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Abstract

While the desire to support fast, ad hoc query pro-
cessing for large data warehouses has motivated the
recent introduction of many new indexing struc-
tures, with a few notable exceptions (namely, the
LSM-Tree [4] and the Stepped Merge Method [1])
little attention has been given to developing new
indexing schemes that allow fast insertions. Since
additions to a large warehouse may number in the
millions per day, indices that require a disk seek (or
even a significant fraction of a seek) per insertion
are not acceptable.

In this paper, we offer an alternative to the B+-tree
called theY-tree for indexing huge warehouses hav-
ing frequent insertions. The Y-tree is a new index-
ing structure supporting both point and range
queries over a single attribute, with retrieval perfor-
mance comparable to the B+-tree. For processing
insertions, however, the Y-tree may exhibit a
speedup of 100 times over batched insertions into a
B+-tree.

1 Introduction

Efficiency in OLAP system operation is of significant cur-
rent interest, from a research as well as from a practical per-
spective. There are two primary options for supporting
efficient queries over a huge data warehouse. The first option
is to allow the user to pre-define a set of views on the ware-
house, where query results are at least partially pre-com-
puted and maintained as data are added to the warehouse.
The second option is to compute the results of a query only

after it has been issued using indexing and fast algorithm
thereby allowing ad-hoc querying of the warehouse. W
focus on the second option in this paper.

Work on processing ad-hoc queries over huge wa
houses has resulted in the development of a number of s
cial-purpose index structures, such as Projection Indices
Sybase IQ, Bitmapped Indices (BMI) in Oracle and Bi
mapped Join Indices (BJI) in Informix and Red-Brick (se
[5] for an excellent treatment of these structures). Togeth
with the regular value-list (B+-tree) index, the various grid
based approaches, and hierarchical, multidimensional str
tures such as the R-tree (we refer the reader to [8] for a s
vey of these and other access methods), these struct
represent a formidable set of options for indexing larg
warehouses. However, while significant query processi
advantages have resulted from these indices, wareho
refresh performance has suffered, seriously affecting t
availability of the warehouse.

Warehouse refreshes differ from standard databa
insertion in that typically, refresh involves the addition of
number of new rows to a single, central fact table. Th
smaller dimension tables may also grow, but such growth
usually very slow compared to fact table growth. Usuall
indexing in a data warehouse is done on foreign keys in t
central fact table. If the number of distinct attribute value
for a foreign key is relatively small, this can allow for fas
index refresh, with only a few localized index change
required for each insertion. It is in this situation that a BMI i
particularly useful, since a refresh of the fact table will resu
in appends of bits to only a few, already existing bitmap
However, it is not always the case that the number of distin
foreign key values is small. We now present a case whe
this quantity is not small, and discuss the implications f
index refresh.

1.1 Example

We illustrate the problem of maintaining an index in the fac
of a high insertion rate with an example drawn from th
domain ofcall detail record (CDR) warehousing for tele-
communication service providers. CDRs are records that
generated corresponding to every call through a telecomm
nication network. Such records are approximately 700 by

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 25th VLDB Conference, Edinburgh, Scot-
land, 1999.
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in length. The AT&T corporation experiences a call detail
growth of around 20 GB/day, which translates to approxi-
mately 28 million calls per day [2]. When these records are
warehoused, assuming significant aggregation with respect
to the detail records accumulated in CDR stores, one can rea-
sonably expect an order of magnitude decrease in the num-
ber of stored records. This translates to an average addition
of nearly 3 million records per day. If seven years worth of
data are maintained, the complete warehouse needs to store
approximately 8 billion records.

Now, consider a BMI on some attribute of the central
fact table of this warehouse, perhaps on the customer
account number. It is not unimaginable that on the order of
10 million distinct account numbers would be found in this
particular fact table. A BMI on the customer account number
would then be made up of 10 million (very sparse) bitmaps
composed of8 billion bits each. Clearly, this is likely a pro-
hibitive storage requirement.

Of course, these bitmaps could be compressed, but in
such an extreme case, it would probably be preferable to use
a value-list index, where instead of a bitmap for each cus-
tomer account number, a list of pointers to fact table entries
is stored. Note that if a compression scheme like RLE [3]
were used on the BMI, it would essentially become equiva-
lent to using a value-list index. Because of this, and the pro-
hibitive storage costs associated with using an uncompressed
BMI in this warehouse, the value-list index is the primary
existing option that we will consider for such a situation
throughout this paper. Were a value-list index used instead of
a BMI, there are two likely approaches to handling the 3 mil-
lion insertions per day:

• Incremental, batch insertioncould be used. Insertions
could be batched, so that each edge in the tree need be
traversed at most once. We have found that on our sys-
tem, incremental, bulk insertion (following the algo-
rithm outlined in [6]) into a similar structure, under
similar conditions (cf. Section 4) can be accomplished at
the sustained rate of 100,000 (key, ptr) pairs in slightly
more than 41 minutes. This means that insertion of 3
million (key, ptr) pairs per day could be expected to take
longer than 20 hours to complete. In other words, it
would barely be possible to keep up with this insertion
rate even if all system resources were devoted to mainte-
nance, 24 hours a day. Even if more hardware were
added to combat the problem, one can assume that in the
face of ever-increasing warehouse sizes, the problem is
bound to recur.

• Or, we could forsake the purely incremental approach
and rebuild the index, using the old index as a guide.
The LSM-Tree [4] and the Stepped Merge Method [1]
are two access methods that use a version of such a
rebuild of a B+-tree as their fundamental approach.
These methods both have the important advantage that

the resulting tree structures can be constructed op
mally, with full nodes, and long runs of data can b
stored sequentially on disk to allow fast query proces
ing. Also important is the fact that since the new stru
ture can be constructed from fast, sequential scans of
old structure, disk seeks can be minimized during co
struction, thereby drastically decreasing the avera
time required per insertion when compared to the valu
list index. However, a disadvantage of these methods
that in the case of a skewed insertion distribution, enti
nodes must be rewritten, even if only a very few key va
ues need be written to that node. We will discuss the
issues more in detail in Section 5.

1.2 An Index Allowing Fast Insertions

In response to these issues, we have developed theYATS-tree
(Yet Another Tree Structure-tree) orY-treefor short. The Y-
tree is an exceedingly simple, hierarchical, secondary ind
ing structure for use in evaluating point and range quer
over a single attribute, much like the value-list index. In fac
it can be used to support the same set of secondary index
applications as the value-list index.

However, in contrast to the value-list index, the Y-tre
is designed to allow very fast insertions into a huge databa
This is accomplished with the idea of asingle-path, bulk
insertion. In a Y-tree, a set of some small number of inse
tions (say, 500) are batched and inserted at once into
structure. There are no constraints placed on what key val
may be in this set and performance is totally unaffected
the key values a batched insertion set contains. Insertion i
the Y-tree is calledsingle-path, bulk insertionbecause
regardless of the key values, an insertion of a set of (key, ptr)
pairs will only require a traversal from the tree root to asin-
gle leaf node holding a list of record identifiers. In this way
the Y-tree can achieve speed-ups on the order of 100 tim
over incremental, batch insertion into a value-list index. Th
daily insertion of 3 million key values into the value-lis
index described above (that would take nearly the entire d
to complete) would take less than 12 minutes were a Y-tr
used instead.

There is a cost associated with the faster insertio
times. The Y-tree can produce slower query response tim
when compared to the value-list index. For example, wh
used for evaluation of a point query returning a single (key,
ptr) pair, the Y-tree is on the order of four times slower tha
the value-list index (point queries, however, are expected
rare in a warehousing environment). But as the size of t
query result increases, as is the case in standard OLAP q
ries, the efficiency of the Y-tree increases as well. When us
for evaluating range queries returning 1 million such pai
for a large database, the Y-tree is only around 50% slow
than an optimally, bulk-constructed value-list index, and c
be nearly three times fasterthan a value-list index that has
been built incrementally. Depending on certain parameters
236



ed.
oci-

of

d,
m
e

s
ted

r

d
n.

o
st
st

ne

st
on
Y-tree may then actually bepreferableto a value-list index
for handling large queries. Combined with the fact that stan-
dard, value-list index insertion is virtually unusable for huge,
constantly growing databases, we feel that the Y-tree repre-
sents an important alternative to the value-list index.

1.3 Paper Organization

This paper is organized as follows. In Section 2, we present
the Y-tree structure and the associated algorithms. In Section
3, we present an analytical study of the Y-tree. We compare
it to the value-list index, showing that the Y-tree presents a
very attractive alternative to the value-list index at query and
insertion loads that one would commonly expect in a huge
data warehouse. In Section 4, we present experimental
results comparing the performance of actual implementa-
tions of the two structures. Section 5 presents some related
work; we conclude the paper in Section 6.

2 The Y-Tree

The Y-tree is similar in many ways to the value-list index.
Like the value-list index, it is a hierarchical structure com-
posed of leaf nodesandinternal nodes:

• Leaf Nodes. Assuming that the data are not clustered on
disk with respect to the indexed attribute, leaf nodes are
simply sets of ordered pairs of the form (key, ptr-list)
wherekey is a value from the domain of the attribute
value to be indexed, andptr-list is a list of RIDs contain-
ing that key value. Each leaf node is guaranteed to be at
least 50% full at all times. In practice, we have found
that a utilization of 65-70% is typical. This much is sim-
ilar to the classical value-list index.

• Internal Nodes. The internal nodes of the Y-tree are
quite different from those of the value-list index. Each
internal node contains two components, thepointer-list
and theheap. The pointer-list is borrowed from the
value-list index. It is simply a list of the form:

<P1, K1, P2, K2,..., Pf-1, Kf-1, Pf>.

The associatedheapis logically a set off buckets, where
f is a constant chosen before the structure is construct
f denotes the fanout of the tree. The heap has an ass
ated maximum heap sizeh, which likewise is chosen a
priori. Each of thef buckets is associated with exactly
one pointer to a node lower in the tree, and holds a set
ordered pairs of the form (key, ptr). These ordered pairs
are identical to those found in the leaf nodes; indee
they may eventually be moved into leaf nodes fro
buckets located in internal nodes, as we will describ
below.

Logically, then, the Y-tree looks something like what i
depicted above in Figure 1. Figure 1 shows a tree construc
with valuef = 3.

2.1 Insertion Into the Y-tree

The primary goal in designing the Y-tree is to provide fo
fast insertion while maintaining the functionality of the
value-list for indexing quickly evaluating range queries an
also point queries. We discuss Y-tree insertion in this sectio

2.1.1 Why Insertion Is Fast

Insertion into the Y-tree is very fast because of the tw
important properties of the Y-tree we describe now. The fir
property is common to both the Y-tree and the value-li
index:

Property 1. The insertion of a (key, ptr) pair into the tree
results in the reading and writing of nodes on at most o
path from root to leaf level in the tree.

The second property is quite different than for a value-li
index, and is at the heart of the speed with which inserti
into the Y-tree may be accomplished:

22 ptr

24 ptr

21 ptr

9 ptr

15 ptr

12 ptr

28 ptr

25 ptr

26 ptr

5 ptr

7 ptr

3 ptr 10 20

19 ptr

16 ptr

18 ptr

10 ptr 11 ptr

14 ptr

14 ptr 16

5 ptr

6 ptr

9 ptr

4 ptr

7 ptr

1 ptr

2 ptr

3 ptr 4

leaf node

ptr0 ptr

leaf node leaf node leaf node leaf node leaf node leaf node

ptr 2 ptr1 ptr ptr ptrptr ptr ...

38 ptr

32 ptr

40 ptr

26 ptr

27 ptr

28 ptr

31 ptr

29 ptr21 ptr

22 ptr 23 27

Figure 1: An example Y-tree.

A

B

C
ptr ptr ptrptrptr

ptr
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Property 2. For a given heap size, there exists some constant
d such that the cost of insertingd (key, ptr) pairs into the Y-
tree is identical to the cost of inserting a single (key, ptr) pair
into the tree.

We will elaborate on this property in Section 2.3.2, but the
immediate implication of this property is thatd insertions
into the structure may be buffered and insertedin bulk into
the tree, and that single insertion ofd pairswill still result in
updates to nodes on only a single path from root to leaf level
in the tree. Ifd is large enough, this has the potential to allow
an orders-of-magnitude speedup in time required for inser-
tions into the tree. Also, it is important to note that, as we
will describe in a later section, this is quite different (and
superior, we argue) to the common method of bulk insertion
into a value-list index where a huge number of insertions
(perhaps as many as can be fit into main memory) are buff-
ered and a massive update of the tree at one time is per-
formed. In the Y-tree, insertion is still local and incremental.
Thus, insertion performance is relatively insensitive to the
size of the tree, just as is the case in the classical value-list
index. Insertion costs, however, are amortized across inser-
tions of perhaps hundreds of (key, ptr) pairs, allowing for a
huge speedup.

2.1.2 The Insertion Algorithm

We now describe the algorithm for insertion into the Y-tree,
which is quite simple. For the moment, we ignore the issue
of full leaf nodes, which may cause node splitting. The algo-
rithm is shown above in Figure 2.

2.1.3 Example Insertion

We now demonstrate the algorithm on the tree of Figure
by adding the setS= {(1, ptr), (1,ptr), (2,ptr), (13,ptr), (18,
ptr)} to the tree. In this case,d = 5. First, S is distributed
among the buckets of the root nodeA, as shown in Figure 3.
Note that the right-most bucket in Figure 3 had more thand
pairs evenbefore the insertion of the setS, a state that is
indeed possible in practice.

Next, we determine that the leftmost bucket ofA con-
tains the most pairs. This bucket is thendrainedby removing
d items from the leftmost bucket ofA, which are then recur-
sively inserted into the corresponding child node,B. Note
that the set ofd pairs drained from a node and recursivel
inserted into a child node is likely to be different than the s
of pairs originally inserted into the node. In our exampl
after the set of pairs {(1,ptr), (1, ptr), (2, ptr), (5, ptr), (9,
ptr)} has been drained intoB, B will appear as is depicted in
Figure 4. Finally, the left bucket of the nodeB will be
drained, with the set {(1,ptr), (1, ptr), (1, ptr), (2, ptr), (4,
ptr)} selected and recursively inserted into the proper chil
leaf nodeC, of Figure 1.

The reason that a single insertion only follows one pa
from root to leaf is that at each level of the tree, pairs not fo
lowing a given path from root to leaf are effectively trade
for pairs that do and have been buffered in the heap. T
heap within an internal node provides a storage space
items which have been inserted previously but never reach
a leaf node. A future insertion will again traverse that inte
nal node, picking up those buffered items and dropping o
others en route to a leaf node. By not requiring that th
actual set of pairs inserted into the tree at that time reach
leaf and instead only requiring thatsomeset of pairs of
equivalent size reach a leaf, fast insertion can be achieve

Algorithm Insert(parametersS: set of (key, ptr) pairs of
cardinality no greater thand, N: Nodehaving fanout fN)
1) If N is an internal node:

2) For each elements of S, adds into the first heap
bucket bi such that the associated key value

; or, inset into the last heap bucket if

there is no suchKi.
3) Choose the bucketbj that has the most (key, ptr)

pairs.
4) If the heap contains more than  pairs,

5) Removemin (d, size(bj)) (key, ptr) pairs
from bj to createSnew, write N to disk, and
recursively callInsert (Snew, node pointed to
by Pj).

6) Else, writeN to disk.
7) Otherwise,N is a leaf node:

8) Simply addSto the set of (key, ptr) pairs inN, then
write N to disk.

Ki s.key≥

f N 1–( ) d×

Figure 2: Algorithm to insertd (key, ptr) pairs into a Y-tree.

22 ptr

24 ptr

21 ptr

9 ptr

15 ptr

12 ptr

28 ptr

25 ptr

26 ptr

5 ptr

7 ptr

3 ptr 10 20

2 ptr 1 ptr

13 ptr

1 ptr

18 ptr

Figure 3: Example insertion into the root nodeA of Figure 1.

5 ptr

6 ptr

9 ptr

4 ptr

7 ptr

1 ptr

2 ptr

3 ptr 4

2 ptr 1 ptr

1 ptr

9 ptr 5 ptr

Figure 4: Recursive insertion into node B of Figure 1.
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2.2 Node Splits and Queries of the Y-tree

As mentioned previously, when a leaf node becomes full, it
must be split. Splits are handled in the same way as in most
hierarchical structures. We describe the handling of splits
and queries now:

Leaf Node Split: The entries of the leaf nodeL are parti-
tioned around the median key valuek from L. Entries greater
than the median key value are placed into a new leaf node,
Lnew. This node is then added to the parent internal node,
Nparent. The bucket inNparentassociated withL is split, with
the (key, ptr) pairs it contains partitioned aroundk. Finally,
the pointer-list inNparent is updated accordingly.

Internal Node Split: Identical to the leaf node split, except
that the node (heap buckets and pointer-list entries) is parti-
tioned around the pointer-list entryKf/2.

Queries: Queries to the structure are handled with a simple
in-order traversal of the tree. Note that since (key, ptr) pairs
may be present in buckets in internal nodes, the heaps of
internal nodes that are traversed must be searched as well.

2.3 Discussion

In this section, we discuss some of the concerns and practical
considerations associated with the use of the Y-tree. In par-
ticular, we discuss storage issues and some of the trade-offs
involved in choosing values off andd.

2.3.1 Bucket Growth and Storage

Of practical concern is the amount of heap storage space per
internal node that must be allocated to allow a single path,
bulk insertion size ofd. Not unexpectedly, this requirement
scales withf andd:

Theorem 1.3.1.Let n be the number of bytes needed to store
a (key, ptr) pair. The totaldiskstorage required for an inter-
nal node heap is at most , wherefN is the
fanout of the node in question.

Proof. The proof is by induction on the number of insertions.
Assume that after a previous insertion, there were no more
thanmax= (key, ptr) pairs in the node. Then,
an additionalx pairs are inserted into the node such that 0 <
x d. Assume that the node is now overfull by a certain
number of pairso, such that 0 <o d (if the node is not
overfull, then the node has fewer thanmax pairs after the
insert and the theorem trivially holds). In this case, at least
one bucket has a minimum of pairs (since to
minimizethe number of pairs in the bucket with themost
pairs, pairs must be evenly distributed among buckets). Since
o d, by algebraic manipulation it follows that

. Thus, there exists at least one bucket
havingo or more pairs. After this bucket is drained, the heap
again contains fewer thanmax total pairs.

Note the presence of the worddisk in Theorem 1.3.1. This is
important; after a node has been read from disk and
insertion set added, its size while resident in memory may
greater than . However, once it has been
drained and written back to disk, Theorem 1.3.1 will aga
hold. An important related property is the following:

Property 3. While the total heap size is bounded b
on the upper side for a nodeN, in practice

N will contain  (key, ptr) pairs.

That is, the heaps in all internal levels of the tree tend to fi
up quickly; and except immediately after splits occur there
rarely any extra space in a given heap. This implies that th
is likely no easy way to decrease the amount of storage sp
required for an internal node (and increasing the fanout)
somehow making use of some property of the heap.

Also, it is worthwhile to note that there is very little util-
ity in considering the idea of storing the heap for an intern
node separately from the pointer-list. This is because bo
during updates to the structure and during query evaluati
the buckets associated with a node will need to be acces
at the same time as the pointer-list is searched.

2.3.2 Practical Choices off and d

Choosingf andd is a subjective optimization problem whose
choice is balanced by two competing goals: the desire
fast query evaluation times and the desire for fast inserti
time. Providing some insight into proper choices off andd is
at the heart of this paper.

We now outline the parameters that can be modifi
prior to construction of a Y-tree, and briefly describe th
costs associated with each:

d: A larger maximum insertion set size typically speed
the insertion rate into the tree.

f: A larger internal node fanout typically decreases que
response times and insertion times. However, a hi
fanout coupled with a large value ford can cause node
sizes to become large enough that query evaluation a
insertions are slowed.

Node size: Larger internal node sizes typically increas
fanout, decreasing query times up to the point whe
nodes are too large to be read and written quick
Larger nodes almost always result in faster insertions

What are typical values off andd, and typical node sizes?
The node size grows proportionally tof and d, so thatf =
(Node size/ ( d + )), where a (key, ptr) pair has a size
in bytes and there is some small overhead per bucket
to store pointers, boundaries, and any other information (t
quantity is on the order of 12 bytes in a typical implement
tion). As might be expected from this linear relationshi
between node size and insertion set size, node sizes in th
tree are relatively large. While a value-list index typicall

f N 1–( ) d n××

f N 1–( ) d×

≤
≤

max o+( ) f⁄ N

≤
o max o+( ) f⁄ N≤

f N 1–( ) d n××

f N 1–( ) d n××
f N 1–( ) d×

α × β
α β
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uses internal node sizes that are equivalent in size to one disk
block (perhaps using larger node sizes for leaf nodes) a Y-
tree node may be huge in comparison. Node sizes in the
range 8KB to 256KB or even larger are typical. Typical
choices ofd, the maximum insertion set size, range from 50
to 2500 or larger, with corresponding maximum fanoutf
from a high value of 100 all the way down to 10, much
smaller than for a value-list index. However, as we will argue
in subsequent sections, the negative effects that one may
expect would be associated with huge node size and small
fanout never really materialize, making the Y-tree a natural
choice for many database applications.

2.3.3 Handling Very Large Node Sizes

For very fast insertion times, node sizes may be very large:
up to a significant fraction of a megabyte. Though it may not
be possible to optimize by locating internal node heaps at a
location other than with the internal node, a few optimiza-
tions are possible when node sizes are particularly large.
These optimizations prove especially effective when nodes
are too large to fit on a single disk track.

A first optimization is to couple anend-pointerwith
every pointer in the pointer list. Thus, the internal node
pointer list becomes as follows:

<(P1, end1), K1, (P2, end2), K2,..., (Pf-1, endf -1), Kf-1,
(Pf, endf)>.

Theend-pointerdenotes an offset from the beginning of the
corresponding child node that lets the parent node know
exactly how many bytes need be transferred from disk into
main memory. When the node corresponding to the end-
pointer is a leaf node, the end-pointer points to the last (key,
ptr) pair in that node. When a leaf is transferred from disk
into memory, on average it is only around 70% full (though
this percentage varies from 50% to 100%). The end-pointer
allows the transfer to be halted at the point where the portion
of the node that is in use has been completely transferred. In
the case of an internal node, the end-pointer points to the end
of the pointer list, so that initially, the entire heap need not be
read from disk.

More conventional storage of the end-pointer within
the node itself is of less use because of the delay incurred
between reading the head of the node, stopping the transfer,
and re-sending the request that the remainder of the node be
retrieved from the disk. Note that this is a non-issue in the
case of a value-list index, where node size is typically equiv-
alent to the system disk block size, and so it makes little
sense to access less than an entire node.

The second possible large-node optimization follows
immediately from the first. During query evaluation, it is the
case that the heap of every internal node encountered must
be searched for the existence of (key, ptr) pairs meeting the
search predicate. However, it isnot the case that theentire
heap need be searched; we need only those heap buckets cor-

responding to the children meeting the search predicate. T
fact can be used to our advantage as follows. First, we pa
the heap buckets tightly together, and add pointers to
pointer-list to the beginning of each bucket. The disk layo
of an internal node, then, resembles the diagram of Figure

In the case where a query over the depicted intern
node is encompassed wholly by the range defined by the fi
and second keys in the node’s pointer-list, a short disk se
can be performed to reach the beginning of the seco
bucket. Then, a scan of that bucket up until the beginning
the third bucket is performed. The corresponding (key, ptr)
entries from that bucket can then be searched for a mat
Particularly in the case of an index over a huge database w
very large node sizes, this method can provide a substan
time savings in evaluation of certain types of queries, as
will show in Section 4.

3 The Y-Tree Vs. The Value-List Index

We now offer an analytical comparison of Y-tree and valu
list index performance as a preface to Section 4, where
will describe our experimental results. In this section, w

pointer-list

child node child node

ke
y

ke
y

heap

bucket #2#1 #4 ...

internal parent node

ke
y

Figure 5: Optimized layout of an internal node for huge
node sizes in the Y-tree.

Tseek Average time required to perform a disk
seek

Ttrans Average time to transfer one (key, ptr) pair
from disk into main memory

N Size, in (key, ptr) pairs, of a tree node

f Fanout

d Insertion set size for the Y-tree

b Number of insertions batched for value-list
index

n Number of (key, ptr) pairs in the tree

Table 1: Notation
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we
will use the notation in Table 1. Also, for the sake of simplic-
ity and brevity, we will assume that the node sizes for both
internal nodes and leaf nodes are the same, and that in a leaf
node, each key value has a single, unique, associated pointer
(as opposed to an associated, varying-sized RID-list as
would be expected for an attribute with a small cardinality
compared to the overall, fact table size). We will drop this
assumption in Section 4.

3.1 Insertions

In our analysis, we will compare Y-tree insertion times to
batched, value-list index insertion times using the algorithm
outlined in [6]. The advantage of using a batch algorithm for
value-list index insertion (as opposed to classical, item by
item insertion) is that each edge in the tree is traversed at
most once, which can lead to a reduction in total seek time
and data transfer time required. In building our analytical
model for batched value-list index insertion performance, we
assume that the number of nodes read and written is equal to
the batched insertion set size. This assumption is justified by
the following:

• We assume that the number of leaf level nodes and the
number of distinct key values inserted into the trees are
large enough that we can assume that every new (key,
ptr) pair is inserted into adistinct leaf node. The ratio-
nale for this is as follows. If the structure containsn
(key, ptr) pairs, there are then approximately

leaf nodes, assuming an average 68% fill

rate. Given the simplifying assumption that each to-be-
inserted attribute value has an equal probability of
belonging to any given leaf node, then, the expected
number of leaf nodes receivingj of thed new (key, ptr)
pairs (again assuming a 68% fill rate)

is:

Settingj = 0 in the above expression yields the number
of leaf nodes receiving none of thed pairs. Thus, the
number of distinct leaves expected to receive at least one

(key, ptr) pair is:

Using this expression, we can calculate that, for the
AT&T example of Section 1, with an insertion set size
of one million, we would expect more than 963 thou-
sand distinct leaf nodes to be written. Thus, the savings
in terms of leaf level pagesnot written in this example
due to batch insert is small (less than 4%). The effect of
this is that in a huge database with a large attribute
domain, by using batch insertion, we can avoid multiple
reads of internal nodes, butnearly one nodemust still be
read/written foreach pair inserted.

• We assume that the cost of accessing internal nodes d
ing a large, batched insert is negligible. If one millio
different leaf nodes must be read and written, the num
ber of distinct internal nodes which must be traversed
order to reach those leaf nodes will be less than 1/100
the number of such leaf nodes (assuming a fanout
larger than 100), and will be insignificant.

• We assume that splits occur infrequently enough th
they do not contribute significantly to the cost o
batched insertion.

Given these assumptions, the cost to batch insert a set ob
(key, ptr) pairs into a value-list index is simply:

For a Y-tree, in comparison, insertingb (key, ptr) pairs
requires that each node on a unique path from root to leaf
read and written. Assuming that an average node is 68% f
since data are held in internal nodes as well, the depth of a
tree can be expected to be at most

. Since the final

term in the above expression will be very small, we ignore
in our analysis for the sake of simplicity. Note that thi
expression takes into account the fact that the number
pairs in a leaf node (NY) is likely to be different and much
greater than the fanout of the internal nodes (fY). In our anal-
ysis, we will also ignore the reduction in the number of lea
nodes due to the fact that data are also present in inter
nodes. Assuming that the root node is stored in memory,
cost to insertb pairs is then:

3.2 Queries

Querying a value-list index is a simple matter. To evaluate
range query, a single path is traversed from root to leaf, do
the tree. When a leaf node is reached, a string of leaf no
are typically traversed, following pointers, until the end o
the range has been reached. The time to process a qu
returnings (key, ptr) pairs, assuming that the root node is re
ident in memory, is then:

Querying a Y-tree is slightly more complex, since an inord
traversal of the tree must be undertaken in order to answe
range query. In order to produce a simple expression,
ignore the fact that since some of the desired (key, ptr) pairs

n
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will be found in internal nodes, the actual number of lea
nodes that must be processed will be less than for a value
index having the same leaf node size. Under these assu
tions, the time needed to query a Y-tree, assuming that
root node is resident in memory, is then:

Note again that this expression takes into account the diff
ence between the number of entries in a leaf node and
fanout of an internal node.

3.3 Discussion

Given the algebraic expressions of Sections 3.1 and 3.2, n
ural questions are: How do these expressions translate
expected query slowdowns and expected insertion speed
for the Y-tree in a typical system? Are the potential que
evaluation slowdowns justified by the insertion time spee
ups?

To help answer these questions, in Figure 6 we plot t
analytically expected slowdown and speedup factors for a
tree as opposed to an incrementally constructed value-
index for a typical, large, database system. Both indexi
structures are assumed to index a table containing 2 bill
records. The seek timeTseekis assumed to average 10 ms
and the transfer rateTtrans is one million (key, ptr) pairs per
second. In each contoured plot depicted in Figure 6, the
tree is compared for a variety of node sizes and insertion
sizes against a value-list index with a node size of 8KB.

The first plot in Figure 6 shows the analytically
expected speedup for evaluation of a point query returnin
single (key, ptr) pair using a Y-tree. Speedup was compute
as (TB+ - TY) / TY. The plot shows that as one would expec
as insertion set size is increased, the performance of po
query evaluation suffers due to the decreased fanout ass
ated with the larger heap that must be stored in each inter
node. Perhaps slightly more surprising is the fact th
increasing the node size in order to increase the fanout a
perhaps deal with a large insertion set size is only effecti
up to a point. This is due to the fact that doubling, or eve
increasing the fanout in a tree by an order of magnitude, m
have little effect on the actual number of disk seeks requir
to evaluate a query. Why? The reason is that the depth o
hierarchical structure with an effective fanoutf is .

Increasing the fanout by the factory yields a depth of:

That is, for a given database size, increasing an already
nificant fanout by 10 times will have little effect because th
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Figure 6: Analytically predicted performance of the Y-tree as
compared to a value-list index with a node size of 8KB. The
time to write one million (key, ptr) pairs to disk is assumed to

be ten times the average disk seek time.
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log of the factor is onlyaddedinto the divisor on the right-
hand side of the above equation. For large node sizes, the
gain from the increased fanout is mitigated by the associated
increase in node transfer time.

Figure 6(b) shows the expected slowdown for a large,
range query returning one million (key, ptr) pairs. Perfor-
mance for evaluation of range queries is arguably more
important than point query performance, since range query
evaluation is important to join evaluation, which is typically
the bottleneck during overall query evaluation. Surprisingly,
query evaluation for large ranges is expectedly faster by
nearly an order of magnitudeusing a Y-tree when compared
to the value-list index. This is due to the typically much
larger leaf node size in a Y-tree, which more than compen-
sates for the smaller Y-tree fanout. Moreover, we argue that
if any type of incremental insertion algorithm must be used
frequently by a value-list index, it isnot a viable option to
increase leaf node sizes to those comparable to the larger Y-
tree node sizes in order to speed up processing of large range
queries using a value-list index. This is because the time
needed to perform insertions will increase proportionally
along with the larger node size using the value-list index.

It is also interesting to note that there is little additional
cost associated with the inorder traversal of the Y-tree as
opposed to simply following pointers along leaf nodes, as is
typically done in a value-list index. This is because the num-
ber of additional internal nodes that must be accessed is typ-
ically tiny when compared to the number of leaf nodes
accessed, and thus adds little cost to range query evaluation.

Finally, Figure 6(c) shows the speedup of insertion of
one million (key, ptr) pairs using a Y-tree as compared to
using batched insertion into the value-list index. For the
parameters used to produce the plot, speedups of more than
50 times are analytically predicted.

4 Experimental Results

Unfortunately, in order to make an analytical model simple
enough to be useful, a number of real-world factors must be
left out. In addition to the assumptions described in detail in
the previous section, the following factors were also not con-
sidered in the analytical model:

• DBMS caching. If memory permits, it might be possible
to hold entire upper levels of a tree in memory. Or, a
FIFO queue of recently-encountered nodes could be
maintained.

• File system issues. File system caching, buffering per-
formed by the disk, disk fragmentation, location of data
on disk, etc., will all affect indexing performance and
were ignored by our model.

• Special, Algorithmic issues. The effect of the suggested
enhancements of Section 2.3.3, for example, was not
considered in the model. Also, space can be saved by the
simple enhancement of eliminating redundant key val-

ues in leaf nodes (this is essentially equivalent to stori
pointers to separate RID-lists at the bottom level of th
tree, and requiring that the RID-lists be stored seque
tially on disk).

Thus, the analytical results present only a very rough estim
tion for the type of behavior that one might expect t
encounter in actual implementations of these structures.

4.1 Scope

In order to overcome these limitations and fully test the pra
ticality of the Y-tree for use in indexing real data, we imple
mented the following:

1) An optimal, bulk value-list index loader.We implemented
a bulk loader that builds a packed value-list index at a fill ra
of p%, wherep is a parameter supplied at index creatio
time. All leaf nodes are written in sequence to disk, guara
teeing that once a single RID has been located, no seeks n
be performed during range query evaluation as all RIDs a
read in sequence.

2) Non-optimal, Y-tree and value-list index bulk loaders. We
also implemented non-optimal loaders, which build tre
packed to anaveragefill rate p%, where leaf nodes are no
written in sequential order, in order to simulate a tree th
had been built incrementally as the data accumulated.

3) Value-list index and Y-tree insertion and query algo
rithms. We implemented Y-tree query and insertion, as we
as batched value-list index insertion and the value-list ind
query algorithm. For these algorithms, root nodes we
pinned in main memory, and a FIFO buffer of nodes wa
maintained (in order to simulate DBMS caching), in additio
to the caching provided by the file system.

4.2 Query Processing Experiments

For testing query processing, we ran two sets of experimen
concentrating on queries and insertions, respectively. W
constructed a synthetic data set having a single attribute
200 million rows of data. We believe that even for a large
real-world application indexing 10 billion or more rows, th
results presented here still hold since the larger database
probably equates to only one additional level (if any) in
hierarchical index.

For the query processing experiments, we construc
optimal value-list indexes containing a (key, ptr) pair for
each row of the data set. We built a series of value-l
indexes, one at each of several different node sizes. We c
structed optimal value-list indexes (as opposed to our ana
sis of non-optimal indices in Section 3) since we felt that fo
a database of that size, the incremental, batched construc
that would have led to a non-optimal tree was not a viab
option in practice due to the tremendous time that would
required to build such an index (cf. Section 4.3). In oth
words, no one would build such a huge index incrementa
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in the real world. Since they would have to build it in bulk, it
can be assumed that this would be done optimally.

We also constructed a series ofnon-optimalY-trees in
bulk, to simulate Y-trees that had been constructed incre-
mentally. Thus, we will compareoptimal value-list indexes
with non-optimalY-trees. The Y-trees were constructed at a
fill rate of 68%, so nodes averaged 68% full. The Y-trees
constructed in this way were typically 2.2GB to 2.5GB in
size. The optimal value-list indexes were typically around
65% of this size.

For each tree constructed, at each of several different
query selectivities, we ran a batch of 500 queries. At the
beginning of each run of 500 queries, the tree node cache
was empty, but it was not flushed as the queries were exe-
cuted. Queries were run at a variety of selectivities.

We summarize the results at several different selectivi-
ties and node sizes for value-list indexes above in Table 2. It
is useful to note that since each value-list index is con-
structed optimally, increasing node size past 8KB does little
to increase query evaluation efficiency. Since it is the case

that once a leaf node has been reached, no more disk se
are required (due to the value-list index optimality), increa
ing node size past a certain point is harmful as it leads
longer transfer times for internal nodes. In Table 3, we sim
larly give the query evaluation times required by the Y-tre
for selected combinations of different node sizes and ins
tion set sizes.

Comparing the two tables, it is clear that there is a si
nificant performance hit taken from using the Y-tree for eva
uating point queries, with the Y-tree taking anywhere fro
three to five times as long. For larger queries (more comm
in OLAP), however, an incrementally constructed Y-tre
may be three times as fast as an incrementally construc
value-list index. With a large node size, the Y-tree is on
56% slower than a 100% full, optimally constructed value
list index with leaf nodes located sequentially on the dis
We believe that the excellent performance for larger quer
is important, since larger ranges are of more use during jo
evaluation.

4.3 Insertion Experiments

For this set of tests, we wished to determine whether,
practice, Y-tree insertion is fast when compared to increme
tal, batched, value-list index insertion. We now discuss t
results of our tests:

Incremental, batched, value-list index insertion. Our first set
of tests involved using anincremental, batched insertion
algorithm on a value-list index that had been constructe
using our non-optimal bulk loader to simulate a tree that h
been constructed completely incrementally. The tree w
loaded so that each node was, on average, filled to 68%
capacity. During our tests, batches of 10,000 (key, ptr) pairs
were inserted at one time into the tree. Using this metho
the fastest insertion rate was achieved at a node size of 4
bytes, averaging one insert every 0.0246 seconds. While
method avoids many of the pitfalls associated with the ma

Node
Size

0.5e10-8

(1)
0.5e10-5

(103)

0.5e10-3

(106)

4096B 0.020 sec 0.088 sec 2.85 sec

8192B* 0.018 sec 0.067 sec 6.60 sec

8192B 0.018 sec 0.066 sec 1.36 sec

16384B 0.044 sec 0.068 sec 1.43 sec

32768B 0.048 sec 0.065 sec 1.40 sec

Query Selectivity (# items returned)

Average Query Evaluation Time

Table 2: Average evaluation times required per query, over
500 trials, for optimal, bulk-loaded, value-list indexes.

*non-optimal value-list index, provided for comparison

Node
Size

d 0.5e10-8

(1)
0.5e10-5

(103)

0.5e10-3

(106)

16384B 100 0.059 sec 0.065 sec 3.09 sec

32768B 200 0.056 sec 0.064 sec 2.81 sec

65536B 400 0.064 sec 0.064 sec 2.55 sec

98304B 400 0.069 sec 0.057 sec 2.27 sec

196608 800 0.080 sec 0.076 sec 2.13 sec

262144B 1200 0.096 sec 0.098 sec 2.10 sec

Average Query Evaluation Time

Table 3: Average evaluation times required per query, over
500 trials, for Y-trees.

Query Selectivity (# items returned)

NodeSize
(bytes)

d
Avg. insert

time per key
Speedup

16384 100 0.000958 sec 25 times

32768 200 0.000843 sec 28 times

65536 400 0.000566 sec 42 times

98304 400 0.000576 sec 42 times

196608 800 0.000465 sec 52 times

262144 1200 0.000245 sec 99 times

Table 4: Y-tree insertion speedup vs. batched, incremen
insertion into a value-list index having a node size of 409

bytes.

Y-Tree Insertion Rates
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sive rebuild, the insertion rate we achieved was painfully
slow. At this rate, in order to handle the three million inser-
tions per day without concurrent query processing, more
than 20 hours would be required.

The Y-tree. Finally, we tested insertion into the Y-tree. As
with our query experiments, we tested the Y-tree at a variety
of different node and insertion set sizes. A subset of those
results is given in Table 3 above. Clearly, the Y-tree is much
faster than the value-list index for processing insertions, with
speedups ranging from 25 to nearly 100 over the value-list
index.

4.4 Discussion of Experimental Results

The experimental results show that the Y-tree is a viable
alternative to the value-list index in practice. Due to the sup-
port for very large node sizes, the Y-tree is considerably
faster than an incrementally constructed value-list index for
large range queries, and is competitive with an optimal
value-list index. The primary factor we encountered that lim-
its node sizes in an incrementally constructed value-list
index is that with larger node sizes come larger insert times,
so frequent insertions place a practical limitation on value-
list index node size.

In general, when insertion rates are fully considered, the
Y-tree looks more attractive still. Handling three million
insertions using a Y-tree may take little longer than 12 min-
utes, compared with 20 hours or more using a value-list
index. If the attribute domain and the database size are both
large, a value-list index simply cannot handle such a high,
sustained insertion rate, taking 100 times as long. When all
of this is considered together, the Y-tree proves to be worth
serious consideration as an indexing structure.

5 Related Work

While the subject of database indexing has attracted a huge
amount of attention, very few of the proposed methods have
dealt specifically with the issue of allowing fast inserts. We
briefly discuss two methods that have addressed the insertion
problem, and we compare these methods with the Y-tree.
Specifically we discuss theLog-Structured Merge Tree[4]
(LSM-Tree) and theStepped Merge Method [1].

Both of these methods make use of the fact that on a per
insertion basis, it is much faster to buffer a large set of inser-
tions and then scan the entire base relation at once (which is

organized as a B+-tree1), adding new data to the structure.
Since the structure can be scanned in this way with a mini-
mum of disk seeks, the average time required per insertion is
likely to be much less than would be required were the clas-

sical B+-tree insertion algorithm used instead. Both th
LSM-Tree and the Stepped Merge Method utilize algorithm
that efficiently accept and organize the new data until suc
time as they can efficiently be added to the base relation.

The LSM-Tree uses a smaller, secondary tree to buf
insertions and updates as they are issued. An ongoingrolling
mergeprocess feeds nodes from the smaller tree into t
larger tree, where the new nodes are written out to disk
large, multi-page runs of records known asfilling blocks.
These runs are written out log-style, and older versions
nodes are kept on disk as long as is feasible to facilitate e
rollback and recovery, in a manner reminiscent of a lo
structured file system [7]. In the more general case, there
beN such trees in all, where each tree feeds into a larger t
in a series of rolling merges, with each record eventua
reaching the base relation after passing through each t
The Stepped Merge Method can be viewed as a variation
the LSM-tree, where at each of theN - 1 levels K trees
(instead of just one tree) are stored and are merged and p
agated to the higher level when they become too larg
Because data are written only once at each level, each d
insertion may require fewer disk operations than in the LSM
Tree.

In an important way, the LSM-Tree and presumably th
Stepped Merge Algorithm are superior to the Y-tree: the da
blocks are written to the base relation (the leaf level of th
final tree) totally full. This implies that the overall space ut
lization of these methods would be perhaps 30% greater th
for the Y-tree. Also, in the case of the LSM-Tree, if there
only a single, secondary tree (or if there are multiple tre
stored on separate disks) and that secondary tree is store
main memory, then query performance may be substantia
better than for the Y-tree. In this case, the LSM-Tree ran
query performance would be comparable to that of the op
mally constructed B+-tree due to the large node size (whi
would reduce disk seeks during long leaf scans) and h
space utilization (which increases the effective fanout).

However, the Y-tree does have some advantages. The
tree may exhibit improved query performance over th
Stepped Merge Method, since at each level of the struct
built by the Stepped Merge Method,K trees must be
searched during query execution. Unless these trees
stored on separate disks, query evaluation performance m
suffer. Since some of the trees at certain levels are likely
be relatively small, placing each on a separate disk m
require that many more disk seeks be used in order to ma
tain query performance than would be needed to simply st
the data.

In addition, the Y-tree has at least one important adva
tage over both of the other methods. Regardless of the ins
tion pattern, the LSM-Tree and the Stepped Merge Meth
must eventually merge entire smaller trees with entire larg
trees. The Y-tree, on the other hand, can adapt well to cert
circumstances such as a small set of “hot” key values. In t

1. In contrast, we have described the Y-tree as primarily a
secondary indexing structure, though it could be used as a
primary index. Likewise, the LSM-Tree and the Stepped
Merge Method could both be used as secondary indices.
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nd
case, only hot spots would need to be drained to leaf nodes,
whereas the other methods must rewrite an entire leaf node,
even if only a single key value must be inserted into that
node.

6 Conclusions

In this paper, we have presented a new, secondary index for
use in huge, constantly growing data warehousing environ-
ments. Our new index, called theY-tree, is fast because of the
use of asingle path, bulk insertion. During a single path,
bulk insertion, a set of insertions is processed together (simi-
lar to batched insertion into a value-list index) but in contrast
to a value-list index, nodes need be written only on asingle
path from root to leaf, regardless of the key values in the
insertion set.

We have shown that because of this, the Y-tree is very
fast for processing insertions: insertions are processed up to
100 times faster than they can be processed using batch
insertion with a value-list index. Furthermore, the Y-tree pro-
cesses large range queries competitively when compared to
an optimally constructed value-list index, and several times
faster than an incrementally constructed value-list index.
Point query evaluation using a Y-tree is slower, but point
queries are infrequent in OLAP applications. We have dis-
cussed two alternative indexing methods for supporting fast
insertions, the LSM-Tree [4] and the Stepped Merge Method
[1], and pointed out at least one advantage of the Y-tree over
these other methods: namely, the ability of the Y-tree to
adjust well to highly skewed insertion patterns. For these
reasons, we believe that the Y-tree offers an attractive alter-
native to the value-list index for indexing massive, perpetu-
ally growing warehouses.
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