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Abstract

Dataintensiveapplicationstodayusuallyrun in eithera client-
serveror a middlewareenvironment.In eithercase,they must
efficiently handleboth databasequeries,which processlarge
numbersof dataobjects,andapplicationlogic, which involves
fine-grainedobjectaccesses(e.g., methodcalls). Weproposea
wholisticapproach to speedingup such applications:we load
the cache of a systemwith relevant objectsas a by-product
of queryprocessing. Thiscan potentiallyimprovethe perfor-
manceof the application,by eliminating the needto fault in
objects. However, it can also increasethe cost of queriesby
forcingthemto handlemoredata,thuspotentiallyreducingthe
performanceof theapplication.In thispaper, weexamineboth
heuristicandcost-basedstrategiesfor decidingwhatto cache,
andwhento do so. We showhowthesestrategiescanbeinte-
gratedinto thequeryoptimizerof an existingsystem,andhow
the caching architecture is affected. We presentthe resultsof
experimentsusingtheGarlic databasemiddlewaresystem;the
experimentsdemonstratetheusefulnessof loadingacachewith
queryresultsandillustratethetradeoffsbetweenthecost-based
andheuristicoptimizationmethods.

1 Intr oduction

Data intensive applicationstoday usually run in either
a middlewareor client-server environment. Examples
of middlewaresystemsincludebusinessapplication,e-
commerceor databasemiddlewaresystems,while CAD
and CAE systemsare typically client-server. In either
case,they mustefficiently handlebothdatabasequeries,
which processlargenumbersof dataobjects,andappli-
cation logic, with its fine-grainedobjectaccesses(e.g.,
methodcalls). In both architectures,applicationlogic
andqueryprocessingmaybeco-resident,andtakeplace
on a processorotherthanthaton which thedataresides.
It is increasinglylikely that someor all of thedatawill
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beon remoteand/ornontraditionaldatasourcesthatare
expensive to access,suchaswebsourcesor specialized
applicationsystems.

Sophisticatedoptimization techniquesreducequery
processingtimes in theseenvironments,while caching
is usedto reducethe cost of the applicationlogic by
avoiding unnecessaryrequeststo the datasources.Ap-
plicationsoftenaskqueriesto identify objectsof interest
andthenmanipulatetheresultobjects.Thoughit is now
possibleto do chunksof applicationlogic in the query
processor, applicationsstill do muchof the work them-
selves. Someapplicationsrequireuserinteraction;oth-
ersdesiregreaterportabilityandeaseof installation(e.g.,
big businessapplicationssuchas Baan IV, Peoplesoft
7.5,or SAPR/3). In traditionalsystems,queryprocess-
ing andcachingdecisionsaremadein isolation. While
this providesacceptableperformancefor thesesystems,
it is a disasterfor applicationsusingdatafrom theInter-
net.Thisquery-and-manipulatepatternmeansthattradi-
tionalsystemsaccessthedatatwice: oncewhile process-
ing thequery, andthenagain,on thefirst methodcall, to
retrieve andcachethe object. If datais on the Internet,
this will be prohibitively expensive. In somecases,the
datasourcemay not even be ableto look up individual
objects;hencethisextra roundtrip is impossible.

In this paperwe proposeto load the cachewith rel-
evant objects as a by-product of the execution of a
query. With this techniqueit is possibleto get orders
of magnitudeimprovementsfor applicationsthatinvolve
bothqueriesandmethodsoverexpensive-to-accessdata.
However, anaiveimplementationcandomoreharmthan
good. An applicationtodaycanmanuallycachequery
resultsby explicitly selectingall the data for the ob-
ject in the queryitself. However, this may increasethe
costof queriesdramaticallyby forcing themto handle
moredata.For complex queriesthis effect maybelarge
enoughto more than offset the benefit. Therefore,the
decisionsof what to cacheandwhenduring queryexe-
cutionto dososhouldbemadeby thequeryoptimizerin
a cost-basedmanner.

The remainderof this paperis organizedas follows.
In Section2, we elaborateon the motivation for our
work, anddiscussthecachingof objectsin our environ-
ment.While loadingacachewith queryresultsis essen-
tial whendatais expensive or difficult to access,ourap-
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proachcanalsobeusedto speedupapplicationsin tradi-
tional two- or three-tierarchitecturesasdescribedabove.
For easeof expositionwe will talk about“middleware”
asthesiteof queryprocessingandcachingin thefollow-
ing sections.In a two-tiersystem,theseactivities would
take placein the client. Section3 presentsalternative
waysto extendanoptimizerto generatequeryexecution
plansthat load a cachewith queryresults.We describe
two simple heuristics,as well as a more sophisticated
cost-basedapproach.Section4 discussesour implemen-
tationof cachingin theGarlic databasemiddlewaresys-
tem, andSection5 containsthe resultsof performance
experimentsthat demonstratethe needto load a cache
with query resultsand show the tradeoffs of the three
alternative waysof extendingthequeryprocessor. Sec-
tion 6 discussesrelatedwork, andSection7 concludes
thepaper.

2 Caching in Middlewar e
2.1 A Motivating Example

To seewhy loadingthecachewith queryresultsis useful,
considerthis (generic)pieceof applicationcode:

foreacho, o� , o� in
(select r.oid, s � .oid, s � .oid
from R r, S � s � , S � s � , ...
where ...)�
. . .o.method(o� , o� ); . . . �

The queryin this exampleis usedto selectrelevant ob-
jects from the database.After further analysisand/or
user interaction,the methodcarriesout operationson
theseobjects.Thequerycanbearbitrarily complex, in-
volving joins, subqueries,aggregation,etc. Themethod
will involveaccessesto certainfieldsof theobjecto and
possibly to other objects(o� , o� ) as well. r.oid refers
to the objectidentifierof anobjectof collection � ; this
identifier is usedto invokemethodson theobjectandto
accessfieldsof theobject.Suchacodefragmentcouldbe
found in many applications.For example,an inventory
controlprogrammightselectall productsfor whichsup-
plieswerelow (andtheir suppliersandexisting orders).
After calculatinganamountto order(perhapswith user
input), it might invokeamethodto ordertheproduct.

In a traditionalmiddlewaresystemthiscodefragment
is carriedout asfollows:

1. thequeryprocessortriesto find thebest(i.e., lowest
cost)planto executethequery.

2. the queryprocessorexecutesthe query, retrieving
theobjectids requested.

3. aninterpreterexecutesthemethod,usingtheobject
ids to retrieve any dataneeded.To speedup theex-
ecutionof methodsthatrepeatedlyaccessthesame
objects,the interpreterusescaching. Requeststo
accessobjectsalreadyin thecachecanbeprocessed
by the interpreterwithout accessingtheunderlying

datasource(s),anda requestto accessanobjectnot
found in the cachewould result in faulting in that
object.

Thekey observationis thatqueryprocessingdoesnotaf-
fectcachingin traditionalsystems:if therelevantobjects
of � arenot cachedprior to theexecutionof thequery,
theseobjectswill notbecachedasa by-productof query
executionandthey will have to be faultedin at the be-
ginningof eachmethodinvocation.In anenvironmentin
which dataaccessis slow, this canbeextremelyexpen-
sive – just asexpensive, in fact,asprocessingthequery.
Loading the cachewith query resultsavoids this extra
costof faulting in objectsby copyingthe � objectsinto
the cachewhile the query is executed;that is, it seizes
theopportunityto copythe � objectsinto thecacheat a
momentat which theobjectsmustbeaccessedandpro-
cessedto executethequeryanyway.

2.2 CachingObjects

Our goal is to decreasethe overall execution time of
applications,such as those describedabove, that use
queriesto identify the objectson which they will op-
erate(i.e., on which they will invoke methods). There
aremany possiblewaysto accomplishthis goal. In this
paper, we focus on speedingup methodexecution,by
essentially“pre-caching”the objectsthat methodswill
need. This pre-cachingis possiblein our environment,
first, because,in executingthequery, the queryproces-
sorhasto touchtheneededobjectsanyway, andsecond,
becausein the architectureswe consider, someportion
of thequeryprocessingis doneat thesamesiteasthatat
which themethodsareexecuted.Hence,thequerypro-
cessorhasthe opportunityto copy appropriateobjects
into a cache,for themethodsto use.

Obviously, it will only bebeneficialto cacheobjects
that are subsequentlyaccessedby the applicationpro-
gram. Ideally, onewould carry out a dataflow analy-
sis of the applicationprogram[ASU89] in orderto de-
terminewhich objectsof thequeryresultarepotentially
accessed.Unfortunately, suchdataflow analysesareim-
possiblein many casesdue to the separationof appli-
cation logic andqueryprocessing– andinteractive ap-
plicationsaretotally unpredictable.Thussomeheuristic
approachto identifying the relevant objectsis needed.
It is likely that the objectswhoseoids are returnedas
partof thequeryresult(i.e.,objectsof collectionswhose
oid columnsarepartof thequery’sSELECT clause)are
going to beaccessedby the applicationprogramsubse-
quently(why elsewould the queryaskfor oids?)� . We
refer to suchcollectionsascandidatecollections; these
collectionsarecandidatesbecauseobjectsof thesecol-
lectionsarelikely to beaccessed.However, they arenot
guaranteedto becached,asit might neverthelessnot be
cost-effective.� Alternatively, we could assumethat the applicationprogrammer
giveshintsthatindicatewhichcollectionsshouldbecached.
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In the applicationswe are considering,queriesand
methodsrun in thesametransaction.Hencewe areonly
interestedin intra-transactioncachingin this paper, and
cacheconsistency is not an issue.Our approachis par-
ticularly attractive in environmentsthat do not support
inter-transactioncachingbecausetransactionsstartwith
no relevant objectsin the cache. Issuesof locking and
concurrency control are orthogonalto loading a cache
with queryresults.In amiddlewareenvironment,it is of-
tenundesirableor impossibleto lock datain thesources
for the durationof the transaction.Undersuchcircum-
stances,our approachmay causean applicationto pro-
ducedifferentoutput;but, in somesense,thisoutputcan
be seenas betteroutput becauseour approachguaran-
teesthat themethodsseethe samestateof anobjectas
thequery.

In this paper, we assumethat the granularity of
cachingis an entireobject. (We discusshow an object
is definedin Section4.) To cachetheobject,the whole
objectmustbe present.Onemay arguethat we should
only copythosefieldsof objectsthatareretrievedaspart
of the queryanyway. However, state-of-the-artcaches
cachein thegranularityof wholeobjects(e.g.,thecache
of SAP R/3 [KKM98]). This is necessaryfor pointer
swizzling[Mos92, KK95] andto organizethecacheeffi-
ciently (i.e.,avoid a perattributeoverheadin thecache).
Onemay alsoarguethat the granularityof cachingand
data transfershould be a group of objectsor a page;
cachinganddatatransferin sucha granularity, however,
is notpossiblein systemslike Garlic.

A consequenceof thisapproachis thatcachingduring
queryexecutionis not free. It introducesadditionalcost,
asno attributeof anobjectmaybeprojectedout before
the object is cached,even if the attribute is not needed
to computethequeryresult. This hastwo implications.
First,objectsshouldonly becachedif theexpectedben-
efit (overall applicationspeedupdueto fasterexecution
of methods)outweighsthecostin queryexecutiontime.
Second,thepoint in thequeryexecutionatwhichobjects
are cachedwill affect the cost and benefit. If caching
occurstoo early, irrelevant objectsmay be cached,and
might evenflood thecache,squeezingout morerelevant
objects. If cachingoccurstoo late, the intermediatere-
sultsof queryprocessingwill be larger dueto the need
to preserve wholeobjectsfor caching.Consider, for in-
stance,aquerythatinvolvesa join between� and 	 and
asksfor the oid of the � objectsthat qualify: joining
only the oid columnof � with 	 is cheaperthan join-
ing thewhole � (i.e.,oid andall othercolumns)with 	 ,
especiallyif theoid columnof � fits into mainmemory
andthewhole � doesnot. Becausecachingimpactsthe
sizeof intermediateresults,it shouldalsoimpactjoin or-
dering;for instance,joins thatfilter out many objectsof
candidatecollectionsshouldperhapsbecarriedoutearly
in a queryplan if cachingis enabled. Hence,the best
way of executingthequerymaybedifferentdepending
onwhetherwearecachingobjects.
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Figure1: ExampleCacheEnhancedQueryPlans

In summary, our goal is to speedup the execution
of methodsby cachingthe objectsthey need(as indi-
catedby the selectlist of a query)during executionof
thatquery. Thegranularityof thecacheis anobject,and
cachingobjectsduringqueryexecutionincurscoststhat
canaffectthechoiceof queryexecutionplan.As aresult,
wewill allow thequeryoptimizerto decidewhatobjects
to cache,andwhen.

3 CachingDuring Queries
In thissection,wedescribewaysto extendthequerypro-
cessorof a middlewaresystemin orderto generateplans
whichcacherelevantobjects.Weintroduceanew Cache
operatorwhich the queryoptimizercanuseto indicate
wherein a planobjectsof a particularcollectionshould
becached.A Cacheoperatorcopiesobjectsfrom its in-
putstreaminto thecacheandprojectsoutcolumnsof the
input streamwhich arenot neededto producethequery
results. A Cache operatortakestwo parameters,one
that specifieswhich objectsof the input streamshould
be copiedinto the cache,andone that specifieswhich
columnsshouldbe“passedthrough”to thenext operator
(notprojectedout).Theplansshown in Figure1 couldbe
producedby the enhancedqueryoptimizer. The Cache
operatorof thefirst plancopiesobjectsof collection � ;
the first Cache operatorof the secondplan copiesob-
jectsof � and 	 � while thesecondcopies	� objects.A
planmay containseveralCache operatorsif the objects
of morethanonecollectionareto becached;however,
it makesno senseto have two Cache operatorsfor the
samecollectionin a plan. TheReturnoperatorspassthe
queryresultsto theapplicationprogram.TheShipoper-
atorspassintermediatequeryresultsfrom a datasource
to themiddleware;sinceCacheoperatorsarealwaysex-
ecutedby the middleware,all Cache operatorsmustbe
placedsomewhereabove a Shipoperatorandbelow the
final Returnoperator.

In orderto generatesuchplans,the queryoptimizer
mustdecide(1) for whichcollectionsinvolvedin aquery
to includeCacheoperatorsin aqueryplan,and(2) where
to placeCache operatorsin a queryplan. We present
threeapproaches.Thefirst twoareheuristicswhichserve
as baselinesfor our study. The third approachis cost-
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basedcacheoperatorplacement:this approachis likely
to makebetterdecisions(i.e., producebetterplans),but
increasesthecostof queryoptimization.

3.1 CacheOperators at the Top of Query Plans

The first approachmakesthe two cacheoperatorplace-
mentdecisionsin thefollowingheuristicway: (1) gener-
atea Cacheoperatorfor every candidatecollection,and
(2) placeall Cacheoperatorshigh in a queryplan. This
approachcorrespondsto what an applicationcould do
manually, andis basedon theprinciple thatall relevant
objects(objectswhich arepart of the query result and
belongto candidatecollections)shouldbecachedduring
thequeryandno irrelevantobjects(thosenot partof the
queryresult)shouldbecached.In detail, this approach
worksasfollows:

1. rewrite theSELECT clauseof a query, replacingall
occurancesof oid by *.

2. optimize the rewritten query in the conventional
way.

3. includeCache operatorsfor the collectionswhose
oid columnsarerequestedin theSELECT clauseof
thequery, andplacethoseCacheoperatorsatthetop
of thequeryplangeneratedin Step2(i.e.,justbelow
the Returnoperator);rememberthat Cache opera-
torscarryout projectionssothat theright columns
for theoriginalqueryarereturned.

4. pushdown Cache operatorsthroughnon-reductive
operators.A non-reductive operatoris an operator
that doesnot filter out any objects. Examplesare
Sortoperatorsandcertainfunctionaljoinsfor which
integrity constraintsguaranteethat all objectssat-
isfy the join predicate(s)(see[CK97] for a formal
definitionof non-reductiveoperators).

The push-down of Cache operators through non-
reductiveoperators(Step4) reducesthecostof executing
the queryandat the sametime obeys the principle that
only relevantobjectsarecopiedinto thecache.Suppose,
asanexample,thata Cacheoperatoris pushedbelow a
Sort: thecostof theSort is reducedbecausetheSortop-
eratorworkson thin tuples,becausetheCacheoperators
projectoutall thecolumnsthatwereaddedaspartof the
rewriting in Step1. At the sametime, no irrelevantob-
jectsarecopiedinto thecachebecausetheSortdoesnot
filter out any objects.

While pushingdown Cache operatorsthroughnon-
reductive operatorsis certainly an improvement, this
“caching at the top” approachclearly doesnot always
producegoodcache-enhancedplans.BecauseCacheop-
eratorsimpactthesizeof intermediateresults,theplace-
mentof Cache operatorsshouldalsoimpactjoin order-
ing; however, theheuristicignoresthis interdependency.
Furthermore,Cacheoperatorshigh in a planforcelower

operatorsto handlethick tupleswith highextracost.The
heuristicbasicallyassumesthat the extra cost incurred
by planswith Cacheoperatorsis alwaysoutweighedby
thebenefitof theseCacheoperatorsfor (future)method
invocations– an assumptionwhich is not alwaysvalid,
evenwhendataaccessesareexpensive (Section5.4).

3.2 CacheOperators at the Bottom of Query Plans

Thesecondapproach,“cachingatthebottom”,makesthe
followingcacheoperatorplacementdecisions:(1) gener-
atea Cacheoperatorfor every candidatecollection,and
(2) placeall Cacheoperatorslow in a queryplan. Like
the“cachingatthetop” heuristic,the“cachingatthebot-
tom” heuristicassumesthat thebenefitsof Cache oper-
atorsfor candidatecollectionsalwaysoutweighthecost
incurredby the presenceof Cache operators.However,
the “cachingat the bottom” heuristicplacesCache op-
eratorslow in queryplans,following the principle that
columnswhich areonly neededfor cachingandnot to
evaluatethequeryitself shouldbeprojectedout asearly
aspossible.Thus,the“cachingat thebottom”approach
affectsthecostof otherqueryoperators(i.e.,joins,group
bys,etc.) aslittle aspossible,but it might copyobjects
into the cachethat arenot part of the queryresult and
whichwouldbefilteredby theseotherqueryoperators.

In detail,the“cachingat thebottom”approachworks
asfollows:

1. optimizetheoriginalqueryin theconventionalway.

2. for eachleaf nodeof theresultingplan,if theoper-
atoraccessesa candidatecollection,expandthelist
of attributesreturnedto includeall theattributesof
theobjects.

3. place a Cache operatorfor that collection above
eachsuchleaf operator.

4. pull up Cache operatorsthat sit below pipelining
operators(e.g.,filtersor nested-loopjoins).

Cacheoperatorpull-upin the“cachingatthebottom”
approachis analogousto Cache operatorpush-down in
the“cachingat thetop” approach.Push-down heuristics
reducethecostof aquerywithout increasingthenumber
of falsecacheinsertions(addingobjectsto thecachethat
do not participatein the queryresult,hencewill not be
usedlater).Pull-upheuristicsreducethenumberof false
cache insertionswithout increasingthe costof a query.
Considerasanexamplea Cacheoperatorthatsitsbelow
a pipeline operatorwhich filters out someof its input
tuples. Moving the Cache operatorabove that pipeline
operatorwill reducethe numberof objectscopiedinto
thecache,without increasingthecostof thepipelineop-
eratorbecausethe costof a pipelineoperatordoesnot
dependon thewidth of thetuplesit processes.
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3.3 Cost-basedCacheOperator Placement

It should be clear from the previous two subsections
that thereis a fundamentaltradeoff between“high” and
“low” Cache operators: the higher a Cache operator,
the lower the numberof falsecache insertions, andthe
higherthenumberof otherqueryoperatorsthatsit below
theCacheoperatorandoperateat increasedcostbecause
they mustprocessthick tuples.The“cachingat the top”
and“cachingatthebottom”heuristicsattackthistradeoff
in simpleways;obviously, therearesituationsin which
eitheroneor even both approachesdo not find the best
placeto positiona Cacheoperatorin a queryplan.

In this section,we show how a queryprocessorcan
make Cache operatorplacementdecisionsin a cost-
basedmanner. The approachis basedon the following
extensions:

1. extend the enumeratorto enumeratealternative
planswith Cacheoperators

2. estimatethecostandpotentialbenefitof Cacheop-
eratorsto determinethebestplan; thecostmodels
for otherqueryoperators(e.g.,joins,etc.) neednot
bechanged

3. extend the pruning condition of the optimizer to
eliminatesub-optimalplansasearlyaspossible

We describethesethreeextensionsin moredetail in the
following subsections.

3.3.1 Enumeration of Planswith CacheOperators

Theimplementationof thecost-basedplacementstrategy
is integratedwith the planningphaseof the optimizer.
We discussthe necessarychangesin the context of a
bottom-updynamicprogrammingoptimizer[SAC� 79].
Optimizers of this sort generatequery plans in three
phases.In the first phase,they generateplansfor sin-
gle collectionaccesses.In thenext phase,they generate
plansfor joins. They first enumeratethetwo-wayjoins,
using the plansbuilt in the first phaseas input. Like-
wise,they thenplanthree-wayjoins,usingtheplanspre-
viously built (for singlecollectionsandtwo-wayjoins),
andso on, until a plan for the entire join is generated.
The final phasethencompletesthe plan by addingop-
eratorsfor aggregation,ordering,unions,etc. Eachplan
hasasetof planpropertiesthattrackwhatwork hasbeen
doneby thatplan. In particular, they recordwhatcollec-
tions have beenaccessed,what predicatesapplied,and
whatattributesareavailable,aswell asanestimatedcost
andcardinalityfor the plan� . Eachoperatoraddedto a
plan modifiesthe propertiesof that plan to recordwhat
it hasdone.At theendof eachroundof joins,aswell as
at theendof eachphase,theoptimizerprunesthesetof
generatedplans,findingplanswhichhave donethesame�

Thereareseveralotherpropertiesthataretracked;weonly list the
mostrelevantfor thispaper.

Plan1: Index Scan- ������� ���
Plan2: Index Scan- ������� �
Plan3: RelationScan- ������� ���
Plan4: RelationScan- � ����� �
Plan5: Cache(A)- Ship- Index Scan- ������� ���
Plan6: Cache(A)- Ship- RelationScan- � ����� ���

Figure2: Plansfor AccessingTableA

work (have the sameproperties)andeliminatingall but
thecheapest.

Only a few changesneedto be madeto an existing
optimizer to allow it to generateplanswith Cache op-
erators.First, we have to definewhata Cacheoperator
doesto aplan’sproperties.Cacheprojectsout (i.e.,does
not passon to higheroperators)unneededattributes,so
it changesthe attribute property. It alsowill affect the
cost,asdiscussedin Section3.3.2below. Next, thefirst
andsecondphasesmustbe modified to generatealter-
native planswith Cache operators.In moderndynamic
programmingoptimizers[Loh88, HKWY97], thiscorre-
spondsto addingonerule to eachof thosephases.In the
accessphase,in additionto the normal (thin) plansfor
a collection,which selectout just the attributesneeded
for the query, the new rule will alsogenerateplansfor
gettingall the attributesof the objectsin the collection
(thick plans), if thecollectionis oneof thosewhoseoid
columnis selectedby thequery(i.e.,a candidatecollec-
tion). In addition,therulewill generateextraplanswhich
consistof a Cache(andShip) operatorabove eachof the
thick plans. Figure2 shows thesix plansthatwould be
generatedin phaseoneof enumerationif the collection
accesscould be doneby either scanningthe collection
or by scanninganindex. If thick andthin coincide(i.e.,
all columnsof � areneededto producethequeryresult,
regardlessof caching),only four planswouldbeenumer-
ated,asPlans1 and3 would beidenticalto 2 and4, re-
spectively.

Similarly, in the join planningphase,theenumerator
mustconsiderpossiblecachingplansin additionto nor-
mal join plans.Sincetherewill bea thick planfor each
candidatecollection,wewill automaticallygetjoinswith
thick resultobjects.On top of these,we addappropriate
Cache operatorsduring eachroundof joining. We can
considercachingany subsetof availablecandidatecol-
lectionsin a givenplan,whereavailablemeansthat the
plan’spropertiesindicatethatthatcollectionhasbeenac-
cessed,thatnootherCacheoperatorfor thatcollectionis
presentin the plan,andthat the full objectsarepresent
(it’ sa thick planfor thatcollection).This,of course,can
causean exponentialexplosion in the numberof plans
that mustbe considered.For example,Figure3 shows
four basicjoin plansand five cachingplansfor a two
tablejoin query; actually, even moreplansarepossible
taking into accountthat more than one join methodis
applicableandthatShipoperatorscanbeplacedbefore
or after the joins. In Section3.3.3,we discusshow ag-
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Plan1: Join- Ship- Scan- ������� ���
- Ship- Scan- ������� ���

Plan2: Join- Ship- Scan- ������� �
- Ship- Scan- � ����� ���

Plan3: Join- Ship- Scan- ������� ���
- Ship- Scan- � ����� �

Plan4: Join- Ship- Scan- � ����� �
- Ship- Scan- � ����� �

Plan5: Cache(A)- Join- Ship- Scan- � ����� ���
- Ship- Scan- � ����� ���

Plan6: Cache(B)- Join- Ship- Scan- ������� ���
- Ship- Scan- � ����� ���

Plan7: Cache(A,B)- Join- Ship- Scan- ������� ���
- Ship- Scan- ������� ���

Plan8: Cache(B)- Join- Ship- Scan- ������� �
- Ship- Scan- ������� ���

Plan9: Cache(A)- Join- Ship- Scan- � ����� ���
- Ship- Scan- ������� �

Figure3: PlansGeneratedfor � �!�"�#%$
arecandidatecollections

gressive pruningcanhelpcontrolthisexplosion.

3.3.2 Cost/BenefitCalculation of CacheOperators

SinceCacheoperatorscanonly beappliedonwholeob-
jects,their presenceincreasesthecostof underlyingop-
erators(becausetheseunderlyingoperatorsmustwork
onmoredata).Further, sinceCacheoperatorsprojectout
the columnsnot neededfor thequeryresult,their prop-
erties(other than cost)are the sameas a simple (non-
caching)thin plan. For example,Plans2, 4, 5 and6 in
Figure2 have thesameproperties,excludingcost.Plans
with Cacheoperatorshave donemorework to getto the
samepoint; they cansurvive,therefore,only if theCache
operatorshave a negative cost.At thebeginningof opti-
mization,apotentialbenefitis computedfor eachcollec-
tion tobecached.Thecostof aCacheoperatoris defined
as the actual cost to materializeits input streamminus
theestimatedbenefit, or savings,from not faulting in ob-
jectsin futuremethodinvocations.Theactualcostof the
Cache operatoris proportionalto the cardinalityof the
input plan, andrepresentsthe time to copy objectsinto
thecache,anddo theprojectto form theoutputstream.

The benefitis considerablytrickier to estimate.For-
tunately, a reasonablydetailedmodelis possible,andis
sufficient for choosinggoodplans.To computetheben-
efit of a collection,we needto know how many distinct
objectsof thecollectionwill bepartof thequeryresult.
For simplicity, wewill referto thisnumberastheoutput
of thecollectionfor thisquery. Weassumethattheappli-
cationwill invokemethodson a certainfraction & (e.g.
80 ' ) of theobjectsin thequeryresult.Thebenefit,� ,
is proportionalto theoutput, ( : �*),+.-/&0-1( , where+ representsthetimeto fault in theobject2 . + , & , andthe
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dependson thedatasourceandobject.[ROH98] describeshow

outputof acollectionareconstantfor agivenquery;they
do not dependon theplan for thequery, or when(or if)
cachingoccurs. Thus,the benefitcanbe computedbe-
fore planningbegins. For completeaccuracy, � should
includea factor 6 � representingthe fractionof therele-
vantobjectsnot alreadyin thecache;however, theover-
headto estimate6 � is not justifiedgiventheaccuracy we
canachieve for otherpartsof theformula,sowe ignore
this factorandassign& a lowervalueaccordingly.

The tricky part is how to estimatethe output. One
approachis to let the optimizerdo it. For this alterna-
tive, to find the outputof a collection � , the optimizer
is askedto plana modifiedversionof theoriginalquery,
suchthat the original selectlist is replacedby “distinct
R.oid”. Theresultcardinalityof thisqueryis therequired
output.Notethatsincetheplanfor thismodifiedqueryis
unimportant,theoptimizercanuseany greedyor heuris-
tic approachit wantsto reduceoptimizationtime,aslong
asit doesuseits cardinalityestimationformulas.How-
ever, this approachis still likely to be expensive, espe-
cially for largequeriesin which multiplecollectionsare
candidatesfor caching,as the optimizer will be called
oncepercandidatecollection,andthenagainto planthe
actualquery. Nor is theresultguaranteedto beaccurate;
it will beonly asgoodastheoptimizer’scardinalityesti-
mates.

Instead,we deviseda simple algorithmfor estimat-
ing output[HKU99]. This approachhasmuchlessover-
headandestimatestheoutputof a collectionwith accu-
racy closeto thatof theoptimizerfor querieswherethe
join predicatesare independent.The algorithmtakesa
queryasinput, andreturnsan estimateof the outputof
eachcandidatecollectionfor the query. The algorithm
essentiallyemulatestheoptimizer’scardinalitycomputa-
tions,but without building plans. It startsby estimating
the effect of applying local predicatesto the basecol-
lections,using the optimizer formulas. It then heuris-
tically choosesan inner for eachjoin and“applies” the
join predicateto theinner’soutput.Theoutputof a col-
lection is takento be theminimumvalueamongits ini-
tial cardinality, its outputafterapplyingthe mostselec-
tive local predicate(if any) andits outputafterapplying
themostselective join predicate(if any). Thealgorithm
seemsto provide a goodcompromisebetweenaccuracy
andoverhead,thoughit needstuningfor joinsovercom-
positekeys.

3.3.3 Pruning of Planswith CacheOperators

At the endof eachphaseof planning,andat theendof
eachroundof joins,theoptimizerexaminestheplansthat
have beengenerated,and “prunes” (i.e., throws away)
thosewhich areat leastasexpensive assomeotherplan
that has equivalent or more generalproperties. Thin
plansarelessgeneral(becausethey makeavailablefewer
attributes)thanthick ones;hence,althoughthick plans

anoptimizercanassessthevalueof this parameter.
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aretypically moreexpensive, they will not naturallybe
prunedin favor of thin plans.

This is good, in termsof ensuringthat all possible
cachingplansareexamined. However, asdescribedin
Section3.3.1,it alsoleadsto anexponentialexplosionin
thenumberof plans.Fortunately, sincetheCacheoper-
ator only passesthroughthoseattributesneededfor the
query, it createsthin plans(or at least,thinnerplans)that
competewith eachother. For example,in Figure2, of
thesix plansgeneratedfor accessingcollectionA in the
first phaseof optimization,atmosttwo will survive: one
thick planandonethin plan(if it is cheaperthanthethick
one). The thin survivor could eitherbe a cachingplan
(e.g.,Plan6) or anoriginalthin plan(e.g.,Plan2). In the
join phase,themaximumnumberof plansthatsurvives
eachroundis 798 , where: is thenumberof candidatecol-
lectionsin this round. So in Figure3, four planscould
survive: one in which both A and B are thick, one in
which botharethin, onein which A is thick andB thin,
andonein whichB is thick andA thin (for example,the
survivorsmightbePlans1, 2, 6 and7).

However, under certain conditions we can safely
prunea thick planin favor of a thin – andthesoonerwe
eliminatesuchplansthebetterfor optimizationtimes.In
particular, we can prunethe thick plan for a candidate
collectionA if:

;=<?>�@%ACB D�E F�G*;=<H>I@JACB D�E KMLONP;=<?>�@%A=QSR�KMD�T UVTXW BZY\[�]�^_]�`a@

where
;=<H>I@ A QbR�K D�T UcTdW B

is theminimumactualcostincurred
to cachea collectionandcorrespondsto the casewhere
the Cache operatorsits directly above that join that re-
sults in the minimum numberof outputtuplesfrom the
collection. It canbecomputedbeforeoptimization,dur-
ing the output calculationsdescribedin Section3.3.2.
Theconditionbasicallysaysthat if we assumethemin-
imal possiblecostfor cachingA (lowestactualcostless
constantbenefit),andthat is still morethanthecostof a
thin planfor A, thenthereis nopointin keepingthethick
plan,ascachingA is nota goodidea.

3.4 Other Strategiesand Variants

In this section,we presentedthreealternative ways to
generateplanswith Cache operators. Thesethreeap-
proachesmark cornerstonesin the spaceof possible
strategiesfor integratingCacheoperatorplacementinto
a query processor. The first two approachesare sim-
ple strategies that alwaysplaceCache operatorseither
at the top or at the bottomof queryplans. Neitherap-
proachcausesmuch overheadduring query optimiza-
tion, but they arelikely to makesub-optimaldecisionsin
many cases.The third approachis a full-fledged,cost-
basedapproachfor determiningcacheoperatorplace-
ment.Thisapproachcanbethecauseof significantaddi-
tional overheadduring queryoptimization,but is likely
to makegooddecisions.

Wecanimaginemany approachesthatmakebetterde-
cisionsthanthe“cachingat thetop” and“cachingat the
bottom”heuristicsat theexpenseof additionaloverhead,
or approachesthatarecheaperthan“cost-basedcaching”
at therisk of makingpoordecisionsin somecases.We
describeherejusta few variants:

cost-basedCache operator pushdown: rather than
pushCacheoperatorsdown throughnon-reductivequery
operatorsonly, this variantwould pusha Cache opera-
tor down throughanotheroperatorif theresultwouldbe
a lower costplan,usingthe costmodelandcost/benefit
calculationsfor Cacheoperatorsof Section3.3.2.

cost-basedCache operator pull-up: Cache operator
pull-upcanalsobecarriedoutduringpost-processingof
plansin a cost-basedmanner, insteadof pulling Cache
operatorsuponly throughpipelineoperators.

flood-sensitiveCache operator elimination: The
“cachingatthebottom”variantcanbeextendedin sucha
way thatCacheoperatorsthatwouldflood thecachebe-
causethey areappliedto too many objects(accordingto
thecardinalityestimatesof theoptimizer)areeliminated
from theplan.

rigorouspruning in cost-basedapproach: Thereare
severalpossiblevariantsof the“cost-basedcaching”ap-
proachwhichmoreaggressively pruneplans,evenwhen
it may not be wholly “safe” to do so (in other words,
they may discardplansthat could be the basisof win-
ning planslater on). Thesevariantsreducethe costof
queryoptimizationconsiderably, at the expenseof per-
hapsmissinggoodplans. For example,oneaggressive
variantmight generalizethe pruning conditionof Sec-
tion 3.3.3,andalwayskeepatmostoneof thealternative
plansat theendof theround. A somewhat gentlervari-
antmightkeeptwo plansattheendof eachroundof plan
generation:a “pure” thick plan, that is, a plan in which
all attributesof all candidatecollectionsof the plan are
present,anda“pure” thin plan,thatis,aplanin whichno
attributesnotnecessaryfor theoriginalqueryarepresent.

4 Implementation Details
We implementedall three cache operator placement
strategies describedin the previous section and inte-
gratedtheminto theGarlicdatabasemiddlewaresystem.
In this section,wedescribethemajordesignchoiceswe
madein our implementation.

4.1 Double CachingArchitecture

Figure 4 shows the overall designof the cacheman-
agerandqueryexecutionengine. Our implementation
involvesa doublecachingscheme.Thereis a primary
cache usedby the application,while Cache operators
loadobjectsinto a secondarycacheduringqueryexecu-
tion. Fromthesecondarycachetheseobjectsarecopied
into the primary cachewhenthey arefirst accessedby
a method.Residentobjecttables(ROT) in both thepri-
mary and secondarycacheare usedto quickly find an
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object in the cache.Cache operatorsonly copyobjects
into thesecondarycachethatarenotpresentin eitherthe
primaryor thesecondarycache.Thus,they wasteaslittle
main memoryfor doublecachingaspossibleandavoid
copyingobjectsinto thesecondarycachemultiple times
if theinputstreamof theCacheoperatorcontainsdupli-
cates. During methodinvocations,an object is faulted
into the primarycachefrom the datasourcesif it is not
foundin theprimaryor thesecondarycache,just asin a
traditionalmiddlewaresystem.

The doublecachingschemeshown in Figure 4 has
two importantadvantages.First, copyingobjectsinto a
secondarycache,rather than directly into the primary
cache,prevents the primary cachefrom being flooded
with queryresults,thusdisplacingfrequentlyusedob-
jects. Consider, for example,a casein which thequery
optimizerestimatesthat theCacheoperatorcopies,say,
100objects;but in fact,theoptimizererrsbecauseof out-
datedstatisticsandtheCacheoperatorwouldin factcopy
millions of objectsinto the cache. The doublecaching
schememakesit possibleto controlandlimit theimpact
of Cache operators. Second,the overheadof copying
objectsinto thecacheasaby-productof queryexecution
canbereducedin sucha doublecachingscheme.In the
primarycache,objectsaremanagedandreplacedin the
granularityof objects—thisis reasonablebecauseindi-
vidual objectsarefaultedin andreplacedin theprimary
cacheduringmethodinvocations.Thesecondarycache,
on the otherhand,is organizedin chunks;that is, when
a Cacheoperatorbeginsexecutionit will allocatespace
for, say, 1000objectsin the secondarycache,knowing
thatit is likely to copymany objects.In otherwords,the
doublecachingschememakesit possibleto efficiently
bulkload thecachewith relevantobjects.

However, the doublecachingschemealsohassome
disadvantages: (1) it incurs additional computational
overheadin order to copy objectsfrom the secondary
cache into the primary cache when the objects are
needed;(2) it doeswastemainmemorybecauseafteran

objecthasbeencopiedfrom the secondaryinto the pri-
marycache,it is cachedtwice; (3) it requiressome(al-
beit little) tuningeffort—this is the flip sideof the coin
which providesbettercontrol over the impactof Cache
operators.In our experience,theadvantagesof thedou-
ble cachingschemeoutweighthesedisadvantages,but,
in general,the tradeoffs stronglydependon the kind of
applicationbeingprocessedby themiddlewaresystem.

4.2 Caching in Middleware for DiverseSources

Garlic hasbeendesignedwith anemphasison handling
diversesourcesof information, especiallysourcesthat
donothavetraditionaldatabasecapabilities,thoughthey
may offer interestingsearchanddatamanipulationca-
pabilitiesof their own. Loadingthe middlewarecache
with query resultsis particularlyattractive for systems
like Garlic. First, communicatingwith somesources
maybeexpensive in Garlic; almostany Websource,for
example,will have a highly variableandtypically long
responsetime. In suchsituations,the benefitof Cache
operatorsis particularlyhigh (i.e., parameter+ is large).
Second,somesourcesareunableto just produceanob-
jectgivenits oid; thatis, they donotsupportthefaulting
in of objects. Applicationsthat operateon datastored
in suchdatasourcesmustloadrelevantobjectsasa by-
productof queryexecution;otherwise,suchapplications
simplycannotbeexecuted.e

Loadingthemiddlewarecachewith queryresultsalso
raisesseveral challengesin this environment. Diverse
sourceshave diversedata. It may not alwaysbe prac-
tical to cachean entireobject. For example,an object
mayhave largeandawkwardattributesthatshouldonly
be broughtto the middlewareif they arereally needed.
Alternatively, it may be desirableto cachevaluesthat
areactuallycomputedby methodsof a datasourcebe-
causethesevaluesare frequently referencedby appli-
cation programs. So, a flexible notion of “object” is
needed.Garlic providessomeflexibility in definingob-
jects.Garliccommunicateswith sourcesby wayof wrap-
pers[RS97]. A wrapperwriter mustunderstandthedata
of a sourceanddescribeit in termsof objects.Thede-
scriptioncanindicatefor eachattribute(andmethod)of
an object whetherit shouldbe part of the cachedrep-
resentationof the object. Garlic hasaccessto this de-
scriptionduringqueryprocessing,andcanuseit to de-
cidewhatattributesand/ormethodsto includein a thick
plan. Ideally, however, we would cacheapplicationob-
jectswhich could includedatafrom several collections,
possibly from differentdatasources,and let program-
mersdefinesuchapplication objectsfor eachapplica-
tion programindividually. At presentwehave no mech-
anismto cachesuchuser-definedapplicationobjects,but
cachingtheunderlyingobjectsservesthesamepurpose,
by bringingthedataneededto constructtheapplication
f
In suchsituations,our cost-basedapproachmust be extendedto

makesurethatthewinningplancontainsaCacheoperator.
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Collection Base Data
cardinality source

course 12,000 UDB
department 250 UDB

coursesection 50,000 UDB
professor 25,000 UDB
student 50,000 UDB

kids 116,759 UDB
NotesCourses 12,000 Notes

NotesDepartments 250 Notes
WWWPeople 25,000 WWW

Table1: TestDataSourcesandObjectCollections

Query Data Output
sources cardinality

selectc.oidfrom coursec wherec.deptnog 11 UDB 500
selectc.oidfrom NotesCoursesc
wherec.coursedeptg 11 Notes 500
selectp.oidfrom WWWPeople
wherep.WWWcategory= ’professor’ WWW 500
andp.WWWnamelike ’professorName15%’

Table2: BenchmarkQueriesfor Experiment1

objectto themiddlewareserver.

5 Experimentsand Results
This section presentsthe results of experimentsthat
demonstratetheutility (andeven,thenecessity)of load-
ing a cachewith query resultsby studyingthe overall
running times of applicationsthat involve queriesand
methods.Next, we look at how queryplanningtime is
affectedby the threeCache operatorplacementstrate-
gies. Finally, we comparethequality of plansproduced
by the threeapproaches.We begin with a descriptionof
theexperimentalenvironment.

5.1 Experimental Envir onment

The experimentswerecarriedout in the context of the
Garlic project,usingthedoublecachingarchitecturede-
scribedin Section4.1. For our experiments,we adapted
therelationalschemaanddatafrom theBUCKY bench-
mark [CDN � 97] to a scenariosuitablefor a federated
system. The test data is distributed amongthreedata
sources:anIBM DB2 UniversalDatabase(UDB), a Lo-
tus Notesversion4.5 database,anda World Wide Web
(WWW) source. The WWW sourceis populatedwith
data from UDB at the time of query execution using
IBM’ s Net.Dataproduct.Thedatacollections,basecar-
dinalities,anddistributionamongdatasourcesareshown
in Table 1. The Garlic middlewareand the UDB and
WWW databasesrun on separateIBM RS/6000work-
stationsunderAIX; the Notesdatabaseresideson a PC
running Windows NT. All machinesareconnectedby
Ethernet. In all experiments,the middlewarecacheis
initially empty.

5.2 Experiment 1: The Valueof Caching

The first set of experimentsshows the importanceof
cachingin general,andof our enhancedcaching (load-
ing thecachewith queryresults)in particular. We mea-

UDB Notes WWW

no caching 47.8 22.9 3538.5
traditionalcaching 22.9 18.2 1762.3
enhancedcaching 2.2 12.7 11.9

Table3: Total RunningTime [secs]

suredtherunningtimesof threesimpleapplicationpro-
gramsthat initiate the executionof a queryandinvoke
two methodson eachobject of the query result. The
queriesusedin thethreeapplicationprogramsaregiven
in Table2; they aresimpleone-tablequeriesagainstthe
UDB, LotusNotes,andWWW databases.For thesesim-
plequeries,all threeCacheoperatorplacementstrategies
presentedin Section3 producethe sameplan: Cache-
Ship-Scan. Eachmethodinvolvesreadingthe valueof
oneattributeof theobjectto which themethodis bound.
The size of the primary and secondarycacheare cho-
sen such that all relevant objectsfit in both. We ran
eachapplicationprogramten times (beginning with an
emptycacheeachtime) andreporton the averagerun-
ning times.

Table 3 shows the results. As expected,enhanced
caching wins in all cases.Thegainsareparticularlypro-
nouncedfor the WWW applicationbecauseinteraction
with theWWW database,asrequiredto fault in objects,
is particularly expensive—even if the WWW server is
only lightly loadedandhasall informationavailable in
mainmemory. Thesavings in costarerelatively low for
theNotesapplicationbecausefaultingin objectsfromthe
Notesdatabaseis quite cheapso that the costof query
processingdominatesthe overall costof theapplication
in thiscase.In all cases,traditionalcaching, whichfaults
in objectswhenthey areusedfor thefirst timeaspartof a
methodinvocation,beatsnocachingbecauseit savesthe
costof interactingwith the datasourcesfor the second
methodinvocation.

In this experiment,the applicationprogramaccesses
all objectsreturnedby the query; i.e., &h)ji . For
smaller & , the savings obtainedby traditionaland en-
hancedcachingare lesspronounced.As mentionedin
Section3.3.2, the benefitincreaseslinearly with & ; in
theextremecase,for &k)kl , no cachingandtraditional
cachinghavethesamerunningtimeasenhancedcaching
(in fact,a little better).

5.3 Experiment 2: Query Planning Times

The next experimentstudiedthe planningtimes of the
threeCacheoperatorplacementstrategies. The two pa-
rametersthatimpacttheplanningtimemostarethenum-
ber of collectionsinvolved in the query and the num-
berof candidatecollections.Ourqueriesjoin collections
storedin UDB andNotes.We variedthenumberof col-
lectionsinvolvedin thequeryandin all cases,all collec-
tionswereconsideredcandidatecollections.Thus,these
queriescanbeseenastoughcaseswhich areexpensive
to optimize.
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Figure5 shows theresultingplanningtimesfor each
of thethreeapproachespresentedin Section3. Asabase-
line, we alsoshow therunningtime of a traditionalop-
timizer that doesnot generateplanswith Cache opera-
tors.Again,therearenosurprises.Thefull-fledgedcost-
basedapproachbecomesprohibitivelyexpensive if there
aremorethanfour candidatecollectionsin a query. At
this point oneof the two heuristicsor the variantspro-
posedin Section3.4 shouldbe used. Up to that point,
however, the cost-basedapproachhasnegligible over-
headandcansafelybeused.Comparingthe“cachingat
the bottom,” “cachingat the top,” and“traditional opti-
mizer” lines,weseethatthetwo heuristicshavevirtually
nooverhead.

5.4 Experiment 3: The Right CachingDecisions

The last set of experimentsdemonstratesthe need to
carryoutcost-basedCacheoperatorplacementin certain
situations.Theexperimentsshow: 1) how a Cacheoper-
atorat thetopcanincreasethecostof theotheroperators
that sit below; 2) the overheadintroducedby unneces-
sarily cachinga large numberof objectswhena Cache
operatoris placedat the bottom; 3) the needto avoid
floodingthesecondarycachewith irrelevantobjects;and
4) thatit is notalwaysbeneficialto haveCacheoperators
for all candidatecollections,even whenaccessingslow
sources.Weusedqueriesovercollectionsfrom theUDB
andWWW databases.Thequeriesandthebestexecution
plan for eachqueryarepresentedin Figure6. “Caching
at thetop” worksbestfor thefirst query;for thesecond
query, “cachingat the bottom” works best;andfor the
third query, noCacheoperatoratall shouldbegenerated.
Weagainmeasuredthetotalexecutiontimeof threesim-
ple applicationprogramsthateachexecuteoneof these
queriesandinvokeonemethodon eachobjectreturned
by thatquery. Themethodsimply readsthevalueof one
attribute. Thesizeof theprimarycachewassetto 1000
objectswhich is more than enoughto hold all objects
involvedduring methodinvocations.For thefirst query
(Q1), we studiedtwo configurationsfor the secondary

Q1(large) Q1(med) Q2 Q3
no caching 405.5 405.5 842.5 129.2

traditionalcaching 405.5 405.5 842.7 129.9
cachingat thetop 71.3 71.3 49.8 177.5

cachingat thebottom 76.0 415.8 34.9 141.9
cost-basedcaching 71.4 71.4 35.1 130.7

Table4: Total RunningTime [secs]
sizeof sec.cache:medium=1000obj.; large=6000obj.

cache:(a) medium, with a capacityof 1000objects,and
(b) large, with a capacityof 6000objects.Wevariedthe
sizeof thesecondarycachefor Q1 in orderto studythe
implicationsof loadingthecachewith irrelevantobjects,
in particularfor the “cachingat the bottom” approach.
For the other two queries,a mediumsecondarycache
wassufficient in all cases,so we only show the results
obtainedusingsucha mediumsecondarycache.

Table4 shows the results. We canseethat the cost-
basedapproachto loadingthe cachewith queryresults
shows the overall best performance,making the right
caching decisionsin all situations. The “caching at
the top” approach,asexpected,makessuboptimaldeci-
sionsfor Q2 and Q3, and the “caching at the bottom”
approachmakessuboptimaldecisionsfor Q1 and Q3.
The“cachingatthebottomapproach”showsparticularly
poorperformanceif it floodsthesecondarycache,sothat
few relevant objectsare loadedas a by-productof ex-
ecutingthe query (Q1 with a medium-sizedsecondary
cache). “Cachingat the bottom” is never much worse
thantraditionalcachingor no cachingat all, andit can,
therefore,be seenas a conservativemethodof extend-
ing today’sdatabasesystemsto loada cachewith query
results.The“cachingat the top” heuristic,on theother
hand,is asmuchas37%moreexpensivethantraditional
cachingin our experiments,andcould easilybe more.
In theseexperiments,traditionalcachingandnocaching
show approximatelythe sameperformancebecauseev-
ery resultobject is accessedexactly onceaspart of the
methodinvocations.

6 RelatedWork

Mostwork ondataprocessingin distributedsystemshas
focusedeitheron queryprocessingor on caching,and
mostmiddlewaresystemstodayarebuilt in sucha way
that queryprocessingdoesnot affect cachingandvice
versa. For example,SAP R/3 [BEG96, KKM98] is a
very popular businessadministrationsystemthat sup-
portstheexecutionof (userandpre-defined)queriesand
methods,processingapplicationsthatinvolvebothasde-
scribedin Section2.1. Persistence[KJA93] is a mid-
dlewaresystemthatenablesthe developmentof object-
oriented(C++, Smalltalk,etc.) applicationson top of a
relationaldatabasesystem.Thatsystemtypically pushes
down theexecutionof queriesto therelationaldatabase
systemand executesmethodsin the middlewareusing
caching.Queryprocessingandcachingdonot interactin
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from WWWPeople p, department d
where p.WWWdno=d.dno and 
           p.WWWcategory=’staff’ and 
           p.WWWname like ’staffName1%’ and

select p.oid
from WWWPeople p, department d

           p.WWWcategory=’professor’ and 
where p.WWWdno=d.dno and 

select p.oid

           p.WWWdepartment like ’deptname25%’
          and d.dno<251

from WWWPeople p, department d, coursesection s

s.deptno=19

where p.WWWdno=d.dno and
           p.WWWid=s.instructorid and 

           d.name like ’deptname11%’ and d.dno<120 and

           p.WWWcategory=’professor’ and 
           p.WWWname like ’professorName2%’ and

select p.oid

           d.name = ’deptname59’

Q3Q2

Figure6: BenchmarkQueriesfor Experiment3

eithersystem,sobothwouldbenefitfrom thetechniques
presentedin thispaper.

Databasesystemsthathave a datashippingarchitec-
ture naturally load a cachewith query results; exam-
plesaremostobject-orienteddatabasesystemssuchas( � [D � 90]. Thesesystemsbring all thebasedatato the
middleware(or client) to evaluatea queryandthatbase
datais thencachedfor subsequentqueriesandmethods,
if the cacheis large enough. In somesense,dataship-
ping, therefore,correspondsto the “cachingat the bot-
tom” approach– however, thereis no Cache operator
pull-up and no way to executejoins at datasource(s).
This causesdatashippingto performpoorly for many
typesof queries[FJK96].

Anotherexperimentaldatabasesystemthat supports
queryprocessingandcachingis KRISYS. In an early
versionwhichwastargetedfor engineeringapplications,
KRYSISusedqueriesto loadthecachewith relevantob-
jects [HMNR95], as proposedin our work. However,
that version only supporteda variant of the “caching
at the top” approach(without Cache operator push-
down). In a more recentversion [DHM � 98], KRY-
SIS supportspredicate-basedcaching. Predicate-based
caching[KB94], like view caching[Rou91] andseman-
tic caching[DFJ� 96], makesit possibleto cachethere-
sultsof queries.Thepurposeof predicate-basedcaching,
however, is to usethe cachein order to answerfuture
queries(ratherthanfor methods).Hence,it requiressig-
nificantly morecomplex mechanismsfor trackingcache
contents,andis not gearedfor the lookup of individual
objects.

Two further lines of work are relevant. The first is
cacheinvestment[FK97]. Cacheinvestmentalso ex-
tendsa queryprocessorto makeit cache-aware. Again,
however, the purposeof cacheinvestmentis to load
the cacheof the middleware in such a way that fu-
ture queries(ratherthan methods)can be executedef-
ficiently. The secondrelatedline of work is prefetch-
ing [PZ91,CKV93, GK94]. Thepurposeof prefetching

is to bring objectsinto the cachebeforethey areactu-
ally accessed.Prefetching,however, is carriedout asa
separateprocess,independentof queryprocessing.

7 Conclusion

In this paper, we showed that cachingobjectsduring
queryexecutiondramaticallyspeedsupapplicationsthat
involve both queriesand methodsin a middleware(or
client server) environment. The performancewins that
canbe achieved by this methodarehuge;they arepar-
ticularly highin environmentsin whichinteractionswith
thedatasourcesareveryexpensive;e.g.,datasourceson
the Internet. In certainscenarios,loadinga cachewith
queryresultsin this way is even necessary;sucha sit-
uationarisesin heterogeneousdatabaseenvironmentsin
which somedatasourcesarenot ableto respondto re-
questsfor individualobjects.

To implementour approachwe extendedthe cache
managerand the queryprocessorof a middlewaresys-
tem. We useda doublecachingschemeto reducethe
overheadof our approachandto avoid flooding the pri-
mary cachewith (useless)objectsas a by-productof
query execution. We explored three alternative ways
of extendingthe queryprocessor:“cachingat the top,”
“cachingat thebottom,” and“cost-basedcaching.” The
first two approachesare simple heuristicswhich can
be easily incorporatedin an existing query processor
andwhich typically do not increasequeryoptimization
times; however, the “cachingat the top” approachcan
result in substantiallyincreasedqueryexecutiontimes,
while the “cachingat the bottom” approachmay cache
many uselessobjects,therebycausingadditionalover-
headandproviding no benefitif the cacheis too small.
Thethird approachis significantlymorecomplex to im-
plementand increasesoptimization times of complex
queriessubstantially, but is alwaysableto makethebest
decisionsof thethreeapproaches.Basedon theseobser-
vations,weproposeto usethefull “cost-based”approach
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for simplequeriesthatinvolvenomorethanfour collec-
tions and heuristicsfor more complex queries. In the
future, we plan to investigatethe tradeoffs of optimiza-
tion time andapplicationperformancefor someof the
variantsdescribedin Section3.4.
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