
Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given
that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to repub-
lish, requires a fee and/or special permission from
the Endowment
Proceedings of the 25th VLDB Conference, Edin-
burgh, Scotland, 1999.

The Value of Merge-Join and Hash-Join in SQL Server
Goetz Graefe

Microsoft, Redmond, WA 98052-6399

GoetzG@Microsoft.com

Abstract
Microsoft SQL Server was successful for many
years for transaction processing and decision sup-
port workloads with neither merge join nor hash
join, relying entirely on nested loops and index
nested loops join. How much difference do addi-
tional join algorithms really make, and how much
system performance do they actually add? In a pure
OLTP workload that requires only record-to-record
navigation, intuition agrees that index nested loops
join is sufficient. For a DSS workload, however,
the question is much more complex. To answer this
question, we have analyzed TPC-D query perform-
ance using an internal build of SQL Server with
merge-join and hash-join enabled and disabled. It
shows that merge join and hash join are both re-
quired to achieve the best performance for decision
support workloads.

1.0 Introduction
For a long time, most relational database systems em-
ployed only nested loops join, in particular in the form
of index nested loops join, and merge join. The general
rule of thumb, stated over 20 years ago [Blasgen and
Eswaran 1977], is that nested loops join is good if at
least one join input is small, and merge join is good for
two large inputs. Given that an input is either small or
large, who needs more join algorithms?
Some database systems, in particular those that targeted
online transaction processing (OLTP) applications, did
not even use merge join. All join operations were exe-
cuted by the nested loops algorithm. The most sophisti-
cated join algorithm sorted the outer input and built an
index on the inner input on the fly. Given the very

similar disk reference patterns, we call index nested
loops join with a sorted outer input a poor man’s merge
join.
Starting in about 1984, hash-based algorithms found
intense interest among database researchers [Kitsure-
gawa et al. 1993, DeWitt at al. 1984, Sacco 1986, Sha-
piro 1986], and many hash join variants were invented.
Product development teams were slow to adopt these
new algorithms. Some relational database systems still
have not added hash joins to their repertoire. One rea-
son has been that query optimization technology wasn’t
sufficiently extensible to permit easy integration of a
new algorithm.
Given the success of database systems that don’t even
have merge join, what is the value of hash and merge
joins? We believe that the value of these algorithms
strongly depends on both the workload and the set of
available indexes. Moreover, the most desirable indexes
most likely depend on the available algorithms. In other
words, any comparison of these algorithms should be
based on indexes specifically designed for the workload
and the available algorithms.
Choosing the best indexes by hand for a single complex
query with any assurance of optimality is hard. For an
entire workload consisting of multiple complex queries,
it is very, very hard (basically impossible). Such com-
plex workloads require an automated tool to evaluate
the alternatives and find an optimal design. SQL Server
includes such a tool, called the “index tuning wizard”
[Chaudhuri and Narasayya 1998], as well as variants of
nested loops join, merge join, and hash join. The tool
heuristically explores very many combinations of in-
dexes, and relies on the query optimizer to estimate
execution costs for given or collected workload. While
the tool might run for minutes or even hours for work-
loads much more complex than TPC-D, it can design
index sets for entire workloads with a reasonable assur-
ance of optimality.
This study relies on the index-tuning wizard to design
optimal index sets for a specific workload with complex
queries (TPC-D, TPC-H, TPC-R) and for specific com-
binations of available join algorithms. After establish-
ing a baseline using a small set of indexes, it compares
the performance and assesses the value of merge join
and hash join using an index set optimized for the en-
tire, complex workload.

250

2.0 Experiment setup and environment
Like many performance studies, ours leaves many pa-
rameters and definitions constant for all our experi-
ments. The database is the TPC-D verification database
with 100 MB of raw data (scale factor 0.1) [TPC-D].
There are not-null constraints on all columns, a primary
key constraint on each table, and all suitable referential
integrity constraints are declared and enforced in the
database.
All experiments were performed using a desktop PC
running Windows NT Server 4.0 and a functionally
complete and partially tuned development build of Mi-
crosoft SQL Server 7.5. The hardware was a 450 MHz
Pentium II CPU, 128 MB of memory, and a single 13.4
GB EIDE disk drive. Other than a minimized instance
of Enterprise Manager (the graphical administration
tools) and a minimized instance of Query Analyzer (the
interactive SQL query tool used to drive the experi-
ments), there are no other applications running on the
machine. Each run started with both the I/O buffer and
the procedure cache (compiled query plans) empty. The
TPC-D queries were run in the order Q1, Q2, …, Q17,
Q13-old, Q18, …, Q22. SQL Server’s memory usage is
set to 32 MB in all runs, which is shared among buffer,
procedure cache, query memory (sort workspace, hash
tables), etc. While the software supports parallel query
processing, this feature was not employed in this study
because there is only a single CPU. Asynchronous I/O
is exploited extensively, including pre-fetching multiple
needed records at a time, e.g., in index nested loops
join.
The query optimizer plans each query for minimal re-
source consumption. Its cost functions presume a
mostly cold buffer. For an entire workload, this means
the query optimizer and the tuning wizard optimize
system load or elapsed time of the entire workload.
Therefore, these are the measures we report in the ex-
periments below.
Since release 7.0, SQL Server automatically samples
the database to create statistics on columns desired by
the query optimizer. In order to eliminate the cost of
statistics creation, we optimized the entire batch of que-
ries once before running an experiment, and then
cleared out both the I/O buffer and the procedure cache
before running each set of queries.
Since the product is still under development, we do not
report actual elapsed times. All reported performance
numbers are scaled to the elapsed time of the entire
workload using the most simplistic physical database
design studied. Given the improvements in hardware
performance, relative numbers serve the purposes of
this comparison study just as well as absolute numbers
could.

3.0 Effects in a simple database design
The first physical database design we evaluate is par-
ticularly simple. The only indexes are those required as
part of the primary key definitions as well as indexes on
foreign keys and on date columns. All indexes are non-
clustered indexes. The purpose of evaluating this design
is to establish a baseline for comparison to other physi-
cal database designs and demonstrate how important
index choices are for any comparative analysis of query
evaluation algorithms.
The performance of all TPC-D requests against this
physical database design is shown in Table 1, with all
times normalized to indicate percentages of the elapsed
time of entire run using only nested loops join (see col-
umn 1). The columns represent the set of join algo-
rithms available to the query optimizer. Algorithms are
named by the abbreviations NLJ, MJ, and HJ. NLJ im-
plies naïve nested loops join, index nested loops join,
and poor man’s merge join, where applicable. The
merge join algorithm is very standard, using a tempo-
rary file to generate all matches in many-to-many joins.
The hash join is a fairly sophisticated implementation,
exploiting bit vector filters, role reversal, recursion for
very large inputs, and “teams” of hash operators. The
latter technique provides in hash-based query process-
ing most of the long-known benefits of “interesting
orderings” in sort-based query processing [Selinger et
al. 1979, Graefe et al. 1998].

Table 1 – Performance for the simple physical data-
base design. Results are elapsed time scaled so that
NLJ sums to 100.

NLJ only NLJ+MJ NLJ+HJ All
Query 1 2.85 2.96 1.15 1.18
Query 2 0.16 0.16 0.17 0.27
Query 3 3.41 1.38 0.82 0.83
Query 4 3.35 0.88 0.78 0.79
Query 5 4.39 1.85 0.81 0.80
Query 6 0.73 0.63 0.62 0.63
Query 7 3.85 1.25 0.80 0.80
Query 8 6.28 2.97 0.82 0.83
Query 9 40.34 3.59 1.28 1.33

Query 10 7.01 1.41 1.02 0.99
Query 11 2.55 0.49 0.21 0.21
Query 12 1.29 1.03 0.76 0.76
Query 13 0.30 0.29 0.31 0.30
Query 14 1.12 0.79 0.67 0.67
Query 15 1.54 1.49 1.22 1.25
Query 16 0.17 0.19 0.17 0.16
Query 17 0.40 0.53 0.35 0.35

Query 13 (old) 2.24 0.45 0.41 0.40
Query 18 5.65 3.29 3.26 3.23
Query 19 0.76 0.76 0.71 0.72
Query 20 5.13 5.95 5.85 5.79
Query 21 6.40 10.11 7.44 7.55
Query 22 0.10 0.18 0.09 0.18

Total 100.00 42.61 29.71 30.00

251

Some observations are immediately obvious from Table
1. By looking at the totals, it is clear that for this fairly
restricted index set, SQL Server’s old set of query proc-
essing algorithms are not sufficient. Adding merge join
or hash join gives a 2-fold or 3-fold performance im-
provement respectively.
Hash join has a substantial advantage over merge join
only. In fact, a query processor using only merge join
for large inputs is 40% slower than one using hash join
(30 vs. 42). Thus, if there are very few indexes in the
database, or if the existing indexes don’t serve a query
very well, hash join has substantial value. In a way, this
is not surprising, given that the hash table in a hash join
is nothing but an in-memory on-demand index.
A more surprising observation is that the total for the
column “NLJ+HJ” is comparable to that for all algo-
rithms. For this query set, Merge-Join does not add
anything to a "NLJ+HJ" system.
This is in part due to weaknesses in the beta-quality
optimizer and execution engine used in these experi-
ments. Compare the elapsed times for query 2. Clearly,
when given a choice, the optimizer wrongly chooses
merge join or hash join. Also, query 21 is executed
most efficiently using nested loops join.
Nonetheless, the optimizer frequently makes good use
of merge join and hash operations. For example, query
1 shows the effectiveness of hash grouping. Queries 3,
4, 5, 7, 8, etc. benefit substantially from the additional
join algorithms being available to the optimizer. Query
9 in particular performs very poorly, and it alone ac-
counts for ½ of the difference in the column totals.

4.0 Effects in optimized database designs
The experiment in the previous section compared the
performance of the different combinations of available
join algorithms on a fixed physical database design.
However, it is well known that desirable algorithms and
desirable indexes affect each other.
Consider an index set specifically optimized for the
entire workload using the index-tuning wizard for and
for the query processor including all join algorithms.
The index-tuning wizard limits index creation either by
the cost of update operations included in the workload
or by the available disk space. In our optimization, we
did not include update operations but limited the space
available for all indexes in the database to twice the
data space. Table 2 shows the chosen set of indexes
created or retained from the simple database design for
the given query set, in addition to retaining non-
clustered indexes on all primary keys. Note that there is
no index on the “nation” table or the “customer” table,
and that there is only a single clustered index in the
entire database. Note also that the wizard clearly fo-
cuses on creating covering indexes to enable index-only
scans.

Table 2 – Indexes as optimized for all algo-
rithms

Table Clustered Columns
Region No R_RegionKey
Supplier No S_SuppKey,

S_NationKey
Part No P_PartKey
PartSupp No PS_PartKey,

PS_SuppKey,
PS_AvailQty,
PS_SupplyCost

Orders No O_OrderDate,
O_OrderKey,
O_CustKey

 No O_CustKey,
O_OrderKey

 No O_OrderKey,
O_OrderStatus

LineItem Yes L_ShipDate
 No L_ShipDate,

L_Quantity,
L_ExtendedPrice,
L_Discount,
L_Tax,
L_ReturnFlag,
L_LineStatus

 No L_PartKey,
L_OrderKey,
L_SuppKey,
L_Quantity,
L_ExtendedPrice,
L_Discount

 No L_OrderKey,
L_SuppKey,
L_PartKey,
L_CommitDate,
L_ReceiptDate

 No L_OrderKey,
L_ExtendedPrice,
L_Discount,
L_ReturnFlag

 No L_OrderKey,
L_Quantity

The performance of all TPC-D requests against this
physical database design is shown in Table 3 with all
times normalized to the same base line as the previous
experiment.
Interestingly, even though the index set was optimized
for the query processor with all algorithms, the more
limited query processors benefit, too. The most limited
query processor using only NLJ improved by a factor of
2.3 (100 to 44.70), whereas the most complete query
processor improved only by a factor 1.5 (30 to 19.94).
The limited query processor depends most heavily on
useful indexes, and the complete query processor de-
grades gracefully if optimal indexes are missing.
Moreover, an improvement of 50% is substantial and
worthwhile the cost of running the tuning wizard.

252

Table 3 – Performance for an optimized physi-
cal database design

NLJ only NLJ + MJ NLJ+HJ All
Query 1 2.59 2.71 0.91 0.96
Query 2 0.09 0.10 0.15 0.16
Query 3 1.67 0.87 0.86 0.88
Query 4 1.54 0.84 0.87 0.82
Query 5 4.36 2.75 0.88 0.88
Query 6 0.10 0.07 0.07 0.08
Query 7 5.40 1.12 0.75 0.76
Query 8 2.27 0.28 0.20 0.20
Query 9 4.58 1.84 1.58 1.58

Query 10 2.60 1.00 0.95 0.87
Query 11 2.03 0.57 0.09 0.09
Query 12 3.31 3.29 1.84 1.83
Query 13 0.26 0.24 0.22 0.21
Query 14 0.35 0.08 0.05 0.05
Query 15 0.26 0.24 0.13 0.12
Query 16 0.18 0.20 0.16 0.16
Query 17 0.04 0.04 0.03 0.03

Query 13 (old) 1.54 0.48 0.40 0.40
Query 18 2.46 1.17 1.15 0.94
Query 19 1.73 1.68 1.67 1.67
Query 20 0.36 0.29 0.24 0.26
Query 21 6.86 6.81 12.28 6.77
Query 22 0.13 0.19 0.10 0.21

Total 44.70 26.85 25.59 19.94

It is also interesting to see that the totals for the query
processors using merge join only and hash join only are
very similar, although the performance for individual
queries is quite varied. For example, queries 5, 11, and
12 benefit significantly from hash joins, whereas query
21 benefits from merge joins. The complete query proc-
essor chose the optimal query plan for each of the que-
ries, and its performance is about 25% better than the
performance of the query processors using either only
merge join or only hash join (20 vs. 25).

5.0 Summary and conclusions
In summary, we found that merge join and hash join are
both required to achieve the best performance for deci-
sion support workloads. To a surprising degree, careful
index design alleviates the problem substantially, but it
requires an automated tool for complex workloads.
Even then, navigating indexes is not competitive with a
query processor that includes a full complement of
query evaluation algorithms.
However, a query processor using only nested loops
join quite successfully processes only the required rec-
ords. Thus, nested loops join tends to increase the
elapsed time (as reported above), but it also reduces the
CPU time. A more complete version of this study will
compare both elapsed and CPU times as well as inves-
tigate the effectiveness of asynchronous I/O for scan-
ning and fetching.

6.0 References
Blasgen and Eswaran 1977. Mike W. Blasgen, Kapali

P. Eswaran: Storage and Access in Relational Data
Bases. IBM Systems Journal 16(4): 362-377 (1977).

Chaudhuri and Narasayya 1998: Surajit Chaudhuri,
Vivek Narasayya: Microsoft Index Tuning Wizard
for SQL Server 7.0. ACM SIGMOD Conference
1998: 553-554.

DeWitt at al. 1984. David J. DeWitt, Randy H. Katz,
Frank Olken, Leonard D. Shapiro, Michael Stone-
braker, David A. Wood: Implementation Techniques
for Main Memory Database Systems. ACM
SIGMOD Conference 1984: 1-8.

DeWitt et al. 1993. David J. DeWitt, Jeffrey F. Naugh-
ton, J. Burger: Nested Loops Revisited. Proc. Parallel
and Distributed Information Systems 1993: 230-
242.Graefe et al. 1998. Goetz Graefe, Ross Bunker,
Shaun Cooper: Hash Joins and Hash Teams in Micro-
soft SQL Server. VLDB Conference 1998: 86-97.

Masaru Kitsuregawa, Hidehiko Tanaka, Tohru Moto-
Oka: Application of Hash to Data Base Machine and
Its Architecture. New Generation Computing 1(1):
63-74 (1983).

Sacco 1986. Giovanni Maria Sacco: Fragmentation: A
Technique for Efficient Query Processing. ACM
Trans. on Database Systems 11(2): 113-133 (1986).

Selinger et al. 1979: Patricia G. Selinger, Morton M.
Astrahan, Donald D. Chamberlin, Raymond A. Lorie,
Thomas G. Price: Access Path Selection in a Rela-
tional Database Management System. ACM
SIGMOD Conference 1979: 23-34.

Shapiro 1986. Leonard D. Shapiro: Join Processing in
Database Systems with Large Main Memories. ACM
Trans. on Database Systems 11(3): 239-264 (1986).

TPC-D. Transaction Processing Performance Council,
www.tpc.org.

253

