 1

Phase 2

Phase 3Output

Best plans
Plan selection

Planning
with QCAs

with source-
specifc criteria

User Query,

IQ scores

Input
Source selection

plans
All correct

Best
sources

with QCA- and attri-
bute-specific criteria

Sources with QCAs,

Figure 3: Three-Phase plan selection

To this end, we propose a three-phase approach
to quality-driven information integration: In the �rst
phase we reduce computational cost of the second
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Class Criterion Brief explanation

Source- Ease of understanding User grade from 1 to 10, based on presentation of the data.
speci�c Reputation User grade from 1 to 10, based on personal preferences and profes-

sional experience.
Reliability Ranking from 1 to 10, based on accuracy of experimental method

with which the data is produced.
Timeliness Update-frequency measured in days.

QCA-

speci�c

Availability Percentage of time the source is accessible, based on technical
equipment and statistics.

Price Monetary price of a query in US Dollars. We assume a pay-by-
query scheme.

Representational Con-
sistency

Per-query time consumption of the wrapper (for parsing, transla-
tions, etc.), in seconds. The more consistent the presentation of
the source, the less work for the wrapper.

Response Time Average waiting time for responses, measured in seconds.
Accuracy Percentage of objects without data errors such as misspellings, out-

of-range values, etc.
Relevancy Percentage of real world objects represented in the source. When

the total number of real world objects is not known, an approxi-
mation can be used.

Attribute-

speci�c

Completeness Fullness of the relation in each attribute (horizontal �tness). At-
tributes typically have a certain percentage of null-values. Com-
pleteness of a QCA is measured as the sum over the percentages
of non-null values in each attribute, adjusted by a user weighting
stating the importance of each attribute. The weighting is speci�ed
with the user query.

Amount Number of attributes in the response which were not speci�ed in
the user query (vertical �tness).

Table 2: Classi�cation of Quality Criteria for MBISs

phase by �ltering out low quality sources based on
the source-speci�c IQ criteria, continuing with only
the best sources. The second phase uses the QCAs
of the remaining sources to generate all correct plans,
thus establishing the search space for the last phase.
There we explore the entire search space using a qual-
ity model for the remaining IQ criteria and choose the
best plans for execution. Figure 3 gives an overview
of the three phases. For simplicity we do not apply
a search strategy to combine Phases 2 and 3, rather
we materialize the entire search space in Phase 2 and
examine it in Phase 3.

Example. To describe each step in detail we use the
example of Section 2. Table 3 gives IQ scores for each
QCA and each criterion. We are aware of the di�-
culties of numerically expressing certain criteria, but
since not the absolute IQ scores are of importance but
rather their relative values, we believe that our ap-
proach is reasonable. 2

To �nd a ranking based on multiple criteria one
faces two fundamental problems: (i) The range and
units of the IQ scores vary, making it necessary to scale
the scores. (ii) The importance of the criteria may vary
making it necessary to �nd a user-speci�c weighting of

the criteria. Severalmultiple attribute decision making
methods have been proposed to solve these problems
[Nau98]. To �nd the best sources in Phase 1, we use
the \Data Envelopment Analysis" method; to rank the
execution plans in Phase 3 we apply the \Simple Ad-
ditive Weighting" method.

4.1 Phase 1: Source Selection

Our logical planning algorithm can potentially gen-
erate an exponential number of plans in the length
of the user query and the number of QCAs. There-
fore, we thrive to decrease this number before we start
planning. For this purpose, we use the source-speci�c
IQ criteria to \weed out" sources that are qualitatively
not as good as others. Our goal is to �nd a certain
number or percentage of best sources independently
of any user-speci�c weighting. The mediator performs
Phase 1 only once after start-up and does not repeat
it until an information source dramatically changes in
a source-speci�c criterion, or until a new information
source is added to the system.

To evaluate a large amount of sources in a general,
user-independent way, we suggest Data Envelopment
Analysis (DEA) developed by Charnes et al. as a gen-
eral method to classify a population of observations
[CCR78]. For a more detailed description of DEA for
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S1 S2 S3 S4 S5
QCA1 QCA2 QCA3 QCA4 QCA5 QCA6 QCA7

EoU(grade) 5 7 7 8 6
Rep.(grade) 5 5 7 8 7
Reli.(grade) 2 6 4 6 6
Tim.(days) 30 30 2 1 7
Av.(%) 99 99 60 80 99 95 95
Pr.(US $) 0 0 0 0 1 0 0
R.C.(sec) 1 1 .5 .7 .2 .7 .7
R.T.(sec) .2 .2 .2 3 .1 1 1
Ac.(%) 99.9 99.9 99.8 99.95 99.95 99.95 99.95
Relev.(%) 60 80 90 80 80 60 60

Table 3: IQ scores sij of the 7 QCAs. Scores are partly inferred from the informal description in Section 1.2.
Completeness and amount are not contained since they depend on the speci�c user query.

source selection see [NFS98]. The DEA method avoids
the problems of scaling and weighting by de�ning an
e�ciency frontier as the convex hull of the unscaled
and unweighted vector space of IQ dimensions. Fig-
ure 4 shows this vector space for two arbitrary IQ di-
mensions. Sources on the hull are de�ned as \good",
sources below the hull as \non-good".
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IQ dimension 1

Figure 4: Classifying Sources with Data Envelopment
Analysis

Consider the non-good source S in Figure 4. As-
suming constant returns to scale, the virtual but real-
istic source S0 is constructed as a convex combination
of the two neighboring sources on the e�ciency fron-
tier. Clearly the virtual source S0 would be better than
source S, thus S is non-good.

To determine whether a source is on the frontier
or below, we solve the following linear program (LP)
once for each information source Si0 with IQ scores
sij . Please note that the variables of the LP are the
weightings wj .

maximize
IQ(Si0) :=

P
j wj � si0j

subject to
IQ(Si) =

P
j wj � sij � 1 for i = 1; : : : ; n

wj � " > 0 for j = 1; : : : ; 4

The result of each LP is the optimal quality score
IQ(Si0) of the examined source, which is either 1 (on

the frontier = good) or below 1 (below the frontier
= non-good). By �ne-tuning the "-parameter we can
vary the number of good sources to the desired per-
centage. The problem of solving such a linear program
is of polynomial nature. A common way to solve LPs
is the Simplex method, developed by Dantzig [Dan63],
which has an exponential worst case complexity but is
very e�cient on average.

For further planning, we want to completely dis-
regard non-good sources. However, there is a dan-
ger of removing a source that has low IQ but is the
only source providing a certain attribute of the global
schema, e.g., the only source providing chromosome
data should be kept for planning, even if its IQ is
low. Furthermore we must retain sources that ex-
clusively provide certain extensions of an attribute,
e.g., the only source providing data on X chromo-
somes should be kept, even if its IQ is low and other
sources provide chromosome data for other chromo-
somes. Removing such sources from further consid-
eration would \reduce" the global schema. To avoid
suppressing these sources we only weed out non-good
sources, whose QCAs are all contained in QCAs of
good sources. In this way, the global schema remains
intact.

Example. In our example only source S1 is excluded.
All other sources have an IQ score of 1 and will be
further considered in the next two phases. 2

4.2 Phase 2: Plan Creation

The goal of this phase is to �nd all combinations of
QCAs that obtain semantically correct answers to a
given user query. Every QCA de�nes a view on the
global schema. We must �nd combinations of such
views that generate correct tuples. This is equiva-
lent to the problem of answering a query against a
schema using only a set of views on the same schema.
Levy et al. show that this problem is NP-complete for
conjunctive queries and conjunctive view de�nitions
[LMSS95]. In principle, one has to enumerate all com-
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binations of views up to a certain length, and test for
each of these whether it is contained in the original
query. However, the worst-case exponential behavior
of this algorithm only occurs in pathological cases. For
instance, Chekuri and Rajaraman show that the prob-
lem is polynomial if the width of the query is bound
[CR97].

In [Les98] we improved the algorithm by Levy et
al. [LRO96], but for space limitations we here use a
simpler algorithm, similar to the original one.

Example. Imagine a user query UQ asking for all
genes of the X chromosome together with their related
diseases, sequences, origins, and annotations. We an-
swer this query by joining the gene relation with the
sequence relation to obtain origin and annotation. We
must also join the gene relation with the cDNA rela-
tion to ensure the chromosome-condition:

UQ(Gn(100); Di(100); Se(100); Or(30); An(70))

 gene(Gn;Di); sequence(Gn; Se;Or;An);

cDNAcluster(Gn;Dn);

cDNA(Dn;Ch; -; -; -); Ch =0 X 0;

2

The user weightings for each attribute are used to
re
ect how important they are to the user. In the
example, the user expresses that he is interested in
annotation and not as much in the origin of sequences.
The weightings are used to compute the completeness
score of plans later on.

First, for each relation of UQ we determine the set
of QCAs which contain the relation in their mediator
query MQ. We store this set in a bucket [LRO96].
We must also check if the QCAs export all necessary
attributes, i.e., those that are required in UQ.

In a second step we enumerate the cartesian prod-
uct of all buckets and check three conditions for each
combination: (1) if it is satis�able, (2) if it is seman-
tically contained in UQ, and (3) whether it can be
minimized, i.e., whether certain QCAs are redundant.

Example. For the four relations of UQ we construct
the buckets

bucket(gene) = fQCA6g
bucket(sequence) = fQCA2;QCA3g
bucket(cDNAcluster) = fQCA7g
bucket(cDNA) = fQCA4;QCA5;QCA7g

QCA7 does not occur in bucket(gene) because it
does not export the required Di attribute; the same
holds for QCA6 in bucket(sequence) and attribute Or.
QCA1 does not appear in bucket(sequence) since S1
was deleted from the set of sources in Phase 1.

After enumerating the cartesian product of all buck-
ets and checking the three conditions, we end up with

the following plans, each possibly producing a di�erent
set of correct tuples for UQ.

P1 = QCA6 ./ QCA2 ./ QCA7 ./ QCA4

P2 = QCA6 ./ QCA2 ./ QCA7 ./ QCA5

P3 = QCA6 ./ QCA2 ./ QCA7

P4 = QCA6 ./ QCA3 ./ QCA7 ./ QCA4

P5 = QCA6 ./ QCA3 ./ QCA7 ./ QCA5

P6 = QCA6 ./ QCA3 ./ QCA7

2

A plan is executed by computing the wrapper
queries of the QCAs, propagating variables bindings
from QCA to QCA as usual. If a WQ is executed,
the resulting tuples are temporarily stored in an in-
stance of the mediator schema. Missing values are
padded with null or relationship-preserving key values
that are generated automatically. The original query
UQ is computed on this instance after all results are
retrieved.

The mediator also keeps track of the origin of each
value. Therefore, for each tuple that is obtained from
a source, the mediator stores the name of this source
together with the interface that was used in an extra
attribute. This information is presented to the user
together with the �nal result, which allows to further
judge the information quality based on personal pref-
erences.

4.3 Phase 3: Plan Selection

The goal of this phase is to qualitatively rank the plans
of the previous phase and ultimately to restrict plan
execution to some best percentage of plans, or alterna-
tively, to as many plans as necessary to meet certain
cost- or quality-constraints.

Following the DBMS approach of cost models for
query execution plans with a tree-structure, we de-
�ne a quality model for the tree-structured plans cre-
ated in Phase 2. Leaves represent QCAs which deliver
the base data. Those data are subsequently processed
within the inner nodes of the tree, which represent in-
ner join operators performed by the mediator.

Plan selection proceeds in three steps: First the
IQ scores of the QCAs are determined (3a). Then the
quality model aggregates these scores along tree paths
to gain an overall quality score at the root of the tree,
which forms the score of the entire plan (3b). Finally,
this score is used to rank all plans (3c).

4.3.1 Phase 3.a: QCA Quality.

An IQ vector of length 8 is attached to each QCA,
i.e., one dimension for each non-source-speci�c crite-
rion. QCA-speci�c criteria have �xed scores for each
QCA. They are determined only once or whenever
the corresponding source undergoes major changes.
The scores of the attribute-speci�c criteria complete-
ness and amount on the other hand are recalculated
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for each user-query. The general IQ vector for QCAs
is (abbreviated):

IQ(QCAi) := (si5; : : : ; si11)

= (Av; Pr;RC;RT;Ac;Rel; Com(UQ); Am(UQ))

Example. We determine the following IQ vectors for
the QCAs participating in plans P1 through P6. The
�rst six elements of each vector are taken from Table 3,
the remaining two elements completeness and amount
are calculated using the attribute set and attribute
weighting of the user query UQ of Section 4.2.

IQ(QCA2) = (99; 0; 1; :2; 99:9; 80; 52:8; 0)
IQ(QCA3) = (60; 0; :5; :2; 99:8; 90; 49; 0)
IQ(QCA4) = (80; 0; :7; 3; 99:95; 80; 20; 1)
IQ(QCA5) = (99; 1; :2; :1; 99:95; 80; 20; 4)
IQ(QCA6) = (95; 0; :7; 1; 99:95; 60; 48:2; 0)
IQ(QCA7) = (95; 0; :7; 1; 99:95; 60; 38; 3)

2

Up to this point, each leaf node of each plan-tree
is assigned an IQ vector. However, we have no total
IQ vectors for the plans yet. These scores are obtained
through the quality model in the next phase.

4.3.2 Phase 3.b: Plan Quality.

Corresponding to the idea of cost models for DBMSs,
we have designed a quality model to calculate the to-
tal IQ score of a plan. Since we only consider join-
operators, a plan is a binary tree with QCAs as leaves
and join operators as inner nodes. The IQ vector for
an inner join node is calculated as a combination of
the IQ vectors of its left and right child nodes l and r,
as shown in Equation (1).

IQ(l ./ r) := IQ(l) � IQ(r)

= (sl5 � sr5; : : : ; sl12 � sr12) (1)

Figure 5 shows the plan tree for P3 with its aggre-
gated IQ vectors. In each criterion the IQ scores sij are
computed with the �-operator (or \merge function")
which is resolved according to Table 4. Since all merge
functions in Table 4 are both commutative and asso-
ciative, a change of the join execution order within a
plan has no e�ect on its IQ score. This is desirable,
since the user perceives the quality of the query re-
sult and not the quality of how this result is obtained.
Furthermore, we do not consider the execution time of
joins performed by the mediator since we assume that
execution time is dominated by the response times of
the sources.

QCA2QCA6

QCA7
(94.05,0,1,1,99.85,48,54.86,0)

(99,0,1,.2,99.9,80,52.8,0)(95,0,.7,1,99.95,60,48.2,0)

(95,0,.7,1,99.95,60,38,3)

(89.35,0,1,1,99.8,28.8,76.06,3)

Figure 5: Merging IQ vectors in join nodes in plan P3

Example. The six plans have aggregated IQ vectors

IQ(P1) = (71:00; 0; 1; 3; 99:75; 23:04; 78:06; 4)
IQ(P2) = (88:45; 1; 1; 1; 99:75; 23:04; 78:06; 7)
IQ(P3) = (89:35; 0; 1; 1; 99:80; 28:80; 76:06; 3)
IQ(P4) = (43:32; 0; :7; 3; 99:65; 25:92; 75:94; 4)
IQ(P5) = (53:61; 1; :7; 1; 99:65; 25:92; 75:94; 7)
IQ(P6) = (54:50; 0; :7; 1; 99:70; 32:40; 73:94; 3)

2

Up to this point, the scores are neither scaled nor
weighted, making a comparison or ranking of plans
impossible.

4.3.3 Phase 3.c: Plan Ranking.

The IQ scores of the vectors must be scaled, weighted,
and compared to �nd a total IQ score for each plan
and thus a ranking of the plans. To this end, we use
the Simple Additive Weighting (SAW) method. It is
one of the simplest but well perceived decision making
methods, in that its ranking results are usually very
close to results of more sophisticated methods [Nau98].
The method is comprised of three basic steps: scale
the scores to make them comparable, apply the user
weighting, and sum up the scores for each source.

The IQ scores of the criteria availability, accuracy,
relevancy, and completeness are scaled according to
Equation (2) below, where smin

j and smax
j are the min-

imum and maximum score in criterion j respectively.
The criteria price, representational consistency, response
time, and amount are negative criteria, i.e., the higher
the score, the worse the quality. Thus, they are scaled
according to Equation (3). With these scaling func-
tions all scores are in [0; 1], the best score of any cri-
terion obtains the value 1, and the worst score of any
criterion obtains the value 0. This property assures
comparability of scores across di�erent criteria and in
di�erent ranges.

vij :=
sij � smin

j

smax
j � smin

j

(2)

vij :=
smax
j � sij

smax
j � smin

j

(3)
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Criterion Merge function \�" Brief explanation

Availability sl5 � sr5 Probability that both sites are accessible.
Price sl6 + sr6 Both queries must be payed.
Repr. Consistency max[sl7; sr7] Wrapper integrates sources in parallel.
Response Time max[sl8; sr8] Both children are processed in parallel.
Accuracy sl9 � sr9 Probability that left and right side do not contain an error.
Relevancy sl10 � sr10 Probability for join match.
Completeness sl11 + sr11 � sl11 � sr11 Probability that either left or right side has non-null value (op-

erations at attribute level).
Amount sl12 + sr12 All unnecessary attributes must be dealt with.

Table 4: Merge functions for Quality Criteria

For the weighting step SAW requires a weight-
vector W = (w1; : : : ; wm) speci�ed by the user such
that
Pm

j=1 wj equals 1. The weight-vector re
ects
the importance of the individual criteria to the user.
We store the user-speci�c weight-vectors in a pro�le.
Hence, the inclusion of quality reasoning is completely
transparent to a user once the system is set up, i.e.,
once all QCAs and sources have their IQ scores. The
only exception is the possibility to weight speci�c at-
tributes of a query. However, we believe that most
users would appreciate this as a bene�t rather than a
burden.

For a plan Pi the overall quality score IQ(Pi) is cal-
culated as the weighted sum according to Equation (4):

IQ(Pi) :=

mX

j=1

wj � vij (4)

The �nal IQ score of the plan again is in [0; 1] and gives
the ranking position of the plan. After the IQ scores
for all plans have been calculated, we choose and exe-
cute a certain number of best plans.

Example. With the indi�erent weighting vectorW =
( 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
; 1
8
) where all criteria have equal im-

portance, the following IQ scores are obtained (in
ranking order):

IQ(P3) = :7663 (1)

IQ(P6) = :697 (2)

IQ(P1) = :5023 (3)

IQ(P2) = :4559 (4)

IQ(P4) = :4429 (5)

IQ(P5) = :3771 (6)

A user preferring quick response time at any price,
might specify the weightingW = ( 1

8
; 0
8
; 1
8
; 2
8
; 1
8
; 1
8
; 1
8
; 1
8
)

obtaining a ranking of the plans in the order P3, P6,
P2, P5, P1, P4. Plan P1 is ranked lower than before
because it includes QCA4 which has a very high re-
sponse time. Despite its high price, Plan P2 is ranked
higher than before since it has a low response time. 2

With the exception of the completeness criterion,
all merge functions decrease the aggregated IQ scores

with each additional QCA. Thus, there is a natural
tendency favoring short plans, i.e., plans consisting of
few QCAs. Not only does this re
ect the in
uence of
the criteria, it also conforms to intuition: Biologists
will probably not be happy to accept results where
the four attributes of the query are generated in four
di�erent sources.

The complexity of Phase 3 is linear in the number
of considered plans times the maximum length of the
plans. This length is in turn bounded by the number
of relations in the user query.

5 Conclusion and Outlook

We have proposed a novel method to the well known
and important, yet frequently ignored problem of con-
sidering information quality in information integra-
tion. This problem has not, to our best knowledge,
been adequately addressed before. Our results o�er a
solution to the notorious problem of information over-
load, based on a �ltering of important information
with the help of a rich set of quality criteria. Us-
ing these criteria quality-driven information integra-
tion identi�es high quality plans which produce high
quality results.

Clearly, the selection of quality criteria is a subjec-
tive task. Yet our method is by no way restricted to
the criteria we used in this paper. We have described
merge functions for each criterion which calculate the
quality of the information in a join result. Due to
the associativity of these merge-functions, we deter-
mine the quality of a result independently of how this
result is created. This freedom will allow us to in-
clude binding patterns in the QCAs, which often dic-
tate a speci�c join order. Furthermore, a traditional
post-optimization can be performed to �nd the best
join order of the chosen plans without in
uencing their
quality score.

Future work will also include a tighter cooperation
of the plan creation phase and plan selection phase:
Information quality scores can be used in a branch &
bound fashion to dramatically improve planning time.
Lifting our current model to a higher level, we plan
not only to calculate the quality of plan results, but
also the quality of the union of several plans to �nd the
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best combination of plans to execute. We believe that
the same principles of calculating and merging quality
scores apply.
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