
Explaining differences in multidimensional aggregates

Sunita Sarawagi∗

School of Information Technology
Indian Institute of Technology, Bombay

Mumbai 400076, INDIA
sunita@cs.berkeley.edu

Abstract

Our goal is to enhance multidimensional
database systems with advanced mining prim-
itives. Current Online Analytical Processing
(OLAP) products provide a minimal set of
basic aggregate operators like sum and aver-
age and a set of basic navigational operators
like drill-downs and roll-ups. These operators
have to be driven entirely by the analyst’s in-
tuition. Such ad hoc exploration gets tedious
and error-prone as data dimensionality and
size increases. In earlier work we presented
one such advanced primitive where we pre-
mined OLAP data for exceptions, summarized
the exceptions at appropriate levels, and used
them to lead the analyst to the interesting re-
gions.
In this paper we present a second enhance-
ment: a single operator that lets the ana-
lyst get summarized reasons for drops or in-
creases observed at an aggregated level. This
eliminates the need to manually drill-down for
such reasons. We develop an information the-
oretic formulation for expressing the reasons
that is compact and easy to interpret. We de-
sign a dynamic programming algorithm that
requires only one pass of the data improv-
ing significantly over our initial greedy algo-
rithm that required multiple passes. In ad-
dition, the algorithm uses a small amount of
∗Part of the work was done when the author was at IBM

Almaden Research Center, USA

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

memory independent of the data size. This
allows easy integration with existing OLAP
products. We illustrate with our prototype
on the DB2/UDB ROLAP product with the
Excel Pivot-table frontend. Experiments on
this prototype using the OLAP data bench-
mark demonstrate (1) scalability of our algo-
rithm as the size and dimensionality of the
cube increases and (2) feasibility of getting in-
teractive answers even with modest hardware
resources.

1 Introduction

Online Analytical Processing (OLAP) [Cod93, CD97]
products [Arb, Sof] were developed to help analysts do
decision support on historic transactional data. Logi-
cally, they expose a multidimensional view of the data
with categorical attributes like Products and Stores
forming the dimensions and numeric attributes like
Sales and Revenue forming the measures or cells of the
multidimensional cube. Dimensions usually have asso-
ciated with them hierarchies that specify aggregation
levels. For instance, store name → city → state is a
hierarchy on the Store dimension and UPC code →
type → category is a hierarchy on the Product di-
mension. The measure attributes are aggregated to
various levels of detail of the combination of dimen-
sion attributes using functions like sum, average, max,
min, count and variance. For exploring the multidi-
mensional data cube there are navigational operators
like select, drill-down, roll-up and pivot conforming to
the multidimensional view of data. In the past most
of the effort has been spent on expediting these sim-
ple operations so that the user can interactively invoke
sequences of these operations. A typical such analysis
sequence proceeds as follows: the user starts from an
aggregated level, inspects the entries visually maybe
aided by some graphical tools, selects subsets to in-
spect further based on some intuitive hypothesis or
needs, drills down to more detail, inspects the entries
again and either rolls up to some less detailed view or
drills down further and so on.

42

The above form of manual exploration can get te-
dious and error-prone for large datasets that com-
monly appear in real-life. For instance, a typical
OLAP dataset has five to seven dimensions, an av-
erage of three levels hierarchy on each dimension and
aggregates more than a million rows [Cou]. The an-
alyst could potentially overlook significant discoveries
due to the heavy reliance on intuition and visual in-
spection.

This paper is part of our continued work on taking
OLAP to the next stage of interactive analysis where
we automate much of the manual effort spent in anal-
ysis. Recent work in this direction attempt to enhance
OLAP products with known mining primitives: deci-
sion tree classifiers to find the factors affecting prof-
itability of products is used by Information discovery
Inc [Dis] and Cognos [Cor97a], clustering customers
based on buying patterns to create new hierarchies is
used in Pilot Software [Sof]; and association rules at
multiple levels of aggregation to find progressively de-
tailed correlation between members of a dimension is
suggested by Han et al [HF95]. In all these cases, the
approach has been to take existing mining algorithms
and integrate them within OLAP products. Our ap-
proach is different in that we first investigate how and
why analysts currently explore the data cube and next
automate them using new or previously known oper-
ators. Unlike the batch processing of existing mining
algorithms we wish to enable interactive invocation so
that an analyst can use them seamlessly with the ex-
isting simple operations.

In [SAM98] we presented one such operation that
was motivated with the observation that a significant
reason why analysts explore to detailed levels is to
search for abnormalities or exceptions in detailed data.
We proposed methods for finding exceptions and used
them to guide the analysts to the interesting regions.

In this paper we seek to automate another area
where analysts spend significant manual effort explor-
ing the data: namely, exploring reasons for why a cer-
tain aggregated quantity is lower or higher in one cell
compared to another. For example, a busy executive
looking at the annual reports might quickly wish to
find the main reasons why sales dropped from the third
to the fourth quarter in a region. Instead of digging
through heaps of data manually, he could invoke our
new diff operator which in a single step will do all
the digging for him and return the main reasons in a
compact form that he can easily assimilate.

We explore techniques for defining how to answer
these form of “why” queries, algorithms for efficiently
answering them in an ad hoc setting and system issue
in integrating such a capability with existing OLAP
products.

Product Platform Geography Year
Product name (67) Platform name (43) Geography (4) Year (5)
 Prod_Category (14) Plat_Type (6)
 Prod_Group (3) Plat_User (2)

Figure 1: Dimensions and hierarchies of the software rev-
enue data. The number in brackets indicate the size of that
level of the dimension.

Plat_User (All)

Prod_Category (All)
Product (All)
Plat_Type (All)
Prod_Group (All)

Platform (All)

Sum of Revenue Year

Geography 1990 1991 1992 1993 1994
Asia/Pacific 1440.24 1946.82 3453.56 5576.35 6309.88

Rest of World 2170.02 2154.14 4577.42 5203.84 5510.09

United States 6545.49 7524.29 10946.87 13545.42 15817.18

Western Europe 4551.90 6061.23 10053.19 12577.50 13501.03

Figure 2: Total revenue by geography and year. The two
boxes with dark boundaries (’Rest of World’, year 1990
and 1991) indicate the two values being compared.

1.1 Contents

We first demonstrate the use of the new diff oper-
ator using a real-life dataset. Next in Section 2 we
discuss ways of formulating the answers. In Section 3
we present algorithms for efficiently finding the best
answer based on our formulation. In Section 4 we
describe our overall system architecture and present
experimental results.

1.2 Illustration

Consider the dataset shown in Figure 1 with four di-
mensions Product, Platform, Geography and Time
and a three level hierarchy on the Product and Plat-
form dimension. This is real-life dataset obtained from
International Data Corporation (IDC) [Cor97b] about
the total yearly revenue in millions of dollars for dif-
ferent software products from 1990 to 1994. We will
use this dataset as a running example in the paper.

Suppose a user is exploring the cube at the
Geography×Year plane as shown in Figure 2. He no-
tices a steady increase in revenue in all cases except
when going from 1990 to 1991 in ’Rest of the World’.

With the existing tools the user has to find the rea-
son for this drop by manually drilling down to the nu-
merous different planes underneath it, inspecting the
entries for big drops and drilling down further. This
process can get rather tedious especially for the typi-
cally larger real-life datasets. We propose to use the
new operator for finding the answer to this question
in one step. The user simply highlights the two cells
and invokes our “diff” module. The result as shown
in Figure 3 is a list of at most 10 rows (the number 10

43

PRODUCT PLAT_USERPLAT_TYPEPLATFORM YEAR_1990 YEAR_1991RATIO ERROR
(All)- (All)- (All) (All) 1620.02 1820.05 1.12 34.07
Operating Systems Multi (All)- (All) 253.52 197.86 0.78 23.35
Operating Systems Multi Other M. Multiuser Mainframe IBM 97.76 1.54 0.02 0.00
Operating Systems Single Wn16 (All) 94.26 10.73 0.11 0.00
*Middleware & Oth.UtilitiesMulti Other M. Multiuser Mainframe IBM 101.45 9.55 0.09 0.00
EDA Multi Unix M. (All) 0.36 76.44 211.74 0.00
EDA Single Unix S. (All) 0.06 13.49 210.78 0.00
EDA Single Wn16 (All) 1.80 10.89 6.04 0.00

Figure 3: Reasons for the drop in revenue marked in Figure 2.

Geography (All)
Plat_User (All)
Prod_Group Soln

Sum of Revenue Year

Prod_Category 1990 1991 1992 1993 1994
Cross Ind. Apps 1974.57 2484.20 4563.57 7407.35 8149.86

Home software 293.91 574.89
Other Apps 843.31 1172.44 3436.45

Vertical Apps 898.06 1460.83 2826.90 7947.05 8663.39

Figure 4: Total revenue for different categories in product
group “Soln”. We are comparing the revenues in year 1992
and 1993 for product category “Vertical Apps”.

is configurable by user) that concisely explain the rea-
sons for the drop. In the figure the first row shows that
after discounting the rows explicitly mentioned below
it as indicated by the “-” symbol after (All), the overall
revenue actually increased by 10%. The next four rows
(rows second through fifth) identify entries that were
largely responsible for the large drop. For instance, for
“Operating systems” on “Multiuser Mainframe IBM”
the revenue decreased from 97 to 1.5, a factor of 60
reduction and for “Operating systems” and all plat-
forms of type “Wn16” the total revenue dropped from
94.3 to 10.7. The last three rows show cases where
the revenue showed significantly more than the 10%
overall increase indicated by the first row. The role of
the RATIO and ERROR columns in Figure 3 will be
explained in Section 2.

Similarly, a user might be interested in exploring
reasons for sudden increases. In Figure 4 we show the
total revenue for different categories in the Product
group ’Soln’. The user wants to understand the reason
for the sudden increase in revenue of “Vertical Apps”
from 2826 in 1992 to 7947 in 1993 — almost a factor of
three increase. For the answer he can again invoke the
diff operator instead of doing multiple drill downs
and selection steps on the huge amount of detailed
data. The result is the set of rows shown in Figure 5.
From the first row of the answer, we understand that
overall the revenue increased by a modest 30% after
discounting the rows underneath it. The next set of
rows indicate that the main increase is due to prod-
uct categories Manufacturing-Process, Other vertical
Apps, Manufacturing-Discrete and Health care in var-

ious geographies and platforms. The last two rows
indicate the two cases where there was actually a drop
that is significant compared to the 30% overall increase
indicated by the first row.

These form of answers helps the user to quickly
grasp the major findings in detail data by simply glanc-
ing at the few rows returned.

2 Problem Formulation

In this section we discuss different formulations for
summarizing the answer for the observed difference.

The user poses the question by pointing at two ag-
gregated quantities va and vb in the data cube and
wishes to know why one is greater or smaller than the
other. Both va and vb are formed by aggregating one or
more dimensions. Let Ca and Cb denote the two sub-
cubes formed by expanding the common aggregated di-
mensions of va and vb. For example, in Figure 2 va de-
notes the revenue for cell (All platforms, All products,
’Rest of world’, 1990) and vb denotes the total revenue
for cell (All platforms, All products, ’Rest of world’,
1991), Ca denotes the two-dimensional subcube with
dimension < Platform, Product > for Year=1990 and
Geography=’Rest of world’ and Cb denotes the two-
dimensional subcube with the same set of dimensions
for Year=1991 and Geography=’Rest of world’. In this
example, the two cells differ in only one dimension. We
can equally well handle cases where the two cells differ
in more than one dimension as long as we have some
common dimensions on which both the cells are aggre-
gated. The answer A consists of a set of rows that best
explains the observed increase or decrease at the ag-
gregated level. There is a limit N (configurable by the
user) on the size of A. The user sets this limit based
on the number of rows the user is willing to inspect.
We expect the value of N to be small around a dozen
or so.

A simple approach is to show the large changes in
detailed data sorted by the magnitude of the change
(detail-N approach). The obvious problem with this
simple solution is that the user could still be left with
a large number of entries to eye-ball. In Figure 6 we
show the first 10 rows obtained by this method for the
difference query in Figure 4. This detail-N approach
explains only 900 out of the total difference of about
5000. In contrast, with the answer in Figure 5 we could

44

PRODUCT GEOGRAPHYPLAT_TYPE PLATFORM YEAR_1992 YEAR_1993 RATIO ERROR
(All)- (All)- (All)- (All) 2113.0 2763.5 1.3 200.0
Manufacturing - Process (All) (All) (All) 25.9 702.5 27.1 250.0
Other Vertical Apps (All)- (All)- (All) 20.3 1858.4 91.4 251.0
Other Vertical Apps United States Unix S. (All) 8.1 77.5 9.6 0.0
Other Vertical Apps Western EuropeUnix S. (All) 7.3 96.3 13.2 0.0
Manufacturing - Discrete (All) (All) (All) 1135.2 0.0
Health Care (All)- (All)- (All)- 6.9 820.4 118.2 98.0
Health Care United States Other M. Multiuser Mainframe IBM1.5 10.6 6.9 0.0
Banking/Finance United States Other M. (All) 341.3 239.3 0.7 60.0
Mechanical CAD United States (All) (All) 327.8 243.4 0.7 34.0

Figure 5: Reasons for the increase in revenue marked in Figure 4.

PRODUCT GEOGRAPHY PLATFORM YEAR_1992YEAR_1993RATIO
Other Vertical Apps Western Europe Multiuser Minicomputer OpenVMS 99.9
Other Vertical Apps Asia/Pacific Single-user MAC OS 92.5
Other Vertical Apps Rest of World Multiuser Mainframe IBM 88.1
Other Vertical Apps Western Europe Single-user UNIX 7.3 96.3 13.2
Other Vertical Apps United States Multiuser Minicomputer Other 97.2
Other Vertical Apps United States Multiuser Minicomputer OS/400 99.5
Other Vertical Apps Asia/Pacific Multiuser Minicomputer OS/400 99.6
EDA Western Europe Multiuser UNIX 192.6 277.8 1.4
Manufacturing - DiscreteUnited States Multiuser Mainframe IBM 88.4
Health Care United States Multiuser Minicomputer Other 88.2

Figure 6: The top ten rows of the detail-N approach.

Product Manufacturing - Process
Geography (All)

Sum of Revenue Year

Plat_Type 1992 1993
Other M. 9.86 472.84

Other S. 0.02 21.88

Unix M. 7.45 105.09

Unix S. 1.31 16.89

Wn16 3.27 85.38

Wn32 0.38

Figure 7: Summarizing rows with similar change.

explain more than 4500 of the total difference. The
main idea behind this more compact representation is
summarizing rows with similar changes. In Figure 5
we have only one row from the detailed level the rest
are all from summarized levels. By aggregating over
Platforms and Geography with similar change, a more
compact representation of the change is obtained. For
instance, in Figure 7 we show the details along differ-
ent “Platforms” for the second row in the answer in
Figure 5 (“Manufacturing Process”, ALL, ALL). No-
tice that all the different platform types show similar
(though not exact) increase when going from 1992 to
1993. Hence, instead of listing them separately in the
answer, we list a common parent of all these rows.
The parent’s ratio, shown as the RATIO column in
Figures 3 and 5, is assumed to hold for all its chil-
dren. The error incurred in making this assumption is

indicated by the last column in the figures. In these ex-
periments the error was calculated by taking a square
root of the sum of squares of error of each detailed row.
Notice that in both cases, this quantity is a small per-
cent of the absolute difference of the values compared.

The compaction can be done in several different
ways. The challenge is in choosing a method that
on the one hand gives higher weightage to changes of
larger magnitude but on the other hand allows sum-
marization of rows which have almost similar changes.
If we report everything at the most detailed level the
error due to summarization is 0 but the coverage is
also limited. Whereas if we aggregate heavily we can
perhaps explain more of the change but the error due
to summarization will also be high. We developed a in-
formation theoretic model for cleanly capturing these
tradeoffs.

2.1 The model

Imagine a sender wishing to transmit the subcube Cb

to a user (receiver) who already knows about subcube
Ca. The sender could transmit the entire subcube Cb

but that would be highly redundant because we expect
a strong correlation between the values of correspond-
ing cells in Ca and Cb. A more efficient method is to
send a compact summary of the difference. The N -
row answer A is such a summary. A consists of rows
from not only detailed but also aggregated levels of
the cube. With each aggregated row in the answer,
we associate a ratio r that indicates to the user that
everything underneath that row had the same ratio

45

unless explicitly mentioned otherwise. For instance,
in Figure 5 all Geography and Platforms for product
category Health-Care are assumed to have a ratio of
118 except for those in ’United States’ and Platform
’Multi-user mainframe’. We need to find A such that
a user reconstructing Cb from Ca and A will incur the
smallest amount of error. Intuitively, we can achieve
this by listing rows that are significantly different than
their parents and aggregating rows that are similar
such that the error due to summarization is minimized.
In information theory this error is characterized as the
number of bits needed to transmit Cb to the user that
already has Ca and A. The number of bits are calcu-
lated using the classical Shannon’s [CT91] information
theorem which states that data ~x can be encoded using
a model M that the sender and receiver have agreed
on in L(~x|M) ≈ − log Pr[~x|M] bits where Pr[~x|M] de-
notes the probability of observing ~x given the model.
In our case, data ~x is Cb, the model is Ca and A and
the number of bits is calculated as follows:

For each detailed row v in Cb

If it already appears in A
the probability is 1 and cost(v) = 0.

Else,
Find its most immediate parent p ∈ A
Let r be the ratio associated with p
The expected value vb of row v in Cb is rva.
Assume a suitable probability distribution (as
discussed in Section 2.1.1) centered around rva

cost(v) = − log Pr[vb|rva].
Increment the total number of bits by cost(v)

The ratio r associated with any p ∈ A is calculated
as follows. When no child of p is in A then the ratio
r is pb/pa. When a child of p is included in A we
remove the contribution of the child to further refine
the estimate of the ratio for children not included in
A.

The goal of the sender is then to pick an answer
A that minimizes the total data transmission cost
− log Pr[Cb|Ca,A].

In the above cost formulation we have ignored the
cost of transmitting the answer set of size N since we
assume that it is a user supplied parameter. We can
easily include the cost of transmitting A by assuming a
suitable model for transmitting each of its rows. One
such model is to sum up the number of bits needed
to transmit each attribute of each row as follows: For
each attribute find the cardinality of the correspond-
ing dimension of Ca. Since Ca is known to the user we
only need to transmit an index of the required member.
The number of bits needed for the index is: log(ni +1)
where ni denotes the cardinality of the ith dimension
of cube Ca and “+1” is to add the possibility of sending
“(All)”. Once the number of bits needed for calculat-
ing an answer set of size N is known, we can select
the value of N that leads to minimum total number
of bits. Such an approach would be particularly useful

when the user is at a loss about picking the value of
the parameter N . In such a case, the algorithm could
start with a suitably large value of N and finally chop
the answer at a value of N for which the total cost is
minimized.

2.1.1 Probability function

We use the probability distribution function as a
means to convert the difference between the actual
value vb and the expected value rva into number of
bits. In real-life it is hard to find a probability dis-
tribution function that the data follows perfectly. We
found that it is not critical to choose a perfect model
for the data. In choosing a function we only need to
make sure that changes that are significant (contribute
large amounts to the total) get more number of bits
for the same ratio and rows with slightly different ra-
tios can be easily summarized. For instance, if one row
changes from 1 to 10 and another from 100 to 1000, the
second change should be considered more interesting
even though the ratio of change is the same. However,
simply looking at magnitude is not enough because
large numbers with even slightly different ratios would
have large difference and it should still be possible to
summarize them to enable inclusion of other changes
that could be slightly smaller in magnitude but have
much larger ratios.

For measures representing counts such as “total
units sold” the Poisson distribution (with mean rva)
provides a good approximation because we can think
of each transaction as contributing a count of 1 or 0 to
the measure independently of other transactions and
thus forming a binomial distribution which we can ap-
proximate to Poisson when the number of transactions
is large [Ham77]. For other measures, the normal dis-
tribution is often a safe choice and is used extensively
in business analysis when more specific information
about the data is lacking [Ham77].

2.1.2 Missing values

Another important issue closely tied to the choice of
the probability distribution function is the treatment
of missing values. These are cells that are empty in
subcube Ca but not in Cb and vice versa. For example,
for the cubes in Figure 2 there were products that
were sold in 1990 but were discontinued in 1991. In
most datasets we considered missing values occurred
in abundance, hence it is important to handle them
well.

One option is to treat a missing value like a very
small constant close to zero. The trick is to choose
a good value of the constant. Choosing too small a
replacement for the missing values in Ca will imply a
large ratio and even small magnitude numbers will be
reported as interesting. Also rows with missing values
in Ca and different values vb in Cb will have different
ratios. For instance, for a product newly introduced in

46

1991 all platforms will have a missing value in 1990. By
replacing that value with the same constant we will get
different ratios for different platforms and thus cannot
easily summarize them into a single row.

A better solution is to replace all missing values as
a constant fraction F of the other value i.e., if va is
missing than replace va with vb/F . The main issue
then is picking the right ratio. Too large a ratio will
cause even small values of vb to appear surprising as
shown in the example below for N = 3. When F =
10000 the answer picked is this.

(All)- (All)- 749 719
Western Europe (All)- - 3
Western Europe Multiuser UNIX 96 5

The second row in the answer (where va is missing
and vb is 3) is clearly an inferior choice compared to
the row below:

United States Multiuser Mainframe IBM 60 12

We handle missing values in a special manner.
Whenever we are summarizing rows all of which have
missing values of va we assume an ideal summarization
and assign a cost of 0 due to error. Otherwise, we
assume a suitably small value of va depending on the
data distribution. For Poisson distribution we use the
Laplace correction [Lap95] and assign va = 1/(vb + 1).
For normal distribution we let va = 0 but use a
variance of vb/2.

2.2 Alternative formulations

We considered a few other alternatives in addition to
the detail-N formulation discussed earlier and the in-
formation theoretic approach that we finally used.

The first alternative was based on the same struc-
ture of the answer but used a different objective func-
tion. It was formulated as a bicriteria optimization
problem by associating each aggregated row with two
quantities: a contribution term c that indicated what
percent of the observed increase or decrease is ex-
plained by that row and a sum of squares of error
term e that measured how much the ratio of its ex-
cluded children tuples differed from its ratio. The goal
then was to find an answer with high total contribu-
tion and low total error. This alternative turned out
to be unsatisfactory for several reasons. First, it was
hard to formalize the goal. One way was to let the user
place a bound on the error and choose an answer that
maximizes total contribution within that error bound.
But then it was unclear how the user would specify a
good error bound. Second, choosing a row based on
high contribution did not allow compact summariza-
tion of the form: “except for a single tuple t revenue
for all others dropped uniformly by x%” because tuple
t actually has a negative contribution and its role in
the answer is to correct the error of its parent.

The second alternative we considered used a differ-
ent structure of the answer. Instead of a flat set of rows
it output a tiny decision tree where tuples with sim-

ilar ratios were grouped within the same node of the
tree. The problem with this approach is that the tree
attempts to describe the entire data rather than pick
out key summaries as we do in the present approach.
This causes the description length to increase.

3 Algorithm

Finding an efficient algorithm for this problem is chal-
lenging because we wish to use the diff operator in-
teractively and it is impossible to exhaustively solve
in advance for all possible pair of cells that the user
might possibly ask. Also to allow easy integration with
existing OLAP engines we did not want to use special
purpose storage structures or indices.

3.1 Greedy algorithm

The first cut greedy algorithm that we designed was
as follows:

Compute all possible aggregates on concatenation of
Ca and Cb i.e., cube(Ca|Cb).

Initialize A with the top-most row of cube(Ca|Cb).
This forms the first row of A as shown in Figure 3.
For i = 2 to N

add to A the row from cube(Ca|Cb) which
leads to greatest reduction in number of bits.

There are two main problems with the above greedy
algorithm. First, it requires as many passes of the data
as the answer size N . Second, there are some common
cases where it fails to get the optimal answer. We
illustrate two such cases.

Consider the table in Figure 8 showing the revenues
for different product categories for the data in Figure 1.
We want to find the reasons for the revenue jumping
from 9.2 million in 1992 to 287 million in 1994 for the
category “System mgmt.” . Suppose N = 3 for this
example. The answer returned by the greedy algo-
rithm is shown in Figure 10. According to the top-
most row of the answer all Products except ’Storage
Management’ and ’Automated Operations’ have a ra-
tio of 16.3 between their values in 1992 and 1994. In
Figure 9 we show the data at the next level of detail
by drilling down to the Product dimension. We no-
tice that for most products va is missing. Hence, the
ratio of 16.3 introduces error for most Products like
“Security Management” for which the ratio is almost
infinity. A more forward looking algorithm could single
out the only two products ’Performance Management’
and ’Problem Management’ for which the ratio is fi-
nite with the result that the final ratio of the top-row
would be infinite as shown in Figure 11. With this
solution, the total error is close to zero according to
our model for handling missing values (Section 2.1.2).
The greedy algorithm fails because it cannot predict
the final ratio of the top-most row after removing the
contribution of its divergent children tuples that finally

47

Platform (All)
Geography (All)
Product (All)

Sum of Revenue Year
Category 1992 1993 1994
Develop. tools 912.100 1287.070 1793.076
Info. tools 5.807 6.705 33.420
Office Apps 38.405 53.991 97.821
System mgmt. 9.233 278.612

Figure 8: Comparing revenues in 1992 and 1994 for
Product Category ’System mgmt.’

Category System mgmt.
Platform (All)
Geography (All)

Sum of Revenue Year
Product 1992 1994
Automated Operations 59.108
Change & Configuration Mgmt. 27.905
Performance Management 5.515 66.565
Problem Management 3.718 35.897
Resource Accounting 11.421
Security Management 18.265
Storage Management 59.451

Figure 9: Details along different Products of ’System mgmt.’
category.

PRODUCT PLATFORM GEOGRAPHY YEAR_1992 YEAR_1994 RATIO
(All)- (All) (All) 9.8 160.1 16.3
Storage Management (All) (All) 59.5
Automated Operations (All) (All) 59.1

Figure 10: Answer returned by the greedy algorithm for the query in figure 8.

PRODUCT PLATFORM GEOGRAPHY YEAR_1992 YEAR_1994 RATIO
(All)- (All) (All) 176.2
Performance Management (All) (All) 5.5 66.6 12.1
Problem Management (All) (All) 3.7 35.9 9.7

Figure 11: A better solution to the difference query in Figure 8.

get included in the answer. This illustrates a failure of
the algorithm even in the simple case of a single level
of aggregation.

The next case illustrates the failure of the greedy
algorithm even when the final ratio can somehow be
magically predicted. This example is on a synthetic
dataset with a two level hierarchy on a single dimen-
sion as shown in Figure 12. The topmost member m
has optimal ratio 1 and the next intermediate level
has three members m1, m2,m3 with ratios 2, 1, 1 re-
spectively. m1 has one large child m11 with ratio 1
and several smaller children with ratio 2.5. Initially,
A consists of just the topmost row with ratio 1. The
reduction in the number of bits with adding m1 to A
is very small because of cancellations as follows: The
predicted ratio for the children of m1 changes from 1
to 2.0. While this helps the several small members
with ratio 2.5, the benefit is canceled because for the
large child m11 the error increases. The reduction in
error with including any member with ratio 1 is 0. The
reduction with including any of the other children of
m1 with ratio 2.5 is small but that is the best reduc-
tion possible and the final answer will include two of
these children. However, the optimal answer consists
of m1 and its single divergent element m11 with ratio
1. This example indicates that another shortcoming
of the greedy algorithm is its top-down approach to

1

1 12

2.52.5 2.5 1

1m 2m 3m

11m

m

Figure 12: An example where greedy algorithm fails.

processing.
These two examples of the failure of the greedy so-

lution should help the reader appreciate the difficult
areas of the problem and it lead us to the dynamic
programming algorithm described next.

3.2 Dynamic programming algorithm

The dynamic programming algorithm eliminates the
above bad cases and is optimal under some assump-
tions elaborated next. We present the algorithm in
three stages for ease of exposition. First, we discuss
the case of a single dimension with no hierarchies.
Next, we introduce hierarchies on that dimension and
finally extend to the general case of multiple dimen-
sions with hierarchies.

48

3.2.1 Single dimension with no hierarchies

In this case the subcube Cb consists of a one-
dimensional array of T real-values. The basic premise
behind the dynamic programming formulation is that
we can decompose the set of tuples T into two subsets
T ′ and T − T ′, find the optimal solution for each of
them separately and combine them to get the final an-
swer for the full set T . Let D(T, n, r) denote the total
cost (number of bits) for T tuples, answer size n and
final ratio of top-most row in A as r. Then,

D(T, n, r) = min
0≤m≤n

(D(T − T ′, n−m, r) + D(T ′, m, r)) (1)

This property enables us to design a bottom-up al-
gorithm. We scan the tuples in Ca|Cb at the detailed
level sequentially while maintaining the best solution
for slots from n = 0 to n = N . Assume that we magi-
cally know the best value of r. Let Ti denote the first
i tuples scanned so far. When a new (i + 1)th tuple
ti+1 is scanned we update the solution for all (N + 1)
slots using the equation above with T ′ = ti+1. Thus,
the solution for the slot n of the first (i + 1)th tuples
is updated as

D(Ti+1, n, r) = min (D(Ti, n− 1, r) + D(ti+1, 1, r),
D(Ti, n, r) + D(ti+1, 0, r))

By the cost function in Section 2.1 D(ti+1, 1, r) = 0
and D(ti+1, 0, r) = − log Pr[vb|rva].

The best value of r is found by simultaneously solv-
ing for different guesses of r and refining those guesses
as we progress. At start, we know (as part of the query
parameters) the global ratio rg when none of the tu-
ples are included in the answer. We start with a fixed
number R of the ratios around this value from rg/2
to 2rg. We maintain a histogram of r values that is
updated as tuples arrive. Periodically, from the his-
togram we pick R − 1 different r values by dropping
up to N extreme values and using the average over the
middle r values. We then select the R most distinct
values from the R previous values and the R − 1 new
values and use that to update the guess. When the
algorithm ends, we pick the solution corresponding to
that value of r which has the smallest cost. Thus, the
final solution is:

D(T,N) = min
1≤i≤R

D(T,N, ri)

3.2.2 Single dimension with hierarchies

We now generalize to the case where there is a L level
hierarchy on a dimension. For any intermediate hier-
archy, we have the option of including in the answer
the aggregated tuple at that level. When we include an
aggregate tuple agg(T), the ratio of all its children not
in the answer is equal to the ratio induced by agg(T)
instead of the outer global ratio r. The updated cost
equation is thus:

N=2

+ tuple i

min

N=1

N=0

Tuples in detailed data grouped by common parent..

iN=2

N=2

N=1

N=0

N=1

N=0

Level 0

Level 1

N=2

N=1

N=0

A new group formed

Tuples with same parent

Figure 13: State of the dynamic programming algorithm
for N = 2 and L = 2 and R = 1.

D(T,N, r) = min(cost excluding the aggregate tuple,
cost including the aggregate tuple)

D(T, N, r) = min(D(T,N, r) from equation (1),
min∀r′(D(T,N − 1, r′) + agg(T))) (2)

The algorithm maintains L different nodes one for
each of the L levels of hierarchy. Each node stores
partial solutions for the N + 1 slots as described for
the case of a single hierarchy. In Figure 13 we show an
example state where the answer size N = 2 and the
number of levels of the hierarchy L = 2. The tuples in
Ca|Cb are then scanned in an order such that all tuples
within the same hierarchy appear together. The tuples
are first passed to the bottom-most (most detailed)
node of the hierarchy. This node updates its solution
using Equation 1 until it gets a tuple that is not a
member of the current hierarchy. When that happens
it finds the final best solution using Equation 2, passes
the solution to the node above it and re-initializes its
state for the next member of the hierarchy. The next
non-leaf node on getting a new solution from a node
below it updates its solution using the same procedure.
Thus, data is pipelined from one level to the next up
the hierarchy. At each level we find the best solution
for the group of tuples that have the same parent at
that level of hierarchy. The final answer is stored in
the top-most node after all the tuples are scanned.

Next we discuss how to choose values for the ratios
for internal nodes. We need to allow for the possibil-
ity that a node’s aggregate tuple may not be included.
Instead any of its parent up to the root could become
its immediate parent in the final answer. Hence, we

49

need to solve for ratios of those parent tuples. Lack-
ing any further information we start with a fixed set
of ratios around the global ratio as in the single hier-
archy case. When more tuples arrive at a node, we
bootstrap towards a good choice of ratio as follows:
Each node propagates downwards to its children node
a current best guess of the ratio of its aggregate tu-
ple. For tuples that are already through nothing can
be done except re-evaluate costs with the new ratios
but for subsequent tuples we get progressively better
estimates.

Lemma 3.1 The above dynamic programming al-
gorithm generates the optimal answer if the ratios
guessed at each level are correct.

Proof. The proof of optimality follows directly from
Equation 2 since the algorithm is a straight implemen-
tation of that equation with different ways of decom-
posing the tuples into subsets. The optimality of a dy-
namic programming algorithm is not affected by how
and in how many parts we decompose the tuples as
long as we can find the optimal solution in each part
separately and combine them optimally. For L = 1 the
decomposition is such that the new tuple becomes the
T ′ in the equation and the size of T ′ is 1 always. For
L ≥ 1, we decompose tuples based on the boundaries
of the hierarchy and T ′ consists of all children of the
most recent value at that level of the hierarchy.

3.2.3 Multiple dimensions

In the general case we have multiple dimensions with
one or more levels of hierarchies on each of the di-
mensions. We extend to multiple dimensions by pre-
ordering the levels of dimension and applying the so-
lution of Section 3.2.1. The goal is to pick an ordering
that will minimize the total number of bits. Intuitively,
a good order is one where levels that show more sim-
ilarity (in terms of ratio) are aggregated earlier. For
example, for the queries in Figure 2 and Figure 4 on
the data shown in Figure 1 we found the different lev-
els of the platform dimension to be more similar than
different levels of the product dimension. Therefore,
we aggregated on platform first. We formalize this in-
tuition by framing in the same information theoretic
terms. For each level of each dimension, we calculate
the total number of bits needed if all tuples at that
level were summarized to their parent tuple in the next
level. For each level l of dimension d we first aggre-
gate the values to that level. Let Tld denote the set of
aggregated tuples at that level. We next estimate the
error incurred if each tuple t ∈ Tld is approximated by
the ratio induced by its parent tuple at level l − 1 as
follows:

Bld =
∑

t∈Tld

D(t, 0, rparent(t))

OLAP
server

Excel
frontend

.Stored procedure for
computing reasons

Server-side

Client-side
ODBC: Call
StoredProc.

SQL/MDX query

Cursor to query
result

N-row answer

Figure 14: Our prototype.

Finally, we sort the levels of the dimension on Bld

with the smallest value corresponding to the lower-
most level. Of course, in the final order the more de-
tailed levels have to be below the less detailed level of
the same hierarchy irrespective of the order specified
by Bld. The intuition behind this form of ordering is
that, if the tuples within a level are similar, the parent
tuple will be a good summary for those tuples and the
number of bits needed to transmit those tuples to a
receiver who already knows the parent tuple will be
small. In contrast, if the children of a tuple are very
divergent a larger number of bits will be needed to
transmit them.

4 Implementation

4.1 Integrating with OLAP products

Our current prototype is based on IBM’s DB2/UDB
database (version 5.2) that we view as a ROLAP en-
gine. We use SQL to access data such that partial
processing is done inside the DBMS. In Figure 14 we
show the architecture for our prototype. Our algo-
rithm is packaged as a stored procedure that resides
on the server side. The client (Microsoft Excel in our
case) uses ODBC embedded in Visual Basic for in-
voking the stored procedure. The N row-answer is
stored in the database and accessed by the client using
ODBC. The stored procedure generates a giant SQL
statement that subsets only the relevant part of the
data cube. The query involves selecting the specified
values at the specified aggregation level and sorting
the data such that the stored procedure does not have
to do any intermediate caching of the results. In Fig-
ure 15 we show the example SQL statement for the
difference query in Figure 2. The data is assumed to
be laid out in a star schema [CD97].

The stored procedure is a rather light-weight at-
tachment to the main server. The indexing and query
processing capability of the server is used to do most
of the heavy-weight processing. Thus, the stored pro-
cedure itself does not use any extra disk space and the
amount of memory it consumes is independent of the
number of rows. It is O(NLR) where N denotes the
maximum answer size, L denotes the number of lev-
els of hierarchy and R denotes the number of distinct

50

with subset(productId, platformId, year, revenue) as
select productId, platformId, year, revenue from cube
where geographyId = (select geographyId from geography where name = ’Rest of World’)

with cube-A(productId, platformId, v a, v b) as
select productId, platformId, revenue, 0 from subset
where year = 1990

with cube-B(productId, platformId, v a, v b) as
select productId, platformId, 0, revenue from subset
where year = 1991

select prod groupId, prod categoryId, productId, plat userId, plat typeId,
platformId, sum(v a), sum(v b)
from (select * from cube-A) union all (select * from cube-B)
group by prod groupId, prod categoryId, productId, plat userId, plat typeId, platformId
order by prod groupId, prod categoryId, productId, plat userId, plat typeId, platformId

Figure 15: SQL query submitted to the OLAP server.

ratio values tried by the algorithm. This architecture
is thus highly scalable in terms of resource require-
ments. We are also building a second prototype using
the emerging OLE DB for OLAP [Mic98b] standard
for integrating with any OLAP engine that supports
the API.

4.2 Performance evaluation

In this section we present an experimental evaluation
on our prototype to demonstrate the (1) feasibility of
getting interactive answers on typical OLAP systems
and the (2) scalability of our algorithm as the size and
dimensionality of the cube increases.

All the experiments were done on a IBM PC with a
333 MHz Intel processor, 128 MB of memory and run-
ning Windows NT 4.0. We used the following datasets.

Software revenue data: This is a small dataset
but is interesting because it is real-life data about the
revenues of different software products from 1990 to
1994. We discussed this dataset earlier in Section 1.2
and repeat the schema here for convenience. The num-
bers within bracket denote the cardinality of that level.

Product Platform Geography Year
Product name (67) Platform name (43) Geography (4) Year (5)
 Prod_Category (14) Plat_Type (6)
 Prod_Group (3) Plat_User (2)

OLAP Council benchmark [Cou]: This dataset
was designed by the olap council to serve as a bench-
mark for comparing performance of different OLAP
products. It has 1.36 million total non-zero entries
and four dimensions: Product with a seven hierarchy,
Customer with a three level hierarchy, Channel with
no hierarchy and Time with a four level hierarchy as
shown in the figure below.

Product Customer Channel Time
Code (9000) Store (900) Channel (9) Month (17)
 Class (900) Retailer (90) Quarter (7)
 Group (90) Year (2)
 Family (20)
 Line (7)
 Divison (2)

Grocery sales data: This is a demo dataset ob-
tained from the Microsoft DSS product [Mic98a]. It
has 250 thousand total non-zero entries and consists
of five dimensions with hierarchies as shown below.
Store Customer Product Promotion Time
Name (24) City (109) Name (1560) Media type (14) Month (24)
 State (10) State (13) Subcategory (102) Quarter (8)
 Country (3) Country (2) Category (45) Year (2)

 Department (22)
 Family (3)

We establish the computational feasibility of an-
swering online why queries. Unlike conventional data
mining algorithms, we intend this tool to be used in an
interactive manner hence the processing time for each
query should be bounded. In most cases, although the
entire cube can be very large, the subset of the cube ac-
tually involved in the processing is rather small. When
that is not true we bound the processing time by lim-
iting the level of detail from which we start. When
the server is first initialized it collects statistics of the
number of tuples at various levels of detail and uses
that to determine the level of detail from which the
processing should start.

The queries for our experiments are generated by
randomly selecting two cells from different levels of ag-
gregation of the cube. There are three main attributes
of the workload that affect processing time:

• The number of tuples in the query result (size of
Ca|Cb).

• The total number of levels in Ca|Cb that deter-
mines the number of nodes (L) in the dynamic
programming algorithm.

• The answer size N that determines the number

51

0

10

20

30

40

50

60

70

80

0 50000 100000 150000 200000 250000 300000 350000

Number of tuples in subcube

Ti
m

e
in

 s
ec

on
ds

Alg Total DataAccess

Figure 16: Total time taken as a function of subcube size

of slots per node. The default value of N in our
experiments was 10.

We report on experimental results with varying values
of each of these three parameters in the next three
sections.

4.2.1 Number of tuples

We chose ten arbitrary queries within two levels of ag-
gregation from the top. In Figure 16 we plot the total
time in seconds for each query sorted by the number
of non-zero tuples in the subcube (Ca|Cb).

We show three graphs: The first one denotes the
data access time which includes the time from the is-
sue of the query to returning the relevant tuples to the
stored procedures. The second curve denotes the time
spent in the stored procudure for finding the answer.
The third curve denotes the sum of these two times.
From Figure 16 we can make the following observa-
tions:

• The total time taken for finding the answer is less
than a minute for most cases. Even for the sub-
cube with quarter million entries the total time is
only slightly over a minute.

• Only a small fraction < 20% of the total time is
spent in the stored procedure that implements the
diff operator. The majority of the time is spent
in subseting the relevant data from the database
and passing to the stored procedure. This implies
that if we used a server better optimized for an-
swering OLAP queries the processing time could
be even further reduced.

• The subset of the data actually relevant to the
query is often very small even for fairly large sized

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8

Number of levels

Ti
m

e
in

 s
ec

on
ds

Figure 17: Total time taken versus number of levels in the
answer

datasets. For example, the OLAP-benchmark
dataset has 1.37 million total tuples but the
largest size of the subcube involving two compar-
isons along the month dimension is only 81 thou-
sand for which the total processing time is only 8
seconds.

4.2.2 Number of levels

In Figure 17 we show the processing time as a func-
tion of the number of levels of aggregation. As we
increase the number of levels, for a fixed total number
of tuples, we expect the processing time to increase,
although at a slower than linear rate because signifi-
cantly more work is done at lower levels than higher
levels of the node. The exact complexity depends also
on the fanout of each node of the hierarchy. In Fig-
ure 17 we observe that as the number of levels is in-
creased from 2 to 7 the processing time increases from
6 to 9 seconds for a fixed query size of 70 thousand
tuples. This is a small increase compared to the total
data access time of 40 seconds.

4.2.3 Result size N

In Figure 18 we show the processing time as a function
of the answer size N for two different queries: query 1
with 8 thousand tuples and query 2 with 15 thousand
tuples. As the value of N is increased from 10 to 100
the processing time increases from 2.7 to 6 seconds
for query 1 and 3.1 to 9 seconds for query 2. When
we add the data access time to the total processing
time, this amounts to less than a factor of 2 increase in
total time. The dynamic-programming algorithm has
a O(N2) dependence on N but other fixed overheads

52

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

Result size (N)

Ti
m

e
in

 s
ec

on
ds

Query 1 Query 2

Figure 18: Total time taken as a function of result size(N)

dominant the total processing time more than the core
algorithm. That explains why even when we increase
N from 1 to 100, the processing time increases by less
than a factor of 5.

5 Conclusion

In this paper we introduced a new operator for enhanc-
ing existing multidimensional OLAP products with
more automated tools for analysis. The new opera-
tor allows a user to obtain in one step summarized
reasons for changes observed at the aggregated level.

Our formulation of the operator allows key reasons
to be conveyed to the user using a very small number
of rows that (s)he can quickly assimilate. By casting
in information theoretic terms, we obtained a clean
objective function that could be optimized for getting
the best answer. We designed a dynamic programming
algorithm that optimizes this function using a single
pass of the data and consuming very little memory.
This algorithm is significantly better than our initial
greedy algorithm both in terms of performance and
quality of answer.

We prototyped the operator on the DB2/OLAP
server using an excel front-end. Our design enables
most of the heavy-weight processing involving index-
lookups and sorts to be pushed inside the OLAP
server. The extension code needed to support the op-
erator does relatively smaller amount of work. Our
design goal was to enable interactive use of the new op-
erator and we demonstrated through experiments on
the prototype. Experiment using the industry OLAP
benchmark indicate that even when the subcubes de-
fined by the diff query includes a quarter million tu-
ples we can process them in a minute. Our experi-
ments also show the scalability of our algorithm as the

number of tuples, number of levels of hierarchy and
the answer size increases.

In future we wish to design more operators of this
nature so as to automate more of the existing tedious
and error-prone manual discovery process in multidi-
mensional data.

References

[Arb] Arbor Software Corporation, Sunnyvale,
CA. Multidimensional Analysis: Converting
Corporate Data into Strategic Information.
http://www.arborsoft.com.

[CD97] S. Chaudhuri and U. Dayal. An overview of data
warehouse and OLAP technology. ACM SIG-
MOD Record, March 1997.

[Cod93] E. F. Codd. Providing OLAP (on-line analyt-
ical processing) to user-analysts: An IT man-
date. Technical report, E. F. Codd and Asso-
ciates, 1993.

[Cor97a] Cognos Software Corporation. Power play
5, special edition. http://www.cognos.com/
powercubes/index.html, 1997.

[Cor97b] International Data Corporation. http://www.
idc.com, 1997.

[Cou] The OLAP Council. The OLAP benchmark.
http://www.olapcouncil.org.

[CT91] Thomas M Cover and Joy A Thomas. Elements
of Information Theory. John Wiley and Sons,
Inc., 1991.

[Dis] Information Discovery. http://www.datamine.
inter.net/.

[Ham77] M. Hamurg. Statistical analysis for decision mak-
ing. Harcourt Brace Jovanovich, Inc, New York,
1977.

[HF95] J. Han and Y. Fu. Discovery of multiple-
level association rules from large databases. In
Proc. of the 21st Int’l Conference on Very Large
Databases, Zurich, Switzerland, September 1995.

[Lap95] P-S Laplace. Philosophical Essays on Probabil-
ities. Springer-Verlag, New York, 1995. Trans-
lated by A. I. Dale from the 5th French edition
of 1825.

[Mic98a] Microsoft corporation. Microsoft decision sup-
port services version 1.0, 1998.

[Mic98b] Microsoft Corporation, http://www.microsoft.
com/data/oledb/olap/spec/. OLE DB for
OLAP version 1.0 Specification., 1998.

[SAM98] Sunita Sarawagi, Rakesh Agrawal, and Nimrod
Megiddo. Discovery-driven exploration of OLAP
data cubes. In Proc. of the 6th Int’l Conference
on Extending Database Technology (EDBT), Va-
lencia, Spain, 1998. expanded version available
from http://www.almaden.ibm.com/cs/quest.

[Sof] Pilot Software. Decision support suite. http:
//www.pilotsw.com.

53

http://www.cognos.com/powercubes/index.html
http://www.cognos.com/powercubes/index.html
http://www.idc.com
http://www.idc.com
http://www.olapcouncil.org
http://www.datamine.inter.net/
http://www.datamine.inter.net/
http://www.microsoft.com/data/oledb/olap/spec/
http://www.microsoft.com/data/oledb/olap/spec/
http://www.almaden.ibm.com/cs/quest
http://www.pilotsw.com
http://www.pilotsw.com

	Introduction
	Contents
	Illustration

	Problem Formulation
	The model
	Probability function
	Missing values

	Alternative formulations

	Algorithm
	Greedy algorithm
	Dynamic programming algorithm
	Single dimension with no hierarchies
	Single dimension with hierarchies
	Multiple dimensions

	Implementation
	Integrating with OLAP products
	Performance evaluation
	Number of tuples
	Number of levels
	Result size N

	Conclusion

