Loading a Cachewith Query Results

LauraM. Haas
IBM Almaden

Abstract

Dataintensiveapplicationsodayusuallyrunin eithera client-
serveror a middlevare ervironment.In either case they must
efficiently handle both databasequeries,which processlarge
numbersof dataobjects,andapplicationlogic, which involves
fine-grainedobjectaccesseée.g., methodcalls). We proposea
wholisticapproad to speedingip sud applications:we load
the cadhe of a systemwith relevant objectsas a by-product
of queryprocessing This can potentiallyimprovethe perfor-
manceof the application, by eliminatingthe needto fault in
objects. However, it can also increasethe cost of queriesby
forcing themto handlemore data,thuspotentiallyreducingthe
performancenf theapplication.In this paper we examineboth
heuristicand cost-basedtrategiesfor decidingwhatto cace,
andwhento do so. We showhowthesestrategiescan be inte-
gratedinto the queryoptimizerof an existingsystemandhow
the cadhing architecture is affected. We presentthe resultsof
experimentaisingthe Garlic databasemiddlevare systemthe
experimentslemonstatetheusefulnessfloadinga cachewith
queryresultsandillustratethetradeofsbetweenhecost-based
and heuristicoptimizationmethods.

1

Data intensive applicationstoday usually run in either
a middleware or client-serer ervironment. Examples
of middleware systemdnclude businessapplication,e-
commerceor databaseniddlevaresystemswhile CAD

and CAE systemsare typically client-serer. In either
case they mustefficiently handleboth databaseueries,
which procesdarge numbersof dataobjects,andappli-
cationlogic, with its fine-grainedobjectaccessege.g.,
methodcalls). In both architecturesapplicationlogic

andqueryprocessingnay be co-residentandtakeplace
on a processoptherthanthaton which the dataresides.
It is increasinglylikely that someor all of the datawill

Intr oduction

Permissionto copywithout feeall or part of this materialis granted
providedthatthe copiesare notmadeor distributedfor directcommer
cial advantagethe VLDB copyrightnotice and the title of the pub-
lication and its date appear and notice is giventhat copyingis by
permissionof the \ery Large Data BaseEndowment.To copy other
wise,or to republish requiresa feeand/orspecialpermissiorfromthe
Endowment.

Proceedingsf the 25th VLDB Conference,
Edinburgh, Scotland,1999.

351

DonaldKossmann
University of Passau

loanaUrsu
IBM Almaden

be on remoteand/ornontraditionaldatasourceghatare
expensve to accesssuchasweb sourcer specialized
applicationsystems.

Sophisticatedptimizationtechniquesreducequery
processingimesin theseervironments,while caching
is usedto reducethe cost of the applicationlogic by
avoiding unnecessaryequestdo the datasources.Ap-
plicationsoftenaskqueriego identify objectsof interest
andthenmanipulatehe resultobjects.Thoughit is now
possibleto do chunksof applicationlogic in the query
processaqrapplicationsstill do muchof the work them-
sehes. Someapplicationsrequireuserinteraction;oth-
ersdesiregreateportabilityandeaseof installation(e.g.,
big businessapplicationssuchas Baan IV, Peoplesoft
7.5,0r SAPR/3). In traditionalsystemsgueryprocess-
ing and cachingdecisionsare madein isolation. While
this providesacceptablgerformancdor thesesystems,
it is adisasteifor applicationsusingdatafrom the Inter-
net. This query-and-manipulajgatternmeanghattradi-
tional system@ccesshedatatwice: oncewhile process-
ing thequery andthenagain,on thefirst methodcall, to
retrieve and cachethe object. If datais on the Internet,
this will be prohibitively expensve. In somecasesthe
datasourcemay not even be ableto look up individual
objects;hencethis extra roundtrip is impossible.

In this paperwe proposeto load the cachewith rel-
evant objects as a by-productof the execution of a
query With this techniqueit is possibleto get orders
of magnitudemprovementdor applicationghatinvolve
bothqueriesand methodsover expensve-to-accesdata.
However, a naiveimplementatiortando moreharmthan
good. An applicationtoday can manually cachequery
resultsby explicitly selectingall the datafor the ob-
jectin the queryitself. However, this may increasethe
costof queriesdramaticallyby forcing themto handle
moredata.For complex queriesthis effect maybelarge
enoughto morethan offset the benefit. Therefore,the
decisionsof whatto cacheandwhenduring queryexe-
cutionto do soshouldbe madeby thequeryoptimizerin
acost-basednanner

The remainderof this paperis organizedas follows.
In Section2, we elaborateon the motivation for our
work, anddiscusghe cachingof objectsin our erviron-
ment. While loadinga cachewith queryresultsis essen-
tial whendatais expensve or difficult to accesspur ap-



proachcanalsobeusedto speedip applicationsn tradi-
tional two- or three-tierarchitecturesisdescribedbove.
For easeof expositionwe will talk about“middleware”
asthesiteof queryprocessingndcachingin thefollow-
ing sections.In atwo-tier systemtheseactiities would
take placein the client. Section3 presentslternatve
waysto extendanoptimizerto generatejueryexecution
plansthatload a cachewith queryresults. We describe
two simple heuristics,as well as a more sophisticated
cost-base@pproachSectiord discussesurimplemen-
tation of cachingin the Garlic databaseniddlevaresys-
tem, and Section5 containsthe resultsof performance
experimentsthat demonstratehe needto load a cache
with query resultsand showv the tradeofs of the three
alternatve waysof extendingthe query processarSec-
tion 6 discusseselatedwork, and Section7 concludes
the paper

2 Cachingin Middleware

2.1 A Motivating Example

To seewhy loadingthecachewith queryresultss useful,
considetrthis (generic)pieceof applicationcode:

foreacho, 02, 05 in

(select r.oid, s;.0id, ss.oid
fromRr, S si1, S so,
where ...)

{...o.method(e, 0s); ... }

The queryin this exampleis usedto selectrelevant ob-
jects from the database. After further analysisand/or
user interaction,the methodcarriesout operationson
theseobjects. The querycanbe arbitrarily comple, in-
volving joins, subqueriesaggreation, etc. The method
will involve accesset certainfields of the objecto and
possiblyto other objects(o., 05) aswell. r.oid refers
to the objectidentifier of an objectof collection R; this
identifieris usedto invoke methodson the objectandto
accesgieldsof theobject. Suchacodefragmentcouldbe
foundin mary applications.For example,aninventory
controlprogrammight selectall productsfor which sup-
plieswerelow (andtheir suppliersandexisting orders).
After calculatinganamountto order(perhapswith user
input),it mightinvoke a methodto orderthe product.

In atraditionalmiddlevaresystenthis codefragment
is carriedout asfollows:

1. thequeryprocessotriesto find thebest(i.e., lowest
cost)planto executethequery

2. the query processoexecutesthe query retrieving
theobjectids requested.

3. aninterpretemexecuteghe method usingthe object
idsto retrieve ary dataneededTo speedup the ex-
ecutionof methodghatrepeatedlyaccesgshe same
objects,the interpreterusescaching. Requestdo
acces®bjectsalreadyin thecachecanbeprocessed
by theinterpretemwithout accessinghe underlying
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datasource(s)andarequesto acces&nobjectnot
foundin the cachewould resultin faulting in that
object.

Thekey obsenrationis thatqueryprocessingloesnotaf-

fectcachingn traditionalsystemsif therelevantobjects
of R arenot cachedprior to the executionof the query

theseobjectswill notbecachedsa by-productof query
executionandthey will have to be faultedin at the be-

ginningof eachmethodnvocation.In anervironmentin

which dataaccesss slow, this canbe extremely expen-
sive — just asexpensve, in fact, asprocessinghe query

Loading the cachewith query resultsavoids this extra

costof faulting in objectsby copyingthe R objectsinto

the cachewhile the queryis executed;thatis, it seizes
the opportunityto copythe R objectsinto thecacheata

momentat which the objectsmustbe accessedndpro-

cessedo executethe queryaryway.

2.2 CachingObjects

Our goal is to decreaseahe overall execution time of
applications,such as those describedabove, that use
gueriesto identify the objectson which they will op-
erate(i.e., on which they will invoke methods). There
aremary possiblewaysto accomplistthis goal. In this
paper we focus on speedingup methodexecution, by
essentially“pre-caching”the objectsthat methodswill
need. This pre-cachings possiblein our ervironment,
first, becausein executingthe query the queryproces-
sorhasto touchthe neededbjectsanyway, andsecond,
becauseén the architecturesve considey someportion
of thequeryprocessings doneatthe samesiteasthatat
which the methodsare executed.Hence the querypro-
cessorhasthe opportunityto copy appropriateobjects
into acachefor themethoddo use.

Obviously, it will only be beneficialto cacheobjects
that are subsequenthaccessedy the applicationpro-
gram. Ideally, onewould carry out a dataflow analy-
sis of the applicationprogram[ASU89] in orderto de-
terminewhich objectsof the queryresultarepotentially
accessedJnfortunately suchdataflow analysesreim-
possiblein mary casesdue to the separatiorof appli-
cationlogic and query processing- and interactve ap-
plicationsaretotally unpredictableThussomeheuristic
approachto identifying the relevant objectsis needed.
It is likely that the objectswhoseoids are returnedas
partof thequeryresult(i.e., objectsof collectionsvhose
oid columnsarepartof the query's SELECT clause)are
goingto be accessedby the applicationprogramsubse-
quently (why elsewould the queryaskfor oids?}. We
referto suchcollectionsascandidatecollections these
collectionsare candidatedecausebjectsof thesecol-
lectionsarelikely to beaccessedHowever, they arenot
guaranteedo be cachedasit might neverthelessot be
cost-efective.

! Alternatively, we could assumethat the applicationprogrammer
giveshintsthatindicatewhich collectionsshouldbe cached.



In the applicationswe are considering,queriesand
methodgsunin the sametransactionHencewe areonly
interestedn intra-transactiortachingin this papey and
cacheconsisteng is not anissue. Our approachs par
ticularly attractize in ervironmentsthat do not support
inter-transactiorcachingbecausdransactionstartwith
no relevant objectsin the cache. Issuesof locking and
concurreng control are orthogonalto loading a cache
with queryresults.In amiddlevareervironment,it is of-
tenundesirableor impossibleto lock datain the sources
for the durationof the transaction.Under suchcircum-
stancespur approachmay causean applicationto pro-
ducedifferentoutput;but, in somesensethis outputcan
be seenas betteroutput becauseour approachguaran-
teesthat the methodsseethe samestateof an objectas
thequery

In this paper we assumethat the granularity of
cachingis an entire object. (We discusshow an object
is definedin Section4.) To cachethe object,the whole
objectmustbe present. One may argue that we should
only copythosefieldsof objectsthatareretrievedaspart
of the queryaryway. However, state-of-the-artaches
cachein the granularityof whole objects(e.g.,the cache
of SAP R/3 [KKM98]). This is necessanfor pointer
swizzling[Mos92, KK95] andto organizethe cacheeffi-
ciently (i.e., avoid a perattribute overheadn thecache).
Onemay alsoarguethatthe granularityof cachingand
data transfershould be a group of objectsor a page
cachinganddatatransferin sucha granularity however,
is notpossiblein systemdike Garlic.

A consequencef thisapproachs thatcachingduring
gueryexecutionis notfree. It introducesadditionalcost,
asno attribute of an objectmay be projectedout before
the objectis cached,evenif the attribute is not needed
to computethe queryresult. This hastwo implications.
First, objectsshouldonly be cachedf theexpectedben-
efit (overall applicationspeeduplueto fasterexecution
of methodsutweighsthe costin queryexecutiontime.
Secondthepointin thequeryexecutionatwhichobjects
are cachedwill affect the costand benefit. If caching
occurstoo early irrelevant objectsmay be cached,and
might evenflood the cache squeezingut morerelevant
objects. If cachingoccurstoo late, the intermediatere-
sultsof queryprocessingwill be larger dueto the need
to presere whole objectsfor caching.Consideyfor in-
stanceaquerythatinvolvesa join betweenR andS and
asksfor the oid of the R objectsthat qualify: joining
only the oid columnof R with S is cheapetthanjoin-
ing thewholeR (i.e., oid andall othercolumns)with S,
especiallyif the oid columnof R fits into main memory
andthewhole R doesnot. Becausecachingimpactsthe
sizeof intermediateesultsjt shouldalsoimpactjoin or-
dering;for instancejoins thatfilter out mary objectsof
candidatecollectionsshouldperhapde carriedout early
in a queryplanif cachingis enabled. Hence,the best
way of executingthe query may be differentdepending
onwhetherwe arecachingobjects.
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Return Return
Join Join
Cache(R) S |ip Cache(R,S1) Cache(S2)
Ship s2 Join Ship
Join ship ship S2
R S1 R S1

Figurel: ExampleCacheEnhancedueryPlans

In summary our goal is to speedup the execution
of methodsby cachingthe objectsthey need(as indi-
catedby the selectlist of a query)during executionof
thatquery Thegranularityof thecacheis anobject,and
cachingobjectsduring queryexecutionincurscoststhat
canaffectthechoiceof queryexecutionplan. As aresult,
wewill allow thequeryoptimizerto decidewhatobjects
to cacheandwhen.

3 CachingDuring Queries

In this sectionwe describevaysto extendthequerypro-
cessoof amiddlevaresystemin orderto generatglans
which cacherelevantobjects.Weintroduceanew Cade
operatorwhich the query optimizer canuseto indicate
wherein a plan objectsof a particularcollectionshould
be cached.A Cade operatorcopiesobjectsfrom its in-
putstreamnto thecacheandprojectsout columnsof the
input streamwhich arenot neededo producethe query
results. A Cade operatortakestwo parameterspne
that specifieswhich objectsof the input streamshould
be copiedinto the cache,and one that specifieswhich
columnsshouldbe“passedhrough”to the next operator
(notprojectedbut). Theplansshovnin Figurel couldbe
producedby the enhancedjueryoptimizer The Cache
operatorof thefirst plan copiesobjectsof collection R;
the first Cadhe operatorof the secondplan copiesob-
jectsof R and$; while thesecondcopiesS, objects.A
plan may containserseral Cache operatorsf the objects
of morethanone collectionareto be cached;however,
it makesno senseto have two Cade operatorsfor the
samecollectionin aplan. TheReturnoperatorpassthe
gueryresultsto the applicationprogram.The Shipoper
atorspassintermediatequeryresultsfrom a datasource
to themiddleware;sinceCacde operatorarealwaysex-
ecutedby the middleware,all Cache operatoranustbe
placedsomeavhereabore a Shipoperatorandbelow the
final Returnoperator

In orderto generatesuchplans,the query optimizer
mustdecide(1) for whichcollectionsinvolvedin aquery
toincludeCadeoperatorsn aqueryplan,and(2) where
to place Cade operatorsn a query plan. We present
threeapproachesThefirsttwo areheuristicavhichsene
as baselinedor our study The third approachs cost-



basedcacheoperatomplacement:ihis approachs likely
to makebetterdecisiong(i.e., producebetterplans),but
increaseshe costof queryoptimization.

3.1 CacheOperators at the Top of Query Plans

The first approachmakesthe two cacheoperatormplace-
mentdecisionsn thefollowing heuristicway: (1) genef

atea Cadche operatorfor every candidatecollection,and

(2) placeall Cacthe operatorshigh in aqueryplan. This

approachcorrespondgo what an applicationcould do

manually andis basedon the principle thatall relevant

objects(objectswhich are part of the queryresultand

belongto candidateollections)shouldbe cachedduring

thequeryandno irrelevantobjects(thosenot part of the

gueryresult)shouldbe cached.In detail, this approach
worksasfollows:

1. rewrite the SELECT clauseof a query replacingall
occurancesf oi d by *.

2. optimize the rewritten query in the conventional
way.

3. include Cade operatordor the collectionswhose
oid columnsarerequestedh the SEL ECT clauseof
thequery andplacethoseCaceoperatoratthetop
of thequeryplangeneratedh Step2 (i.e.,justbelov
the Returnoperator);remembetthat Cache opera-
torscarry out projectionssothat the right columns
for theoriginal queryarereturned.

4. pushdown Cadce operatorghroughnon-reductive
operators.A non-reductie operatoris an operator
that doesnot filter out ary objects. Examplesare
Sortoperator@&ndcertainfunctionaljoinsfor which
integrity constraintsguarantedhat all objectssat-
isfy the join predicate(s)see[CK97] for a formal
definitionof non-reductie operators).

The push-devn of Cace operators through non-
reductive operatorgStep4) reduceghecostof executing
the queryandat the sametime obeys the principle that
only relevantobjectsarecopiedinto thecache.Suppose,
asanexample,thata Cade operatoris pushedbelown a
Sort thecostof the Sortis reducedecausehe Sortop-
eratorworkson thin tuples,becaus¢he Cache operators
projectoutall the columnsthatwereaddedaspartof the
rewriting in Stepl. At the sametime, no irrelevantob-
jectsarecopiedinto the cachebecause¢he Sortdoesnot
filter outary objects.

While pushingdown Cache operatorsthroughnon-
reductve operatorsis certainly an improvement, this
“caching at the top” approachclearly doesnot always
producegoodcache-enhancgaans.BecauseCadeop-
eratorampactthesizeof intermediateesults the place-
mentof Cace operatorshouldalsoimpactjoin order
ing; however, theheuristicignoresthis interdependenc
FurthermoreCade operatorsdighin a planforcelower
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operatorgo handlethick tupleswith highextracost. The
heuristicbasicallyassumeghat the extra costincurred
by planswith Cacde operatorss alwaysoutweighedoy
the benefitof theseCacde operatordor (future) method
invocations— an assumptiorwhich is not alwaysvalid,
evenwhendataaccesseareexpensve (Section5.4).

3.2 CacheOperators at the Bottom of Query Plans

Thesecondapproach’cachingatthebottom”, makeghe
following cacheoperatoplacementlecisions(1) gener
atea Cade operatorfor every candidatecollection,and
(2) placeall Cadce operatordow in a queryplan. Like
the“cachingatthetop” heuristic the“cachingatthebot-
tom” heuristicassumeshat the benefitsof Cache oper
atorsfor candidatecollectionsalwaysoutweighthe cost
incurredby the presencef Cade operators.However,
the “cachingat the bottom” heuristicplacesCache op-
eratorslow in query plans,following the principle that
columnswhich are only neededor cachingand not to
evaluatethe queryitself shouldbe projectedout asearly
aspossible.Thus,the “cachingat the bottom” approach
affectsthecostof otherqueryoperatorgi.e.,joins,group
bys, etc.) aslittle aspossible but it might copy objects
into the cachethat are not part of the queryresultand
whichwould befiltered by theseotherqueryoperators.

In detail,the “cachingat the bottom” approactworks
asfollows:

1. optimizetheoriginalqueryin the corventionalway.

2. for eachleaf nodeof theresultingplan, if the oper
atoraccessea candidatecollection,expandthelist
of attributesreturnedo includeall the attributesof
theobjects.

3. place a Cade operatorfor that collection above
eachsuchleaf operator

4. pull up Cade operatorsthat sit belon pipelining
operatorge.g.,filters or nested-loofoins).

Cadeoperatompull-upin the“cachingatthebottom”
approachs analogoudo Cade operatorpush-davn in
the“cachingatthetop” approachPush-davn heuristics
reducehecostof aquerywithoutincreasinghenumber
of falsecadeinsertions(addingobjectsto the cachethat
do not participatein the queryresult,hencewill notbe
usedlater). Pull-upheuristicreducethe numberof false
cade insertionswithout increasingthe costof a query
Considerasanexamplea Cade operatotthatsits belov
a pipeline operatorwhich filters out someof its input
tuples. Moving the Cacde operatorabove that pipeline
operatorwill reducethe numberof objectscopiedinto
thecachewithoutincreasinghe costof the pipelineop-
eratorbecausehe costof a pipeline operatordoesnot
dependdn thewidth of thetuplesit processes.



3.3 Cost-basedCacheOperator Placement

It should be clear from the previous two subsections
thatthereis a fundamentatradeof between‘high” and
“low” Cade operators: the higher a Cace operator
the lower the numberof false cate insertions andthe
higherthenumberof otherqueryoperatorghatsit belov
the Cache operatolandoperateatincreaseaostbecause
they mustprocesghick tuples. The“cachingatthe top”
and“cachingatthebottom”heuristicsattackthistradeof
in simpleways;obviously, thereare situationsin which
eitherone or even both approacheslo not find the best
placeto positiona Cade operatorin a queryplan.

In this section,we shav how a query processorcan
make Cade operator placementdecisionsin a cost-
basedmanner The approachs basedon the following
extensions:

1. extend the enumeratorto enumeratealternatve
planswith Cache operators

. estimatehe costandpotentialbenefitof Caceop-
eratorsto determinethe bestplan; the costmodels
for otherqueryoperatorge.g.,joins, etc.) neednot
bechanged

. extend the pruning condition of the optimizer to
eliminatesub-optimalplansasearlyaspossible

We describethesethreeextensionsn moredetail in the
following subsections.

3.3.1 Enumeration of Planswith Cache Operators

Theimplementatiorof thecost-baseg@lacemenstratey
is integratedwith the planningphaseof the optimizet
We discussthe necessarychangesn the contet of a
bottom-updynamicprogrammingoptimizer[SACt79].
Optimizers of this sort generatequery plansin three
phases.In the first phase they generateplansfor sin-
gle collectionaccessesin the next phasethey generate
plansfor joins. They first enumeratehe two-wayjoins,
using the planshbuilt in the first phaseasinput. Like-
wise, they thenplanthree-wayjoins, usingthe planspre-
viously built (for single collectionsandtwo-wayjoins),
and so on, until a plan for the entirejoin is generated.
The final phasethen completeshe plan by addingop-
eratorsfor aggreation,ordering,unions,etc. Eachplan
hasasetof planpropertiesthattrackwhatwork hasbeen
doneby thatplan. In particular they recordwhatcollec-
tions have beenaccessedwhat predicatesapplied,and
whatattributesareavailable,aswell asanestimatedost
and cardinalityfor the plar?. Eachoperatoraddedto a
plan modifiesthe propertiesof that planto recordwhat
it hasdone.At theendof eachroundof joins, aswell as
atthe endof eachphasethe optimizerprunesthe setof
generategblans finding planswhich have donethesame

2Thereareseveralotherpropertieghataretrackedwe only list the
mostrelevantfor this paper
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Planl: Index Scan- Aip;cx

Plan2: Index Scan- Ainin

Plan3: RelationScan Aip;cx

Plan4: RelationScan- Aip;n

Plan5: Cache(A) Ship- Index Scan- Aipicx
Plan6: Cache(A) Ship- RelationScan- Agpick

Figure2: Plansfor AccessingrableA

work (have the samepropertieslandeliminatingall but
thecheapest.

Only a few changeseedto be madeto an existing
optimizerto allow it to generateplanswith Cache op-
erators.First, we have to definewhata Cacde operator
doesto aplan’s propertiesCadeprojectsout (i.e.,does
not passon to higheroperatorsunneedeattributes,so
it changeghe attribute property It alsowill affect the
cost,asdiscussedn Section3.3.2belon. Next, thefirst
and secondphaseanust be modifiedto generatealter
native planswith Cace operators.In moderndynamic
programmingpptimizergLoh88, HKWY97], this corre-
spondgo addingonerule to eachof thosephasesin the
accesphase,n additionto the normal (thin) plansfor
a collection, which selectout just the attributesneeded
for the query the new rule will alsogenerateplansfor
gettingall the attributesof the objectsin the collection
(thick plang, if the collectionis oneof thosewhoseoid
columnis selectedy thequery(i.e.,acandidatecollec-
tion). In addition,therulewill generatextra planswhich
consistof a Cadhe (andShip operatorabove eachof the
thick plans. Figure2 shaws the six plansthat would be
generatedn phaseone of enumerationf the collection
accessould be doneby either scanningthe collection
or by scanninganindex. If thick andthin coincide(i.e.,
all columnsof A areneededo producethe queryresult,
regardles®f caching)only four planswouldbeenumer
ated,asPlansl and3 would beidenticalto 2 and4, re-
spectvely.

Similarly, in thejoin planningphasethe enumerator
mustconsidempossiblecachingplansin additionto nor-
mal join plans. Sincetherewill be athick planfor each
candidatecollection,wewill automaticallygetjoinswith
thick resultobjects.On top of these we addappropriate
Cade operatorsduring eachround of joining. We can
considercachingary subsetf available candidatecol-
lectionsin a given plan,whereavailablemeanghatthe
plan’spropertiesndicatethatthatcollectionhasbeenac-
cessedthatno otherCadeoperatoifor thatcollectionis
presentin the plan, andthatthe full objectsare present
(it sathick planfor thatcollection). This, of coursecan
causean exponentialexplosionin the numberof plans
that mustbe considered.For example, Figure 3 showvs
four basicjoin plansand five cachingplansfor a two
tablejoin query; actually even more plansare possible
taking into accountthat more than one join methodis
applicableandthat Ship operatorscan be placedbefore
or afterthejoins. In Section3.3.3,we discusshow ag-



Planl: Join- Ship- Scan- Aipicxk
- Ship- Scan-Bipicx
Plan2: Join- Ship- Scan- Apin
- Ship- Scan-Bipicxk
Plan3: Join- Ship- Scan- Aipicxk
- Ship- Scan-Bipin
Plan4: Join- Ship- Scan- Aipin
- Ship- Scan-Bipin
Plan5: Cache(A)- Join- Ship- Scan- Aipicxk
- Ship- Scan-Bipicxk
Plan6: Cache(B)} Join- Ship- Scan Apjck
- Ship- Scan-Bypicx
Plan7: Cache(A,B) Join- Ship- Scan- Agpick
- Ship- Scan-Bypicx
Plan8: Cache(B} Join- Ship- Scan Anin
- Ship- Scan-Bipicx
Plan9: Cache(A)- Join- Ship- Scan- Aipicxk
- Ship- Scan-Bipin

Figure3: PlansGeneratedor A X B
A, B arecandidateollections

gressie pruningcanhelpcontrolthis explosion.

3.3.2 Cost/BenefitCalculation of Cache Operators

SinceCade operatorsanonly be appliedon whole ob-
jects,their presencéncreaseshe costof underlyingop-
erators(becauseheseunderlying operatoranustwork
onmoredata).Further sinceCacteoperatorprojectout
the columnsnot neededor the queryresult,their prop-
erties (other than cost) are the sameas a simple (non-
caching)thin plan. For example,Plans2, 4,5 and6 in
Figure2 have the samepropertiesgxcluding cost. Plans
with Cadche operatordave donemorework to getto the
samepoint; they cansurvive,thereforepnly if theCacde
operatordave a negative cost. At the beginning of opti-
mization,a potentialbenefitis computedor eachcollec-
tion to becachedThecostof aCadeoperatois defined
asthe actual costto materializeits input streamminus
the estimatedenefit or savings,from notfaultingin ob-
jectsin futuremethodinvocations.Theactualcostof the
Cadhe operatoris proportionalto the cardinality of the
input plan, andrepresentshe time to copy objectsinto
the cacheanddo the projectto form the outputstream.
The benefitis considerablytrickier to estimate.For-
tunately a reasonablydetailedmodelis possible,andis
sufficient for choosinggoodplans. To computethe ben-
efit of a collection,we needto know how mary distinct
objectsof the collectionwill be partof the queryresult.
For simplicity, we will referto thisnumberasthe output
of thecollectionfor this query We assumeéhattheappli-
cationwill invoke methodson a certainfraction F' (e.qg.
80 %) of the objectsin the queryresult. The benefit,B,
is proportionalto theoutput,O: B = k x F x O, where
k representthetimeto faultin theobjecg. k, F, andthe

3k depend®n the datasourceandobject. [ROH9E describesiow
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outputof acollectionareconstanfor agivenquery;they
do not dependon the planfor the query or when(or if)

cachingoccurs. Thus, the benefitcanbe computedbe-
fore planningbegins. For completeaccurag, B should
includea factor f; representinghe fraction of therele-
vantobjectsnot alreadyin the cachehowever, the over-

headto estimatef; is notjustifiedgiventheaccurag we
canachiese for otherpartsof the formula, sowe ignore
thisfactorandassignF' alowervalueaccordingly

The tricky partis how to estimatethe output. One
approachs to let the optimizerdo it. For this alterna-
tive, to find the outputof a collection R, the optimizer
is askedo plana modifiedversionof the original query
suchthatthe original selectlist is replacedby “distinct
R.oid". Theresultcardinalityof thisqueryis therequired
output.Notethatsincetheplanfor this modifiedqueryis
unimportantthe optimizercanuseary greedyor heuris-
tic approacht wantsto reduceoptimizationtime,aslong
asit doesuseits cardinalityestimationformulas. How-
ever, this approachs still likely to be expensve, espe-
cially for large queriesin which multiple collectionsare
candidatedor caching,asthe optimizerwill be called
onceper candidatecollection,andthenagainto planthe
actualquery Nor is theresultguaranteedb beaccurate;
it will beonly asgoodastheoptimizer's cardinalityesti-
mates.

Instead,we devised a simple algorithm for estimat-
ing output[HKU99]. This approacthasmuchlessover
headandestimateghe outputof a collectionwith accu-
rag/ closeto thatof the optimizerfor querieswherethe
join predicatesare independent.The algorithmtakesa
gueryasinput, andreturnsan estimateof the output of
eachcandidatecollectionfor the query The algorithm
essentiallyemulategheoptimizerscardinalitycomputa-
tions, but without building plans. It startsby estimating
the effect of applying local predicatego the basecol-
lections, using the optimizer formulas. It then heuris-
tically choosesan innerfor eachjoin and“applies” the
join predicateto theinner’s output. The outputof a col-
lectionis takento be the minimum value amongits ini-
tial cardinality its outputafter applyingthe mostselec-
tive local predicate(if ary) andits outputafterapplying
the mostselectve join predicatg(if ary). Thealgorithm
seemdo provide a good compromisebetweernaccurag
andoverheadthoughit needduningfor joins over com-
positekeys.

3.3.3 Pruning of Planswith Cacde Operators

At the endof eachphaseof planning,andat the end of
eachroundof joins,theoptimizerexaminegheplansthat
have beengeneratedand “prunes” (i.e., throws away)
thosewhich areat leastasexpensve assomeotherplan
that has equivalent or more generalproperties. Thin
plansarelessgeneralbecaus¢hey makeavailablefewer
attributes)thanthick ones;hence,althoughthick plans

anoptimizercanassesthevalueof this parameter



aretypically more expensve, they will not naturallybe
prunedin favor of thin plans.

This is good, in termsof ensuringthat all possible
cachingplansare examined. However, asdescribedn
Section3.3.1,it alsoleadsto anexponentialkexplosionin
the numberof plans. Fortunately sincethe Cace oper
ator only passeshroughthoseattributesneededor the
query it createghin plans(or atleast thinnerplans)that
competewith eachother For example,in Figure2, of
the six plansgeneratedor accessingollectionA in the
first phaseof optimization,at mosttwo will survive: one
thick planandonethin plan(if it is cheapethanthethick
one). The thin survivor could eitherbe a cachingplan
(e.g.,Plan6) or anoriginalthin plan(e.g.,Plan2). In the
join phasethe maximumnumberof plansthat survives
eachroundis 27, wheren is thenumberof candidateol-
lectionsin this round. Soin Figure 3, four planscould
survive: onein which both A and B are thick, onein
which botharethin, onein which A is thick andB thin,
andonein which B is thick andA thin (for example,the
survivorsmightbePlansl, 2, 6 and7).

However, under certain conditions we can safely
pruneathick planin favor of athin —andthe soonemwe
eliminatesuchplansthe betterfor optimizationtimes.In
particular we can prunethe thick plan for a candidate
collectionA if:

COStAihm < COStAihzck + OOSt-ACacheBesi - Beneﬁt

whereCost 4,.,.5... iStheminimumactualcostincurred
to cachea collectionand correspondso the casewhere
the Cade operatorsits directly above that join that re-
sultsin the minimum numberof outputtuplesfrom the
collection. It canbe computedeforeoptimization,dur-
ing the output calculationsdescribedin Section3.3.2.
The conditionbasicallysaysthatif we assumehe min-
imal possiblecostfor cachingA (lowestactualcostless
constanbenefit),andthatis still morethanthe costof a
thin planfor A, thenthereis no pointin keepingthethick
plan,ascachingA is notagoodidea.

3.4 Other Strategiesand Variants

In this section,we presentedhreealternatve ways to

generateplanswith Cacde operators. Thesethree ap-
proachesmark cornerstonesn the spaceof possible
stratgiesfor integrating Cade operatorplacemeninto

a query processor The first two approachesre sim-

ple stratgies that alwaysplace Cace operatorseither
at the top or at the bottom of query plans. Neitherap-
proach causesmuch overheadduring query optimiza-
tion, but they arelikely to makesub-optimalecisionsn

mary cases.The third approachis a full-fledged, cost-
basedapproachfor determiningcacheoperatorplace-
ment. Thisapproactcanbethe causeof significantaddi-
tional overheadduring query optimization,but is likely

to makegooddecisions.
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We canimaginemary approachethatmakebetterde-
cisionsthanthe“cachingatthetop” and“cachingatthe
bottom” heuristicsat theexpenseof additionaloverhead,
or approachethatarecheapethan“cost-baseaaching”
at therisk of makingpoor decisionsn somecases.We
describeherejustafew variants:

cost-basedCadce opeiator pushdown rather than
pushCadeoperatorglown throughnon-reductivequery
operatorsonly, this variantwould pusha Cace opera-
tor down throughanotheroperatoiif theresultwould be
a lower costplan, usingthe costmodeland cost/benefit
calculationdor Cache operatorof Section3.3.2.

cost-basedCadce opelator pull-up: Cade operator
pull-up canalsobe carriedout during post-processingf
plansin a cost-basednanner insteadof pulling Cache
operatorsip only throughpipelineoperators.

flood-sensitiveCache opemator elimination The
“cachingatthebottom”variantcanbeextendedn sucha
way that Cache operatorghatwould flood the cachebe-
causehey areappliedto too mary objects(accordingto
thecardinalityestimate®f theoptimizer)areeliminated
from theplan.

rigorouspruningin cost-basedppoad: Thereare
several possiblevariantsof the “cost-basedaching’ap-
proachwhich moreaggressiely pruneplans,evenwhen
it may not be wholly “safe” to do so (in otherwords,
they may discardplansthat could be the basisof win-
ning planslater on). Thesevariantsreducethe cost of
guery optimizationconsiderablyat the expenseof per
hapsmissinggood plans. For example,one aggressie
variant might generalizethe pruning condition of Sec-
tion 3.3.3,andalwayskeepat mostoneof the alternatve
plansat the endof theround. A somevhat gentlervari-
antmightkeeptwo plansattheendof eachroundof plan
generation:a “pure” thick plan, thatis, a planin which
all attributesof all candidatecollectionsof the plan are
presentanda“pure” thin plan,thatis, aplanin whichno
attributesnotnecessarfor theoriginalqueryarepresent.

4 Implementation Details

We implementedall three cache operator placement
stratgies describedin the previous sectionand inte-
gratedtheminto the Garlic databaseniddlevaresystem.
In this sectionwe describethe major designchoiceswe
madein ourimplementation.

4.1 Double CachingArchitecture

Figure 4 shavs the overall designof the cacheman-
agerand query executionengine. Our implementation
involvesa doublecachingscheme. Thereis a primary
cade usedby the application,while Cace operators
load objectsinto a secondarycade duringqueryexecu-
tion. Fromthe secondaryachetheseobjectsarecopied
into the primary cachewhenthey arefirst accessedby
a method.Residenbbjecttables(ROT) in boththe pri-
mary and secondarycacheare usedto quickly find an



methoT qreries

|
: Return
|
| Join
|
I /
| Cache
|
P
| Ship(R) Ship(S1)
|
1
primary cache secondary cache query engine
data sources

Figure4: DoubleCachingArchitecture

objectin the cache. Cade operatorsonly copy objects
into the secondargachethatarenot presentin eitherthe
primaryor thesecondargache.Thus,they wasteaslittle

main memoryfor doublecachingaspossibleand avoid

copyingobjectsinto the secondargachemultiple times
if theinput streamof the Cade operatorcontainsdupli-
cates. During methodinvocations,an objectis faulted
into the primary cachefrom the datasourcesf it is not
foundin the primaryor the secondargachejustasin a
traditionalmiddlevaresystem.

The double cachingschemeshown in Figure 4 has
two importantadvantages.First, copyingobjectsinto a
secondarycache,ratherthan directly into the primary
cache,preventsthe primary cachefrom being flooded
with queryresults,thusdisplacingfrequentlyusedob-
jects. Considerfor example,a casein which the query
optimizerestimateghatthe Cadce operatorcopies,say
1000bjects;butin fact,theoptimizererrsbecausef out-
datedstatisticsaandthe Cache operatomwouldin factcopy
millions of objectsinto the cache. The doublecaching
schemamakest possibleto controlandlimit theimpact
of Cade operators. Second,the overheadof copying
objectsinto thecacheasaby-productof queryexecution
canbereducedn suchadoublecachingschemeln the
primary cache objectsaremanagedndreplacedn the
granularityof objects—thisis reasonabléecausendi-
vidual objectsarefaultedin andreplacedn the primary
cacheduring methodinvocations.The secondargache,
on the otherhand,is organizedin chunks;thatis, when
a Cadhe operatorbagins executionit will allocatespace
for, say 1000 o0bjectsin the secondarycache,knowing
thatit is likely to copymary objects.In otherwords,the
double cachingschememakesit possibleto efficiently
bulkloadthe cachewith relevantobjects.

However, the double cachingschemealsohassome
disadantages: (1) it incurs additional computational
overheadin orderto copy objectsfrom the secondary
cacheinto the primary cache when the objects are
needed(?) it doeswastemainmemorybecausafteran
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objecthasbeencopiedfrom the secondarynto the pri-
mary cache,it is cachedwice; (3) it requiressome(al-
beit little) tuning effort—this is the flip side of the coin
which providesbettercontrol over the impactof Cade
operatorsln our experiencethe advantage®f the dou-
ble cachingschemeoutweighthesedisadwantageshut,
in generalthe tradeofs stronglydependon the kind of
applicationbeingprocessedby the middlevaresystem.

4.2 Cachingin Middlewar e for DiverseSources

Garlic hasbeendesignedvith an emphasi®n handling
diversesourcesof information, especiallysourcesthat
donot have traditionaldatabaseapabilitiesthoughthey
may offer interestingsearchand datamanipulationca-
pabilities of their own. Loadingthe middlewvarecache
with queryresultsis particularly attractve for systems
like Garlic. First, communicatingwith some sources
may be expensve in Garlic; almostary Web source for
example,will have a highly variableandtypically long
responsdime. In suchsituationsthe benefitof Cace
operatorss particularlyhigh (i.e., parametek is large).
Secondsomesourcesareunableto just producean ob-
jectgivenits oid; thatis, they do notsupportthe faulting
in of objects. Applicationsthat operateon datastored
in suchdatasourceanustload relevantobjectsasa by-
productof queryexecution;otherwise suchapplications
simply cannotbe executed:
Loadingthemiddlenvarecachewith queryresultsalso
raisesseveral challengedn this ervironment. Diverse
sourceshave diversedata. It may not alwaysbe prac-
tical to cachean entire object. For example,an object
may have large andawkward attributesthatshouldonly
be broughtto the middlewareif they arereally needed.
Alternatively, it may be desirableto cachevaluesthat
are actuallycomputedby methodsof a datasourcebe-
causethesevaluesare frequently referencedby appli-
cation programs. So, a flexible notion of “object” is
needed.Garlic providessomeflexibility in definingob-
jects.Garliccommunicatewith sourcedy wayof wrap-
pers[RS97. A wrapperwriter mustunderstandhe data
of a sourceanddescribet in termsof objects. The de-
scriptioncanindicatefor eachattribute (and method)of
an objectwhetherit shouldbe part of the cachedrep-
resentatiorof the object. Garlic hasaccesdo this de-
scriptionduring query processingandcanuseit to de-
cidewhatattributesand/ormethoddgo includein athick
plan. Ideally, however, we would cacheapplicationob-
jectswhich couldincludedatafrom several collections,
possiblyfrom differentdata sources,and let program-
mersdefine suchapplication objectsfor eachapplica-
tion programindividually. At presentve have no mech-
anismto cachesuchuserdefinedapplicationobjects but
cachingthe underlyingobjectssenesthe samepurpose,
by bringing the dataneededo constructthe application

4In suchsituations,our cost-basedpproachmustbe extendedo
makesurethatthe winning plancontainsa Cacheoperator



Collection Base Data

‘ cardinality | source ‘
course 12,000 UDB
department 250 UDB
coursesection 50,000 UDB
professor 25,000 UDB
student 50,000 UDB
kids 116,759 UDB
NotesCourses 12,000 Notes
NotesDepartmentg 250 Notes
WWWPeople 25,000 WWW

Tablel: TestDataSourcesandObjectCollections

Query Data Output
‘ sources ‘ cardinality

selectc.oidfrom coursec wherec.deptnel 11 UDB 500
selectc.oidfrom NotesCourses

wherec.coursedept< 11 Notes 500
selectp.oidfrom WWWPeople

wherep.WWWcategory= 'professor’ WWwW 500
andp.WWWhnameéike 'professorName15%’

Table2: BenchmarkQueriesdor Experimentl

objectto themiddlewvaresener.

5 Experimentsand Results

This section presentsthe results of experimentsthat
demonstratéhe utility (andeven,thenecessitypf load-

ing a cachewith query resultsby studyingthe overall

running times of applicationsthat involve queriesand
methods.Next, we look at how queryplanningtime is

affected by the three Cadhe operatorplacementstrate-
gies. Finally, we comparethe quality of plansproduced
by the threeapproachesWe bagin with a descriptionof

the experimentakervironment.

5.1 Experimental Environment

The experimentswere carriedout in the contet of the
Garlic project,usingthedoublecachingarchitecturele-
scribedin Section4.1. For our experimentswe adapted
therelationalschemanddatafrom theBUCKY bench-
mark [CDN*97] to a scenariosuitablefor a federated
system. The testdatais distributed amongthree data
sourcesan|BM DB2 UniversalDatabas€UDB), aLo-
tus Notesversion4.5 databaseanda World Wide Web
(WWW) source. The WWW sourceis populatedwith
datafrom UDB at the time of query execution using
IBM’ s Net.Dataproduct. The datacollections basecar
dinalities,anddistributionamongdatasourcesreshavn
in Table1l. The Garlic middlevare andthe UDB and
WWW databasesun on separatdBM RS/6000work-
stationsunderAlX; the Notesdatabaseesidesona PC
running Windows NT. All machinesare connectedy
Ethernet. In all experiments,the middlewvare cacheis
initially empty

5.2 Experiment 1: The Value of Caching

The first set of experimentsshaws the importanceof
cachingin general,andof our enhancecading (load-
ing the cachewith queryresults)in particular We mea-
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| | UDB | Notes | WWW |

no caching 478 | 229 | 3538.5
traditionalcaching| 22.9 | 18.2 | 1762.3
enhancedaching | 2.2 12.7 11.9

Table3: Total RunningTime [secs]

suredthe runningtimesof threesimpleapplicationpro-
gramsthat initiate the executionof a queryandinvoke
two methodson eachobject of the query result. The
gueriesusedin thethreeapplicationprogramsaregiven
in Table?2; they aresimpleone-tablequeriesagainsthe
UDB, LotusNotes,andWWW databased-or thesesim-
plequeriesall threeCatheoperatoplacemenstratgies
presentedn Section3 producethe sameplan: Cade-
Ship-Scan Eachmethodinvolvesreadingthe value of
oneattributeof the objectto which the methodis bound.
The size of the primary and secondarycacheare cho-
sensuchthat all relevant objectsfit in both. We ran
eachapplicationprogramten times (begginning with an
empty cacheeachtime) andreporton the averagerun-
ningtimes.

Table 3 shaws the results. As expected,enhanced
catingwinsin all casesThegainsareparticularlypro-
nouncedfor the WWW applicationbecausenteraction
with the WWW databaseasrequiredto fault in objects,
is particularly expensve—eren if the WWW sener is
only lightly loadedandhasall informationavailablein
mainmemory The savingsin costarerelatively low for
theNotesapplicatiorbecauséaultingin objectsfrom the
Notesdatabaseés quite cheapso that the costof query
processinglominateghe overall costof the application
in thiscase In all casestraditional caching, whichfaults
in objectswhenthey areusedor thefirsttimeaspartof a
methodinvocation beatsno caching becausét savesthe
costof interactingwith the datasourcedor the second
methodinvocation.

In this experiment,the applicationprogramaccesses
all objectsreturnedby the query; i.e., F = 1. For
smaller F', the savings obtainedby traditionaland en-
hancedcachingare lesspronounced.As mentionedin
Section3.3.2, the benefitincreasedinearly with F'; in
the extremecasefor F = 0, no cachingandtraditional
cachinghave thesameunningtime asenhancedaching
(in fact, alittle better).

5.3 Experiment 2: Query Planning Times

The next experimentstudiedthe planningtimes of the
threeCade operatomplacemenstratgies. The two pa-
rameterghatimpacttheplanningtime mostarethenum-
ber of collectionsinvolved in the query and the num-
berof candidatecollections.Our queriegoin collections
storedin UDB andNotes.We variedthe numberof col-

lectionsinvolvedin thequeryandin all casesall collec-
tionswereconsidered¢andidatecollections.Thus,these
gueriescanbe seenastoughcasesvhich are expensie

to optimize.
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Figure5: PlanningTimesfor UDB/NotesQueries

Figure5 shaws the resultingplanningtimesfor each
of thethreeapproachepresenteth Section3. Asabase-
line, we alsoshav the runningtime of atraditionalop-
timizer that doesnot generateplanswith Cade opera-
tors. Again,thereareno surprisesThefull-fledgedcost-
basedapproactbecomegprohibitively expensve if there
aremorethanfour candidatecollectionsin a query At
this point one of the two heuristicsor the variantspro-
posedin Section3.4 shouldbe used. Up to that point,
however, the cost-basedpproachhasnggligible over
headandcansafelybe used.Comparingthe “cachingat
the bottom] “cachingat thetop;” and“traditional opti-
mizer” lines,we seethatthetwo heuristicshave virtually
nooverhead.

5.4 Experiment 3: The Right Caching Decisions

The last set of experimentsdemonstrateshe needto
carryoutcost-base@€aceoperatoplacementin certain
situations.Theexperimentshav: 1) how a Cacdheoper
atoratthetop canincreaseahecostof theotheroperators
that sit below; 2) the overheadintroducedby unneces-
sarily cachinga large numberof objectswhena Cacde
operatoris placedat the bottom; 3) the needto avoid
floodingthesecondargachewith irrelevantobjects;and
4) thatit is notalwaysbeneficiato have Cacdhe operators
for all candidatecollections,even whenaccessinglow
sourcesWe usedqueriesover collectionsfrom the UDB
andWWW databaseslThequeriesandthebestexecution
planfor eachqueryarepresentedn Figure6. “Caching
at thetop” works bestfor thefirst query;for the second
guery “cachingat the bottom” works best; andfor the
third query no Cacheoperatomatall shouldbegenerated.
We againmeasuredhetotal executiontime of threesim-
ple applicationprogramsthat eachexecuteone of these
gueriesandinvoke one methodon eachobjectreturned
by thatquery The methodsimply readshe valueof one
attribute. The sizeof the primary cachewassetto 1000
objectswhich is more than enoughto hold all objects
involved during methodinvocations.For thefirst query
(Q1), we studiedtwo configurationsfor the secondary
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Table4: Total RunningTime [secs]
sizeof sec.cache:medium=100m®Dbj.; large=60000bj.

cache:(a) mediumwith a capacityof 10000bjects,and
(b) large, with a capacityof 60000bjects.We variedthe
sizeof the secondarngachefor Q1in orderto studythe
implicationsof loadingthe cachewith irrelevantobjects,
in particularfor the “cachingat the bottom” approach.
For the other two queries,a mediumsecondarycache
wassufficient in all casessowe only shav the results
obtainedusingsucha mediumsecondarygache.

Table 4 shows the results. We canseethatthe cost-
basedapproachto loadingthe cachewith queryresults
shaws the overall best performancemaking the right
caching decisionsin all situations. The “caching at
thetop” approachasexpected,makessuboptimaldeci-
sionsfor Q2 and Q3, andthe “caching at the bottom”
approachmakessuboptimaldecisionsfor Q1 and Q3.
The“cachingatthebottomapproach’shavs particularly
poorperformancdf it floodsthesecondargachesothat
few relevant objectsare loadedas a by-productof ex-
ecutingthe query (Q1 with a medium-sizedsecondary
cache). “Cachingat the bottom” is never much worse
thantraditionalcachingor no cachingat all, andit can,
therefore,be seenas a conservativanethodof extend-
ing today’s databaseystemdo load a cachewith query
results. The “cachingat the top” heuristic,on the other
hand,is asmuchas37%moreexpensve thantraditional
cachingin our experiments,and could easily be more.
In theseexperimentstraditionalcachingandno caching
shav approximatelythe sameperformancebecausesv-
ery resultobjectis accesse@xactly onceaspart of the
methodinvocations.

6 RelatedWork

Mostwork on dataprocessingn distributedsystemsas
focusedeither on query processingor on caching,and
mostmiddlevaresystemgodayare built in sucha way
that query processingloesnot affect cachingand vice
versa. For example, SAP R/3 [BEG96 KKM98] is a
very popular businessadministrationsystemthat sup-
portsthe executionof (userandpre-definedjjueriesand
methodsprocessingpplicationghatinvolve bothasde-
scribedin Section2.1. PersistencgKJA93] is a mid-
dleware systemthat enableghe developmentof object-
oriented(C++, Smalltalk,etc.) applicationson top of a
relationaldatabassystem.Thatsystentypically pushes
down the executionof queriesto the relationaldatabase
systemand executesmethodsin the middleware using
caching.Queryprocessing@ndcachingdonotinteractin
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d.name like 'deptname11%’ and d.dno<120 and
s.deptno=19

Figure6: BenchmarkQueriesor Experiment3

eithersystemsobothwould benefitfrom thetechniques
presentedh this paper

Databasesystemghathave a data shippingarchitec-
ture naturally load a cachewith query results; exam-
ples are most object-orientedlatabaseystemssuchas
0, [D*90]. Thesesystemsring all the basedatato the
middleware(or client) to evaluatea queryandthatbase
datais thencachedor subsequenjueriesandmethods,
if the cacheis large enough. In somesensegdataship-
ping, therefore,correspondso the “cachingat the bot-
tom” approach- however, thereis no Cade operator
pull-up and no way to executejoins at datasource(s).
This causegdatashippingto perform poorly for mary
typesof queriegFIK94.

Another experimentaldatabasesystemthat supports
guery processingand cachingis KRISYS. In anearly
versionwhich wastargetedfor engineeringapplications,
KRY SIS usedqueriego loadthe cachewith relevantob-
jects [HMNR95], asproposedin our work. However,
that version only supporteda variant of the “caching
at the top” approach(without Cache operator push-
down). In a more recentversion [DHM*9§], KRY-
SIS supportspredicate-basedaching. Predicate-based
caching[KB94], like view caching[Rou9] andseman-
tic caching[DFJt96], makesit possibleto cachethere-
sultsof queries.Thepurposeof predicate-basechaching,
however, is to usethe cachein orderto answerfuture
guerieg(ratherthanfor methods)Hence,it requiressig-
nificantly morecomplex mechanisméor trackingcache
contentsandis not gearedfor the lookup of individual
objects.

Two further lines of work are relevant. The first is
cacheinvestment[FK97]. Cacheinvestmentalso ex-
tendsa queryprocessoto makeit cache-ware. Again,
however, the purposeof cacheinvestmentis to load
the cacheof the middleware in such a way that fu-
ture queries(ratherthan methods)can be executedef-
ficiently. The secondrelatedline of work is prefetch-
ing [PZ91,CKV93, GK94]. The purposeof prefetching
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is to bring objectsinto the cachebeforethey are actu-
ally accessedPrefetching however, is carriedout asa
separat@rocessindependentf queryprocessing.

7 Conclusion

In this paper we shaved that cachingobjectsduring
gueryexecutiondramaticallyspeedsip applicationghat
involve both queriesand methodsin a middlevare (or
client sener) ervironment. The performanceawins that
canbe achieved by this methodare huge;they are par
ticularly highin ervironmentsn whichinteractionswith
thedatasourcesarevery expensve; e.g.,datasourceon
the Internet. In certainscenarios|oading a cachewith
gueryresultsin this way is even necessarysucha sit-
uationarisesin heterogeneousatabasernvironmentsn
which somedatasourcesare not ableto respondo re-
guestdor individual objects.

To implementour approachwe extendedthe cache
managerand the query processonf a middlevare sys-
tem. We useda double cachingschemeto reducethe
overheadof our approachandto avoid flooding the pri-
mary cachewith (useless)objectsas a by-productof
guery execution. We explored three alternatve ways
of extendingthe queryprocessor:‘cachingat the top;
“cachingat the bottom; and“cost-basedataching. The
first two approachesare simple heuristicswhich can
be easily incorporatedin an existing query processor
andwhich typically do not increasejuery optimization
times; however, the “cachingat the top” approachcan
resultin substantiallyincreasedjuery executiontimes,
while the “cachingat the bottom” approachmay cache
mary uselesobjects,therebycausingadditionalover
headandproviding no benefitif the cacheis too small.
Thethird approactis significantlymorecomple to im-
plementand increasesoptimization times of comple
gueriessubstantiallybut is alwaysableto makethe best
decisionf thethreeapproacheBasedon theseobser
vations,we proposeo usethefull “cost-basedapproach



for simplequerieghatinvolve no morethanfour collec-
tions and heuristicsfor more complex queries. In the
future, we plan to investigatethe tradeofs of optimiza-
tion time and applicationperformanceor someof the
variantsdescribedn Section3.4.
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