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Abstract
XML is an emerging standard for data representa-
tion and exchange on the World-Wide Web. Due to
the nature of information on the Web and the inher-
ent flexibility of XML, we expect that much of the
data encoded in XML will be semistructured: the
data may be irregular or incomplete, and its struc-
ture may change rapidly or unpredictably. This pa-
per describes the query processor of Lore, a DBMS
for XML-based data supporting an expressive query
language. We focus primarily on Lore’s cost-based
query optimizer. While all of the usual problems
associated with cost-based query optimization apply
to XML-based query languages, a number of addi-
tional problems arise, such as new kinds of indexing,
more complicated notions of database statistics, and
vastly different query execution strategies for dif-
ferent databases. We define appropriate logical and
physical query plans, database statistics, and a cost
model, and we describe plan enumeration including
heuristics for reducing the large search space. Our
optimizer is fully implemented in Lore and prelimi-
nary performance results are reported.

1 Introduction
The World-Wide Web community is rapidly embracing
XML as a new standard for data representation and exchange
on the Web [BPSM98]. At its most basic level, XML is
a document markup language permitting tagged text (ele-
ments), element nesting, and element references. However,
XML also can be viewed as a data modeling language, and a
significant potential user populationviews XML in this way
[Mar98]. Fortuitously, work from the database community
in the area of semistructured data [Abi97, Bun97]—work
that significantly predates XML—uses graph-based data
models that correspond closely to XML. Thus, research re-
sults in the area of semistructured data are now broadly
applicable to XML.
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Semistructured data has been defined as data that may be
irregular or incomplete, and whose structure may change
rapidly or unpredictably. Although data encoded in XML
may conform to a Document Type Definition, or DTD
[BPSM98], DTD’s are not required by XML. Due to the
nature of information on the Web and the inherent flexi-
bility of XML—with or without DTD’s—we expect that
much of the data encoded in XML will exhibit the classic
characteristics of semistructured data as outlined above.

The Lore system at Stanford is a complete DBMS de-
signed specifically for semistructured data [MAG+97].
Lore’s original data model, the Object Exchange Model
(OEM), is a graph-based data model with a close corre-
spondence to XML. The query language of Lore, called
Lorel (for Lore Language), is an expressive OQL-based
language for declarative navigation and updates of semi-
structured databases. Recently we migrated Lore to a fully
XML-based data model, and extended the Lorel query lan-
guage accordingly. For details see [GMW99]. The results
presented in this paper apply directly to the new XML ver-
sion of Lore.

This paper describes Lore’s query processor, with a fo-
cus on its cost-based query optimizer. While our general
approach to query optimization is typical—we transform
a query into a logical query plan, then explore the (expo-
nential) space of possible physical plans looking for the
one with least estimated cost—a number of factors associ-
ated with XML data complicate the problem. Path traver-
sals (i.e., navigating subelement and reference links) play
a central role in query processing and we have introduced
several new types of indexes for efficient traversals through
data graphs. The variety of indexes and traversal tech-
niques increases our search space beyond that of a conven-
tional optimizer, requiring us to develop aggressive pruning
heuristics appropriate to our query plan enumeration strat-
egy. Other challenges have been to define an appropriate
set of statistics for graph-based data and to devise methods
for computing and storing statistics without the benefit of
a fixed schema. Statistics describing the “shape” of a data
graph are crucial for determining which methods of graph
traversal are optimal for a given query and database.

Once we have added appropriate indexes and statistics
to our graph-based data model, optimizing the navigational
path expressions that form the basis of our query language
does resemble the optimization problem for path expres-
sions in object-oriented database systems, and even to some
extent the join optimization problem in relational systems.
As will be seen, many of our basic techniques are adapted
from prior work in those areas. However, we decided to

315



build a new overall optimization framework for a number
of reasons:
� Previous work has considered the optimization of sin-

gle path expressions (e.g., [GGT96, SMY90]). Our
query language permits several, possibly interrelated,
path expressions in a single query, along with other
query constructs. Our optimizer generates plans for
complete queries.

� The statistics maintained by relational DBMS’s (for
joins) and object-oriented DBMS’s (for path expres-
sion evaluation) are generally based on single joining
pairs or object references, while for accuracy in our
environment it is essential to maintain more detailed
statistics about complete paths.

� The capabilities of deployed OODBMS optimizers are
fairly limited, and we know of no available prototype
optimizer flexible enough to meet our needs. Build-
ing our own framework has allowed us to experiment
with and identify good search strategies and pruning
heuristics for our large plan space. It also has allowed
us to integrate the optimizer easily and completely into
the existing Lore system.

2 Related Work
Lore. Details of the syntax and semantics of Lorel can be

found in [AQM+97]. The overall architecture of the Lore
system, including the simple query processing strategy we
used prior to developing our cost-based query optimizer,
can be found in [MAG+97].

Other semistructured databases. The UnQL query
language [BDHS96, FS98] is based on a graph-structured
data model similar to OEM. For query optimization, a trans-
lation from UnQL to UnCAL is defined [BDHS96], which
provides a formal basis for deriving optimization rewrite
rules such as pushing selections down. However, UnQL
does not have a cost-based optimizer as far as we know.
The Strudel Web-site management system is based on semi-
structured data [FFLS97, FFK+99], and query optimization
is considered in [FLS98]. In Strudel, semistructured data
graphs are introduced for modeling and querying, while the
data itself may reside elsewhere in arbitrary format. A key
feature of Strudel’s approach to query optimization is the
use of declarative storage descriptors, which describe the
underlying data stores. The optimizer enumerates query
execution plans, with a cost model that derives the costs of
operators from their descriptors. In contrast, Lore data is
stored under our control, and the user may dynamically cre-
ate indexes to provide efficient access methods depending
upon the expected queries. Finally, [FLS98] includes de-
tailed experimental results of how large their search space
is, but no other performance data is given. In contrast, our
experiments focus on the performance of the query plan
selected by the optimizer versus other possible query plans.

Some much earlier systems, such as Multos [BRG88]
and Model 204 [O’N87], considered problems associated
with semistructured data but in very different settings. Mul-
tos operated on complex data objects which allowed, among

other things, sets and pointers to objects of any type. Ba-
sic knowledge of the schema was crucial, however, and
queries were placed into categories with a fixed set of ex-
ecution strategies for each category. Lore follows a more
traditional and flexible model of query processing. Model
204 was based on self-describing record structures some-
what resembling OEM, but the work concentrated primarily
on clever bit-mapped indexing structures to achieve high
performance for its relatively simple queries.

Relational databases. As mentioned earlier, at a coarse
level the problem of optimizing a Lorel path expression is
similar to the join ordering problem in relational databases.
However, join ordering algorithms usually rely on statis-
tics about each joining pair, while for typical queries in our
environment it is crucial to maintain more comprehensive
statistics about entire paths. The computation and stor-
age of our statistics is further complicated by the lack of
a schema. In addition, when quantification is present in
our queries, the SQL translation results in complex sub-
queries that many relational optimization frameworks are
ill-equipped to handle.

Object-oriented databases. Many of the points dis-
cussed in the previous paragraph apply to object-oriented
databases as well. There has been some work on optimizing
path expressions in an OODBMS context [GGT96]. They
propose a set of algorithms to search for objects satisfying
path expressions containing predicates, and analyze their
relative performance. Our work differs in that we consider
many interrelated path expressions within the context of an
arbitrary query with other language constructs. We also
provide additional access methods for path expressions,
and our optimization techniques are implemented within
a complete DBMS. Similar comparisons can be drawn be-
tween our work and other recent OODB optimization work,
e.g., [GGMR97, KMP93, OMS95, SO95, MSOP86, LV91,
YM97]. Some recent papers have specified cost models
for object-oriented DBMSs, e.g., [BF97, GGT95]. Object-
oriented databases typically support object clustering and
physical extents, rendering many of these formulas inap-
plicable in our setting. Work on indexing in OODBs is
surveyed in [YM97]; for a discussion of indexing in Lore,
please see [MWA+98].

Generalized path expressions. Other recent work, in-
cluding [FLS98] discussed above, has considered the prob-
lem of optimizing the evaluation of generalized path ex-
pressions, which describe traversals through data and may
contain regular expression operators. In [CCM96] an al-
gebraic framework for the optimization of generalized path
expressions in an OODBMS is proposed, including an ap-
proach that avoids exponential blow-up in the query op-
timizer while still offering flexibility in the ordering of
operations. In [FS98] two optimization techniques for
generalized path expressions are presented, query pruning
and query rewriting using state extents. Lore’s techniques
for handling generalized path expressions are described in
[MW99a], but the work of [FLS98, CCM96, FS98] could
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Figure 1: A tiny OEM database

be applicable within our framework.
XML query languages. The XML-QL data model and

query language [DFF+98] is similar in expressibility to
ours, with some extensions specific to the current specifi-
cation of XML. XQL [RLS98] is a simpler query language
based on single path expressions and is strictly less pow-
erful than XML-QL, Lorel [AQM+97], StruQL [FFLS97],
or UnQL [BDHS96]. To the best of our knowledge no full
cost-based query optimizer has been developed for XML-
QL or XQL, and the optimization principles presented in
this paper should be directly applicable when that task is
tackled.

3 Preliminaries
3.1 Data Model
Lore’s original data model, OEM (for Object Exchange
Model) [PGMW95], was designed for semistructured data.
An example OEM database containing (fictitious) informa-
tion about the Stanford Database Group appears in Figure
1. Data in OEM is schema-less and self-describing, and can
be thought of as a labeled directed graph. The vertices in
the graph are objects; each object has a unique object iden-
tifier (oid), such as &5. Atomic objects have no outgoing
edges and contain a value from one of Lore’s basic atomic
types such as integer, real, string, gif, java,
audio, etc. All other objects may have outgoing edges
and are called complex objects. Object &3 is complex and
its subobjects are &8, &9, &10, and &11. Object &7 is
atomic and has value “Clark”. Names are special labels
that serve as aliases for single objects and as entry points
into the database. In Figure 1, DBGroup is a name that
denotes object &1.

The correspondence between OEM and XML is evi-
dent: OEM’s objects correspond to elements in XML, and
OEM’s subobject relationship mirrors element nesting in
XML. The fundamental differences are that subelements in
XML are inherently ordered since they are specified tex-
tually, and XML elements may optionally include a list of
attribute-value pairs. Note that graph structure (multiple

incoming edges) must be specified in XML with explicit
references, i.e., via ID and IDREF(S) attributes [BPSM98].
The following XML fragment corresponds to the rightmost
Member in Figure 1, where Project is an attribute of
type IDREFS.

<Member Project="&5 &6">
<Name>Jones</Name>
<Age>46</Age>
<Office>

<Building>Gates</Building>
<Room>252</Room>

</Office>
</Member>

As mentioned earlier, we have migrated Lore to a fully
XML-based data model, and extended the Lorel query
language accordingly [GMW99]. The primary changes
to the model were the introduction of ordered subobjects,
attribute-value lists, and reference edges in addition to nor-
mal subobject edges. Corresponding changes were made to
the Lorel query language, although in most cases the queries
one uses over an OEM database are identical to those used
over a corresponding XML database.

We now introduce two definitions that are useful in the
remainder of the paper.

Definition 3.1 (Simple Path Expression) A simple path
expression specifies a single-step navigation in the database.
A simple path expression for a variable or name x and label
l has the form x:l y, and denotes that variable y ranges over
all l-labeled subobjects of the object assigned to x. If x is
an atomic object, or if l is not an outgoing label from x,
then y ranges over the empty set.

Definition 3.2 (Path Expression) A path expression is an
ordered list of simple path expressions.

Path expressions are the basic building blocks in the Lorel
language and describe traversals through the data in a
declarative fashion. For example, “DBGroup.Member
x, x.Age y” says that variable y ranges over all ob-
jects that can be reached by starting with the DBGroup
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object, following an edge labeled Member, then follow-
ing an edge labeled Age. Lorel supports a shorthand to
write this path expression as “DBGroup.Member.Age
y”, and further shorthands to eliminate variables such as
y [AQM+97], however for clarity we avoid shorthands in
the examples in this paper. Also, a simple path expres-
sion may contain a regular expression or “wildcards” as
described in [AQM+97]. In general, l in Definition 3.1
could be a component of a generalized path expression, but
we have simplified the definition for presentation purposes
in this paper.

3.2 Query Language
Lorel is an extension of OQL [Cat94] supporting declarative
path expressions for traversing graph data and extensive au-
tomatic coercion for handling heterogeneous and typeless
data without generating errors [AQM+97]. Although Lorel
offers much syntactic sugar over OQL that is convenient
in practice (including the shorthands mentioned above),
in this paper we write our queries without these syntactic
conveniences in order to be very explicit and enable under-
standing for those familiar with OQL but unfamiliar with
Lorel. As a simple example, consider the following query,
which asks for all of the young members of the Database
Group.1 The result of the query over the database of Figure
1 is shown.
QUERY 1: Select x

From DBGroup.Member x
Where exists y in x.Age: y<30

RESULT: <Member>
<Name>Smith</Name>
<Age>28</Age>
<Office>Gates 252</Office>
<Office>

<Building>CIS</Building>
<Room>411</Room>

</Office>
</Member>

3.3 Lore Query Processing
The general architecture of the Lore system is very much
like a traditional DBMS [MAG+97]. After a query is
parsed, it is preprocessed to factor out common subexpres-
sions and convert Lorel shorthands into a more traditional
OQL form. The logical query plan generator then creates a
single logical query plan describing a very high-level execu-
tion strategy for the query. As we will show in Section 5.1,
generating logical query plans is fairly straightforward, but
special care was taken to ensure that the logical query plans
are flexible enough to be transformed easily into vastly
different physical query plans. The “meat” of the query op-
timizer occurs in the physical query plan enumerator. This
component uses statistics and a cost model in order to trans-
form the logical query plan into the estimated best physical

1The existential quantification in the Where clause is necessary since
a Member object could conceivably have many Age subobjects. A short-
hand in Lorel allows simply “where x.Age < 30”, which is prepro-
cessed automatically into the query as shown here [AQM+97].

plan that lies within our search space. The physical query
plan is a tree composed of physical operators that are im-
plemented by the query execution engine and perform the
low-level steps required to execute the query and construct
the result. We use a recursive iterator approach in query
processing, as described in, e.g., [Gra93], and we assume
the reader is familiar with the basic concepts associated
with iterators.

3.4 Lore Indexes
As in a conventional DBMS, indexes in Lore enable fast
and efficient access to the data. In a relational DBMS, an
index is created on an attribute in order to locate tuples
with particular attribute values quickly. In Lore, such a
value index alone is not sufficient, since often the path to
a node is as important as the node’s value. Lore contains
several indexing structures that are useful for finding rel-
evant atomic values, parents of objects, and specific paths
and edges within the database. The value index, or Vindex,
supports finding all atomic objects with a given incoming
edge label and satisfying a given predicate. The label index,
or Lindex, supports finding all parents of a given object via
an edge with a given label. The edge index, which we
term the Bindex, supports finding all parent-child object
pairs connected via a specified label. In addition to these
indexes, Lore’s DataGuide [GW97] provides the function-
ality of a path index, or Pindex. Details on Lore indexes,
including coercion issues addressed by the Vindex, can be
found in [MWA+98].

4 Motivation
As in any declarative query language, there are many ways
to execute a single Lorel query. Let us consider Query 1
introduced in Section 3.2 and roughly sketch several types
of query plans. As we will illustrate, the optimal query
plan depends not only on the values in the database but also
on the shape of the graph containing the data. It is this
additional factor that makes optimization of queries over
XML data both important and difficult.

The most straightforward approach to executing Query
1 is to fully explore all Member subobjects of DBGroup
and for each one look for the existence of an Age subobject
of the Member object whose value is less than 30. We
call this a top-down execution strategy since we begin at
the named object DBGroup (the top), then process each
simple path expression in a forward manner. This approach
is similar to pointer-chasing in object-oriented systems,
and to nested-loop index joins in relational systems. This
query execution strategy results in a depth-first traversal of
the graph following edges that appear in the query’s path
expressions.

Another way to execute Query 1 is to first identify all
objects that satisfy the “y < 30” predicate by using an ap-
propriate Vindex if it exists (recall Section 3.4). Once we
have an object satisfying the predicate, we traverse back-
wards through the data, going from child to parent, match-
ing path expressions in reverse using the Lindex. We call
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this query execution strategy bottom-up since we first iden-
tify atomic objects and then attempt to work back up to a
named object. This approach is similar to reverse pointer-
chasing in object-oriented systems. The advantage of this
approach is that we start with objects guaranteed to satisfy
the Where predicate, and do not needlessly explore paths
through the data only to find that the final value does not
satisfy the predicate. Bottom-up is not always better than
top-down, however, since there could be very few paths
satisfying the path expression but many objects satisfying
the predicate.

A third strategy is to evaluate some, but not all, of a
path expression top-down and create a temporary result of
satisfying objects. Then use the Vindex as described earlier
and traverse up, via the Lindex, to the same point as the
top-down exploration. A join between the two temporary
results yields complete satisfying paths. (In fact certain join
types do not require temporary results at all.) We call this
approach a hybrid plan, since it operates both top-down and
bottom-up, meeting in the middle of a path expression. This
type of plan can be optimal when the fan-in degree of the
reverse evaluation of a path expression becomes very large
at about the same time that the fan-out degree in the forward
evaluation of the path expression becomes very large.

These three approaches give a flavor of the very different
types of plans that could be used to evaluate a simple query,
one that effectively consists of a single path expression. The
actual search space of plans for this simple query is much
larger, as we will illustrate in Section 5.4, and more com-
plicated queries with multiple interrelated path expressions
naturally have an even larger variety of candidate plans.

To make things even more concrete, suppose we are pro-
cessing the query “Select x From A.B x Where
exists y in x.C: y = 5”, which is isomorphic to
Query 1. In Figure 2 we present the general shape and
a few atomic values for three databases, illustrating cases
when each type of query plan described above would be a
good strategy. The database on the left has only oneA.B.C
path and top-down execution would explore only this path.
Bottom-up execution, however, would visit all the leaf ob-
jects with value 5, and their parents. The second database

has many A.B.C paths, but only a single leaf satisfying the
predicate, so bottom-up is a good candidate. Finally, in the
third database top-down execution would visit all the leaf
nodes, but only a single one satisfies the predicate. Bottom-
up would identify the single object satisfying the predicate,
but would visit all of the nodes in the upper-right portion of
the database. For this database, a hybrid plan where we use
top-down execution to find all A.B objects, then bottom-up
execution for one level, then finally join the two results,
would be a good strategy.

Each of these three example plans has a substantiallydif-
ferent shape from the others, and each is the optimal plan
for a particular database. Our primary goal when design-
ing our logical query plans was to create a structure that
represents, at a high level, the sequence of steps necessary
to execute a query, while at the same time permits simple
rules to transform the logical query plan into a wide variety
of different physical query plans.

5 Query Execution Engine
5.1 Logical Query Plans

Recall that a single logical query plan is created after the
query is preprocessed into a canonical form. Before ex-
plaining the logical query plan operators and structure of
the plans, we introduce two additional definitions.

Definition 5.1 (Variable Binding) During query process-
ing, a variable x in the query is said to be bound if an object
o has been assigned to x. We also say that o is bound to x.

Definition 5.2 (Evaluation) During query processing, an
evaluation of a query plan (or subplan) is a list of all vari-
ables appearing in the plan along with the object (if any)
bound to each variable.

The goal of query execution is to iteratively generate com-
plete evaluations for all variables in the query, producing
the set of query results based on these evaluations.

One major difference between the top-downand bottom-
up query execution strategies introduced in Section 4 is the
order in which the query is processed. In the top-down
approach we handle the From clause before the Where;
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the order is reversed for the bottom-up strategy. Also con-
sider the Where clause of Query 1: “Where exists y
in x.Age:y < 30”. We can break this clause into two
distinct pieces: (a) find all Age subobjects of x, and (b)
test their values. In the bottom-up plan we first use the
Vindex to satisfy (b) and then we use the Lindex for (a). In
the top-down strategy first we satisfy (a) by finding an Age
subobject of x, then we test the condition to fulfill (b).

In fact, all queries can be broken into independent com-
ponents where the execution order of the components is not
fixed in advance. We term the places where independent
components meet rotation points, since during the creation
of the physical query plan we can rotate the order between
two independent components to get vastly different plans.

In our approach, each logical operator can construct its
optimal physical (sub)plan with respect to a set of variables
that are already bound elsewhere in the plan. The mecha-
nism by which we store the binding information must also
store information about how a variable was bound in order
for the statistics to accurately estimate the cost and number
of results. For example, given the path expression “x.B
y, y.C z” and assuming that we are following subob-
jects from variable y to variable z, then the statistics for
z will depend on how y was bound. If y was bound via
a Bindex operator then the number of object bindings for
y (number of C edges) might be quite different from the
case where y was bound by following subobjects from x.
Statistics are discussed further in Section 5.3.

A list and description of most of our logical operators
is given in [MW99b]. Here we will focus on the Discover
and Chain logical operators used for path expressions. Each
simple path expression in the query is represented as a Dis-
cover node, which indicates that in some fashion informa-
tion is discovered from the database. When multiple simple
path expressions are grouped together into a path expres-
sion, we represent the group as a left-deep tree of Discover
nodes connected via Chain nodes. It is the responsibility
of the Chain operator to optimize the entire path expres-
sion represented in its left and right subplans. As an ex-

ample, consider the path expression “x.B y, y.C z,
z.D v” (where x is defined elsewhere in the query) which
has the logical query subplan shown in Figure 3. The left-
most Discover node is responsible for choosing the best
way to provide bindings for variables x and y. The Chain
node directly above it is responsible for evaluating the path
expression “x.B y, y.C z” efficiently. This could be
done by using the children’s most efficient ways of execut-
ing their subplans and joining them together, or possibly by
using a path index for the entire path expression. The final
Chain and Discover nodes are similar.

Figure 4 shows the complete logical query plan for Query
1. Each rotationpoint is represented by a Glue node that has
as its children the two independent subplans. The topmost
Glue node connects the subplans for the From and Where
clauses. The Chain node connects the two components of
the path expression appearing in theFrom. The Exists node
quantifies y. A Glue node separates the existential in the
Where from the actual predicate test, allowing either oper-
ation to occur first in the physical query plan. Because the
semantics of Lorel requires a set of objects to be returned,
the CreateTemp and Project nodes at the top of the plan
are responsible for gathering the satisfying evaluations and
returning the appropriate objects to the user.

Space limitations preclude a full description of logical
query plans or examples of more complex queries, but the
general flavor and flexibility of our approach should be
evident. For details please see [MW99b].

5.2 Physical Query Plans

The number of physical query plan operators is large; a
list and description of the more common operators appears
in [MW99b]. Here we focus on some of the more interesting
operators including those used to traverse paths through the
data. Recall that our physical query plan operators are
iterators: each node in the plan requests a “tuple” at a time
from its children, performs some operation on the tuple(s),
and passes result tuples to its parent. The “tuples” that our
query plans operate over are evaluations (Definition 5.2):
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vectors of bindings for variables in the query.
In a physical query plan, there are six operators that

identify information stored in the database:
1. Scan(x, l, y): The Scan operator performs pointer-

chasing: it places into y all objects that are subobjects
of the complex object x via an edge labeled l.

2. Lindex(x, l, y): In the reverse of the Scan operator,
the Lindex operator places into x all objects that are
parents of y via an edge labeled l. This reverse pointer-
chasing operator is implemented in Lore by the link
index (Section 3.4).

3. Pindex(PathExpression, x): Lore maintains a dynamic
“structural summary” of the current database called a
DataGuide [GW97]. The DataGuide also can be used
as a path index, enabling quick retrieval of oid’s for
all objects reachable via a given path expression. The
Pindex operator places into x all objects reachable via
the PathExpression.

4. Bindex(l, x, y): The Bindex operator finds all parent-
child pairs connected via an edge labeled l. This oper-
ator allows us to efficiently locate edges whose label
appears infrequently in the database.

5. Name(x, n): The Name operator simply verifies that
the object in variable x is the named object n. (Recall
from Section 3.1 that named objects are entry points
to a Lore database.)

6. Vindex(Op, Value, l, x): The Vindex operator accepts a
label l, an operator Op, and a Value, and places into x
all atomic objects that satisfy the “Op Value” condition
and have an incoming edge labeled l.

As an example that uses some of these operators, con-
sider the path expression “A.B x, x.C y” (where A is a
name) and four possible plans as shown in Figure 5. (The
optimizer can generate up to eleven different physical plans
for this single path expression.) The logical query plan
is shown in the top left panel. In the first physical plan,
the “Scan Plan”, we use a sequence of Scan operators to
discover bindings for each of the variables, which corre-
sponds to the top-down execution strategy introduced in

Section 4. If we already have a binding for y then we can
use the second plan, the “Lindex Plan”. In this plan we use
two Lindex operations starting from the bound variable y,
and then confirm that we have reached the named object
A. This corresponds to the bottom-up execution strategy
of Section 4. In the “Bindex Plan”, we directly locate all
parent-child pairs connected via a B edge using the Bindex
operator. We then confirm that the parent object is the
named object A, and Scan for all of the C subobjects of the
child object. In the “Pindex Plan”, we use the Pindex op-
erator, which allows us to directly obtain the set of objects
reached via the given path expression. Note that several of
the plans use a nested-loop join (NLJ) operator without a
predicate. These are dependent joins where the left subplan
passes bound variables to the right subplan.

Recall the hybrid query execution strategy introduced in
Section 4. One subplan evaluates a portion of the query and
obtains bindings for a set of variables, say V , and another
subplan obtains bindings for another set of variables, say
W . Suppose V \W contains one variable, but the plans
are otherwise independent, meaning one does not provide a
binding that the other uses (as in the hybrid plan). Then by
creating evaluations for both subplans and joining the re-
sults on the shared variable, we efficiently obtain complete
evaluations. As in relational systems, deciding which join
operator to use is an important decision made by the opti-
mizer. (Currently we support nested-loop and hash joins.)

Again space limitations preclude a full description of
physical query plans or examples of even remotely compli-
cated queries, although we will visit physical query plans for
Query 1 later in Section 5.4. In addition to the basic traver-
sal operators discussed above, we have operators to perform
projection and selection, manage temporary results, per-
form an aggregation operation over a subplan, ensure the
existential and universal quantification of a variable, per-
form set and arithmetic operations between two subplans,
and others. For details please see [MW99b]. The physical
operators can be combined in numerous ways, producing a
vast search space for even relatively simple queries. Our
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plan enumeration and pruning heuristics will be discussed
in Section 5.4.

5.3 Statistics and Cost Model
As with any cost-based query optimizer, we need to estab-
lish a metric by which we estimate the execution cost for a
given physical query plan or subplan. Lore currently does
not enforce any object clustering, so we are limited to us-
ing the predicted number of object fetches as our measure
of I/O cost, since we cannot accurately determine whether
two objects will be on the same page. Despite this rough
approximation, experiments presented in Section 6 validate
that our cost model is reasonably accurate. Nevertheless,
refining and expanding the cost model, especially by in-
creasing our knowledge of the locality of objects on pages
(through statistics-gathering and/or actual clustering), is an
area where we intend to invest future effort.

5.3.1 Statistics

Our query optimizer must consult statistical information
about the size, shape, and range of values within a data-
base in order to estimate the cost of a physical query plan.
Initially we stored statistics in the DataGuide, but quickly
were limited by the fact that we could only store statistics
about paths beginning from a named object [GW97]. The
optimizer may choose to begin evaluating a path expres-
sion anywhere within the path (via the Bindex or Vindex
operator), so we needed more flexible statistics. Our new
approach is to store statistics about all possible subpaths
(label sequences) in the database up to a length k, where
k is a tuning parameter. (Typical object-oriented and re-
lational database systems compute and store statistics for
k = 1.) We have explored several algorithms for efficiently
computing and storing such statistics, but a presentation of
these algorithms is outside of the scope of this paper. Re-
gardless of algorithm used, a clear trade-off exists between
the cost in time and space for a larger k and the accuracy of
the statistics.

The statistics we maintain for every label subpath p of
length � k include:

� For each atomic type, the total number of atomic ob-
jects of that type reachable via p.

� For each atomic type, the minimum and maximum
values of all atomic objects of that type reachable via p.

� The total number of instances of path p, denoted jpj.

� The total number of distinct objects reachable via p,
denoted jpjd.

� The total number of l-labeled subobjects of all objects
reachable via p, denoted jplj.

� The total number of incoming l-labeled edges to any
instance of p, denoted jplj.

As mentioned earlier, our I/O cost metric is based on the es-
timated number of objects fetched during evaluation of the
query. Thus, for example, given an evaluation that corre-
sponds to a traversal to some point in the data, the optimizer

must estimate how many objects will bind to the next simple
path expression to be evaluated. Consider evaluating the
path expression “A.B x, x.C y” top-down. If we have
a binding for x, then the optimizer needs to estimate the
number of C subobjects, on average, that objects reached
by the path “A.B x” have. Alternatively, if we proceed
bottom-up with a binding for x, then the optimizer must
estimate the average number of parents via a B edge for
all the C’s. We call these two estimates fan-out and fan-in
respectively. The fan-out for a given path expression p and
label l is computed from the statistics by jpj � (jplj=jpjd).
Likewise, fan-in is jpj � (jplj=jpjd).

Our statistics are most accurate for path expressions of
length� k+ 1, since for a given k we store statistics about
paths of length up to k, and these statistics include infor-
mation about incoming and outgoing edges to the paths—
effectively giving us information about all paths of length
k + 1. Given a path expression of length k + 2, for max-
imum accuracy we combine the statistics for two overlap-
ping paths p1 and p2 each of length k + 1.

When estimating the number of atomic values that will
satisfy a given predicate, standard formulas such as those
given in [SAC+79, PSC84] are insufficient in our semi-
structured environment due to the extensive type coercion
that Lore performs [AQM+97]. Our formulas take coer-
cion into account by combining value distributions for all
atomic types that can be coerced into a type comparable to
the value in the predicate.

5.3.2 Cost Model
Each physical query plan is assigned a cost based upon the
estimated I/O and CPU time required to execute the plan.
The costing procedure is recursive: the cost assigned to a
node in the query plan depends on the costs assigned to
its subplans, along with the cost for executing the node
itself. In order to compute estimated cost recursively, at
each node we must also estimate the number of evaluations
expected for that subplan. To decide if one plan is cheaper
than another, we first check the estimated I/O cost. Only
when the I/O costs are identical do we take estimated CPU
cost into account. Again, our cost metric is admittedly
simplistic, but it does appear acceptable for the first version
of our cost-based optimizer as shown by the performance
results in Section 6.

Due to space constraints, our formulas for estimated I/O
and CPU cost and number of evaluations are omitted but ap-
pear in [MW99b]. As an example, consider the I/O formula
for the Vindex(Op, Value, l, x) operator: BLevell;type1+
Selectivity1(l, Op, Value) +BLevell;type2+ Selectivity2(l,
Op, Value). Here BLevel gives the height of the relevant
B+-tree index, and the Selectivity functions are the formu-
las to estimate the number of satisfying results given Lore’s
coercion system. (Because of type coercion, multiple B+-
trees need to be accessed during a Vindex operation.) As a
second example, the I/O cost for the Lindex(x, l, y) operator
is 2 + FinPathOf(y);l, where Fin is the fan-in statistic as de-
fined earlier. The Lindex is implemented using extendible
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n: number of simple path expressions n=3 n=5 n=7
All possible plans/Lore’s search space 1458 / 48 2,361,960 / 228 8,035,387,920 / 948

Table 1: Analysis of Search Space Size

hashing, and our cost estimate assumes no overflow buck-
ets. Thus, it requires two page fetches (one for the directory
and one for the hash bucket) and one additional page fetch
for every possible parent.

5.4 Plan Enumeration

The search space of physical query plans for a single Lorel
query is very large. For example, a single path expression
of length n can be viewed as an n-way join, where as “join
methods” Lore considers pointer-chasing, reverse pointer-
chasing, and two different standard relational joins. Fur-
thermore, there may be many interrelated path expressions
in a single query, along with other constructs such as set op-
erations, subqueries, aggregation, etc. [AQM+97]. In order
to reduce the search space as well as the complexity of our
plan enumerator, we use a greedy approach to generating
physical query plans. Each logical query plan node makes
a locally optimal decision, creating the best physical sub-
plan for the logical plan rooted at that node. The decision
is based on a given set of bound variables passed from the
node’s parent. The key to considering a variety of different
physical plans is that a node may ask its child(ren) for the
optimal physical query subplan many times, using different
sets of bound variables each time. While this greedy ap-
proach greatly reduces the search space, it still explores an
exponentially large number of physical query plans. Thus,
our plan enumerator currently uses the following additional
heuristics to further prune the search space.

� The optimizer does not consider joining two simple
path expressions together unless they share a com-
mon variable. This restriction substantially reduces
the number of ways to order the evaluation of sim-
ple path expressions. (See [MW99b] for a detailed
discussion.)

� The Pindex operator is considered only when a path
expression begins with a name, and no variable except
the last is used elsewhere within the query. The latter
requirement is based on the fact that Pindex only binds
the last variable in its path expression, so other needed
variables in the path would have to be discovered by
some additional method.

� The Select clause always executes last, since in
nearly all cases it depends on one or more variables
bound in the From clause. Also, the physical query
plan will always execute either the complete From or
complete Where clause before moving on to the other
one.

� The optimizer does not attempt to reorder multiple
independent path expressions.

A detailed analysis of our physical query plan search space
is provided in [MW99b]. Table 1 gives some examples of

how dramatically our heuristics reduce the search space.
However, even with our aggressive pruning, Lore still
chooses very good plans as we demonstrate in Section 6.
For further refinement, we intend to experiment with a final
optimization phase in which we can apply transformations
directly over the generated physical query plan, such as
moving subplans to different locations in the overall plan.

We now discuss how physical plans are produced. As
mentioned earlier, each logical plan node creates an optimal
physical plan given a set of bound variables. During plan
enumeration we track for every variable in the query: (1)
whether the variable is bound or not; (2) which plan operator
has bound the variable; (3) all other plan operators that use
the variable; (4) whether the variable is stored within a
temporary result. For instance, the logical query plan node
Discover for the simple path expression x.Age y may be
asked to create its optimal plan given that x has already
been bound by some other physical operator, in which case
it may decide that Scan is optimal. However, if y was
bound instead then it may decide that Lindex is optimal.
After a node creates its optimal subplan, the new state of
the variables and the optimal subplan are passed to the
parent. Note that a logical node may be unable to create
any physical plan for a given state of the variables if it
always requires some variables to be bound. In this case,
“no plan” is returned and a different choice must be made at
a higher level in the plan. In [MW99b] we detail how each
logical plan node generates its optimal physical subplan.

To illustrate the transformation from a logical plan to a
physical plan, let us consider part of the search space ex-
plored during the creation of the physical query plan for
Query 1, whose logical query plan was given in Figure 4.
The topmost Glue node (indicating a rotation point) in Fig-
ure 4 is responsible for deciding the execution order of its
children: either left-then-right or right-then-left. It requests
the best physical query plan from the left child and then, us-
ing the returned bindings, requests the best physical query
plan from the right child. One possible outcome is the
physical query plan fragment shown in Figure 6(a). After
exploring left-then-right execution order, the topmost Glue
node considers the right-then-left order. The right child
is another Glue node which recursively follows the same
procedure. Suppose that for this nested Glue node, the left-
then-right execution order results in the physical subplan
shown in Figure 6(b), while the right-then-left execution
order results in Figure 6(c). (For details of the CreateTemp
and Once operators please see [MW99b].) Suppose plan
(c) is chosen based on a lower estimated cost. The bind-
ings provided by this subplan are then supplied to the left
child of the topmost Glue node to create the optimal query
plan for the left child, which could result in the final subplan
shown in Figure 6(d). Notice that in the right subplan for the

323



JoinPindex
("DBGroup.Member x", x)

NLJ

Scan(x,"Age",y)

Select(y,<,30)

HashJoin
(t0,t1,t2)

NLJ

Vindex
("Age",<, 30, y) Once(x)

Lindex(x,"Age",y)

CreateTemp
(x,{},t0)

CreateTemp
(x,{},t1)

Pindex
("A.B x", x)

Aggr
(y,exists,t1)

Select
(t1,=,"true")

(a)

(c) (d)

NLJ

Vindex
("Age",<, 30, y) Once(x)

Lindex(x,"Age",y)

HashJoin
(t1,t2,t3)

CreateTemp
(y,{x},t1)

CreateTemp
(y,{},t2)

Vindex
("Age",<,30,y)

Bindex
("Age",x, y)

Once(x)

(b)

Pindex
("DBGroup.Member x", x)

Figure 6: Possible transformations for Query 1 into a physical query plan

topmost Glue node, the Chain node decided that the Pindex
operator is the best way to get all “DBGroup.Member x”
objects within the database, despite the fact that we already
have a binding for x. This choice makes sense when the
estimated fan-in for x with label DBGroup is very high.
As a final step the topmost Glue node decides which query
plan is cheaper, either (a) or (d), and passes that plan to its
parent.

6 Performance Results
The query optimization techniques described in this pa-

per are fully implemented and integrated into Lore, includ-
ing the physical operators, statistics, cost formulas, logical
query plan generation, and physical query plan enumeration
and selection. The implementation for these components
consists of approximately 31,000 lines of C++ code. We
also have implemented mechanisms for instructing the op-
timizer to favor certain types of plans (in order to debug
and conduct experiments), and we have built a very useful
query plan visualization tool. We now present some pre-
liminary performance results showing that our cost model is
reasonably accurate and that the optimizer is choosing good
plans. Extensive performance evaluations over a large suite
of queries and databases is beyond the scope of this paper.

All of our tests were run on a Sun Ultra 2 with 256
megabytes of RAM. However, Lore was configured to have
a small buffer size of approximately 150K bytes, in order to
match the relatively small databases used by our initial per-
formance experiments. Each query was run with an initially
empty buffer. Over all of the queries in our experiments the
average optimization time was approximately 1/2 second.

At the time of this writing we have not located any sig-
nificant amounts of readily available XML data. What is
available consists mostly of small, tree-structured docu-
ments usually with cryptic tags or presentational tags bor-

rowed from HTML. Rather than use these small datasets
for our experiments we built our own XML database about
movies made in 1997, combining information from many
sources including the Internet Movie Database (located at
http://www.imdb.com). The database contains facts
about 1,970 movies, 10,260 actors and actresses, plot sum-
maries, directors, editors, writers, etc., as well as multi-
media data such as stills and audio clips. The database
loaded into Lore is about 5 megabytes. Value, Link, and
Edge indexes (recall Section 3.4) account for an additional
8.1 megabytes. The database is semistructured and very
cyclic; for example, actors have edges to each movie they
appeared in (along with their role in the movie), and movies
have edges to all of the actors in the movie. The database
graph contains 62,256 nodes and 130,402 edges.

Lore allows us to turn off all pruning heuristics temporar-
ily, in order to create and execute all possible query execu-
tion plans within our search space for a single query. Thus,
we can evaluate how the chosen plan performs against other
possible plans. However, it is infeasible to perform this ex-
tensive experiment for large queries, since the number of
plans in the search space is very large, and some plans are
extremely slow to execute (even if the chosen plan is very
efficient). We report on a sample of experiments, again
emphasizing that exhaustive performance evaluations are
beyond the scope of this paper.

Experiment 1. We begin with an extremely simple query:
Select DB.Movie.Title. Using exhaustive search
Lore produces eleven different query plans, with estimated
I/O costs and actual execution times (in seconds) as show
in Table 2. In this and subsequent tables the plan chosen
by the optimizer when the pruning heuristics are used is
marked with a star (*). The first and best plan simply uses
Lore’s path index to quickly locate all the movie titles. The
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Plan # 1* 2 3 4 5 6 7 8 9 10 11

Exec. Time (sec.) 0.36 1.78 2.02 14.44 61.82 67.24 74.09 94.15 250.61 397.18 423.34
Estimated I/O 1975 3944 3944 9853 31918 31918 11823 37827 17742 17733 23855

Table 2: Query execution times

second plan, which is only slightly slower, uses top-down
pointer-chasing. The worst plan uses Bindex operators and
hash joins.

To evaluate the relative accuracy of our cost model, con-
sider the estimated I/O cost against the actual execution
time. With some exceptions, the estimated cost accurately
reflects the relative execution time for each plan. Since our
cost model is still quite simplistic, we are very encouraged
by these results. 2

Experiment 2. Our second query asks for all movies
with a Genre subobject having value “Comedy”. This
turned out to be a “point” query, since many movies don’t
have a Genre subobject and most aren’t comedies. Es-
timated I/O costs again reflected relative execution times
fairly accurately, so hereafter we focus only on execution
times. Twenty-four plans were considered using exhaustive
search. The following table describes some of them, where
“Time” is the execution time and “Rank” indicates the plan
rank by execution time among all plans considered.

Rank Time Description
1* 0.3307 Bottom-up
2 0.3768 Bindex, Select then Lindex
7 3.3384 Top-down
24 458.58 Full Bindex

Since the Where clause is very selective, the optimal plan
uses a bottom-up strategy: a Vindex operator locates all
objects having the value “Comedy” and an incoming edge
labeled Genre. The Lindex operator matches the remain-
der of the path expression in reverse. The second-best plan
is only slightly slower. It uses the Bindex to locate all
Genre edges, filters using the “Comedy” predicate, then
proceeds bottom-up. The slowest plan uses a poor combi-
nation of Bindex operators and joins. Top-down evaluation
results in the seventh-best plan. 2

Experiment 3. In the remaining two experiments we did
not execute all possible plans since the queries and space of
plans are much larger. Instead, we generated and executed
samplying of plans from within our search space. Again,
the plan chosen by the optimizer is marked with a star(*).
The following results are for a query with two existentially
quantified variables in the Where clause.

Rank Time Description
1 0.33 Bottom-up
2* 3.68 Top-down
3 6.95 Hybrid with Pindex
4 7.01 Hybrid with pointer-chasing
5 23.13 Bindex and Vindex then Lindex

Notice that the optimizer chose plan 2, the top-down or
pointer-chasing execution strategy, as the best plan. The

mistake is due largely to simplistic estimates of atomic value
distributions (we have not yet implemented histograms) and
of set operation costs. Devoting some effort to improving
the optimizer in these areas should lead it to select the
optimal plan. 2

Experiment 4. Our fourth query selects movies with a cer-
tain quality rating. Here too we considered only a sampling
of all possible plans.

Rank Time Description
1* 0.61 Bindex for rating, then Lindex up
2 0.89 Bottom-up
3 4.04 Top-down

Since it turns out that quality ratings are fairly uncommon
in the database, the optimizer (correctly) chooses to find all
ratings via the Bindex, then to work bottom-up. 2

We have performed many experiments in addition to
those reported here, although the ones described are a rep-
resentative sample. In general, our experiments so far allow
us to conclude: (i) our cost estimates are accurate enough
to select the best plan in most cases, although some refine-
ments are needed; (ii) execution times of the best and worst
plans for a given query and database can differ by many
orders of magnitude; and (iii) the best execution strategy
is highly dependent on the query and database, indicating
that a cost-based query optimizer for XML data is crucial
to achieving good performance.

7 Future Work

Extensions to the work presented here are underway, in-
cluding specific optimization techniques for branching path
expressions, a query rewrite that movesWhere clause pred-
icates into theFrom clause, and a transformation that intro-
duces a Group-By clause when a large number of paths
pass through a small number of objects. We are also con-
sidering partially correlated subplans, which are similar to
correlated subqueries but rely on the bindings passed be-
tween portions of the physical query plan rather than on
the query itself. In the area of statistics we are considering
even more efficient statistics-gathering algorithms, perhaps
incorporating some graph sampling. We also plan to gather
statistics about the location of objects on disk, with cor-
responding modifications to the cost formulas to generate
more accurate cost estimates.
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