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Abstract

In this paper, we address the need to auto-
matically classify text documents into topic
hierarchies like those in ACM Digital Library
and Yahoo!. The existing local approach con-
structs a classi�er at each split of the topic hi-
erarchy. However, the local approach does not
address the closeness of classi�cation in hier-
archical classi�cation where the concern often
is how close a classi�cation is, rather than sim-
ply correct or wrong. Also, the local approach
puts its bet on classi�cation at higher levels
where the classi�cation structure often dimin-
ishes. To address these issues, we propose the
notion of class proximity and cast the hierar-
chical classi�cation as a 
at classi�cation with
the class proximity modeling the closeness of
classes. Our approach is global in that it con-
structs a single classi�er based on the global
informationabout all classes and class proxim-
ity. We leverage generalized association rules
as the rule/feature space to address several
other issues in hierarchical classi�cation.

1 Introduction

The most successful paradigm for making the mass
of information on the Internet comprehensible to ev-
ery one is by classifying them into topics of hi-
erarchical speci�city. Hierarchical classi�cation of
this kind has been used in collections of IBM's
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patent documents (http://www.ibm.com/patents), Li-
brary of Congress Catalogue, botanical and ani-
mal classi�cation, and Internet search engines such
as Yahoo! (http://www.yahoo.com/) and Infoseek
(http://infoseek.go.com/) that categorize the content
of the World Wide Web. Other applications of hier-
archical classi�cation are building directories, book-
marks, email folders, product catalogs, etc. Brie
y, in
hierarchical classi�cation, each training document is a
set of terms (i.e., words or phrases) and is labeled by
one class (i.e., the topic), where classes are organized
by their speci�cities into an is-a hierarchy 1 (i.e., a
taxonomy of classes). The task is to construct a clas-
si�er that is able to assign classes to new documents
within a \small error". As online documents grow in
number and size, automatic hierarchical classi�cation
becomes a pressing need. This paper examines issues
involved in this automation and proposes solutions to
them.

1.1 The issues

The central issue in document classi�cation is separat-
ing feature terms that determine the classes of docu-
ments from noise terms that do not. In the context
of hierarchical classi�cation, it was observed that this
separation depends on the current location in the class
hierarchy [CDAR97, KS97]. An example in [CDAR97]
is that \car" and \auto" may be good features at the
top level of Yahoo!, but become noises when drilled
down to Recreation : Automotive. To address this
context-sensitivity, [CDAR97, KS97] determine fea-
ture terms and construct a classi�er at each split of
the class hierarchy. This approach is local in that the
construction at each split is based on the local infor-
mation at that split. However, local approaches do not
address some important issues.
I. Bias of misclassi�cation. In hierarchical clas-

si�cation, the concern often is how close a classi�cation
is, rather than simply correct or wrong: misclassi�ca-
tion into a remote class (e.g., a nephew class) incurs
a larger error than into a nearby class (e.g., a sibling

1
In this paper, a hierarchy is any directed acyclic graph.
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class); misclassi�cation at a higher level (e.g., from
Science to Recreation) incurs a larger error than at a
lower level (e.g., from Track Cycling to Unicycling);
misclassi�cation from a general class into a speci�c
class (e.g., from Recreation to Recreation : Sports)
incurs a larger error than the other way around. The
traditional counting of misclassi�cations like the con-
fusion matrix fails to address this closeness of classi�-
cation.

II. Target-sensitivity of features. Feature
terms should be determined with respect to the target
class that they characterize. For example, \car" and
\auto" may characterize the target class Recreation :
Automotive but not the target class Recreation. We
call this the target-sensitivity. In comparison, the
context-sensitivity in [CDAR97, KS97] addresses the
ability of discriminating the subclasses at location
C, whereas the target-sensitivity addresses the abil-
ity of characterizing the target class C itself. Indeed,
[CDAR97, KS97] score a feature without involving a
target class. The lack of target classes often yields
weak and non-understandable features.

III. High level structure diminishing. The lo-
cal approach puts its bet on classi�cation at higher lev-
els, in that errors made at higher levels are not recov-
erable at lower levels. On the other hand, higher levels
are often where the classi�cation structure diminishes,
due to the divergence of topics. As mentioned above,
features like \car" and \auto" that characterize the
lower class Recreation : Automotive may not charac-
terize the higher class Recreation. Consequently, the
local approach makes critical decisions (i.e., those at
higher levels) based on less reliable information.

IV. Appropriateness of feature spaces. Tra-
ditionally, terms (or variables) are considered one at
a time in search for features (e.g., information gain
[Q93], �sher index [CDAR97], naive Bayes model
[KS97], mutual information and �2 statistic [YP97]),
and co-occurred terms, which are prevailing in docu-
ment classi�cation, have not been given the �rst-class
consideration. Also, as classi�cation at higher levels
is considered, more general terms need to be explored
to discover the classi�cation structure. For example,
when going up to Recreation in Yahoo!, documents
may not share speci�c terms \reading" and \car", but
may share general concepts \indoor" and \outdoor".

V. Understandability of classi�ers. The local
approach needs to make multiple classi�cations in a
row to classify a document. It is di�cult to under-
stand the characteristics of a class from multiple clas-
si�cations. Furthermore, the features at location C in
[CDAR97, KS97] are not the characteristics of C, as
explained above. In fact, [CDAR97, KS97] has to use
the Bernoulli model to tell the class of a given docu-
ment. In many applications, it is more desirable to tell
the characteristics of a class than to tell the class of a
given document. Automatic annotation of document

clusters by salient keywords is such an example.
The focus of this paper is to address these issues.

1.2 Our approach

First, we introduce class proximity to model the close-
ness of classi�cation. Then, we cast hierarchical clas-
si�cation as non-hierarchical classi�cation where the
class proximity models the bias introduced by class
speci�city. Our approach is global in that it con-
structs a single classi�er based on the global infor-
mation about classes and class proximity. This ad-
dresses issues I, III, V. To address issue IV, corre-
lated features at di�erent levels of abstraction will be
searched, and a straightforward method cannot deal
with the amount of work required. We incorporate an
is-a hierarchy of terms and leverage generalized asso-
ciation rules [HF95, SA95] as the rule/feature space.
A rule/feature has the form X ! C, where X is a set
of terms and C is a target class; in a sense, feature
X is \owned" by target class C. This approach can
generate all correlated features at all abstraction lev-
els for a large corpus, by bene�ting from the work on
association rules [HF95, SA95]. This addresses issues
II and IV.

To construct a good classi�er, however, a crucial
step is to rank rules/features with respect to the clas-
si�cation goal, taking into account class proximity
and interaction of rules/features (e.g., redundancy and
preference of rules/features). We propose two ranking
criteria for this purpose. We present an algorithm for
selecting a \good" set of rules/features from general-
ized association rules in one scan of the documents.

Section 2 presents an overview of our approach.
Section 3 de�nes two ranking criteria of rules. Sec-
tion 4 presents the classi�er construction. Section 5
reports the evaluation result. Section 6 remarks on
related work and concludes the paper.

2 The overview

This section gives background information about asso-
ciation rules, de�nes the problem being studied, and
outlines our approach.

2.1 Association rules

The problem of mining association ruleswas �rst stud-
ied in [AIS93] in the context of discovering purchase
patterns. Let I = fi1; i2; : : : ; img be a set of literals,
called items. Let D be a set of transactions, where
each transaction T has a unique identi�er and is a set
of items such that T � I. A transaction T contains
an itemset X (i.e., a set of some items in I) if X � T .
The support of an itemset X, denoted sup(X), is the
number of transactions that containX. An association
rule has the form X ! Y , where X � I, Y � I, and
X \ Y = ;. The support of association rule X ! Y is
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sup(XY ). 2 The con�dence of association ruleX ! Y
is sup(XY )=sup(X). The problem of mining associa-
tion rules is to generate all association rules that have
support and con�dence greater than the user-speci�ed
minimum support and minimum con�dence.

Association rules were extended to the item space
organized into an is-a hierarchy in [HF95, SA95],
where ancestors (e.g., \clothes") are more general than
descendants (e.g., \jacket"). If an item is bought in
a transaction, all its ancestors are considered bought
in the transaction too. To take this e�ect into ac-
count, the support of an itemset is modi�ed as fol-
lows. Let T be a transaction and Anc(T ) be the set of
items in T plus all their ancestors. The support of an
itemset X is the number of transactions T such that
X � Anc(T ). With these modi�cations, a general-
ized association rule (or multi-level association rule in
[HF95]) X ! Y could hold between itemsets X and
Y with items from any levels.

2.2 Hierarchical classi�cation

In hierarchical classi�cation, we are given: (a) A col-
lection of terms T (i.e., words or phrases), organized
into an is-a hierarchy called the term hierarchy. (b) A
collection of classes C (i.e., topics), organized into an
is-a hierarchy called the class hierarchy. T \C = ;. (c)
A collection of documents D. Each document contains
at least one term and exactly one class. Terms and the
class in a document can be a non-leaf node in their
hierarchies. (d) The class proximity B(Ci; Cj), repre-
senting the error made by misclassi�cation from class
Ci into class Cj. B(Ci; Cj) > 1 (resp. B(Ci; Cj) < 1)
means an error larger than (resp. smaller than) an
\usual" misclassi�cation. B(Ci; Ci) = 0 for all classes
Ci. The task is to �nd a set of rules, called a clas-
si�er, that determines the classes for new documents
within a small error. In the traditional classi�cation
setting, the term hierarchy and class hierarchy contain
only leaf nodes and B(Ci; Cj) = 1 for distinct classes
Ci and Cj.
Remarks. The quantitative choice of B(Ci; Cj), es-

sentially a closeness measure of two members in a fam-
ily hierarchy, is largely application-dependent. Among
others, a natural choice is the shortest distance fromCi

to Cj in the class hierarchy, which is the default choice
in this paper. In this case the classi�cation problem
amounts to minimizing the traversal distance between
the true class and the predicted class. In the following
discussion, we assume that B(Ci; Cj) is given as part
of the problem speci�cation.

2.3 An optimal classi�er

We de�ne some properties to be satis�ed by our clas-
si�ers. Let X be a set of terms. Let Anc(X) denote
the set of terms in X plus all their ancestor terms.

2
XY is the shorthand of X [ Y .

Consider classi�cation rule X ! C and document d.
We say that X ! C covers d if X � Anc(d). We say
that X ! C classi�es d in a classi�er if X ! C cov-
ers d and is used to determine the class of d in that
classi�er. While several rules may cover d, only one
rule can classify d. We say X ! C covers or classi�es
d correctly (resp. wrongly) if C is identical (resp. not
identical) to the class of d.

We shall construct the classi�er by selecting a num-
ber of generalized association rules to optimize the
classi�cation goal. The optimality is de�ned with re-
spect to a given rule ranking criterion. Some rule rank-
ing criteria will be discussed in Section 3. Given a rule
ranking criterion, we like to the following principles to
be enforced on any classi�er.
Classi�cation Principle. Each document is clas-

si�ed either by a selected rule of highest possible rank,
or by some default class. This ensures the best clas-
si�cation of each document as per the rule ranking
criterion used.
Selection Principle. A rule is selected if and only

if it covers at least one document correctly and no se-
lected rule of higher rank covers that document. This
ensures the compactness of the classi�er in that every
selected rule classi�es some document correctly.

An algorithm for selecting the rules according to
these principles will be presented in Section 4.
An optimal classi�er. Let Rulelists be the list

of selected rules, ordered by the rule ranking criterion.
Let L be any pre�x of Rulelists. The error of a rule R
in L is the error made by R on the documents that R
classi�es. The cuto� error of L is the sum of the errors
of all rules in L plus the error made by the default class
for L. The default class for L, chosen from the classes
of the documents not classi�ed by L, is to minimize the
error made by classifying these documents into it. An
optimal classi�er is the shortest pre�x L that has the
minimum cuto� error. (E.g., <>, < a >, < a; b >, <
a; b; c >, and < a; b; c; d > are pre�xes of < a; b; c; d >,
but < b > and < a; c > are not.) An example of
optimal classi�ers is given in Section 4.2.

2.4 The outline of construction

Given a rule ranking criterion, we shall construct an
optimal classi�er in three steps. Step 1 generates all
generalized association rules X ! C, where X is a set
of terms and C is a class, that satisfy the minimum
support and (an optional) minimum ranking criterion
speci�ed by the user. This step is similar to mining
generalized association rules in [SA95]. However, un-
like [SA95], we do not generalize the classes of docu-
ments because we are aimed at prediction of classes,
and we use a minimum value on the chosen rule rank-
ing criterion instead of the minimum con�dence. Step
2 sorts all rules found in Step 1 according to the rule
ranking criterion. Step 3 �nds the list of selected rules
Rulelists and computes the cuto� error of every pre�x
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of Rulelists. The shortest pre�x of Rulelists that has
the minimum cuto� error is returned. The rest of the
paper focuses on Steps 2 and 3.

3 Ranking rules/features

Each rule X ! C found in Step 1 can be considered
as feature X for the target class C. Intuitively, X is
a good feature for C if it occurs in many documents
from class C and few documents from classes that
are dissimilar to C. We propose two ranking criteria,
with one emphasizing the accuracy of classi�ers, and
the other emphasizing both accuracy and simplicity of
classi�ers. Let X ! C be an association rule. p(X)
denotes sup(X)=jDj, p(XC) denotes sup(XC)=jDj,
and p(CjX) denotes p(XC)=p(X), where jDj denotes
the number of documents in the document collection
D.

3.1 The biased con�dence

A natural ranking criterion that emphasizes the clas-
si�cation accuracy is the con�dence of rules. Taking
the class proximity into account, the biased con�dence,
written as ConfB(X ! C), is de�ned as

p(XC)

p(XC) +
P

Cj 6=C
B(Cj ; C)p(XCj)

(1)

In other words, the frequency of misclassifying Cj

into C is weighed by the error B(Cj ; C). The fur-
ther the class Cj is from the predicted class C, the
less con�dent the rule is. Note that ConfB(X ! C)
is in [0; 1] and that if B(Cj; C) = 1 for all Cj 6= C,
ConfB(X ! C) degenerates into the usual con�dence
Conf(X ! C) = p(XC)=p(X).

3.2 The biased J-measure

The second ranking criterion is a modi�cation of the
information-motivated J-measure [SG92]. The stan-
dard J-measure of rule X ! C, written as J(X ! C),
is

p(X)[p(CjX) log
2

p(CjX)

p(C)
+ p(:CjX) log

2

p(:CjX)

p(:C)
]

The �rst term p(X) measures the simplicity of the
rule. The term inside the square bracket measures
the di�erence between the posteriori p(CjX) and the
priori p(C), thus, the discriminating power of X on
the target class C: it has a large value if X has either
a positive impact on C, where p(CjX) is larger than
p(C), or a negative impact on C, where p(CjX) is
smaller than p(C).

To suit our purpose, however, we need to make two
modi�cations to the standard J-measure. First, di�er-
ent non-target classes Cj 6= C need to be distinguished
because they have di�erent biases towards the target
class C. Second, we like to favor the positive impact
of X on C and the negative impact of X on non-target

classes Cj; we can do this by replacing + sign for non-
target classes with � sign. These modi�cations yield
the biased J-measure, written as JB(X ! C), de�ned
by

p(X)[p(CjX) log
2

p(CjX)

p(C)
�

X

Cj 6=C

B(Cj ; C)p(Cj jX) log
2

p(Cj jX)

p(Cj)
] (2)

We expect that JB yields a smaller, thus more under-
standable classi�er than ConfB because it takes into
account both simplicity and discriminating power of a
rule.

4 Constructing an optimal classi�er

We assume that one of the ranking criteria in Equa-
tions (1) and (2) is used. Let Rulelist be the list of
generalized association rules found in Step 1, ranked
by the chosen ranking criterion. We construct an opti-
mal classi�er by selecting rules from Rulelist accord-
ing to Selection Principle and Classi�cation Principle
in Section 2. First, we state two strategies to prune
some rules never selected by these principles. Consider
two rules X1 ! C1 and X2 ! C2. We like to char-
acterize the condition that whenever X2 ! C2 covers
a document, X1 ! C1 covers that document, that is,
X1 is more general than X2. We denote this condition
by X1 � X2. The following theorem gives a test of
X1 � X2, whose proof is straightforward.

Theorem 1 X1 � X2 if and only if X1 � Anc(X2).

Pruning Strategy 1 below says that if a general rule
is ranked higher than a special rule and if both rules
have the same target class, the special rule is never
selected. Before constructing a classi�er, we can apply
Pruning Strategy 1 to prune rules.

Pruning Strategy 1 Assume that X1 ! C proceeds
X2 ! C in Rulelist. If X1 � X2, X2 ! C will not be
selected. (Proof in [WZL99].)

Strategy 2 below says that if a general rule is ranked
higher than a special rule and is selected, the special
rule is never selected. After selecting a rule, we can
apply Pruning Strategy 2 to prune other rules.

Pruning Strategy 2 Assume that X1 ! C1 pro-
ceeds X2 ! C2 in Rulelist. If X1 � X2 and X1 ! C1

is selected, X2 ! C2 will not be selected. (Proof in
[WZL99].)

Our construction makes one scan of the documents
and keeps track of how each rule in Rulelist classi�es
documents. This information for each rule R is kept
in R:Clist and R:Wlist, which contain the (id; Class)
pairs for the documents classi�ed by R correctly and
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wrongly, respectively. Before all the documents are ex-
amined, however, we do not know whether R has the
chance to classify a document, as governed by Classi�-
cation Principle. We adopt a simple strategy: if R is a
candidate to classify the current document d, we add
(id; Class) for d to R:Clist or R:Wlist; we prune the
(id; Class) pair fromR:Clist or R:Wlist as it becomes
known that R has no chance to classify document d.

To illustrate the point, consider two rules R1 and
R2 such that R1 proceeds R2 in Rulelist. Assume
that neither rule is selected and that some (id; Class)
is contained in Clist or Wlist of both rules. Now
the next document id0 is examined. Suppose that R1
covers document id0 correctly and no selected rule of
higher rank covers the document. By Selection Princi-
ple R1 is selected, and by Classi�cation Principle R1
is deemed to classify document id. We now know that
R2 has no chance to classify document id, so we can
prune (id; Class) from Clist or Wlist of R2.

The construction has two phases. Phase 1 scans the
documents and maintainsWlist and Clist of the rules
involved. Phase 2 makes selection decisions for those
rules not yet selected and compute the cuto� error at
each selected rule.

4.1 Phase 1: Scan the database

This phase, shown in Figure 1(a), scans the documents
and marks a rule in Rulelist once it is known that the
rule will be selected according to Selection Principle.
For the current document d, we �nd the �rst rule R in
Rulelist that covers d. There are two cases, depending
on whether R is marked.

Case 1 (lines 30-70): R is marked. R will classify
d. So we add the (id; Class) pair of d to R:Clist (line
50) or R:Wlist (line 70).

Case 2 (lines 80-210): R is not marked. There are
two subcases, depending on whether R covers d cor-
rectly.

� Case 2a (lines 90-110): R covers d correctly. In
this case R will be selected according to Selection
Principle. We mark R and add the (id; Class)
pair of d to R:Clist (lines 100-110). The marking
of R, denoted by Mark(R), include the follow-
ing steps: delete all (id; Class) pairs in R:Clist
or R:Wlist from all covering rules of d because
they do not have the chance to classify these doc-
uments, and apply Pruning Strategy 2 to prune
more rules. These implementations will be dis-
cussed below.

� Case 2b (lines 120-210): R covers dwrongly. Since
R has not been marked, all rules that cover d
(which must be after R) are candidates for classi-
fying d. So, we add (id; Class) of d to the Clist
or Wlist of these rules. However, it is not nec-
essary to consider all such rules: we can stop as
soon as any of these rules, say R0, was already

marked or covers d correctly, whichever comes
�rst in Rulelist. The reason is that, by Classi�-
cation Principle, all rules that come after R0 have
no chance to classify d. These steps are given in
lines 130-210. To simplify the presentation, we
assume that a dummy rule at the end of Rulelist
cover all documents.

Implementation details. At lines 20 and 150, we
need to �nd the rules that cover document d. This op-
eration is similar to the subset function of �nding the
candidate itemsets contained in Anc(d), implemented
by the hash-tree in [AIS93, AS94]. For our purpose,
we store all rules X ! C in the hash-tree by treat-
ing X as an itemset. Then �nding all covering rules
X ! C of document d amounts to �nding all itemsets
X such that X � Anc(d). Another implementation
concerns with Mark(R) (and line 100 in Phase 2 be-
low) where we need to delete a given (id; Class) pair
from the rules whose Clist or Wlist contain the pair.
To locate these rules quickly, as a new (id; Class) pair
is added, we can chain up the entries for (id; Class) in
the order of the rules involved. To delete a (id; Class)
pair, we simply scan the chain for the pair and delete
its entry from each rule encountered. To delete more
than one (id; Class) pair, we combine their scans and
delete their entries in one scan.

4.2 Phase 2: Select �nal rules

Phase 2, shown in Figure 1(b), scans Rulelist to select
rules and determine the best cuto� point. Consider
the current rule R. There are two cases, depending on
whether R is marked.

Case 1 (lines 20-60): R is marked. We append R to
Rulelists (which is initially empty) and removeR from
Rulelist (line 30). Remain[C] denotes the number of
documents in class C that have not been classi�ed by
Rulelists. Remain[C] is updated to re
ect that the
documents in R:Clist and R:Wlist are now classi�ed
by Rulelists (lines 40-50). Also, we compute the cut-
o� error of Rulelists, done in CutoffError(R) (line
60). The cuto� error is de�ned as R:RE + R:DE,
where R:RE is the total error of the rules in Rulelists
and R:DE is the default error of using some default
class on the documents not classi�ed byRulelists. The
class that minimizes the default error is chosen as the
default class, denoted R:DC.

Case 2 (lines 80-120): R is not marked. In this
case, R:Clist must be empty, as shown in Lemma 1
below. Therefore, we simply remove R from Rulelist

(line 80). Now R is no longer a candidate to classify
the documents in R:Wlist, which triggers the marking
of more rules (lines 90-120): for each (id; Class) in
R:Wlist, we �nd the �rst rule R0 such that R0:Clist
or R0:W list contains (id; Class). If R0 is not found,
document id will be classi�ed by a default class. If
R0 is found, we check whether R0 covers document id

367



Phase 1:
10 for each document d do
20 �nd the �rst rule R in Rulelist that covers d;
30 if R is marked then /* Case 1 */
40 if R covers d correctly then
50 add (id; Class) of d to R:Clist;
60 else
70 add (id; Class) of d to R:Wlist;
80 else /* Case 2 */
90 if R covers d correctly then /* Case 2a */
100 add (id; Class) of d to R:Clist;
110 Mark(R);
120 else /* Case 2b */
130 repeat
140 add (id; Class) of d to R:Wlist;
150 R=the next rule covering d;
160 until R is the dummy rule, or R covers d correctly, or R is marked;
170 if R is not the dummy rule then
180 if R covers d correctly then
190 add (id; Class) of d to R:Clist;
200 else if R is marked then
210 add (id; Class) of d to R:Wlist;

(a)

Phase 2:
RE = 0;

10 for each rule R in Rulelist in the ranked order do
20 if R is marked then /* Case 1 */
30 append R to Rulelists and delete R from Rulelist;
40 for each (id; Class) 2 R:Clist [R:Wlist do

50 Remain[Class] = Remain[Class] � 1;
60 CutoffError(R); /* compute the cuto� error at R */
70 else /* Case 2 */
80 delete R from Rulelist;
90 for each (id; Class) in R:Wlist do
100 �nd the �rst rule R0 in Rulelist such that (id; Class) is in R0:Clist [R0:W list;
110 if R0 is found then
120 if (id; Class) is in R0:Clist and R0 is not marked yet thenMark(R0);
130 �nd the �rst rule R in Rulelists that minimizes the cuto� error R:RE +R:DE;
140 return the pre�x of Rulelists ending at R, and the default class R:DC;

CutoffError(R):
R:DE =the maximum machine value;
for each class C such that Remain[C] 6= 0 do
xC =

P
C0 Remain[C0]� B(C0; C); /* the default error of using C as the default class */

if xC < R:DE then
R:DE = xC and R:DC = C;

RE = RE +
P

(id;Class)2R:Wlist B(Class;R:Class); /* R:Class denotes the class in R */

R:RE = RE;

(b)

Figure 1: Step 3
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author

writer editor

story

fiction poem

(a)

....... .........

Arts

Music Literature

A_Music A_Literature

(b)

id term class

d1 hall,composer Music
d2 hall,conductor Music
d3 hall,States A Music

d4 States,book A Literature
d5 story,States A Literature
d6 hall,�ction,writer Literature
d7 editor,poem Literature

(c)

Figure 2: Hierarchical classi�cation
correctly and is not marked yet. If so, we mark R0 by
calling Mark(R0) (line 120).

Finally, the shortest pre�x of Rulelists that has the
minimum cuto� error is returned as an optimal classi-
�er (lines 130-140).

Lemma 1 In Phase 2, if the current rule R is not
marked, R:Clist is empty. (Proof in [WZL99].)

The following theorem follows from our construc-
tion algorithm.

Theorem 2 (a) The full list Rulelists satis�es Clas-
si�cation Principle and Selection Principle. (b) The
pre�x of Rulelists returned by the algorithm is an op-
timal classi�er.

Example 1 Consider the example in Figure 2, where
(a), (b), and (c) give the term hierarchy, the class hi-
erarchy, and the training documents. Assume that
B(Ci; Cj) measures the shortest distance from Ci to
Cj in class hierarchy. Suppose that the minimum sup-
port is 2. We consider four search strategies: (), (B),
(T), and (B,T). T means that term hierarchy is used
and B means that class proximity is used in the cho-
sen ranking criterion. For all strategies, the error of a
classi�er is computed using class proximity.
() Strategy. The term hierarchy is ignored and the

usual con�dence Conf is used. Only two rules satisfy
the minimum support:

R3: States ! A Literature
(Conf=0.67, Clist=d4,d5, Wlist=d3(4))

R4: hall D! Music
(Conf=0.50, Clist=d1,d2, Wlist=d6(2))

The number following each document id inWlist is the
error on that document. For example, the error made
on d3 by R3 is 4 because B(A Music; A Literature) =
4. Both rules are selected because each classi�es some
documents correctly. To �nd an optimal classi�er,
each pre�x of < R3; R4 > is considered, shown in Ta-
ble 1(). For pre�x <>, all documents are classi�ed
by default class Literature, giving the minimum error
of 9. For pre�x < R3 >, the default class for the re-
maining d1, d2, d6, d7 is either Music or Literature,
giving the minimum default error of 4. Thus, the cut-
o� error of < R3 > is 8. Finally, the cuto� error of

pre�x < R3; R4 > is 6, with default class Literature.
So < R3; R4 > is an optimal classi�er.
(B) Strategy. By considering class proximity, R4

is now ranked higher than R3:

R4: hall ! Music
(ConfB=0.4, Clist=d1,d2, Wlist=d3(1),d6(2))

R3: States ! A Literature (ConfB=0.33, Clist=d4,d5)

Table 1(B) shows the cuto� error for every pre�x of
< R4; R3 >. < R4; R3 >with default class Literature
is an optimal classi�er, where the cuto� error is 3.
(T) Strategy. By considering term hierarchy, �ve

rules now satisfy the minimum support:

R0: author,story ! Literature (Conf=1, Clist=d6,d7)
R1: author ! Literature (Conf=1, not selected)
R2: story ! Literature

(Conf=0.67, Wlist=d5(1), not selected)
R3: States ! A Literature

(Conf=0.67, Clist=d4,d5, Wlist=d3(4))
R4: hall ! Music (Conf=0.50, Clist=d1,d2)

By Classi�cation Principle, R1 and R2 do not clas-
sify any document correctly, so are not selected, by
Selection Principle. Table 1(T) shows the cuto� er-
ror for each pre�x of selected rules < R0; R3; R4 >.
< R0; R3 > with default class Music is an optimal
classi�er, where the cuto� error is 4.
(B,T) Strategy. The class proximity changes the

relative rank of R3 and R4:

R0: author,story ! Literature (ConfB=1, Clist=d6,d7)
R1: author ! Literature (ConfB=1, not selected)
R2: story ! Literature

(ConfB=0.67, Wlist=d5(1), not selected)
R4: hall ! Music (ConfB=0.4, Clist=d1,d2, Wlist=d3(1))
R3: States ! A Literature (ConfB=0.33, Clist=d4,d5)

As before, R1 and R2 are not selected. Table
1(B,T) shows the cuto� error for each pre�x of
< R0; R4; R3 >. < R0; R4 > with default class
A Literature is an optimal classi�er. The cuto� er-
ror is 1. 2

From the four strategies considered, (B,T) produces
the classi�er with the smallest cuto� error. Compari-
son of (B) with (), and (B,T) with (T), shows that class
proximity helps to rank R3 and R4 in an order that
produces a small error. Comparison of (T) with (),
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pre�x last rule's error default class default error cuto� error
<> 0 Literature 9 9
< R3 > 4 Music or Literature 4 8
< R3; R4 > 2 Literature 0 6

(): Term hierarchy=o� and class proximity=o�

pre�x last rule's error default class default error cuto� error
<> 0 Literature 9 9

< R4 > 3 A Literature 1 4
< R4;R3 > 0 Literature 0 3

(B): Term hierarchy=o� and class proximity=on

pre�x last rule's error default class default error cuto� error
<> 0 Literature 9 9
< R0 > 0 Music 7 7
< R0;R3 > 4 Music 0 4

< R0;R3; R4 > 0 4

(T): Term hierarchy=on and class proximity=o�

pre�x last rule's error default class default error cuto� error

<> 0 Literature 9 9
< R0 > 0 Music 7 7

< R0; R4 > 1 A Literature 0 1
< R0; R4;R3 > 0 1

(B,T): Term hierarchy=on and class proximity=on

Table 1: Four cases of classi�er construction
and (B,T) with (B), shows that term hierarchy helps
to capture the classi�cation structure at proper con-
cept levels.

5 Experiments

This section evaluates the e�ectiveness and e�ciency
of our approach. For e�ectiveness, we consider the
rules, the error, and the size of the classi�er con-
structed. For e�ciency, we consider the execution time
and the number of document ids kept in memory. To
reveal the sources of e�ectiveness, we consider the fol-
lowing parameters in our approach: the minimum sup-
port, class proximity (on or o�), term hierarchy (on or
o�), and ranking criteria (the biased con�dence or the
biased J-measure). For comparison, we have imple-
mented the �sher index method in [CDAR97, CDI98],
a local approach to hierarchical classi�cation by con-
structing one classi�er at each split of the class hierar-
chy. The traditional classi�cation methods based on a

atten class space are not a good candidate for com-
parison because they ignore the hierarchical structure
of classes. Also, such methods cannot handle tens of
thousands of terms, as in our case, because they either
assume independence of terms (like the Naive Bayes
classi�cation [KS97]) or consider terms one at a time
(like decision trees [Q93]). As in Example 1, we use (),

(B), (T), (B,T) to represent di�erent search strategies
of our approach. (CDAR97,T) and (CDAR97) denote
the local approach in [CDAR97] where term hierar-
chy is turned on and o�. All results presented are the
averaged result of the 5-fold cross-validation trial 3.

5.1 The data sets

The ACM data set. The ACM Digital Library
(http://www.acm.org/dl/toc.html/) is chosen because
we can use its classi�cation system to construct both
class hierarchy and term hierarchy (see below). Each
paper has �ve logical parts: (a) Title, (b) Categories
and Subject Descriptors, (c) General Terms, (d) Ab-
stract, (e) Full Text. Only parts (a) and (b) are com-
pulsory. The classi�cation information is contained in
part (b) and is organized into a hierarchy of four levels.
An example path in this hierarchy is:

Hardware (B) | level-1 category
Memory Structure (B.3) | level-2 category
Design Style (B.3.2) | level-3 category
Cache Memories | level-4 subject descriptor

Our classi�cation task is determining the level-1 or
level-2 category of a paper using Title in part (a) and

3
In a k-fold cross-validation trial, a data set is partitioned

into k buckets of equal size and k runs are performed by using a

di�erent bucket each time as the testing set and the remaining

buckets as the training set.
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subject descriptors in part (b). The level-3 categories
are reserved as generalizing concepts of subject de-
scriptors. The fact that the Title part of a paper is
chosen by the authors themselves and the subject de-
scriptors are cross-referenced among categories makes
the classi�cation task challenging.

The data set was obtained as follows. The class hi-
erarchy consists of the level-1 and level-2 categories.
The term hierarchy consists of the level-3 categories
and level-4 subject descriptors. For each paper, a doc-
ument is created to contain its keywords in Title and
level-4 subject descriptors in Categories and Subject
Descriptors. If the paper has a category of the form
X.0 (i.e., the GENERAL subcategory of X), we choose
X as the class of the document; otherwise, we choose a
majority level-2 category of the paper as the class. Af-
ter removing the classes with less than 20 documents,
we are left with the ACM data set shown in Table 2.
The size of training set and testing set is determined
by the 5-fold cross-validation trial.
The Sports data set. For the second data

set, we choose the Recreation : Sports hierarchy in
Yahoo! (http://dir.yahoo.com/recreation/sports) be-
cause its deep class hierarchy well suits the e�ective-
ness study of class proximity. We descend the Sports
hierarchy and ignore the classes with less than 20
documents each. Each document corresponds to a
page pointed by a link in a Sports page (with the
pre�x http://dir.yahoo.com/recreation/sports) but
outside the Yahoo!'s domain (without the pre�x
http://dir.yahoo.com/). The document consists of the
keywords tagged by this link. We ignore short-cuts
and links to non-Sports pages within Yahoo!. This
gives us the Sports data set in Table 2. About 90%
of the terms occur in no more than 10 documents and
many documents contain only such terms. This makes
the classi�cation task more challenging than the ACM
data set.

For both data sets, the class proximity is the short-
est distance between classes in class hierarchy.

number ACM data Sports data

documents 26,515 7,550
classes 78 367
terms 14,754 10,747

levels of class hierarchy 2 7
training documents 21,212 6,040
testing documents 5,303 1,510

Table 2: The statistics about data sets

5.2 The result on the ACM data set

The rules/features found. Figure 3 shows a small
sample of features found by (CDAR97,T) and rules
found by (B,T) (the biased con�dence and minimum
support of 0.1%). All terms shown are in the processed
form where plural and morphological variations are re-

moved by using the standard text processing in IR. For
each rule, the �rst number is the biased con�dence and
the second is the support.

According to [CDAR97], the features found at lo-
cation C have a large variance in the subclasses of C,
thus, are discriminators of the subclasses. But such
features cannot serve as the characteristics of C itself.
For example, \visual" appears in 0.55% of the docu-
ments under CSO where it was found as a feature,
but appears 0.83% of the documents under Software
where it was not found as a feature. This is so be-
cause \visual" has a large variance in the subclasses
of CSO, but not in the subclasses of Software. Such
features do not ful�ll our goal of characterizing CSO.
On the other hand, the rules found by (B,T) clearly
tell what terms characterize what subclasses of CSO,
which is not the case from examining the features at
CSO found by (CDAR97,T).

The following discussion refers to Figure 5. The two
ranking criteria divide �gures into the left column and
the right column. The x-axis denotes the minimum
support of x% of the training size. The legend in the
�gure labeled \Size" is uniformly used in all �gures.

The error. The two �gures labeled \Error" show
the total error on the 5,303 testing documents as de-
�ned by class proximity. We can see the following
points. (a) (B,T) performs the best, in fact, improves
upon (CDAT97) and (CDAR97,T) by as much as 75%.
(b) Comparing () with (T), (B) with (B,T) reveals that
the global approach bene�ts drastically from term hi-
erarchy, but not much for the local approach. (c)
Comparing () with (B), and (T) with (B,T) reveals
that class proximity reduces the total error, but only
marginally, due to the shallow class hierarchy. (d) The
biased con�dence yields higher accuracy than the bi-
ased J-measure.

Figure 4 shows the distribution of errors accord-
ing to the distance between the known class and the
predicted class, called the fatalness of error. The min-
imum support is 0.1% (of the training size) for our
approach. Clearly, (CDAR97) and (CDAR97,T) make
far more fatal errors (of distance 3 or 4) than the global
approach. Indeed, we observed that 3,624 or 68% and
3,824 or 72% testing documents were wrongly classi-
�ed at the top level of the class hierarchy by (CDAR97)
and (CDAR97,T), respectively, compared to only 21%
by (B,T) (the biased con�dence). A similar trend was
observed for the Sports data set (see below). This con-
�rms the point made in Introduction that high level
structures diminish in the local approach.

The count of the usual misclassi�cation is shown
in the two �gures labeled \Count". We notice that
(CDAR97) and (CDAR97,T) make much more mis-
classi�cations for the ACM data, i.e., 70%, than for the
USPatent data in [CDAR97], i.e., about 25%. This dif-
ference is because the ACM data has 78 classes, com-
pared to only 12 classes for the USPatent data.
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Best features found by (CDAR97,T):
At Computer Systems Organization (CSO):

medium, mainfram, super, attribut, techniqu, comput, stream, multipl, x mp, embed, apl, train, cyber, oop, win,
council, visual, etc.

At Software:
object oriented programming, concurrent programming, classif, processor, featur, techniqu, construct, tool, process,
storag, parallel programming, organiz, compil, �le system, distributed system, protect, etc.

Best rules found by (B,T):
Under Computer Systems Organization (CSO):

vector,stream,processor,parallel ! Processor Architectures (1.00, 22)
multiple instruction stream ! Processor Architectures (1.00, 55)
data 
ow,architectur ! Processor Architectures (1.00, 30)
internet,architectur ! Computer Communication Networks (1.00, 67)
mode,atm ! Computer Communication Networks (1.00, 32)
network,circuit switching ! Computer Communication Networks (1.00, 25)
techniqu,model,attribut ! Performance of Systems (0.94, 65)

Under Software:
program,function,applicative ! Programming Techniques (0.87,52)
object oriented programming ! Programming Techniques (0.86,258)
reusable software ! Software Engineering (0.97,200)
software,methodologie ! Software Engineering (0.92, 55)
programming environment ! Software Engineering (0.89, 287)
processor,parse ! Programming Languages (1.00, 27)
processor,compiler ! Programming Languages (0.91, 454)
organization,distributed system ! Operating Systems (1.00, 71)
synchronization,process ! Operating Systems (1.00, 53)

Figure 3: The comparision of features and rules
The size of classi�ers. The two �gures labeled

\Size" show the size of classi�ers, which is the num-
ber of rules for our approach, and the number of fea-
tures for (CDAR97,T) and (CDAR97). Clearly, the
classi�ers produced by (CDAR97,T) and (CDAR97)
are much larger, thus, less understandable, than those
produced by our approach. The use of term hierar-
chy has increased the size of classi�ers. The biased
J-measure yields consistently fewer rules than the bi-
ased con�dence.

The execution time. The two �gures labeled
\Time" show the execution time. For our approach,
most time was spent on generating association rules.
For (CDAR97) and (CDAR97,T), most time was spent
on computing the �sher index of terms and determin-
ing the cuto� point of the feature list where every pre-
�x of the feature list was examined for each document
in the validation set. Our algorithms are much faster
than (CDAR97) and (CDAR97,T).

Document ids kept. The two �gures labeled
\Ids" show the number of document ids kept in Clist
and Wlist in our approach. Recall that the training
set has 21,212 documents. Thus, each document id is
kept no more than twice. This number drops quickly
for a smaller minimum support. We can further re-
duce this number by keeping Clist and Wlist only for
the rules that are not marked at any time. We omit
this detail due to space limitation.

5.3 The result on the Sports data set

For this data set, a similar trend was observed on the
size of classi�ers, execution time, and number of doc-
ument ids kept. Also, the remark about the rules and
features for the ACM data set is applicable to this
data set. The detail can found in [WZL99]. Here we
report brie
y on the error of classi�cation. As the
minimum support varies from 0.02% to 0.5%, the to-
tal error of (B) ranges from 2700 to 3700, much smaller
than the total error of (CDAR97), which is 5700, and
the total error of (), which ranges from 3300 to 5800.
(Note that the Sports data set has no term hierarchy.)
Again, we observed the trend that (CDAR97) and ()
more frequently make fatal errors than (B). In fact,
68% of the testing documents were classi�ed wrongly
at the top level by (CDAR97), compared to only 37%
by (B) (the biased con�dence and minimumsupport of
0.2%). This shows that the global approach based on
class proximity indeed achieves the closeness of classi-
�cation.

6 Concluding remarks

With few exceptions, most work on (supervised) clas-
si�cation ignored the structure of features and classes,
e.g., [Q93, SHP95, SOM, YP97]. Recently, hierarchi-
cally structured features and hierarchically structured
classes were examined in [AAK96] and [CDAR97,
KS97], respectively. Related but di�erent topics are
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Figure 4: ACM error distribution: biased con�dence (left) and biased J-measure (right)
hypertext categorization [CDI98] where some neigh-
bourhood of interconnected documents was explored
to enhance the classi�cation accuracy. Association
rules [AIS93, AS94, SA95, HF95] were proposed with
a di�erent mind set from classi�cation. [LHM98] in-
tegrated association rules and classi�cation rules for a
relation table, but did not consider hierarchical clas-
si�cation. Also, the algorithm in [LHM98] is rather
complex and the database is scanned more than once.
Finally, none of these work has considered the notion
of class proximity.

This paper makes the following contributions.
First, it identi�es several important issues in hierar-
chical classi�cation. Then, it proposes a new approach
to hierarchical classi�cation by aiming at the close-
ness of classi�cation, which is fundamentally di�erent
from earlier approaches. The closeness of classi�cation
is relevant not only to hierarchical classi�cation, but
also to the general setting of classi�cation. For ex-
ample, classifying Urgent emails into Junk emails is
much more costly than the other way around, and the
closeness of classi�cation is useful to minimize mis-
classi�cation in a way sensible to such applications.
Several characteristics make our approach robust and
scalable to a large corpus, namely, construction of a
global classi�er, search for multi-level abstraction and
correlation of features, determination of features with
respect to target classes, and a single scan of the docu-
ment database. Experiments have shown encouraging
results.
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Figure 5: ACM: biased con�dence (left) and biased J-measure (right)
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