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Abstract

Discoveringsequentiapatternds animportantproblemin

datamining with a hostof applicationdomainsincluding

medicine telecommunicationsgndthe World Wide Weh

Cornventional mining systemsprovide userswith only a

very restrictedmechanismbasedon minimum support)
for specifyingpatternsof interest. In this paper we pro-

posethe use of Regular ExpressiongRESs) as a flexible

constraintspecificationtool that enablesusercontrolled
focusto be incorporatednto the patternmining process.
We develop a family of novel algorithms(termedSPIRIT
— SequentiaPatternmlning with Regularexpresslorcon-

sTraints)for mining frequentsequentiapatternshatalso
satisfy userspecifiedRE constraints. The main distin-

guishing factor amongthe proposedschemess the de-

greeto which the RE constraintsareenforcedo prunethe

searchspaceof patternsduring computation. Our solu-

tions provide valuableinsightsinto thetradeofs thatarise
when constraintsthat do not subscribeto nice properties
(lik e anti-monotonicity)areintegratednto themining pro-

cess.A quantitatve explorationof thesetradeofs is con-

ductedthroughan extensive experimentalstudy on syn-

theticandreal-life datasets.

1 Intr oduction

Discovering sequentialpatternsfrom a large databasef
sequencess animportantproblemin the field of knowl-
edgediscoreryanddatamining. Briefly, givenasetof data
sequencesheproblemis to discoversubsequencédkatare
frequentin the sensehatthe percentagef datasequences
containingthem exceedsa userspecifiedminimum sup-
port[3, 11]. Mining frequentsequentiapatternshasfound
a hostof potentialapplicationdomains jncludingretailing
(i.e., market-baslet data),telecommunicationsand, more
recently the World Wide Web (WWW). In market-baslet
databasesachdatasequenceorrespond$o itemsbought
by anindividual customerover time andfrequentpatterns
canbe usefulfor predictingfuture customermehaior. In
telecommunicationsrequentsequencesf alarmsoutput
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by network switchescaptureimportantrelationshipsbe-
tween alarm signalsthat can then be employed for on-
line prediction,analysis,andcorrectionof network faults.
Finally, in the context of the WWW, sener sites typi-
cally generatehuge volumesof daily log datacapturing
thesequencesf pageaccesser thousandsr millions of
users. Discoveringfrequentaccespatternsn WWW logs
can help improve systemdesign(e.g., betterhyperlinked
structurebetweercorrelatedpagesyndleadto bettermar
ketingdecisionde.g.,stratgyic adwertisemenplacement).

As a more concreteexample,the Yahoo! Internetdi-
rectory(www. yahoo. com) enablesiserdo locateinterest-
ing WWW documentdby navigating throughlarge topic
hierarchiesconsistingof thousand®f differentdocument
classes. Thesehierarchiesprovide an effective way of
dealing with the abundanceproblem presentin today’s
keyword-basedVWW searchenginesTheideais to allow
usersto progressiely refinetheir searchby following spe-
cific topicpaths(i.e.,sequencesf hyperlinks)alonga (pre-
defined)hierarchy Giventhewide varietyof topicsandthe
inherently fuzzy natureof documentclassification,there
arenumerougasesn whichdistincttopic pathdeadto dif-
ferentdocumentollectionson very similar topics. For ex-
ample,startingfrom Yahoo! 's homepageuserscanlocate
information on hotelsin New York City by following ei-
ther Tr avel : Yahoo! Travel : North Anerica: United
St at es: New Yor k: New York City: Lodging: Hotel s
or Travel : Lodgi ng: Yahoo! Lodgi ng: New Yor k: New
York Cities:New York City: Hotels and Modtels,
where“: " denotesa parent-childlink in the topic hierar
chy. Mining useraccesdogs to determinethe mostfre-
guentlyaccessedopic pathsis a taskof immensemarket-
ing value, e.g., for a hotel or restauranbusinessin New
York City trying to selecta stratgic setof WWW locations
for its adwertisingcampaign.

The designof effective algorithmsfor mining frequent
sequentiapatternshasbeenthesubjecibof severalstudiedn
recentyears[3, 4, 7, 8, 11, 12]. Ignoringsmalldifferences
in the problemdefinition (e.g.,form of input data,defini-
tion of a subsequencep major commonthreadthat runs
throughthevastmajority of earlierwork is thelack of user
contolled focusin the pattern mining process Typically,

1In genera WWW senersonly have knowledgeof the IP addresof
the user/proxyrequestinga specificweb page. However, referrers and
cookiescanbe usedto determinehe sequencef accessefor a particular
user(without compromisinghe users identity).



theinteractionof theuserwith the patternmining systems

limited to specifyinga lower boundon the desiredsupport
for the extractedpatterns.The systenthenexecutesanap-
propriateminingalgorithmandreturnsaverylargenumber
of sequentiapatternspnly someof whichmaybeof actual
interestto the user Despiteits conceptuakimplicity, this

“unfocused”approacho sequentiapatternmining suffers
from two majordravbacks.

1. Disproportionate computational cost for selective
uses. Givenadatabasef sequenceandafixedvalue
for theminimumsupporthresholdthecomputational
costof the patternmining processds fixedfor any po-
tentialuser Ignoringuserfocuscanbe extremelyun-
fair to a highly selectve userthatis only interestedn
patternsof avery specificform.

2. Overwhelmingvolumeof potentially uselessresults.
Thelack of toolsto expressuserfocusduringthe pat-
tern mining processmeansthat selectve userswill
typically be swampedwith ahugenumberof frequent
patternsmostof which areuselessor their purposes.

The above discussionclearly demonstrateshe need for
novel patternmining solutionsthat enablethe incorpora-
tion of usercontrolledfocusin the mining process.There
aretwo main componentshatary suchsolutionmustpro-
vide. First, giventhe inadequag of simple supportcon-
straints, we needa flexible constaint specificationlan-
guage that allows usersto expressthe specificfamily of
sequentiapatternghatthey areinterestedn. Forinstance,
returningto our earlier‘New York City hotels”example,a
hotel planningits ad placemenimay only be interestedn
pathsthat(a) begin with Tr avel , (b) endin eitherHot el s
or Hotel s and Mdt el s, and(c) containat leastone of
Lodgi ng, Yahoo! Lodgi ng, Yahoo! Travel , New York,
orNew York City,sincethesearetheonlytopicsdirectly
relatedto its line of business.Secondwe neednovel pat-
ternmining algorithmsthatcanexploit userfocusby push-
ing userspecifiedconstaints deepinside the mining pro-
cess Theabstracgoalhereis to exploit patternconstraints
to prunethe computationatostandensuresystemperfor
mancethat is commenstate with the level of userfocus
(i.e.,constrainselectvity).

We shouldnote that even thoughrecentwork hasad-
dressedsimilar problemsin the context of associationule
mining [9, 10], the problemof incorporatinga rich setof
userspecifiedconstraintan sequentiapatternmining re-
mains, to the bestof our knowledge, unexplored. Fur
thermore,as we will discover later in the paper pattern
constraintgaisea hostof new issuesspecificto sequence
mining (e.g., due to the explicit ordering of items) that
were not consideredn the subsetand aggreation con-
straintsfor itemsetsconsideredn [9, 10]. For example,
our patternconstraintsdo not satisfythe propertyof anti-
monotonicity[9]; thatis, thefactthata sequencasatisfiesa
patternconstraintdoesnot imply thatall its subsequences
satisfy the sameconstraint. Thesedifferencesmandate
novel solutionsthat are completelyindependenof earlier
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resultson constrainedssociationmule mining? [9, 10].

In this paper we formulatethe problemof mining se-
guential patternswith regular expressionconstaints and
we develop novel, efficient algorithmicsolutionsfor push-
ing regular expressiondnside the patternmining process.
Our choice of regular expressions(RES) as a constraint
specificationtool is motivated by two importantfactors.
First, REs provide a simple, natural syntax for the suc-
cinct specificationof familiesof sequentiapatterns.Sec-
ond, REspossessufiicient expressve power for specify-
ing a wide rangeof interesting,non-trivial patterncon-
straints. Theseobsenationsare validatedby the exten-
sive useof REsin everydaystring processingasks(e.g.,
UNIX shell utilities like gr ep or | s) aswell asin recent
proposalson querylanguagegor sequencelata(e.g.,the
ShapeDefinition Languageof Agrawal etal. [1]). Return-
ing once againto our “New York City hotels” example,
notethatthe constrainton topic pathsdescribecearlierin
this sectioncanbe simply expressedasthe following RE:
Travel (Lodgi ng| Yahoo! Lodgi ng| Yahoo! Travel | -
New Yor k| New York City)(Hotel s| Htel s and
Mot el s), where“|” standsfor disjunction. We propose
a family of novel algorithms(termedSPIRIT — Sequen-
tial Patternmlning with Regular expresslonconsTaints)
for mining frequentsequentiapatternshatalsobelongto
the languagedefinedby the userspecifiedRE. Our algo-
rithms exploit the equivalenceof REsto deterministicfi-
nite automatg6] to push RE constraintsdeepinside the
patternmining computation.The main distinguishingfac-
tor amongthe proposedschemess the deggreeto whichthe
RE constraintis enforcedwithin the generatiorand prun-
ing of candidatepatternsduring the mining process. We
obsene that, varying the level of userfocus(i.e., RE en-
forcement)during patternmining givesrise to certainin-
terestingtradeofs with respecto computationakffective-
ness. Enforcing the RE constraintat eachphaseof the
mining processcertainly minimizesthe amountof “state”
maintainedaftereachphasefocusingonly on patternghat
could potentiallybe in the final answerset. On the other
hand,minimizing this maintainedstatemay not alwaysbe
the bestsolutionsinceit can,for example,limit our abil-
ity to do effective support-basegruningin later phases.
Suchtradeofs areobviously relatedto our previousobser
vation that RE constraintsare not anti-monotong9]. We
believethatourresultsprovide usefulinsightsinto themore
generalproblemof constraint-dnven, ad-hocdatamining,
shaving that there can be a whole spectrumof choices
for dealingwith constraintsgven whenthey do not sub-
scribeto nice propertiedik e anti-monotonicityor succinct-
ness[9]. An extensie experimentalstudy with synthetic
aswell asreal-life datasetsis conductedto explore the
tradeofs involved and their impact on the overall effec-
tivenessf our algorithms. Our resultsindicatethatincor-
porating RE constraintgnto the patternmining computa-
tion cansometimesyield morethananorderof magnitude

2Due to spaceconstraints,we omit a detaileddiscussionof earlier
work. Theinterestedeadeiis referredto thefull versionof this paper5].



improvementin performancethusvalidatingthe effective-

nessof our approach.Our experimentatiorwith real-life

WWW sener log dataalsodemonstratethe versatility of

REsasauserleveltool for focusingoninterestingpatterns.
The work reportedin this paperhasbeendonein the con-
text of the SEREN DI P datamining projectatBell Labo-
ratories(www. bel | -1 abs. coni proj ect s/ ser endi p).

2 Problem Formulation
2.1 Definitions

The main input to our mining problemis a databaseof

sequencesyhereeachsequencés an orderedlist of ele-
ments Theseelementsanbe either(a) simpleitemsfrom

a fixed set of literals (e.qg., the identifiersof WWW doc-
umentsavailable at a sener [4], the amino acid symbols
usedin proteinanalysig[12]), or (b) itemsetsthatis, non-
empty setsof items(e.g.,booksboughtby a customerin

the sametransactior[11]). Thelist of elementsf a data
sequence is denotedy < sq s5 - - - 5, >, Wheres; is the
ith elemenif s. We use|s| to denotethelength(i.e., num-
ber of elementspf sequence. A sequencef lengthk is

referredto asa k-sequence (We considerthe terms*“se-
guence”and “sequentialpattern”to be equialentfor the
remainderf our discussion.)Table 1 summarizeshe no-
tationusedthroughouthe papemwith a brief descriptionof

its semanticsAdditional notationwill beintroducedwvhen
necessary

Symbol Semantics

s,t,u,... | Genericsequencem theinputdatabase

<st> Sequenceesultingfrom the concatenatiof
sequences andt

[s]| Length,i.e.,numberof elementspf sequence

Si i*" elemenbf sequence

83 Zeroor moreoccurrencesf elements; (Kleene
closureoperator)

si | s Selectoneelemenioutof s; ands; (disjunction
operator)

R RegularexpressionRE) constraint

Ar Deterministicfinite automatorfor RER

b,c,d,... | Genericstatedn automatonAx

a Startstateof automaton4dx

bH e Transitionfrom stateb to statec in Az on
elements;

b>¢ Transitionpathfrom stateb to statec in Az on
thesequencef elements

Ch Setof candidatek-sequences

Fy Setof frequentk-sequences

Tablel: Notation.

Considentwo datasequences =< s s --- 8, > and
t =<ty ty --- t,, >. Wesaythats is a subsequencef
t if s is a “projection” of ¢, derived by deletingelements
and/oritemsfrom ¢. More formally, s is a subsequence
of ¢ if thereexist integersj; < j2 < ... < j, suchthat
s1 C tj,, s2 C tj, ..., sn C tj;,. Notethatfor se-
guencef simpleitemsthe above conditiontranslatego
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s1 = tj;, 82 =tj,, ..., $p = t;, . For example,sequences
<13 >and< 124 > aresubsequences < 1234 >,
while < 3 1 > is not. Srikantand Agrawal [11] obsene
that,whenmining market-baslet sequentiapatternspusers
oftenwantto placea boundon the maximumdistancebe-
tweentheoccurrencef adjacenpatternelementsn adata
sequencekor example,if acustomebuysbreadtodayand
milk afteracoupleof weeksthenthetwo purchaseshould
probablynot be seenasbeingcorrelated.Following [11],
we definesequence to bea subsequenceith a maximum
distanceconstaint of 4, or alternatelyd-distancesubse-
qguenceof t if thereexistintegersj; < j2 < ... < jn SUch
that51 - tjl! sq C tjzv o, 8 C tj'n andjk _jk—l < 1)
for eachk = 2,3,...,n. Thatis, occurrence®f adjacent
elementof s within ¢ arenot separatedy morethans el-
ements.As a specialcaseof the above definition, we say
that s is a contiguoussubsequencef ¢ if s is a 1-distance
subsequencef ¢, i.e., the elementof s canbe mappedo
a contiguoussegmentof ¢.

A sequencss is saidto containa sequence if p is a
subsequencef s. We definethe supportof a patternp as
thefractionof sequencem theinput databas¢hatcontain
p. Givenasetof sequences, wesaythats € S is maximal
if thereareno sequencei S — {s} thatcontainit.

A RE constraintR is specifiedas a RE over the al-
phabetof sequenceslementsusing the establishedset of
RE operatorssuchasdisjunction(|) and Kleeneclosure
(*) [6]. Thus,a RE constraintR specifiesa languageof
stringsover the elementalphabetor, equivalently, a regu-
lar family of sequentialpatternsthat is of interestto the
user A well-known resultfrom compleity theory states
thatREshave exactly the sameexpressve power asdeter
ministic finite automata[6]. Thus, givenary RE R, we
canalwaysbuild a deterministidfinite automatondx such
that Ar acceptsxactly thelanguagegeneratedy R. In-
formally, a deterministicfinite automatonis a finite state
machinewith (a) a well-definedstart state(denotedby a)
andoneor more acceptstatesand (b) deterministictran-
sitions acrossstateson symbolsof the input alphabet(in
our case,sequencelements).A transitionfrom stateb to
statec on elements; is denotedby b 2% ¢. We alsouse
the shorthand = ¢ to denotethe sequencef transitions
ontheelementof sequence startingat stateh andending
in statec. A sequencss is acceptedby Ax if following
the sequencef transitionsfor the elementsof s from the
start stateresultsin an acceptstate. Figure 1 depictsthe
statediagramof adeterministidinite automatorfor theRE
1*(22|234|44) (i.e.,all sequencesf zeroor morel’s
followedby 2 2, 2 3 4, or 4 4). Following [6], we usedou-
ble circlesto indicatean acceptstateand > to emphasize
the startstate(a) of the automaton. For brevity, we will
simply use“automaton”as a synorym for “deterministic
finite automaton’in theremainderof the paper

2.2 ProblemStatement

Givenaninput databasef sequencesye definea sequen-
tial patternto be frequentif its supportin the databasex-



Figurel: Automatonfor theRE 1* (22234 |44).

ceedsa userspecifiedminimum supportthreshold. Prior
work hasfocusedon efficient techniquedor the discovery
of frequentpatternstypically ignoringthe possibility of al-
lowing andexploiting flexible structuralconstraintsluring
the mining process. In this paper we develop novel, ef-
ficient algorithmsfor mining frequentsequentiapatterns
in the presenceof userspecifiedRE constraints. Due to
spaceconstraintsthe discussionin this paperfocuseson
the caseof sequence®sf simpleitemswith no maximum
distanceconstrints The necessargxtensionsto handle
itemsetsequenceand distanceconstraintdor patternoc-
currencesaredescribedn detailin the full versionof this
paper[5]. Thefollowing definitionsestablishsomeuseful
terminologyfor our discussion.

Definition 2.1 A sequencae is saidto belegal with respect
to stateb of automatonAy, if every statetransitionin Ax
is definedwhenfollowing the sequencef transitionsfor
theelementof s from b.

Definition 2.2 A sequence is saidto bevalid with respect
to stateb of automaton4, if s is legalwith respecto b and
thefinal stateof the transitionpathfrom b oninput s is an
acceptstateof A . We saythats is valid if s is valid with
respecto the startstatea of A% (or, equivalently, if s is
acceptedy AR).

Example2.1: Consider the RE constraint R =
1* (22234 |4 4) andthe automaton4x, shovn in
Figurel. Sequence< 1 2 3 > is legalwith respecto state
a andsequence< 3 4 > is legal with respectto stateb,
while sequences 134 > and< 24 > arenotlegal with
respecto ary stateof Ax. Similarly, sequence< 3 4 >

is valid with respecto stateb (sinceb 2" d andd is an
acceptstate),however it is not valid, sinceit is not valid
with respecto the startstatea of A . Examplesof valid
sequencesiclude< 1122 >and< 234 >.1

Having establishedhe necessaryotionsandterminol-
ogy, we cannow provide anabstractdefinition of our con-
strainedpatternmining problemasfollows.

e Given: A databasef sequence®, a userspecified
minimum supportthreshold,and a userspecifiedRE
constraintR (or, equivalently, anautomatonAr ).

e Find: All frequentandvalid sequentiapatternsn D.

Thus, our objective is to efficiently mine patternsthat are
not only frequentbut also belongto the languageof se-
quencegeneratedby theRE R?. To thisend,thenext sec-
tion introduceghe SPIRIT family of mining algorithmsfor

30uralgorithmscanreadilyhandlea setof RE constraintsy collaps-
ing theminto asingleRE [6].
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pushinguserspecifiedRE constraintsto varying degrees
insidethe patternmining process.

3 Mining Frequentand Valid Sequences
3.1 Overview

Figure 2 depicts the basic algorithmic skeleton of the
SPIRIT family, using an input parametetC to denotea
generic userspecified constrainton the mined patterns.
The output of a SPIRIT algorithmis the set of frequent
sequence the databasé thatsatisfyconstraintC. At a
highlevel, ouralgorithmicframeworkis similarin structure
to thegeneralApriori strategy of Agrawal andSrikant[2].
Basically SPIRIT algorithmswork in passeswith each
pasgesultingin thediscovery of longerpatternsin thekt*
passasetof candidatdi.e., potentiallyfrequentandvalid)
k-sequence€’;, is generateéndprunedusinginformation
from earlier passes.A scanover the datais then made,
during which the supportfor eachcandidatesequenceén
C}, is countedand F}, is populatedwith the frequentk-
sequencesn Cy. Thereare, however, two crucial dif-
ferencedetweerthe SPIRIT framevork andcorventional
Apriori-type schemeglike GSP[11]) or the Constrained
APriori (CAP) algorithm[9] for mining associationsvith
anti-monotonend/orsuccinctconstraints.

1. RelaxingC by inducing a wealer (i.e., lessrestric-
tive) constaint C' (Stepl). Intuitively, constraintC’
is wealer thanC if every sequenc¢hatsatisfie€ also
satisfiesC’. The “strength” of C' (i.e., how closely
it emulatesC) essentiallydeterminesthe degreeto
which the userspecifiedconstraintC is pushednside
the patternmining computation.The choiceof C’ dif-
ferentiateamongthe membersf the SPIRIT family
andleadsto interestingtradeofs thatarediscussedn
detaillaterin this section.

2. Usingtherelaxedconstaint C' in the candidategen-
eration and candidatepruning phasesof eac pass.
SPIRIT algorithmsmaintainthe set F' of frequentse-
guencegup to a givenlength)thatsatisfythe relaxed
constrainC’. Both F' andC’ areusedin:

(a) the candidate generation phase of pass k
(Step6), to producean initial setof candidate
k-sequence€’y thatsatisfyC' by appropriately
extendingor combiningsequencem F'; and,

(b) the candidatgoruningphaseof passk (Steps8-
9), to deletefrom C}, all candidatek-sequences
containingatleastonesubsequenchatsatisfies
C' anddoesnotappeain F.

Thus,a SPIRIT algorithm maintainsthe following invari-

ant at the endof passk, Fj is exactly the setof all fre-

guentk-sequencethat satisfythe constraintC’. Notethat
incorporatingC’ in candidategeneratiorand pruningalso
impactsthe terminatingcondition for the repeatloop in

Step15. Finally, sinceat the endof the loop, F' contains
frequentpatternssatisfyingthe inducedrelaxed constraint
C', anadditionalfiltering stepmayberequired(Stepl17).



Procedure SPIRIT(D , C)
begin
letC’ := aconstraintvealer (i.e.,lessrestrictve) thanC
F := F; :=frequentitemsin D thatsatisfyC’
k:=2
repeat{
/l candidategeneation
usingC’ and F generate”, := { potentiallyfrequent
k-sequencethatsatisfyC’ }
/I candidatepruning
let P := {s € C} : s hasasubsequencethatsatisfies
C'andt ¢ F }
9. Cyr:=Cy—P
10.

ouhrwNRE

© N

/I candidatecounting
11. scanD countingsupportfor candidate:-sequencem Cy,
12.  Fy := frequentsequencem Cy,
13. F:=FUF;
14, k:=k+1

15. } until TerminatingCondition¥ , C’) holds
16. // enfoccetheoriginal (stronger) constaint C
17. outputsequencem F thatsatisfyC

end

Figure2: SPIRIT constrainegatternmining framework.

Givena setof candidatek-sequence€’s, countingsup-
port for the membersof C}, (Step11) canbe performed
efficiently by employing specializedsearchstructureslike
the hashtree[11], for organizingthe candidates.Theim-
plementatiordetailscanbe foundin [11]. The candidate
countingstepis typically the most expensve step of the
patternmining processandits overheads directly propor
tional to the size of C [11]. Thus, at an abstractlevel,
the goal of an efficient patternmining stratgy is to em-
ploy the minimum supportrequirementndary additional
userspecifiecconstraintgo restrictasmuchaspossiblehe
setof candidatek-sequencesountedduring passk. The
SPIRITframework strivesto achieve thisgoalby usingtwo
differenttypesof pruningwithin eachpassk.

¢ Constaint-basedpruningusingarelaxationC’ of the
userspecifiedconstraintC; thatis, ensuringthat all
candidatek-sequencein C satisfyC'. Thisis ac-
complishedby appropriatelyemploying C' and F' in
the candidategeneratiorphasgStep6).

e Support-basegruning; thatis, ensuringthatall sub-
sequencesf a sequences in Cy thatsatisfyC’ are
presentin the currentset of discoreredfrequentse-
guencesF' (Steps8-9). Note that, even thoughall
subsequencesf s mustin fact be frequent,we can
only checktheminimumsupportconstrainfor subse-
guenceshat satisfyC’, sinceonly theseare retained
in F.

Intuitively, constraint-basegbruning tries to restrict Cy,
by (partially) enforcing the input constraintC, whereas
support-basegruningtriesto restrictCy, by checkingthe
minimum supportconstraintfor qualifying subsequences.
Note that, given a set of candidates”;, and a relaxation
C' of C, theamountof support-basefdruningis maximized
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when(’ is anti-monotong9] (i.e.,all subsequencexf ase-
guencesatisfyingC’ areguaranteetb alsosatisfyC’). This
is becausessupportinformationfor all of the subsequences
of a candidatesequences in C}, canbe usedto pruneit.
However, when (' is not anti-monotonethe amountsof
constraint-basedndsupport-base@runingachieved vary
dependingon the specificchoiceof C'.

3.1.1 PushingNon Anti-Monotone Constraints

Considerthe generalproblemof mining all frequentse-
guenceghat satisfy a userspecifiedconstraintC. If C is
anti-monotonethenthe mosteffective way of usingC to
prunecandidatess to pushC “all theway” insidethe min-
ing computation.In the context of the SPIRIT framework,
this meansusingC asis (ratherthansomerelaxationof C)
in the patterndiscovery loop. The optimality of this so-
lution for anti-monotone’ stemsfrom two obsenations.
First, usingC clearly maximizesthe amountof constraint-
basedpruningsincethe strongesipossibleconstraint(i.e.,
C itself) is employed. SecondsinceC is anti-monotoneall
subsequences a frequentcandidatek-sequencehat sur
vives constraint-baseg@runing are guaranteedo bein F
(sincethey alsosatisfyC). Thus,usingthefull strengthof
ananti-monotoneonstraintC maximizeshe effectiveness
of constraint-basepruningaswell assupport-basegdrun-
ing. Notethatthis is exactly the methodologyusedin the
CAP algorithm[9] for anti-monotondtemsetconstraints.
An additional benefitof using anti-monotoneconstraints
is that they significantlysimplify the candidategeneration
andcandidatepruningtasks.More specifically generating
C, is nothingbut anappropriaté'self-join” operationover
Fy_, anddeterminingthe prunedset P (Step8) is sim-
plified by the factthatall subsequencesf candidatesare
guaranteedo satisfytheconstraint.

When( is not anti-monotonehowever, thingsare not
thatclearcut. A simplesolution,suggestetby Ng etal. [9]
for itemsetconstraintsjs to take an anti-monotoneelax-
ation of C and usethat relaxationfor candidatepruning.
Neverthelessthis simpleapproachmay not alwaysbefea-
sible. For example,our RE constraintgor sequencegonot
admit ary non-trivial anti-monotoneaelaxations. In such
casesthe degreeto which the constraintC is pushedin-
sidethe mining procesgi.e., the strengthof the (non anti-
monotoneyelaxationC’ usedfor pruning)impactsthe ef-
fectivenessf both constraint-basegruning and support-
basedpruningin differentways. More specifically while
increasingthe strengthof C' obviously increaseghe ef-
fectivenesf constraint-basegruning, it canalsohave a
negative effect on support-basegruning. The reasonis
that,for any givensequencén C}, thatsurvivesconstraint-
basedpruning, the numberof its subsequencethat sat-
isfy the stronger, nonanti-monotoneconstaint C' mayde-
crease Again, notethatonly subsequencetat satisfyC’
canbeusedfor support-basedruning,sincethisis theonly
“state” maintainedrom previouspassegin F’).

Pushinganonanti-monoton&onstrainC’ in thepattern
discovery loop canalso increasethe computationakcom-



plexity of the candidategeneratiorandpruningtasks. For
candidategenerationthe factthatC’ is not anti-monotone
meansthat some(or, all) of a candidates subsequences
may be absenfrom F'. In somecasesa “brute-force” ap-
proach(basedon just C') may be requiredto generatean
initial setof candidate€’y,. For candidatgpruning,comput-
ing the subsequences a candidatehatsatisfyC’' mayno
longerbe trivial, implying additionalcomputationabver
head.We shouldnote,however, that candidategeneration
and pruning are inexpensve CPU-boundoperationsthat
typically constituteonly asmallfractionof theoverallcom-
putationalkcost. Thisfactis alsoclearlydemonstrateah our
experimentalresults(Section4). Thus,the majortradeof
that needsto be consideredvhen choosinga specificC’
from amongthe spectrumof possiblerelaxationsof C is
the extentto which thatchoiceimpactsthe effectivenesof
constraint-basedndsupport-basegruning. Theobjective,
of coursejs to strike areasonablbalancebetweerthetwo
differenttypesof pruningsoasto minimize the numberof
candidatedor which supportis actually countedin each
pass.

3.1.2 The SPIRIT Algorithms

The four SPIRIT algorithmsfor constrainecpatternmin-
ing arepoints spanningthe entire spectrumof relaxations
for the userspecifiedRE constraintC = R. Essentially
the four algorithmsrepresenta natural progressionwith
eachalgorithm pushinga strongerrelaxationof R than
its predecessom the patternmining loop *. The first
SPIRITalgorithm,termedSPIRIT(N)(“N” for Naive),em-
ploys the wealestrelaxationof R — it only prunescandi-
datesequencesontainingelementshat do not appearin
R. Thesecondalgorithm,termedSPIRIT(L) (“L” for Le-
gal), requiresevery candidatesequencéo belegal with re-
spectto somestateof Ax. The third algorithm, termed
SPIRIT(V) (“V" for Valid), goesonestepfurtherby filter-
ing out candidatesequencethatarenot valid with respect
to anystateof Ax. Finally, the SPIRIT(R)algorithm(“R”
for Regular) essentiallypushesR “all theway” insidethe
mining processby countingsupportonly for valid candi-
datesequences,e., sequencesaccepteddy A . Table2
summarizeshe constraintchoicesfor the four memberof
the SPIRIT family within the generalframework depicted
in Figure 2. Note that, of the four SPIRIT algorithms,
SPIRIT(N) is the only one emplgying an anti-monotone
(and,trivial) relaxationC’. Also, notethatthe progressie
increasdn the strengthof C' implies a subsetelationship
betweenthe frequentsequenceseterminedor eachpass
k; thatis,

FkSPIRIT(R) C F:PIRIT(V) C FkSPIRIT(L) C F:‘PIRIT(N).

The remainderof this sectionprovides a detaileddis-
cussionof the candidategeneratiorand candidatepruning

4Thedevelopmentof the SPIRITalgorithmsis basedntheequialent
automatorform Ax of the userspecifiedRE constraintR. Algorithms
for constructingAx from R canbefoundin thetheoryliterature[6].
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Algorithm | RelaxedConstraint ¢’ (C =R )
SPIRIT(N) all elementsappeain R
SPIRIT(L) legal wrt somestateof Ax
SPIRIT(V) valid wrt somestateof Ar
SPIRIT(R) valid,i.e.,C'=C=R

Table2: Thefour SPIRITalgorithms.

phasesfor eachof the SPIRIT algorithms. Appropriate
terminatingconditions(Step 15) are also presented.The
guantitatve studyof theconstraint-baseds. support-based
pruningtradeof for the SPIRITalgorithmsis deferreduntil
the presentatiomf our experimentakresults(Section4).

3.2 The SPIRIT(N) Algorithm

SPIRIT(N) is a simple modification of the GSP algo-
rithm [11] for mining sequentiapatterns.SPIRIT(N) sim-
ply requiresthatall elementof a candidatesequence in
C appearin the RE R. This constraintis clearly anti-
monotone,so candidategenerationand pruning are per
formedexactly asin GSP[11].

Candidate Generation. For every pair of (k — 1)-
sequences andt in Fy_q, if sj11 =t;jforalll < j <
k —2,then< s ty_; > isaddedto C. Thisis basically
aself-join of F,_1, thejoin attributesbeingthelastk — 2
elementof thefirst sequencandthefirst k — 2 elements
of thesecond.

Candidate Pruning. A candidatesequences is pruned
from C}, if atleastoneof its (k — 1)-subsequencedoes
notbelongto Fj,_;.

Terminating Condition. Thesetof frequentk-sequences,
Fy,, isempty

3.3 The SPIRIT(L) Algorithm

SPIRIT(L)usegheautomatond to prunefrom Cj, candi-
datek-sequencethatarenotlegal with respecto ary state
of Ax. In our descriptionof SPIRIT(L), we use Fy(b) to

denotethe setof frequentk-sequencethat arelegal with

respecto stateb of Ax.

Candidate Generation. For eachstateb in A, we addto
C}, candidatek-sequencethat arelegal with respectto b
andhave the potentialto befrequent.

Lemma 3.1: Considera k-sequences thatis legal with
respectto stateb in Az, whereb 2% ¢ is a transitionin
Ar. For s to befrequent,< s;---s;_1 > mustbein
Fj_1(b) and< sz - - - s, > mustbein Fj,_1(c). Il

Thus,the candidatesequencefor stateb canbe computed
asfollows. For every sequence in Fj_;(b), if b = ¢
is atransitionin Az, thenfor every sequence in Fj_1(c)
suchthats;; =¢; forall 1 < j < k — 2, the candidate
sequence< s tp—1 > is addedto Cy. This is basically
a join of Fy_1(b) and Fj_1(c), on the conditionthat the



(k — 2)-lengthsufiix of s € Fy,_1(b) matcheghe (k — 2)-
lengthprefixof t € F_; (c) andb =% ¢ is atransitionin
Ax.

Candidate Pruning. Givenasequence in Cy, thecandi-
dategeneratiorstepensureshatbothits prefixandsuffix of
lengthk—1 arefrequent.We alsoknow thatin orderfor s to
befrequent,every subsequencef s mustalsobefrequent.
However, sincewe only countsupportfor sequencethat
arelegal with respecto somestateof A%, we canprunes
from C}, only if wefind alegal subsequencef s thatis not
frequent(i.e., notin F). The candidatepruningprocedure
computeghesetof maximalsubsequence s with length
lessthank thatarelegal with respecto somestateof au-
tomatonAx. If ary of thesemaximalsubsequencds not
containedn F, thens is deletedrom Cy,.

We now describean algorithmfor computingthe max-
imal legal subsequencesf a candidatesequences. Let
maxSedg, s) denotethe setof maximal subsequencesf
s that are legal with respectto stateb of Ax. Then,if
we lett =< s3---s), >, asupersetof maxSedg, s)
can be computedfrom maxSeq, t) using the fact that:
(a) maxSeqb,s) C maxSedb,t) U {< s; u >: u €
maxSegc, )} U {s1}, if b =% c is a transitionin Ag;
and, (b) maxSegb, s) C maxSeqp, t), otherwise.Thein-
tuition is that for a subsequence € maxSeqy, s), either
v doesnotinvolve sy, in which casev is amaximalsubse-
guenceof ¢ thatis legal with respecto b, or v; = s; and
< vz ---v)y > isamaximalsubsequencef ¢ with respect
to statec. Basedon the above obsenation, we proposea
dynamicprogrammingalgorithm,termedFINDM AX SuB-
SEQ, for computingmaxSeaqy, s) for all statesb of Ax
(Figure3). Intuitively, FINDM AX SuBSEQ works by com-
puting the setmaxSedfor successiely longer suffixes of
the input sequencss, beginning with the suffix consisting
of only thelastelemenbf s.

More specifically given an input sequences and two
setsof statesin Ax (Start and End), algorithm FIND-
MAXSUBSEQ returnsthe setof all maximalsubsequences
t of s suchthat(a) thelengthof ¢ is lessthan|s|, and(b) ¢

is legal with respecto a stateb in Start andif b L ¢, then
¢ € End. In eachiterationof thefor loop spanningSteps
3-17,for eachstateb in Az, maximallegal subsequences
for the suffix < s;---s/, > arecomputedand storedin
maxSeaqp]. At thestartof thel* iteration,maxSeqp] con-
tainsthe maximalsubsequencesf < s;1; --- s, > that
are both legal with respectto stateb andresultin a state
in End. Thus,if a transitionfrom b to ¢ on elements;
isin Az, thenthe maximallegal subsequencdsr b com-
prisethosepreviously computedor < s;41 --- s, > and
certainnew sequencesivolving elements;. Thesenew se-
guencegontainings; arecomputedn the body of the for
loop spanningStepss—9 andstoredin tmpSeqp]. A point
to noteis that, sincewe areonly interestedn maximalle-
gal subsequencdbatresultin astatein End, we adds; to
tmpSeqp] only if ¢ € End (Step7).

After the new maximal subsequenceisvolving s; are
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Procedure FINDMAX SUBSEQ(Start, End, s)

begin

1. for eachstateb in automatondx do

2. maxSeqgh] =0

3. forl:=|s| downto 1do {

4. for eachstateb in automatonAx do {

5. tmpSeqp] = 0

6. if (thereexistsatransitionb —% ¢ in Az) {

7. if (c € End) tmpSeqp] :={s:}

8. tmpSeqp] := tmpSeqp] U{< s: t >: t € maxSef]|}

9.

10.

11. for eachstateb in automatondz do {

12. maxSeq}] := maxSedh] U tmpSeagp]

13. for eachsequence in maxSeq}] do

14. if (thereexistsw in maxSe¢p] — {< s;--- 515 >}
suchthatt is asubsequencef u)

15. deletet from maxSedjf]

16.

17.}

18. return | J,c Start MaxSedf] - {s} (after
deletingnon-maximakequences)
end

Figure3: Algorithm for finding maximalsubsequences.

storedin tmpSeqp] for every stateb of Ag, they are
addedo maxSedqp], following which,non-maximakubse-
guencesn maxSeqp] aredeleted(Stepsl1-16}. Finally,
aftermaximallegal subsequencedsr theentiresequence
have beencomputedor all thestatesof Ax, only thosefor
statesn Start arereturnedStep18).
Torecapthecandidatgpruningprocedureof SPIRIT(L)
invokes FINDMAXSUBSEQ to determineall the maximal
legal subsequencesf eachcandidates in Cy, anddeletes
s from C}, if ary of thesesubsequenceés notfrequent.For
SPIRIT(L), algorithm FINDMAX SUBSEQ is invoked with
Start and End bothequalto thesetof all statesn Ax.

Terminating Condidition.  The set of frequent k-
sequencethatarelegal with respecto the startstatea of
Ar is empty;thatis, Fy(a) is empty

Time Complexity. Considerthe candidatepruning over-
headfor a candidatek-sequences in Cj. Comparedto
thecandidatgpruningstepof SPIRIT(N),which hasatime
complexity of O(k) (to determinethe k£ subsequencesf
s), the computationaloverheadof candidatepruning in
SPIRIT(L) canbe significantly highet More specifically
theworst-casdime compleity of computingthe maximal
legal subsequencesf s using algorithm FINDMAXSUB-
SEQ canbeshavn to be O (k? x| A | * |maxSeqg§)|), where
|Az| is the numberof statesin Az and |maxSeqg§)| is
the numberof maximallegal subsequence®r s. To see
this, note that the outermostfor loop in Step3 of FIND-
MAXSUBSEQ is executedk times. The time compleity
of thefirst for loop in Step4 is O(| Az | * |maxSea§)|).

51n Stepsl3-15,we have to becarefulnotto consider< s; - - - S|s| >
to deleteothersequencem maxSedg}] sincewe areinterestedn maximal
sequencewhoselengthis lessthan|s|.



while that of the secondfor loop in Step11is O(k =
|Ar|* |maxSeqf)|), sincemaxSedp] canbeimplemented
asactrie, for which insertions,deletions,andsubsequence
checkingfor k-sequencesanall be carriedout in O(k)
time.

We must point out that the higher time complexity
of candidatepruning in SPIRIT(L) is not a major effi-
cieng/ concernsince (a) the overheadof candidategen-
eration and pruning is typically a tiny fraction of the
cost of counting supportsfor candidatesn Cy, and (b)
in practice,|maxSegs)| canbe expectedto be small for
most sequences. In the worst case, however, for a k-
sequenceimaxSeq§)| canbe O(2F). This worstcasesce-
nario canbe avoided by imposingan a-priori limit on the
sizeof maxSeqgp] in FINDMAXSUBSEQ andusingappro-
priate heuristicsfor selectingvictims (to be ejectedfrom
maxSeqgp]) whenits sizeexceedghatlimit.

SpaceOverhead. SPIRIT(N) only utilizes Fy_; for the
candidategenerationand pruning phasesduring the k"

pass.In contrastthe candidategpruningstepof SPIRIT(L)

requiresF’ to be storedin main memorysincethe maxi-
mal legal subsequences a candidatek-sequencenay be
of ary lengthlessthank. However, this shouldnot pose
a seriousproblemsinceeachFj, computedoy SPIRIT(L)

containsonly frequentand legal k-sequencesywhich are
typically few comparedo all frequentk-sequencedn ad-
dition, powerful senerswith severalgigabytesof memory
arenow fairly commonplaceThus,in mostcasesit should
bepossibleo accommodatall thesequencem F' in main
memory In theoccasionaéventthat F' doesnotfit in mem-
ory, oneoptionwould beto only storeFy,_,, . .., Fj_; for

somel > 1. Of course,this meansthat maximal subse-
guenceswhoselengthis lessthan k£ — [ cannotbe used
to prunecandidatedrom C}, duringthe candidatepruning
step.

3.4 The SPIRIT(V) Algorithm

SPIRIT(V) usesa strongerrelaxed constraintC’ than
SPIRIT(L) duringcandidategeneratiorandpruning.More
specifically SPIRIT(V) requiresevery candidatesequence
to be valid with respecto somestateof .4%%. In our de-
scriptionof SPIRIT(V), we use Fj(b) to denotethe setof
frequentk-sequencethat arevalid with respecto stateb
of Ar.

Candidate Generation. Sinceevery candidatesequence
in Cy, is requiredto bevalid with respecto somestateb, it
mustbethe casethatthe (k — 1)-lengthsuffix of s is both
frequentandvalid with respecto statec, whereb =% ¢
is atransitionin Ax. Thus,givena stateb of Ax, the set
of potentiallyfrequentandvalid k-sequencewiith respect
to b canbe generatedisingthe following rule: for every
transitionb =% ¢, for every sequence in Fj_;(c), add
< s; t > tothesetof candidategor stateb. ThesetC}, is

8Note that an alternatve approachwould be to requirecandidateso
belegal with respecto the startstateof Ax . Thisapproachs essentially
symmetricto SPIRIT(V) andis not exploredfurtherin this paper
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simply the unionof thesecandidatesetsover all states of
AR.

Candidate Pruning. The pruningphaseof SPIRIT(V) is
very similar to that of SPIRIT(L), exceptthat only valid
(ratherthatlegal) subsequencesf a candidatecanbe used
for pruning. More specifically givena candidatesequence
s in Cy, we computeall maximalsubsequencesf s that
arevalid with respecto somestateof 4 andhavelength
lessthank. Thisis doneby invokingalgorithmFINDM AX-
SuUBSEQ with Start equalto thesetof all statesof Az and
End equalto the setof all acceptstatesof Ax. If ary of
thesesubsequencds notcontainedn F', thens is deleted
from C},.

Terminating Condition. The setof frequentk-sequences
Fy, is empty Unlike SPIRIT(L), we cannotterminate
SPIRIT(V) basedon just F},(a) becomingempty (where
a is the startstateof A). Thereasons that,eventhough
theremay be no frequentandvalid sequencesf lengthk
for a, therecouldstill belongersequencethatarefrequent
andvalid with respecto a.

3.5 The SPIRIT(R) Algorithm

SPIRIT(R)essentiallypusheghe RE constraintR “all the
way” inside the patternmining computation by requiring
every candidatesequencédor which supportis countedto
bevalid (i.e.,C' = R).

Candidate Generation. Since F' containsonly valid
and frequentsequencesthereis no efficient mechanism
for generatingcandidatek-sequencestherthan a “brute
force” enumeratiorusingthe automaton4. Theideais
to traversethe statesandtransitionsof A enumeratingll
pathsof length k thatbegin with the startstateandendat
anacceptstate. Obviously, eachsuchpathcorrespondso
a valid k-sequenceontainingthe elementshat label the
transitionsin the path. (Theterms“path” and“sequence”
areusedinterchangeablyn the following description.)

We employ two optimizationsto improve the efficiency
of theabove exhaustve pathenumeratioschemeQOurfirst
optimizationusesthe obsenation that, if a pathof length
lessthank corresponds$o a sequencéhatis valid but not
frequent, then further extending the path is unnecessary
sinceit cannotyield frequentk-sequenceslhe secondp-
timizationinvolvesexploiting cyclesin Az to reducecom-
putation.

Lemma 3.2 Supposdor apath< ¢t u > (of lengthless
thank), botht and< ¢t u > resultin the samestatefrom
the startstatea. (Thatis, u correspond$o acyclein Ax.)
Then,if thepath< ¢t v > obtainedasaresultof extending
< t u > with v is to yield a candidatek-sequenceit must
bethecasethat< ¢t v > is bothfrequentandvalid. i

Considerthe generationof candidatek-sequences.
Given a path < t u > satisfying the assumptionsof
Lemma3.2, we only needto extend < t u > with se-
quences for which < ¢ v > belongsto F ., ,~| (since
thelengthof < ¢ v > is lessthank). Dueto spacecon-
straints we have omittedthe detaileddefinition of the can-



didategenerationalgorithmfor SPIRIT(R) and examples
of its operation.Theinterestedeadeiis referredto [5].

Candidate Pruning. A candidatesequences in Cj can
be prunedif avalid subsequencef s is not frequent. The
maximalvalid subsequencesf s canbe computedby in-
voking algorithm FINDM AX SUBSEQ with Start equalto
{a} and End equalto the setof all acceptstatesof Ar.

Terminating Condition.  For some iteration j, sets
Fj, ..., Fji)az|—1 areall empty where| Az | is the num-
ber of statesin automaton4. To seethis, considerary
frequentandvalid sequence whoselengthis greaterthan
j + |[Ar| — 1. Obviously, s containsat leastone cycle
of lengthat most|Ax| and, therefore,s mustcontainat
leastonefrequentandvalid subsequencef lengthat least
j. However, no valid sequencewith length greaterthan
or equalto j is frequent(since Fj, ..., Fj 1| 4, |1 areall
empty).Thus,s cannotbeafrequentandvalid sequence.

4 Experimental Results

In this section,we presentan empirical study of the four
SPIRIT algorithmswith syntheticand real-life datasets.
The objective of this study is twofold: (1) to establish
the effectivenes®f allowing andexploiting RE constraints
during sequentiapatternmining; and, (2) to quantify the
constraint-baseds. support-basegruningtradeof for the
SPIRITfamily of algorithms(Section3.1).

In general, RE constraintswhose automatacontain
fewer transitionsper state,fewer cycles,andlongerpaths
tendto be moreselectivesincethey imposemorestringent
restrictionson the orderingof itemsin the minedpatterns.
Our expectationis thatfor RE constraintghataremorese-
lective, constraint-basedruningwill bevery effective and
the latter SPIRIT algorithmswill performbetter On the
otherhand,lessselectve REsincreasethe importanceof
goodsupport-basepruning,puttingalgorithmsthatusethe
RE constraintoo aggressiely (like SPIRIT(R))atadisad-
vantage.Our experimentalresultscorroborateour expec-
tations.More specifically our findingscanbe summarized
asfollows.

1. TheSPIRIT(V)algorithmemegesastheoverallwin-
ner, providing consistentlygood performanceover
the entire rangeof RE constraints. For certainREs,
SPIRIT(V) is morethanan orderof magnitudefaster
thanthe“naive” SPIRIT(N)scheme.

2. For highly selectve RE constraints SPIRIT(R) out-
performsthe remainingalgorithms. However, asthe
RE constraintbecomedessselectie, the numberof
candidategieneratedy SPIRIT(R)explodesandthe
algorithmfails to evencompleteexecutionfor certain
casegit runsout of virtual memory).

3. The overheadf the candidategeneratiorand prun-
ing phasedor the SPIRIT(L) and SPIRIT(V) algo-
rithms are negligible. They typically constituteless
than1% of thetotal executiontime, evenfor complex
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REswith automatacontaininglarge numbersof tran-
sitions,statesandcycles.

Thus,our resultsvalidatethe thesisof this paperthatincor-

poratingRE constraintsnto the mining proces<anleadto

significantperformancéenefits. All experimentgeported
in this sectionwereperformedon a SunUltra-2/200work-

stationwith 512 MB of mainmemory runningSolaris2.5.

Thedatasetswerestoredon alocal disk.

4.1 Synthetic Data Sets

We useda syntheticdatasetgeneratoto createa database
of sequencesontainingitems. Theinputparametero our
generatoincludethenumberof sequencem thedatabase,
theaveragdengthof eachsequencethe numberof distinct
items,anda Zipf parameter thatgovernsthe probability
of occurrence;t /¥; L, of eachitems in thedatabaseThe
length for eachsequencas selectedfrom a Poissondis-
tribution with meanequalto the averagesequencéength.
Notethatanitem canappeamultiple timesin asingledata
sequence.

In addition,sincewe areinterestedn a sensitvity anal-
ysis of our algorithmswith respectto the RE constraint
R, we usedan RE generatotto produceconstraintswith a
broadrangeof selectvities. EachRE constraintoutputby
thegeneratoronsistf blodksandeachblockin turn con-
tainstermswith thefollowing structure A termT; is adis-
junctionof itemsandhastheform (sq | s2 | ---| s;). Each
block B; is simply a concatenatiof terms, 71715 - - - Ty, .
Finally, theconstrainfR is constructedrom blocksandhas
theform (B | Bz |---| Bn)* —thus,every sequencéhat
satisfiesk is aconcatenationf oneor moresequencesat-
isfying the block constraints.The genericstructureof the
automatondy, for R is shovnin Figure4. RE constraints
with differentselectvities canbe generatedy varyingthe
numberof itemsperterm, the numberof termsper block,
andthe numberof blocksin R. Notethat,in termsof the
automatondx, theseparametergorrespondo the num-
berof transitionsbetweera pair of statesn Ay, thelength
of eachcycle, andthe numberof cyclescontainedn Ax,
respectiely.

number of items per term

number of blocks
number of terms per block

Figured4: Structureof automatorfor RE generation.

The RE generatoracceptsthe maximum number of
items per term, the numberof terms per block, and the
numberof blocksasinput parametersin the RE constraint
thatit outputs,the numberof itemspertermis uniformly
distributed betweenl and the maximum specifiedvalue.



The itemsin eachterm of R are chosenusing the same
Zipfian distribution that wasusedto generatehe dataset.
The RE generatothusenablesusto carryoutanextensve

studyof the sensitvity of our algorithmsto awide rangeof

RE constraintawith differentselectvities.

Table3 shavsthe parameterfor thedatasetandthe RE
constraintalongwith their default valuesandthe rangeof
valuesfor which experimentsvereconducted The default
valueof z = 1.0 waschoserno modelan(approximateyO-
30 rule andto ensurethatthe item skew wassufiicient for
someinterestingpatternsto appeaiin the datasequences.
In eachexperimentoneparametewasvariedwith all other
parameter§ixedattheir defaultvalues.Onceagain,dueto
spaceconstraintswe only presenta subsetof our exper
imentalresults. The full setof results(including scaleup
andmaximumdistancesxperimentsanbefoundin [5].

Parameter Default | Range

No. of Sequences 10° 5.102-2.5-10°
Avg. Sequencéength 10

No. of ltems 1000

Zipf Value 1.0

Max. No. of temsperTerm | 10 2-30

No. of TermsPerBlock 4 2-10

No. of Blocks 4 2-10

Min. Support 1.0 0.5-2.0

Max. Distance 2 0-15

Table3: SyntheticdataandRE constrainparameters.

4.2 PerformanceResultswith Synthetic Data Sets

Maximum Number of Items Per Term. Figure5(a) il-
lustratesthe executiontimes of the SPIRIT algorithmsas
the maximumnumberof itemspertermin R is increased.
As expected, as the number of items is increased,the
numberof transitionsper statein A% alsoincreasesand
so do the numbersof legal and valid sequences.Thus,
constraint-basegbruning becomesless effective and the
performancef all SPIRIT algorithmsdeterioratessmore
items are addedto eachterm. As long asthe numberof
items per term doesnot exceed15, R is fairly selectve;
consequentlyconstraint-basepdruningworkswell andthe
SPIRIT algorithmsthat use R to prune more candidates
perform better For instance,when the maximum num-
ber of items per termis 10, the SPIRIT(N), SPIRIT(L),
SPIRIT(V), and SPIRIT(R) algorithmscount supportfor
7105, 1418, 974, and 3822 candidatesequencesiespec-
tively. SPIRIT(R)makesonly two passe®ver the datafor
valid candidatesequencesf lengths4 and8. Theremain-
ing algorithmsmake 8 passedo countsupportsfor candi-
dateswith lengthsupto 8, amajority of whichhavelengths
4 and5.

However, beyond 15 itemsperterm,the performancef
the algorithmsthat rely more heavily on constraintR for
pruning candidatesdegeneratesapidly. SPIRIT(R) sus-
tains the hardesthit sinceit performsvery little support-
basedoruningandits exhaustie enumeratiorapproactor
candidatgyeneratiomesultsn anenormousumberof can-
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didatesof length 4. In contrast,since SPIRIT(N) only
usesR to prunesequencesot involving itemsin R, and
few new itemsare addedto termsin R oncethe number
of items perterm reachedl5, the executiontimes for the
SPIRIT(N) algorithm hold steady Beyond 25 items per
term,therunningtimesof SPIRIT(L) andSPIRIT(V) also
stabilize,sincedecreasem theamountof constraint-based
pruningasR becomedessselectve are counterbalanced
by increasedn support-basegruning. At 30 items per
term, SPIRIT(V) continuesto provide a good balanceof
constraint-basedndsupport-basegruningand,thus,per
formsthebest.

Number of Terms Per Block. The graphin Figure 5(b)
plots the running times for the SPIRIT algorithmsas the
numberof termsperblockis variedfrom 2 to 10. Increas-
ing the numberof termsperblock actuallycausesachcy-
cle (involving the startstatea) to becomeonger Theini-
tial dip in executiontimesfor SPIRIT(L), SPIRIT(V), and
SPIRIT(R)whenthe numberof termsis increasedrom 2
to 4 is dueto thereductionin the numberof candidatese-
guencef lengths4 and5. This happenshecausewith
shortcyclesof length2 in A, sequencesf length4 and
5 visit the startstatemultiple timesandthe startstatehas
alargenumberof outgoingtransitions But when. 4 con-
tainscyclesof length4 or more, the startstateis visited at
mostonce thuscausinghenumberof candidatesequences
of lengths4 and5 to decreaseAs cycle lengthsgrow be-
yond 4, the numberof legal sequence$with respectto a
statein Ag) startsto increasedue to the increasein the
numberof statesin eachcycle. However, the numberof
valid sequenceswith respectto a statein Ar) doesnot
vary muchsinceeachof themis still requiredto terminate
atthestartstatea.

Notethatwhenthe numberof termsexceeds, thenum-
berof candidategieneratedy SPIRIT(R)simply explodes
dueto the longer cycles. On the otherhand, SPIRIT(V)
providesconsistentiigoodperformancehroughoutheen-
tire rangeof block sizes.

Number of Blocks. Figure 6(a) depictsthe performance
of the four algorithmsas the numberof blocksin R is
increasedrom 2 to 10. The behaior of the four algo-
rithms hassimilarities to the “number of items per term”
case(Figure5(a)). Theonly differenceis that,asthe num-
ber of blocksis increasedthe decreasén R's selectvity
andtheincreasen thenumberof legalandvalid sequences
in Ax are not asdramatic. This is becausehe number
of blocksonly affectsthe numberof transitionsassociated
with the start state— the numberof transitionsfor other
statesn Ax staysthe same.Onceagain,SPIRIT(V) per
formswell consistentlyfor the entirerangeof numbersof
blocks. An interestingcaseis that of SPIRIT(R) whose
executiontime doesdegradebeyond SPIRIT(V)'s, asthe
numberof blocksis increasedbut it still managego do
betterthan SPIRIT(L), even whenR contains10 blocks.
This can be attributed predominantlyto the effectiveness
of the optimizationfor cyclesin Ax thatis appliedduring
SPIRIT(R)scandidateyeneratiorphaseln generaldueto
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Figure6: Performanceesultsfor (a) numberof blocksand(b) minimumsupport.

our cycle optimization,onecanexpectthe SPIRIT(R)algo-
rithm to performreasonablyvell, evenwhen. 4 contains
alarge numberof cyclesof moderatdength.

Minimum Support. The executiontimesfor the SPIRIT
algorithmsasthe minimum supportthresholdis increased
from0.5t0 2.0aredepictedn Figure6(b). As expectedthe
performanceof all algorithmsimproves as the minimum
supportthresholdis increased.This is becausdewer can-
didateshave the potentialto be frequentfor highervalues
of minimum support. Furthermore note that the running
timesof algorithmsthatrely moreheavily onsupport-based
pruningimprove muchmorerapidly.

4.3 Real-life Data Set

For our real-life data experiments,we usedthe WWW
sener accesdogs from the web site of an academicCS
departmerit Thelogscontainthesequencesf webpages
accessedby each usef starting from the departmens
web site, for the duration of a week. The departmens

7 At thedepartmens requestwe do notdiscloseits identity.
8We uselP addresse® distinguishbetweerusers.
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homepagecontaindinks to a numberof topics,including
Academ cs, Adm ssions, Events, General infor-
mat i on, Resear ch, Peopl e, andResour ces. Thereare
additionallinks to theuniversityandcollegehomepagedo
which the CS departmenbelongs but we chosenotto use
theselinks in our RE constraint. Usersnavigate through
the web pagesby clicking on links in eachpage,andthe
sequencesf pagesaccessetby a userarecapturedn the
senerlogs.

We useda RE constraintto focus on useraccesgat-
terns that start with the departmens home page (lo-
catedat / mai n. ht M ) and end at the web pagecontain-
ing information on the M.S. degree program (locatedat
/ acadeni cs/ ms- program htni ). In addition, we re-
stricted oursehes to patternsfor which the intermediate
pagesbelongto one of the aforementioned topics(e.g.,
Acadeni cs). Thus, the automaton A containsthree
states. Thereis a transitionfrom the first (start) stateto
the secondon/ mai n. ht nl anda transitionfrom the sec-
ond stateto the third (accept)stateon/ acadeni cs/ s-
program ht m . Thesecondstatehas15 transitionsto it-
self,eachiabeledwith thelocationof awebpagebelonging
to oneof the above 7 topics. We useda minimum support



Frequentand Valid Sequences

< /main.html/academics/ms-prograntml >

< /main.html/general/coatts.htmlacademics/
ms-program.htmj>

< /main.html/general/mvehtml/academicsims-progran.html >

< /main.html/academics/adamics.htmlacademics/
ms-program.htmj>

< /main.html/academics/matml/academics/
ms-program.htmj>

< /main.html/admissions/mdatml/acalemics/
ms-program.htmj>

< /main.html/admissions/admissions.htrofidemics/
ms-program.htmj>

4 < /main.html/general/wehtml/genea/contads.htmf
academics/ms-program.htmsl

< /main.html/academics/maitml/acadamicsiacademics.html/
academics/ms-program.html

< /main.html/admissions/mdatml/admissios/
admissions.html/academics/ms-program.html

2]
ININES
D

Table4: Interestingpatterndiscoveredin the WWW logs.

Algorithm | Exec.Time (sec) | Candidates | Passes
SPIRIT(N) 1562.8 5896 13
SPIRIT(L) 32.77 1393 10
SPIRIT(V) 16.0. 59 5
SPIRIT(R) 17.67 52 7

Table5: Executionstatisticsfor the SPIRIT algorithms.

thresholdof 0.3%. Thenumberof accessequencemgged
in the oneweekdatasetwas12868.

The minedfrequentandvalid accespatternsarelisted
in increasingorder of sizein Table 4. Note that there
is a numberof distinct ways to accessthe M.S. degree
programweb page by following different sequence®f
links (e.g., via admissions,academics). The execution
times and the numbersof candidatesgeneratedby the
four SPIRIT algorithmsare presentedn Table5. As ex-
pected, since the RE constraintis fairly selectve, both
SPIRIT(V)andSPIRIT(R)havethesmallestunningtimes.
SPIRIT(L) is abouttwice asslow comparedo SPIRIT(V)
and SPIRIT(R). The executiontime for SPIRIT(N) is al-
mosttwo ordersof magnitudeworsethan SPIRIT(V) and
SPIRIT(R), sinceit generates significantly larger num-
ber of candidatesequencewvith lengthsbetween5 and9
(almost4000). We believe that our resultsclearly demon-
stratethe significantperformanceainsthatcanbeattained
by pushingRE constraintsnsidea real-life patternmining
task.

5 Conclusions

In this paperwe have proposedhe useof RegularExpres-
sions(REs) as a flexible constraintspecificationtool that
enablesusercontrolledfocus to be incorporatedinto the
patternmining process. We have developeda family of
novel algorithms(termedSPIRIT) for mining frequentse-
guential patternsthat also satisfy userspecifiedRE con-
straints. The main distinguishingfactor amongthe pro-
posedschemess the degreeto which the RE constraints
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are enforcedto prunethe searchspaceof patternsduring
computation. The SPIRIT algorithmsare illustrative of

the tradeofs that arisewhen constraintsthat do not sub-
scribeto nice properties(lik e anti-monotonicity)are inte-
gratedinto the mining process. To explore thesetrade-
offs, wehave conductednextensve experimentaktudyon
syntheticandreal-life datasets. The experimentalresults
clearlyvalidatethe effectivenesf our approachshaving

thatspeedupsf morethananorderof magnitudearepossi-
ble whenRE constraintarepushedeepinsidethemining
processOur experimentatiorwith real-life dataalsoillus-

tratestheversatilityof REsasauserlevel tool for focusing
oninterestingpatterns.
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