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Abstract
Discoveringsequentialpatternsis animportantproblemin
datamining with a hostof applicationdomainsincluding
medicine,telecommunications,andtheWorld Wide Web.
Conventionalmining systemsprovide userswith only a
very restrictedmechanism(basedon minimum support)
for specifyingpatternsof interest. In this paper, we pro-
posethe useof Regular Expressions(REs) as a flexible
constraintspecificationtool that enablesuser-controlled
focusto be incorporatedinto the patternmining process.
We developa family of novel algorithms(termedSPIRIT
– SequentialPatternmIningwith RegularexpressIoncon-
sTraints)for mining frequentsequentialpatternsthatalso
satisfy user-specifiedRE constraints. The main distin-
guishing factor amongthe proposedschemesis the de-
greeto which theREconstraintsareenforcedto prunethe
searchspaceof patternsduring computation. Our solu-
tionsprovide valuableinsightsinto thetradeoffs thatarise
whenconstraintsthat do not subscribeto nice properties
(likeanti-monotonicity)areintegratedinto theminingpro-
cess.A quantitative explorationof thesetradeoffs is con-
ductedthroughan extensive experimentalstudy on syn-
theticandreal-lifedatasets.

1 Intr oduction
Discovering sequentialpatternsfrom a large databaseof
sequencesis an importantproblemin the field of knowl-
edgediscoveryanddatamining. Briefly, givenasetof data
sequences,theproblemis to discoversubsequencesthatare
frequent, in thesensethatthepercentageof datasequences
containingthem exceedsa user-specifiedminimum sup-
port [3, 11]. Mining frequentsequentialpatternshasfound
a hostof potentialapplicationdomains,includingretailing
(i.e., market-basket data),telecommunications,and,more
recently, the World Wide Web (WWW). In market-basket
databases,eachdatasequencecorrespondsto itemsbought
by an individual customerover time andfrequentpatterns
canbe useful for predictingfuture customerbehavior. In
telecommunications,frequentsequencesof alarmsoutput
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by network switchescaptureimportant relationshipsbe-
tween alarm signals that can then be employed for on-
line prediction,analysis,andcorrectionof network faults.
Finally, in the context of the WWW, server sites typi-
cally generatehugevolumesof daily log datacapturing
thesequencesof pageaccessesfor thousandsor millions of
users

�
. Discoveringfrequentaccesspatternsin WWW logs

can help improve systemdesign(e.g., betterhyperlinked
structurebetweencorrelatedpages)andleadto bettermar-
ketingdecisions(e.g.,strategic advertisementplacement).

As a moreconcreteexample,the Yahoo! Internetdi-
rectory(www.yahoo.com) enablesusersto locateinterest-
ing WWW documentsby navigating throughlarge topic
hierarchiesconsistingof thousandsof differentdocument
classes. Thesehierarchiesprovide an effective way of
dealing with the abundanceproblem presentin today’s
keyword-basedWWW searchengines.Theideais to allow
usersto progressively refinetheir searchby following spe-
cific topicpaths(i.e.,sequencesof hyperlinks)alonga(pre-
defined)hierarchy. Giventhewidevarietyof topicsandthe
inherently fuzzy natureof documentclassification,there
arenumerouscasesin whichdistincttopicpathsleadto dif-
ferentdocumentcollectionson verysimilar topics.For ex-
ample,startingfrom Yahoo!’s homepageuserscanlocate
informationon hotelsin New York City by following ei-
ther Travel:Yahoo!Travel:North America:United
States:New York:New York City:Lodging:Hotels
or Travel:Lodging:Yahoo!Lodging:New York:New
York Cities:New York City:Hotels and Motels,
where“:” denotesa parent-childlink in the topic hierar-
chy. Mining useraccesslogs to determinethe most fre-
quentlyaccessedtopic pathsis a taskof immensemarket-
ing value,e.g., for a hotel or restaurantbusinessin New
York City trying to selectastrategic setof WWW locations
for its advertisingcampaign.

The designof effective algorithmsfor mining frequent
sequentialpatternshasbeenthesubjectof severalstudiesin
recentyears[3, 4, 7, 8, 11, 12]. Ignoringsmalldifferences
in the problemdefinition (e.g.,form of input data,defini-
tion of a subsequence),a major commonthreadthat runs
throughthevastmajorityof earlierwork is thelack of user-
controlled focusin the patternmining process. Typically,�

In general,WWW serversonly have knowledgeof theIP addressof
the user/proxyrequestinga specificweb page. However, referrers and
cookiescanbeusedto determinethesequenceof accessesfor aparticular
user(without compromisingtheuser’s identity).
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theinteractionof theuserwith thepatternminingsystemis
limited� to specifyinga lower boundon thedesiredsupport
for theextractedpatterns.Thesystemthenexecutesanap-
propriateminingalgorithmandreturnsaverylargenumber
of sequentialpatterns,only someof whichmaybeof actual
interestto the user. Despiteits conceptualsimplicity, this
“unfocused”approachto sequentialpatternmining suffers
from two majordrawbacks.

1. Disproportionate computational cost for selective
users. Givenadatabaseof sequencesandafixedvalue
for theminimumsupportthreshold,thecomputational
costof thepatternmining processis fixedfor any po-
tentialuser. Ignoringuserfocuscanbeextremelyun-
fair to a highly selective userthatis only interestedin
patternsof averyspecificform.

2. Overwhelmingvolumeof potentially uselessresults.
Thelackof toolsto expressuserfocusduringthepat-
tern mining processmeansthat selective userswill
typically beswampedwith ahugenumberof frequent
patterns,mostof which areuselessfor their purposes.

The above discussionclearly demonstratesthe needfor
novel patternmining solutionsthat enablethe incorpora-
tion of user-controlledfocusin themining process.There
aretwo maincomponentsthatany suchsolutionmustpro-
vide. First, given the inadequacy of simplesupportcon-
straints, we needa flexible constraint specificationlan-
guage that allows usersto expressthe specificfamily of
sequentialpatternsthatthey areinterestedin. For instance,
returningto our earlier“New York City hotels”example,a
hotel planningits ad placementmay only be interestedin
pathsthat(a)begin with Travel, (b) endin eitherHotels
or Hotels and Motels, and(c) containat leastoneof
Lodging, Yahoo!Lodging, Yahoo!Travel, New York,
orNew York City, sincethesearetheonly topicsdirectly
relatedto its line of business.Second,we neednovel pat-
ternminingalgorithmsthatcanexploit userfocusby push-
ing user-specifiedconstraints deepinsidethe mining pro-
cess. Theabstractgoalhereis to exploit patternconstraints
to prunethecomputationalcostandensuresystemperfor-
mancethat is commensurate with the level of userfocus
(i.e.,constraintselectivity).

We shouldnote that even thoughrecentwork hasad-
dressedsimilar problemsin thecontext of associationrule
mining [9, 10], the problemof incorporatinga rich setof
user-specifiedconstraintsin sequentialpatternmining re-
mains, to the best of our knowledge, unexplored. Fur-
thermore,as we will discover later in the paper, pattern
constraintsraisea hostof new issuesspecificto sequence
mining (e.g., due to the explicit ordering of items) that
were not consideredin the subsetand aggregation con-
straintsfor itemsetsconsideredin [9, 10]. For example,
our patternconstraintsdo not satisfythe propertyof anti-
monotonicity[9]; thatis, thefactthata sequencesatisfiesa
patternconstraintdoesnot imply thatall its subsequences
satisfy the sameconstraint. Thesedifferencesmandate
novel solutionsthat arecompletelyindependentof earlier

resultsonconstrainedassociationrule mining
�

[9, 10].
In this paper, we formulatethe problemof mining se-

quentialpatternswith regular expressionconstraints and
we developnovel, efficient algorithmicsolutionsfor push-
ing regular expressionsinsidethe patternmining process.
Our choice of regular expressions(REs) as a constraint
specificationtool is motivatedby two important factors.
First, REs provide a simple, natural syntax for the suc-
cinct specificationof familiesof sequentialpatterns.Sec-
ond, REspossesssufficient expressive power for specify-
ing a wide rangeof interesting,non-trivial patterncon-
straints. Theseobservationsare validatedby the exten-
sive useof REs in everydaystring processingtasks(e.g.,
UNIX shell utilities like grep or ls) aswell asin recent
proposalson query languagesfor sequencedata(e.g., the
ShapeDefinition Languageof Agrawal et al. [1]). Return-
ing onceagainto our “New York City hotels” example,
notethat the constrainton topic pathsdescribedearlierin
this sectioncanbesimply expressedasthe following RE:
Travel(Lodging|Yahoo!Lodging|Yahoo!Travel|-
New York|New York City)(Hotels|Hotels and
Motels), where“|” standsfor disjunction. We propose
a family of novel algorithms(termedSPIRIT – Sequen-
tial PatternmIning with Regular expressIonconsTraints)
for mining frequentsequentialpatternsthatalsobelongto
the languagedefinedby the user-specifiedRE. Our algo-
rithms exploit the equivalenceof REsto deterministicfi-
nite automata[6] to pushRE constraintsdeepinside the
patternmining computation.Themaindistinguishingfac-
tor amongtheproposedschemesis thedegreeto which the
RE constraintis enforcedwithin the generationandprun-
ing of candidatepatternsduring the mining process.We
observe that, varying the level of userfocus(i.e., RE en-
forcement)during patternmining givesrise to certainin-
terestingtradeoffs with respectto computationaleffective-
ness. Enforcing the RE constraintat eachphaseof the
mining processcertainlyminimizesthe amountof “state”
maintainedaftereachphase,focusingonly onpatternsthat
could potentiallybe in the final answerset. On the other
hand,minimizing this maintainedstatemaynot alwaysbe
the bestsolutionsinceit can,for example,limit our abil-
ity to do effective support-basedpruning in later phases.
Suchtradeoffs areobviously relatedto our previousobser-
vation that RE constraintsarenot anti-monotone[9]. We
believethatourresultsprovideusefulinsightsinto themore
generalproblemof constraint-driven,ad-hocdatamining,
showing that there can be a whole spectrumof choices
for dealingwith constraints,even when they do not sub-
scribeto nicepropertieslikeanti-monotonicityor succinct-
ness[9]. An extensive experimentalstudywith synthetic
as well as real-life datasetsis conductedto explore the
tradeoffs involved and their impact on the overall effec-
tivenessof our algorithms.Our resultsindicatethat incor-
poratingRE constraintsinto the patternmining computa-
tion cansometimesyield morethananorderof magnitude�

Due to spaceconstraints,we omit a detaileddiscussionof earlier
work. Theinterestedreaderis referredto thefull versionof thispaper[5].

224



improvementin performance,thusvalidatingtheeffective-
ness� of our approach.Our experimentationwith real-life
WWW server log dataalsodemonstratestheversatilityof
REsasauser-level tool for focusingoninterestingpatterns.
Thework reportedin this paperhasbeendonein thecon-
text of the

���
	��
�������
dataminingprojectatBell Labo-

ratories(www.bell-labs.com/projects/serendip).

2 Problem Formulation
2.1 Definitions

The main input to our mining problem is a databaseof
sequences,whereeachsequenceis an orderedlist of ele-
ments. Theseelementscanbeeither(a) simpleitemsfrom
a fixed setof literals (e.g., the identifiersof WWW doc-
umentsavailableat a server [4], the amino acid symbols
usedin proteinanalysis[12]), or (b) itemsets, that is, non-
emptysetsof items(e.g.,booksboughtby a customerin
the sametransaction[11]). The list of elementsof a data
sequence� is denotedby ��� � � ������� ����� , where ��� is the�! #"

elementof � . Weuse $ �%$ to denotethe length(i.e.,num-
berof elements)of sequence� . A sequenceof length & is
referredto asa & -sequence. (We considerthe terms“se-
quence”and“sequentialpattern” to be equivalent for the
remainderof our discussion.)Table1 summarizestheno-
tationusedthroughoutthepaperwith abrief descriptionof
its semantics.Additionalnotationwill beintroducedwhen
necessary.

Symbol Semantics'�(!)*(,+-(/.0.0. Genericsequencesin theinput database1 '2)43 Sequenceresultingfrom theconcatenationof
sequences' and )5 ' 5 Length,i.e.,numberof elements,of sequence''/6 7#8:9 elementof sequence''�;6 Zeroor moreoccurrencesof element'/6 (Kleene
closureoperator)' 6 5 '=< Selectoneelementoutof ' 6 and '>< (disjunction
operator)?
Regularexpression(RE) constraint@BA
Deterministicfinite automatonfor RE

?C (,D�(>E%(0.0.0. Genericstatesin automaton
@FA

G Startstateof automaton
@BA

CIH!JK D Transitionfrom state
C

to stateD in
@ A

on
element' 6C HL D Transitionpathfrom state

C
to stateD in

@ A
on

thesequenceof elements'M�N
Setof candidateO -sequencesP N
Setof frequentO -sequences

Table1: Notation.

Considertwo datasequences�RQS�T� � � �U����� ���V� andW QS� W � W �X����� W>Y � . We saythat � is a subsequenceofW
if � is a “projection” of

W
, derived by deletingelements

and/or items from
W
. More formally, � is a subsequence

of
W

if thereexist integers Z � �[Z � �]\�\�\^�_Z � suchthat� �a` Wcb=d
, � �e` Wcb!f

, . . . , � � ` Wcb!g
. Note that for se-

quencesof simple itemsthe above condition translatesto

� � Q Wcb=d , � � Q Wcb,f , . . . , � � Q Wcb,g . For example,sequences�ihkj�� and �[hBl�mV� aresubsequencesof �[hBlRj�mV� ,
while �njVhU� is not. SrikantandAgrawal [11] observe
that,whenminingmarket-basketsequentialpatterns,users
oftenwant to placea boundon themaximumdistancebe-
tweentheoccurrenceof adjacentpatternelementsin adata
sequence.For example,if acustomerbuysbreadtodayand
milk afteracoupleof weeksthenthetwo purchasesshould
probablynot be seenasbeingcorrelated.Following [11],
wedefinesequence� to beasubsequencewith a maximum
distanceconstraint of o , or alternately o -distancesubse-
quence, of

W
if thereexist integersZ � �pZ � �q\�\�\r�pZ � such

that � �s` Wcb=d , � �s` Wcb,f , . . . , � � ` Wcb,g and Z�tvuwZxt�y �{z o
for each &|Q}l�~�j
~�\�\�\�~�� . That is, occurrencesof adjacent
elementsof � within

W
arenot separatedby morethan o el-

ements.As a specialcaseof the above definition,we say
that � is a contiguoussubsequenceof

W
if � is a h -distance

subsequenceof
W
, i.e., theelementsof � canbemappedto

a contiguoussegmentof
W
.

A sequence� is said to containa sequence� if � is a
subsequenceof � . We definethesupportof a pattern� as
thefractionof sequencesin theinput databasethatcontain� . Givenasetof sequences

�
, wesaythat �v� � is maximal

if thereareno sequencesin
� u��x��� thatcontainit.

A RE constraint
	

is specifiedas a RE over the al-
phabetof sequenceelementsusing the establishedset of
RE operators,suchas disjunction( $ ) and Kleeneclosure
( � ) [6]. Thus,a RE constraint

	
specifiesa languageof

stringsover the elementalphabetor, equivalently, a regu-
lar family of sequentialpatternsthat is of interestto the
user. A well-known result from complexity theorystates
thatREshave exactly thesameexpressive power asdeter-
ministic finite automata[6]. Thus, given any RE

	
, we

canalwaysbuild a deterministicfinite automaton�v� such
that �v� acceptsexactly the languagegeneratedby

	
. In-

formally, a deterministicfinite automatonis a finite state
machinewith (a) a well-definedstart state(denotedby � )
andoneor moreacceptstates,and(b) deterministictran-
sitionsacrossstateson symbolsof the input alphabet(in
our case,sequenceelements).A transitionfrom state � to
state � on element��� is denotedby �q� J� � . We alsouse
theshorthand�_�� � to denotethesequenceof transitions
on theelementsof sequence� startingatstate� andending
in state � . A sequence� is acceptedby � � if following
the sequenceof transitionsfor the elementsof � from the
start stateresultsin an acceptstate. Figure1 depictsthe
statediagramof adeterministicfinite automatonfor theREhx�F��lRl�$xlFjBm{$�m�m�� (i.e.,all sequencesof zeroor more1’s
followedby l�l , l�jFm , or mRm ). Following [6], we usedou-
ble circlesto indicatean acceptstateand � to emphasize
the start state( � ) of the automaton.For brevity, we will
simply use“automaton”as a synonym for “deterministic
finite automaton”in theremainderof thepaper.

2.2 ProblemStatement

Givenaninput databaseof sequences,we definea sequen-
tial patternto be frequentif its supportin thedatabaseex-
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Figure1: Automatonfor theRE h��B�cl�lS$�lFjBms$�m�m�� .
ceedsa user-specifiedminimum supportthreshold. Prior
work hasfocusedon efficient techniquesfor thediscovery
of frequentpatterns,typically ignoringthepossibilityof al-
lowing andexploiting flexible structuralconstraintsduring
the mining process. In this paper, we develop novel, ef-
ficient algorithmsfor mining frequentsequentialpatterns
in the presenceof user-specifiedRE constraints. Due to
spaceconstraints,the discussionin this paperfocuseson
the caseof sequencesof simple itemswith no maximum
distanceconstraints. The necessaryextensionsto handle
itemsetsequencesanddistanceconstraintsfor patternoc-
currencesaredescribedin detail in the full versionof this
paper[5]. Thefollowing definitionsestablishsomeuseful
terminologyfor our discussion.
Definition 2.1 A sequence� is saidto belegal with respect
to state � of automaton� � if every statetransitionin � �
is definedwhen following the sequenceof transitionsfor
theelementsof � from � .
Definition 2.2 A sequence� is saidto bevalid with respect
to state� of automaton� � if � is legalwith respectto � and
thefinal stateof thetransitionpathfrom � on input � is an
acceptstateof � � . We saythat � is valid if � is valid with
respectto the startstate � of � � (or, equivalently, if � is
acceptedby � � ).

Example2.1 : Consider the RE constraint
	 Qhx���cl�lw$
l�j�m�$-m�m%� and the automaton�v� , shown in

Figure1. Sequence��h�lFjs� is legalwith respectto state� andsequence�]j�m�� is legal with respectto state � ,
while sequences��h�jBm�� and ��lBm�� arenot legalwith
respectto any stateof �v� . Similarly, sequence��j�m��
is valid with respectto state� (since �I ¢¡¤£�¥Q � ¦ and ¦ is an
acceptstate),however it is not valid, sinceit is not valid
with respectto thestartstate� of � � . Examplesof valid
sequencesinclude ��hFhklFlS� and ��lBj�ms� .

Having establishedthenecessarynotionsandterminol-
ogy, we cannow provide anabstractdefinitionof our con-
strainedpatternminingproblemasfollows.§ Given: A databaseof sequences

�
, a user-specified

minimum supportthreshold,anda user-specifiedRE
constraint

	
(or, equivalently, anautomaton� � ).§ Find: All frequentandvalid sequentialpatternsin

�
.

Thus,our objective is to efficiently mine patternsthat are
not only frequentbut also belongto the languageof se-
quencesgeneratedby theRE

	 ¡ . To thisend,thenext sec-
tion introducestheSPIRITfamily of miningalgorithmsfor¨

Ouralgorithmscanreadilyhandleasetof RE constraintsby collaps-
ing theminto asingleRE [6].

pushinguser-specifiedRE constraintsto varying degrees
insidethepatternminingprocess.

3 Mining Frequentand Valid Sequences
3.1 Overview

Figure 2 depicts the basic algorithmic skeleton of the
SPIRIT family, using an input parameter© to denotea
generic user-specifiedconstrainton the mined patterns.
The output of a SPIRIT algorithm is the set of frequent
sequencesin thedatabase

�
thatsatisfyconstraint© . At a

highlevel,ouralgorithmicframework is similarin structure
to thegeneralApriori strategy of Agrawal andSrikant[2].
Basically, SPIRIT algorithmswork in passes,with each
passresultingin thediscoveryof longerpatterns.In the &  #"
pass,asetof candidate(i.e.,potentiallyfrequentandvalid)& -sequencesª�t is generatedandprunedusinginformation
from earlier passes.A scanover the datais then made,
during which the supportfor eachcandidatesequenceinª�t is countedand «4t is populatedwith the frequent & -
sequencesin ª�t . There are, however, two crucial dif-
ferencesbetweentheSPIRITframework andconventional
Apriori-type schemes(like GSP[11]) or the Constrained
APriori (CAP) algorithm[9] for mining associationswith
anti-monotoneand/orsuccinctconstraints.

1. Relaxing © by inducing a weaker (i.e., less restric-
tive) constraint ©­¬ (Step1). Intuitively, constraint©
¬
is weaker than © if everysequencethatsatisfies© also
satisfies©­¬ . The “strength” of ©­¬ (i.e., how closely
it emulates© ) essentiallydeterminesthe degree to
which theuser-specifiedconstraint© is pushedinside
thepatternmining computation.Thechoiceof ©­¬ dif-
ferentiatesamongthemembersof theSPIRITfamily
andleadsto interestingtradeoffs thatarediscussedin
detail laterin this section.

2. Usingthe relaxedconstraint ©
¬ in thecandidategen-
eration and candidatepruning phasesof each pass.
SPIRITalgorithmsmaintaintheset « of frequentse-
quences(up to a givenlength)thatsatisfytherelaxed
constraint©­¬ . Both « and ©­¬ areusedin:

(a) the candidate generation phase of pass &
(Step6), to producean initial set of candidate& -sequencesª t that satisfy ©­¬ by appropriately
extendingor combiningsequencesin « ; and,

(b) thecandidatepruningphaseof pass& (Steps8-
9), to deletefrom ª t all candidate& -sequences
containingat leastonesubsequencethatsatisfies©­¬ anddoesnot appearin « .

Thus,a SPIRITalgorithmmaintainsthe following invari-
ant: at the endof pass& , « t is exactly the setof all fre-
quent & -sequencesthatsatisfytheconstraint©­¬ . Note that
incorporating©­¬ in candidategenerationandpruningalso
impactsthe terminatingcondition for the repeat loop in
Step15. Finally, sinceat the endof the loop, « contains
frequentpatternssatisfyingthe inducedrelaxedconstraint©­¬ , anadditionalfiltering stepmayberequired(Step17).
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ProcedureSPIRIT(® , ¯ )
begin
1. let ¯r°
± ² a constraintweaker (i.e., lessrestrictive) than ¯
2.
P ± ² P � ± ² frequentitemsin ® thatsatisfy ¯ °

3. O�± ²´³
4. repeat µ
5. // candidategeneration
6. using ¯r° and

P
generate

M N ± ²pµ potentiallyfrequentO -sequencesthatsatisfy ¯ °�¶
7. // candidatepruning
8. let · := µ 'k¸ M N : ' hasa subsequence) thatsatisfies¯ ° and )�¹¸ P ¶
9.

M�N ± ² M�N»º ·
10. // candidatecounting
11. scan® countingsupportfor candidateO -sequencesin

M�N
12.

P N ± ² frequentsequencesin
M�N

13.
P ± ² P½¼�P N

14. OI± ²´Ok¾�¿
15. ¶ until TerminatingCondition(

P
, ¯ ° ) holds

16. // enforcetheoriginal (stronger) constraint ¯
17. outputsequencesin

P
thatsatisfy ¯

end

Figure2: SPIRITconstrainedpatternmining framework.

Givena setof candidate& -sequencesª t , countingsup-
port for the membersof ª t (Step11) can be performed
efficiently by employing specializedsearchstructures,like
thehashtree[11], for organizingthe candidates.The im-
plementationdetailscanbe found in [11]. The candidate
countingstepis typically the most expensive stepof the
patternmining processandits overheadis directly propor-
tional to the size of ª�t [11]. Thus, at an abstractlevel,
the goal of an efficient patternmining strategy is to em-
ploy theminimumsupportrequirementandany additional
user-specifiedconstraintsto restrictasmuchaspossiblethe
setof candidate& -sequencescountedduring pass& . The
SPIRITframework strivesto achievethisgoalby usingtwo
differenttypesof pruningwithin eachpass& .§ Constraint-basedpruningusinga relaxation©
¬ of the

user-specifiedconstraint © ; that is, ensuringthat all
candidate& -sequencesin ª t satisfy ©
¬ . This is ac-
complishedby appropriatelyemploying ©
¬ and « in
thecandidategenerationphase(Step6).§ Support-basedpruning; that is, ensuringthatall sub-
sequencesof a sequence� in ª t that satisfy ©­¬ are
presentin the currentset of discoveredfrequentse-
quences« (Steps8-9). Note that, even thoughall
subsequencesof � must in fact be frequent,we can
only checktheminimumsupportconstraintfor subse-
quencesthat satisfy ©
¬ , sinceonly theseareretained
in « .

Intuitively, constraint-basedpruning tries to restrict ª t
by (partially) enforcing the input constraint © , whereas
support-basedpruningtries to restrict ª�t by checkingthe
minimum supportconstraintfor qualifying subsequences.
Note that, given a set of candidatesª�t and a relaxation©­¬ of © , theamountof support-basedpruningis maximized

when© ¬ is anti-monotone[9] (i.e.,all subsequencesof ase-
quencesatisfying©­¬ areguaranteedto alsosatisfy ©­¬ ). This
is becausesupportinformationfor all of thesubsequences
of a candidatesequence� in ª^t canbe usedto pruneit.
However, when ©
¬ is not anti-monotone,the amountsof
constraint-basedandsupport-basedpruningachievedvary
dependingon thespecificchoiceof ©­¬ .
3.1.1 PushingNon Anti-Monotone Constraints

Considerthe generalproblemof mining all frequentse-
quencesthat satisfya user-specifiedconstraint© . If © is
anti-monotone,thenthe mosteffective way of using © to
prunecandidatesis to push© “all theway” insidethemin-
ing computation.In thecontext of theSPIRITframework,
this meansusing © asis (ratherthansomerelaxationof © )
in the patterndiscovery loop. The optimality of this so-
lution for anti-monotone© stemsfrom two observations.
First, using © clearlymaximizestheamountof constraint-
basedpruningsincethe strongestpossibleconstraint(i.e.,© itself) is employed.Second,since© is anti-monotone,all
subsequencesof a frequentcandidate& -sequencethatsur-
vivesconstraint-basedpruningare guaranteedto be in «
(sincethey alsosatisfy © ). Thus,usingthefull strengthof
ananti-monotoneconstraint© maximizestheeffectiveness
of constraint-basedpruningaswell assupport-basedprun-
ing. Note that this is exactly the methodologyusedin the
CAP algorithm[9] for anti-monotoneitemsetconstraints.
An additionalbenefitof using anti-monotoneconstraints
is that they significantlysimplify thecandidategeneration
andcandidatepruningtasks.More specifically, generatingª t is nothingbut anappropriate“self-join” operationover« t�y � and determiningthe prunedset À (Step8) is sim-
plified by the fact that all subsequencesof candidatesare
guaranteedto satisfytheconstraint.

When © is not anti-monotone,however, thingsarenot
thatclear-cut. A simplesolution,suggestedby Ng etal. [9]
for itemsetconstraints,is to take an anti-monotonerelax-
ation of © and usethat relaxationfor candidatepruning.
Nevertheless,this simpleapproachmaynot alwaysbefea-
sible.For example,ourREconstraintsfor sequencesdonot
admit any non-trivial anti-monotonerelaxations. In such
cases,the degreeto which the constraint© is pushedin-
sidethemining process(i.e., thestrengthof the(nonanti-
monotone)relaxation©­¬ usedfor pruning)impactsthe ef-
fectivenessof both constraint-basedpruningandsupport-
basedpruningin differentways. More specifically, while
increasingthe strengthof ©­¬ obviously increasesthe ef-
fectivenessof constraint-basedpruning,it canalsohave a
negative effect on support-basedpruning. The reasonis
that,for any givensequencein ª�t thatsurvivesconstraint-
basedpruning, the numberof its subsequencesthat sat-
isfy thestronger, nonanti-monotoneconstraint © ¬ mayde-
crease. Again, notethatonly subsequencesthat satisfy ©
¬
canbeusedfor support-basedpruning,sincethisis theonly
“state” maintainedfrom previouspasses(in « ).

Pushinganonanti-monotoneconstraint©­¬ in thepattern
discovery loop can also increasethe computationalcom-
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plexity of thecandidategenerationandpruningtasks.For
candidateÁ generation,the fact that ©­¬ is not anti-monotone
meansthat some(or, all) of a candidate’s subsequences
maybeabsentfrom « . In somecases,a “brute-force”ap-
proach(basedon just ©­¬ ) may be requiredto generatean
initial setof candidatesª t . Forcandidatepruning,comput-
ing thesubsequencesof a candidatethatsatisfy ©­¬ mayno
longerbe trivial, implying additionalcomputationalover-
head.We shouldnote,however, that candidategeneration
and pruning are inexpensive CPU-boundoperationsthat
typically constituteonlyasmallfractionof theoverallcom-
putationalcost.Thisfactis alsoclearlydemonstratedin our
experimentalresults(Section4). Thus,themajor tradeoff
that needsto be consideredwhen choosinga specific ©
¬
from amongthe spectrumof possiblerelaxationsof © is
theextentto which thatchoiceimpactstheeffectivenessof
constraint-basedandsupport-basedpruning.Theobjective,
of course,is to strikeareasonablebalancebetweenthetwo
differenttypesof pruningsoasto minimizethenumberof
candidatesfor which supportis actually countedin each
pass.

3.1.2 The SPIRIT Algorithms

The four SPIRIT algorithmsfor constrainedpatternmin-
ing arepointsspanningthe entirespectrumof relaxations
for the user-specifiedRE constraint©_Â 	

. Essentially,
the four algorithmsrepresenta naturalprogression,with
eachalgorithm pushinga strongerrelaxationof

	
than

its predecessorin the patternmining loop £ . The first
SPIRITalgorithm,termedSPIRIT(N)(“N” for Naive),em-
ploys the weakestrelaxationof

	
– it only prunescandi-

datesequencescontainingelementsthat do not appearin	
. Thesecondalgorithm,termedSPIRIT(L) (“L” for Le-

gal), requireseverycandidatesequenceto be legal with re-
spectto somestateof � � . The third algorithm, termed
SPIRIT(V) (“V” for Valid), goesonestepfurtherby filter-
ing out candidatesequencesthatarenot valid with respect
to anystateof � � . Finally, theSPIRIT(R)algorithm(“R”
for Regular)essentiallypushes

	
“all theway” insidethe

mining processby countingsupportonly for valid candi-
datesequences,i.e., sequencesacceptedby � � . Table2
summarizestheconstraintchoicesfor thefour membersof
the SPIRIT family within the generalframework depicted
in Figure 2. Note that, of the four SPIRIT algorithms,
SPIRIT(N) is the only one employing an anti-monotone
(and,trivial) relaxation©
¬ . Also, notethat theprogressive
increasein thestrengthof ©
¬ impliesa subsetrelationship
betweenthe frequentsequencesdeterminedfor eachpass& ; thatis,

PBÃÅÄ
Æ=Ç�Æ>È-ÉÊÇrËN Ì PBÃ�ÄrÆ=Ç�Æ=È
ÉÊÍÎËN Ì PBÃÅÄ
Æ=Ç�Æ>È-ÉÊÏ�ËN Ì PBÃ�ÄrÆ=Ç�Æ=È
ÉÊÐ¤ËN .

The remainderof this sectionprovidesa detaileddis-
cussionof thecandidategenerationandcandidatepruningÑ

Thedevelopmentof theSPIRITalgorithmsis basedontheequivalent
automatonform Ò A of the user-specifiedRE constraintÓ . Algorithms
for constructingÒ A from Ó canbefoundin thetheoryliterature[6].

Algorithm RelaxedConstraint ©­¬ ( ©UÂ 	 )
SPIRIT(N) all elementsappearin

	
SPIRIT(L) legalwrt somestateof �v�
SPIRIT(V) valid wrt somestateof � �
SPIRIT(R) valid, i.e., © ¬ Â�©ÔÂ 	

Table2: Thefour SPIRITalgorithms.

phasesfor eachof the SPIRIT algorithms. Appropriate
terminatingconditions(Step15) arealso presented.The
quantitativestudyof theconstraint-basedvs. support-based
pruningtradeoff for theSPIRITalgorithmsis deferreduntil
thepresentationof ourexperimentalresults(Section4).

3.2 The SPIRIT(N) Algorithm

SPIRIT(N) is a simple modification of the GSP algo-
rithm [11] for mining sequentialpatterns.SPIRIT(N)sim-
ply requiresthatall elementsof a candidatesequence� inª t appearin the RE

	
. This constraintis clearly anti-

monotone,so candidategenerationand pruning are per-
formedexactlyasin GSP[11].

Candidate Generation. For every pair of ��&�uÕh�� -
sequences� and

W
in « t�y � , if � b�Ö � Q W b for all h z Z z&�u�l , then �×� W t�y � � is addedto ª t . This is basically

a self-join of «¤t�y � , the join attributesbeingthe last &�u´l
elementsof thefirst sequenceandthefirst &�u´l elements
of thesecond.

Candidate Pruning. A candidatesequence� is pruned
from ª�t if at leastoneof its ��&Vu[hx� -subsequencesdoes
not belongto «¤txy � .
Terminating Condition. Thesetof frequent& -sequences,« t , is empty.

3.3 The SPIRIT(L) Algorithm

SPIRIT(L)usestheautomaton� � to prunefrom ª�t candi-
date& -sequencesthatarenot legal with respectto any state
of � � . In our descriptionof SPIRIT(L), we use «4t������ to
denotethe setof frequent & -sequencesthat arelegal with
respectto state� of �v� .

CandidateGeneration. For eachstate� in � � , weaddtoª�t candidate& -sequencesthat are legal with respectto �
andhavethepotentialto befrequent.

Lemma 3.1: Considera & -sequence� that is legal with
respectto state � in �v� , where �Ø�

d
u � � is a transitionin�v� . For � to be frequent, �Ø� �¤����� � t�y � � must be in« t�y � ����� and �T� �Ù����� � t � mustbein « txy � �#��� .

Thus,thecandidatesequencesfor state� canbecomputed
as follows. For every sequence� in «4t�y � ����� , if � �

d
u � �

is a transitionin � � , thenfor everysequence
W

in «4t�y � �#���
suchthat � b�Ö � Q Wcb for all h z Z z &�u�l , the candidate
sequence�Ú� W t�y � � is addedto ª�t . This is basically
a join of «4t�y � �c��� and «¤txy � �#��� , on the condition that the
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��&{upl�� -lengthsuffix of �I�U«4t�y � �c��� matchesthe ��&{uXl�� -
lengthprefix of

W ��«4t�y � �#��� and � �
d
u � � is a transitionin� � .

CandidatePruning. Givena sequence� in ª^t , thecandi-
dategenerationstepensuresthatbothitsprefixandsuffix of
length &
uIh arefrequent.Wealsoknow thatin orderfor � to
befrequent,every subsequenceof � mustalsobefrequent.
However, sincewe only countsupportfor sequencesthat
arelegalwith respectto somestateof � � , we canprune �
from ª�t only if wefind a legal subsequenceof � thatis not
frequent(i.e., not in « ). Thecandidatepruningprocedure
computesthesetof maximalsubsequencesof � with length
lessthan & thatarelegal with respectto somestateof au-
tomaton�v� . If any of thesemaximalsubsequencesis not
containedin « , then � is deletedfrom ª t .

We now describean algorithmfor computingthemax-
imal legal subsequencesof a candidatesequence� . Let
maxSeq(� , � ) denotethe setof maximalsubsequencesof� that are legal with respectto state � of � � . Then, if
we let

W QS�Û� � ����� ��Ü � Ü�� , a supersetof maxSeq(� , � )
can be computedfrom maxSeq(� , W ) using the fact that:
(a) maxSeq�c�x~*�x� ` maxSeq�c�x~ W ��Ýa�Þ�ß� ��à �vá à �
maxSeq����~ W �/��Ý��x� � � , if � �

d
u � � is a transitionin � � ;

and,(b) maxSeq�c�x~*�x� ` maxSeq�c�x~ W � , otherwise.The in-
tuition is that for a subsequenceâ�� maxSeq(�x~0� ), eitherâ doesnot involve � � , in which caseâ is a maximalsubse-
quenceof

W
that is legal with respectto � , or â � Q�� � and��â ������� ârÜ ã�Ü-� is a maximalsubsequenceof

W
with respect

to state � . Basedon the above observation,we proposea
dynamicprogrammingalgorithm,termedFINDMAXSUB-
SEQ, for computingmaxSeq(�x~*� ) for all states � of �v�
(Figure3). Intuitively, FINDMAXSUBSEQ worksby com-
puting the setmaxSeqfor successively longersuffixesof
the input sequence� , beginningwith the suffix consisting
of only thelastelementof � .

More specifically, given an input sequence� and two
setsof statesin � � ( ä W ��å W and æv� ¦ ), algorithm FIND-
MAXSUBSEQ returnsthesetof all maximalsubsequencesW

of � suchthat(a) thelengthof
W

is lessthan $ ��$ , and(b)
W

is legalwith respectto astate� in ä W ��å W andif �  � � , then���Uæv� ¦ . In eachiterationof the for loop spanningSteps
3–17,for eachstate� in �v� , maximallegal subsequences
for the suffix �ç��è ����� ��Ü � ÜR� arecomputedandstoredin
maxSeq[� ]. At thestartof the é  #" iteration,maxSeq[� ] con-
tains the maximalsubsequencesof �ê� è Ö � ����� �ÞÜ � Ü�� that
areboth legal with respectto state � andresult in a state
in æv� ¦ . Thus, if a transitionfrom � to � on element � è
is in � � , thenthemaximallegal subsequencesfor � com-
prisethosepreviously computedfor �i� è Ö � ����� �ÞÜ � Üë� and
certainnew sequencesinvolving element� è . Thesenew se-
quencescontaining� è arecomputedin thebodyof thefor
loop spanningSteps5–9andstoredin tmpSeq[� ]. A point
to noteis that,sincewe areonly interestedin maximalle-
galsubsequencesthatresultin astatein æv� ¦ , weadd ��è to
tmpSeq[� ] only if �R��æv� ¦ (Step7).

After the new maximal subsequencesinvolving ��è are

Procedure FINDMAXSUBSEQ( ì )cG�í�) , îkï E , ' )
begin
1. for eachstate

C
in automaton

@BA
do

2. maxSeq[
C
] := ð

3. for ñ := 5 ' 5 down to 1 do µ
4. for eachstate

C
in automaton

@FA
do µ

5. tmpSeq[
C
] = ð

6. if (thereexistsa transition
C H!òº K D in

@ A
) µ

7. if ( D�¸ îkï E ) tmpSeq[
C
] := µ '�ó ¶

8. tmpSeq[
C
] := tmpSeq[

C
]
¼ µ 1 '/óÅ)43 ± )4¸ maxSeqô D=õ ¶

9. ¶
10. ¶
11. for eachstate

C
in automaton

@FA
do µ

12. maxSeq[
C
] := maxSeq[

C
]
¼

tmpSeq[
C
]

13. for eachsequence) in maxSeq[
C
] do

14. if (thereexists + in maxSeqô C õ º µ 1 '/ó�ö0ö0ö='x÷ H ÷%3 ¶
suchthat ) is a subsequenceof + )

15. delete) from maxSeq[
C
]

16. ¶
17. ¶
18. return ø{ù,ú ì )cGÅí�) maxSeq[

C
] - µ ' ¶ (after

deletingnon-maximalsequences)
end

Figure3: Algorithm for findingmaximalsubsequences.

stored in tmpSeq[� ] for every state � of �I� , they are
addedto maxSeq[� ], following which,non-maximalsubse-
quencesin maxSeq[� ] aredeleted(Steps11–16)û . Finally,
aftermaximallegalsubsequencesfor theentiresequence�
havebeencomputedfor all thestatesof � � , only thosefor
statesin ä W ��å W arereturned(Step18).

To recap,thecandidatepruningprocedureof SPIRIT(L)
invokesFINDMAXSUBSEQ to determineall the maximal
legal subsequencesof eachcandidate� in ª^t , anddeletes� from ª^t if any of thesesubsequencesis not frequent.For
SPIRIT(L), algorithmFINDMAXSUBSEQ is invokedwithä W ��å W and æv� ¦ bothequalto thesetof all statesin �v� .

Terminating Condidition. The set of frequent & -
sequencesthatarelegal with respectto thestartstate� of� � is empty;thatis, «¤t������ is empty.

Time Complexity. Considerthe candidatepruningover-
headfor a candidate& -sequence� in ª�t . Comparedto
thecandidatepruningstepof SPIRIT(N),which hasa time
complexity of üs�c&r� (to determinethe & subsequencesof� ), the computationaloverheadof candidatepruning in
SPIRIT(L) canbe significantlyhigher. More specifically,
theworst-casetime complexity of computingthemaximal
legal subsequencesof � usingalgorithm FINDMAXSUB-
SEQ canbeshown to be üs�c& �-ý $ �v�{$ ý $maxSeq(� ) $ � , where$ � � $ is the numberof statesin � � and $maxSeq(� ) $ is
the numberof maximal legal subsequencesfor � . To see
this, note that the outermostfor loop in Step3 of FIND-
MAXSUBSEQ is executed & times. The time complexity
of the first for loop in Step4 is üs�*$ � � $ ý $maxSeq(� ) $ � ,þ

In Steps13–15,wehaveto becarefulnot to considerÿ�� ó������ � ÷ H ÷��
to deleteothersequencesin maxSeq[� ] sinceweareinterestedin maximal
sequenceswhoselengthis lessthan � �	� .
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while that of the secondfor loop in Step 11 is üs��& ý$ � � $ ý $maxSeq(� ) $ � , sincemaxSeq[� ] canbeimplemented
asa trie, for which insertions,deletions,andsubsequence
checkingfor & -sequencescan all be carriedout in üs��&r�
time.

We must point out that the higher time complexity
of candidatepruning in SPIRIT(L) is not a major effi-
ciency concernsince(a) the overheadof candidategen-
eration and pruning is typically a tiny fraction of the
cost of counting supportsfor candidatesin ª�t , and (b)
in practice, $maxSeq�c�x��$ can be expectedto be small for
most sequences. In the worst case,however, for a & -
sequence,$maxSeq(� ) $ canbe üs��l t � . This worstcasesce-
nario canbe avoidedby imposingan a-priori limit on the
sizeof maxSeq[� ] in FINDMAXSUBSEQ andusingappro-
priate heuristicsfor selectingvictims (to be ejectedfrom
maxSeq[� ]) whenits sizeexceedsthatlimit.

SpaceOverhead. SPIRIT(N) only utilizes «4t�y � for the
candidategenerationand pruning phasesduring the &  #"
pass.In contrast,thecandidatepruningstepof SPIRIT(L)
requires« to be storedin main memorysincethe maxi-
mal legal subsequencesof a candidate& -sequencemaybe
of any lengthlessthan & . However, this shouldnot pose
a seriousproblemsinceeach « t computedby SPIRIT(L)
containsonly frequentand legal & -sequences,which are
typically few comparedto all frequent& -sequences.In ad-
dition, powerful serverswith severalgigabytesof memory
arenow fairly commonplace.Thus,in mostcases,it should
bepossibleto accommodateall thesequencesin « in main
memory. In theoccasionaleventthat « doesnotfit in mem-
ory, oneoptionwould beto only store «¤txy è ~�\�\�\�~�«4t�y � for
some é�
 h . Of course,this meansthat maximalsubse-
quenceswhoselength is less than &Uu�é cannotbe used
to prunecandidatesfrom ª�t during thecandidatepruning
step.

3.4 The SPIRIT(V) Algorithm

SPIRIT(V) uses a stronger relaxed constraint ©­¬ than
SPIRIT(L)duringcandidategenerationandpruning.More
specifically, SPIRIT(V) requiresevery candidatesequence
to be valid with respectto somestateof � �
� . In our de-
scriptionof SPIRIT(V), we use «4t��c��� to denotethe setof
frequent & -sequencesthat arevalid with respectto state �
of � � .

CandidateGeneration. Sinceevery candidatesequence�
in ª�t is requiredto bevalid with respectto somestate� , it
mustbethecasethat the �c&suTh�� -lengthsuffix of � is both
frequentandvalid with respectto state � , where � �

d
u � �

is a transitionin � � . Thus,givena state � of � � , theset
of potentiallyfrequentandvalid & -sequenceswith respect
to � canbe generatedusingthe following rule: for every
transition �Û� Ju � � , for every sequence

W
in « txy � �#��� , add����� W � to thesetof candidatesfor state� . Theset ª t is�

Note that an alternative approachwould be to requirecandidatesto
belegal with respectto thestartstateof Ò A . Thisapproachis essentially
symmetricto SPIRIT(V) andis not exploredfurtherin thispaper.

simply theunionof thesecandidatesetsoverall states� of� � .

Candidate Pruning. The pruningphaseof SPIRIT(V) is
very similar to that of SPIRIT(L), except that only valid
(ratherthatlegal) subsequencesof a candidatecanbeused
for pruning.More specifically, givena candidatesequence� in ª�t , we computeall maximalsubsequencesof � that
arevalid with respectto somestateof � � andhave length
lessthan & . Thisis doneby invokingalgorithmFINDMAX-
SUBSEQ with ä W ��å W equalto thesetof all statesof �v� andæv� ¦ equalto the setof all acceptstatesof �v� . If any of
thesesubsequencesis not containedin « , then � is deleted
from ª t .
Terminating Condition. Thesetof frequent& -sequences«4t is empty. Unlike SPIRIT(L), we cannot terminate
SPIRIT(V) basedon just «4t����%� becomingempty (where� is thestartstateof � � ). Thereasonis that,eventhough
theremay be no frequentandvalid sequencesof length &
for � , therecouldstill belongersequencesthatarefrequent
andvalid with respectto � .
3.5 The SPIRIT(R) Algorithm

SPIRIT(R)essentiallypushestheRE constraint
	

“all the
way” insidethe patternmining computation,by requiring
every candidatesequencefor which supportis countedto
bevalid (i.e., ©­¬-Â 	 ).

Candidate Generation. Since « contains only valid
and frequentsequences,there is no efficient mechanism
for generatingcandidate& -sequencesother than a “brute
force” enumerationusingthe automaton� � . The ideais
to traversethestatesandtransitionsof � � enumeratingall
pathsof length & thatbegin with the startstateandendat
anacceptstate.Obviously, eachsuchpathcorrespondsto
a valid & -sequencecontainingthe elementsthat label the
transitionsin thepath. (The terms“path” and“sequence”
areusedinterchangeablyin thefollowing description.)

We employ two optimizationsto improve theefficiency
of theaboveexhaustivepathenumerationscheme.Ourfirst
optimizationusesthe observation that, if a pathof length
lessthan & correspondsto a sequencethat is valid but not
frequent, then further extending the path is unnecessary
sinceit cannotyield frequent& -sequences.Thesecondop-
timizationinvolvesexploiting cyclesin � � to reducecom-
putation.

Lemma 3.2: Supposefor a path � W à � (of length less
than & ), both

W
and � W à � result in the samestatefrom

thestartstate� . (That is, à correspondsto a cycle in � � .)
Then,if thepath � W à â�� obtainedasaresultof extending� W à � with â is to yield a candidate& -sequence,it must
bethecasethat � W â�� is bothfrequentandvalid.

Consider the generationof candidate & -sequencesª t .
Given a path � W à � satisfying the assumptionsof
Lemma3.2, we only needto extend � W à � with se-
quencesâ for which � W â�� belongsto «^Ü    ã ¥ Ü (since
the lengthof � W â�� is lessthan & ). Due to spacecon-
straints,wehaveomittedthedetaileddefinitionof thecan-
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didategenerationalgorithm for SPIRIT(R) andexamples
of� its operation.Theinterestedreaderis referredto [5].

Candidate Pruning. A candidatesequence� in ª�t can
beprunedif a valid subsequenceof � is not frequent.The
maximalvalid subsequencesof � canbe computedby in-
voking algorithmFINDMAXSUBSEQ with ä W ��å W equalto���-� and æv� ¦ equalto thesetof all acceptstatesof � � .

Terminating Condition. For some iteration Z , sets« b ~�\�\�\�~*« b�Ö Ü ����Ü y � areall empty, where $ � � $ is thenum-
ber of statesin automaton� � . To seethis, considerany
frequentandvalid sequence� whoselengthis greaterthanZ��n$ � � $¢u_h . Obviously, � containsat leastone cycle
of length at most $ �v�{$ and, therefore, � must containat
leastonefrequentandvalid subsequenceof lengthat leastZ . However, no valid sequencewith length greaterthan
or equalto Z is frequent(since « b ~�\�\�\�~�« b�Ö Ü � � Ü y � areall
empty).Thus, � cannotbea frequentandvalid sequence.

4 Experimental Results
In this section,we presentan empiricalstudyof the four
SPIRIT algorithmswith syntheticand real-life datasets.
The objective of this study is twofold: (1) to establish
theeffectivenessof allowing andexploiting REconstraints
during sequentialpatternmining; and,(2) to quantify the
constraint-basedvs. support-basedpruningtradeoff for the
SPIRITfamily of algorithms(Section3.1).

In general, RE constraintswhose automatacontain
fewer transitionsper state,fewer cycles,andlongerpaths
tendto bemoreselective, sincethey imposemorestringent
restrictionson theorderingof itemsin theminedpatterns.
Ourexpectationis thatfor RE constraintsthataremorese-
lective,constraint-basedpruningwill bevery effectiveand
the latter SPIRIT algorithmswill performbetter. On the
otherhand,lessselective REs increasethe importanceof
goodsupport-basedpruning,puttingalgorithmsthatusethe
REconstrainttooaggressively (likeSPIRIT(R))atadisad-
vantage.Our experimentalresultscorroborateour expec-
tations.More specifically, our findingscanbesummarized
asfollows.

1. TheSPIRIT(V)algorithmemergesastheoverallwin-
ner, providing consistentlygood performanceover
the entire rangeof RE constraints.For certainREs,
SPIRIT(V) is morethananorderof magnitudefaster
thanthe“naive” SPIRIT(N)scheme.

2. For highly selective RE constraints,SPIRIT(R) out-
performsthe remainingalgorithms. However, asthe
RE constraintbecomeslessselective, the numberof
candidatesgeneratedby SPIRIT(R)explodesandthe
algorithmfails to evencompleteexecutionfor certain
cases(it runsout of virtual memory).

3. The overheadsof the candidategenerationandprun-
ing phasesfor the SPIRIT(L) and SPIRIT(V) algo-
rithms are negligible. They typically constituteless
than1% of thetotal executiontime,evenfor complex

REswith automatacontaininglargenumbersof tran-
sitions,states,andcycles.

Thus,our resultsvalidatethethesisof thispaperthatincor-
poratingREconstraintsinto theminingprocesscanleadto
significantperformancebenefits.All experimentsreported
in this sectionwereperformedon a SunUltra-2/200work-
stationwith 512MB of mainmemory, runningSolaris2.5.
Thedatasetswerestoredon a localdisk.

4.1 SyntheticData Sets

We useda syntheticdatasetgeneratorto createa database
of sequencescontainingitems.Theinputparametersto our
generatorincludethenumberof sequencesin thedatabase,
theaveragelengthof eachsequence,thenumberof distinct
items,anda Zipf parameter� thatgovernsthe probability
of occurrence,

�������� � ���� , of eachitem
�
in thedatabase.The

length for eachsequenceis selectedfrom a Poissondis-
tribution with meanequalto the averagesequencelength.
Notethatanitemcanappearmultiple timesin asingledata
sequence.

In addition,sincewe areinterestedin a sensitivity anal-
ysis of our algorithmswith respectto the RE constraint	

, we usedanRE generatorto produceconstraintswith a
broadrangeof selectivities. EachRE constraintoutputby
thegeneratorconsistsof blocksandeachblock in turncon-
tainstermswith thefollowing structure.A term �Î� is adis-
junctionof itemsandhastheform ��� � $Å� � $ ����� $Å��è#� . Each
block ��� is simply a concatenationof terms, � � � ������� � Y .
Finally, theconstraint

	
is constructedfrom blocksandhas

the form ��� � $�� � $ ����� $��R�r� � – thus,every sequencethat
satisfies

	
is aconcatenationof oneor moresequencessat-

isfying the block constraints.The genericstructureof the
automaton� � for

	
is shown in Figure4. RE constraints

with differentselectivities canbegeneratedby varyingthe
numberof itemsper term,the numberof termsperblock,
andthenumberof blocksin

	
. Note that, in termsof the

automaton� � , theseparameterscorrespondto the num-
berof transitionsbetweenapairof statesin � � , thelength
of eachcycle, andthenumberof cyclescontainedin �I� ,
respectively.

a

number of terms per block

number of items per term

number of blocks

Figure4: Structureof automatonfor RE generation.

The RE generatoracceptsthe maximum number of
items per term, the numberof termsper block, and the
numberof blocksasinputparameters.In theREconstraint
that it outputs,the numberof itemsper term is uniformly
distributed between1 and the maximumspecifiedvalue.
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The items in eachterm of
	

are chosenusing the same
Zipfian� distribution thatwasusedto generatethe dataset.
TheRE generatorthusenablesusto carryout anextensive
studyof thesensitivity of ouralgorithmsto awiderangeof
RE constraintswith differentselectivities.

Table3 showstheparametersfor thedatasetandtheRE
constraint,alongwith their default valuesandtherangeof
valuesfor which experimentswereconducted.Thedefault
valueof ��Qih�\  waschosento modelan(approximate)70-
30 rule andto ensurethat the item skew wassufficient for
someinterestingpatternsto appearin the datasequences.
In eachexperiment,oneparameterwasvariedwith all other
parametersfixedat their defaultvalues.Onceagain,dueto
spaceconstraints,we only presenta subsetof our exper-
imental results. The full setof results(including scaleup
andmaximumdistanceexperiments)canbefoundin [5].

Parameter Default Range
No. of Sequences ¿"! þ # ö ¿"! Ñ – ³ . # ö ¿"! þ
Avg. SequenceLength ¿"!
No. of Items ¿"!$!	!
Zipf Value 1.0
Max. No. of ItemsperTerm ¿"! ³ – %	!
No. of TermsPerBlock & ³ – ¿"!
No. of Blocks & ³ – ¿"!
Min. Support ¿ . ! ! . # – ³ . !
Max. Distance ³ ! – ¿ #

Table3: SyntheticdataandRE constraintparameters.

4.2 PerformanceResultswith SyntheticData Sets

Maximum Number of Items Per Term. Figure 5(a) il-
lustratesthe executiontimesof the SPIRIT algorithmsas
themaximumnumberof itemspertermin

	
is increased.

As expected,as the number of items is increased,the
numberof transitionsper statein � � also increasesand
so do the numbersof legal and valid sequences.Thus,
constraint-basedpruning becomesless effective and the
performanceof all SPIRITalgorithmsdeterioratesasmore
itemsareaddedto eachterm. As long as the numberof
items per term doesnot exceed15,

	
is fairly selective;

consequently, constraint-basedpruningworkswell andthe
SPIRIT algorithmsthat use

	
to prunemore candidates

perform better. For instance,when the maximumnum-
ber of items per term is 10, the SPIRIT(N), SPIRIT(L),
SPIRIT(V), and SPIRIT(R) algorithmscount supportfor
7105, 1418, 974, and 3822 candidatesequences,respec-
tively. SPIRIT(R)makesonly two passesover thedatafor
valid candidatesequencesof lengths4 and8. Theremain-
ing algorithmsmake 8 passesto countsupportsfor candi-
dateswith lengthsupto 8, amajorityof whichhavelengths
4 and5.

However, beyond15 itemsperterm,theperformanceof
the algorithmsthat rely moreheavily on constraint

	
for

pruning candidatesdegeneratesrapidly. SPIRIT(R) sus-
tains the hardesthit sinceit performsvery little support-
basedpruningandits exhaustiveenumerationapproachfor
candidategenerationresultsin anenormousnumberof can-

didatesof length 4. In contrast,since SPIRIT(N) only
uses

	
to prunesequencesnot involving itemsin

	
, and

few new itemsareaddedto termsin
	

oncethe number
of itemsper term reaches15, the executiontimes for the
SPIRIT(N) algorithm hold steady. Beyond 25 items per
term,therunningtimesof SPIRIT(L) andSPIRIT(V) also
stabilize,sincedecreasesin theamountof constraint-based
pruningas

	
becomeslessselective arecounterbalanced

by increasesin support-basedpruning. At 30 items per
term, SPIRIT(V) continuesto provide a good balanceof
constraint-basedandsupport-basedpruningand,thus,per-
formsthebest.

Number of Terms Per Block. The graphin Figure5(b)
plots the running times for the SPIRIT algorithmsas the
numberof termsperblock is variedfrom 2 to 10. Increas-
ing thenumberof termsperblockactuallycauseseachcy-
cle (involving thestartstate� ) to becomelonger. The ini-
tial dip in executiontimesfor SPIRIT(L), SPIRIT(V), and
SPIRIT(R)whenthe numberof termsis increasedfrom 2
to 4 is dueto thereductionin thenumberof candidatese-
quencesof lengths4 and 5. This happensbecausewith
shortcyclesof length2 in � � , sequencesof length4 and
5 visit the startstatemultiple timesandthe startstatehas
a largenumberof outgoingtransitions.But when �v� con-
tainscyclesof length4 or more,thestartstateis visitedat
mostonce,thuscausingthenumberof candidatesequences
of lengths4 and5 to decrease.As cycle lengthsgrow be-
yond 4, the numberof legal sequences(with respectto a
statein � � ) startsto increasedue to the increasein the
numberof statesin eachcycle. However, the numberof
valid sequences(with respectto a statein � � ) doesnot
vary muchsinceeachof themis still requiredto terminate
at thestartstate� .

Notethatwhenthenumberof termsexceeds6, thenum-
berof candidatesgeneratedby SPIRIT(R)simplyexplodes
due to the longer cycles. On the other hand,SPIRIT(V)
providesconsistentlygoodperformancethroughouttheen-
tire rangeof block sizes.

Number of Blocks. Figure6(a) depictsthe performance
of the four algorithmsas the numberof blocks in

	
is

increasedfrom 2 to 10. The behavior of the four algo-
rithms hassimilarities to the “numberof itemsper term”
case(Figure5(a)). Theonly differenceis that,asthenum-
ber of blocksis increased,the decreasein

	
’s selectivity

andtheincreasein thenumberof legalandvalid sequences
in �I� are not as dramatic. This is becausethe number
of blocksonly affectsthenumberof transitionsassociated
with the start state– the numberof transitionsfor other
statesin � � staysthesame.Onceagain,SPIRIT(V) per-
formswell consistently, for theentirerangeof numbersof
blocks. An interestingcaseis that of SPIRIT(R) whose
executiontime doesdegradebeyond SPIRIT(V)’s, as the
numberof blocks is increased,but it still managesto do
betterthanSPIRIT(L), even when

	
contains10 blocks.

This can be attributedpredominantlyto the effectiveness
of theoptimizationfor cyclesin �I� that is appliedduring
SPIRIT(R)’scandidategenerationphase.In general,dueto
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Figure5: Performanceresultsfor (a)numberof itemsand(b) numberof terms.
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Figure6: Performanceresultsfor (a)numberof blocksand(b) minimumsupport.

ourcycleoptimization,onecanexpecttheSPIRIT(R)algo-
rithm to performreasonablywell, evenwhen �v� contains
a largenumberof cyclesof moderatelength.

Minimum Support. The executiontimesfor the SPIRIT
algorithmsastheminimumsupportthresholdis increased
from0.5to 2.0aredepictedin Figure6(b). Asexpected,the
performanceof all algorithmsimprovesas the minimum
supportthresholdis increased.This is becausefewer can-
didateshave the potentialto be frequentfor highervalues
of minimum support. Furthermore,note that the running
timesof algorithmsthatrelymoreheavily onsupport-based
pruningimprovemuchmorerapidly.

4.3 Real-life Data Set

For our real-life data experiments,we used the WWW
server accesslogs from the web site of an academicCS
department( . Thelogscontainthesequencesof webpages
accessedby each user) starting from the department’s
web site, for the durationof a week. The department’s

*
At thedepartment’s request,wedonot discloseits identity.+
WeuseIP addressesto distinguishbetweenusers.

homepagecontainslinks to a numberof topics,including
Academics, Admissions, Events, General infor-
mation, Research, People, andResources. Thereare
additionallinks to theuniversityandcollegehomepagesto
which theCSdepartmentbelongs,but we chosenot to use
theselinks in our RE constraint. Usersnavigate through
the web pagesby clicking on links in eachpage,andthe
sequencesof pagesaccessedby a userarecapturedin the
server logs.

We useda RE constraintto focus on useraccesspat-
terns that start with the department’s home page (lo-
catedat /main.html) andendat the web pagecontain-
ing information on the M.S. degreeprogram(locatedat
/academics/ms-program.html). In addition, we re-
stricted ourselves to patternsfor which the intermediate
pagesbelongto oneof the aforementioned7 topics(e.g.,
Academics). Thus, the automaton �v� containsthree
states. Thereis a transitionfrom the first (start) stateto
thesecondon /main.html anda transitionfrom thesec-
ond stateto the third (accept)stateon /academics/ms-
program.html. Thesecondstatehas15 transitionsto it-
self,eachlabeledwith thelocationof awebpagebelonging
to oneof theabove 7 topics. We useda minimumsupport
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Size Frequentand Valid Sequences
2 ÿ /main.html/academics/ms-program.html �
3 ÿ /main.html/general/contacts.html/academics/

ms-program.html�ÿ /main.html/general/nav.html/academics/ms-program.html �ÿ /main.html/academics/academics.html/academics/
ms-program.html�ÿ /main.html/academics/nav.html/academics/
ms-program.html�ÿ /main.html/admissions/nav.html/academics/
ms-program.html�ÿ /main.html/admissions/admissions.html/academics/
ms-program.html�

4 ÿ /main.html/general/nav.html/general/contacts.html/
academics/ms-program.html�ÿ /main.html/academics/nav.html/academics/academics.html/
academics/ms-program.html�ÿ /main.html/admissions/nav.html/admissions/
admissions.html/academics/ms-program.html�

Table4: Interestingpatternsdiscoveredin theWWW logs.

Algorithm Exec.Time (sec) Candidates Passes
SPIRIT(N) 1562.8 5896 13
SPIRIT(L) 32.77 1393 10
SPIRIT(V) 16.0. 59 5
SPIRIT(R) 17.67 52 7

Table5: Executionstatisticsfor theSPIRITalgorithms.

thresholdof 0.3%.Thenumberof accesssequenceslogged
in theoneweekdatasetwas12868.

Theminedfrequentandvalid accesspatternsarelisted
in increasingorder of size in Table 4. Note that there
is a numberof distinct ways to accessthe M.S. degree
program web pageby following different sequencesof
links (e.g., via admissions,academics). The execution
times and the numbersof candidatesgeneratedby the
four SPIRIT algorithmsarepresentedin Table5. As ex-
pected,since the RE constraintis fairly selective, both
SPIRIT(V)andSPIRIT(R)havethesmallestrunningtimes.
SPIRIT(L) is abouttwice asslow comparedto SPIRIT(V)
andSPIRIT(R).The executiontime for SPIRIT(N) is al-
mosttwo ordersof magnitudeworsethanSPIRIT(V) and
SPIRIT(R), sinceit generatesa significantly larger num-
ber of candidatesequenceswith lengthsbetween5 and9
(almost4000). We believe thatour resultsclearlydemon-
stratethesignificantperformancegainsthatcanbeattained
by pushingRE constraintsinsidea real-life patternmining
task.

5 Conclusions
In this paper, wehaveproposedtheuseof RegularExpres-
sions(REs)asa flexible constraintspecificationtool that
enablesuser-controlledfocus to be incorporatedinto the
patternmining process. We have developeda family of
novel algorithms(termedSPIRIT) for mining frequentse-
quentialpatternsthat also satisfy user-specifiedRE con-
straints. The main distinguishingfactor amongthe pro-
posedschemesis the degreeto which the RE constraints

areenforcedto prunethe searchspaceof patternsduring
computation. The SPIRIT algorithmsare illustrative of
the tradeoffs that arisewhen constraintsthat do not sub-
scribeto nice properties(like anti-monotonicity)are inte-
gratedinto the mining process. To explore thesetrade-
offs,wehaveconductedanextensiveexperimentalstudyon
syntheticandreal-life datasets. The experimentalresults
clearlyvalidatetheeffectivenessof our approach,showing
thatspeedupsof morethananorderof magnitudearepossi-
blewhenREconstraintsarepusheddeepinsidethemining
process.Our experimentationwith real-life dataalsoillus-
tratestheversatilityof REsasauser-level tool for focusing
on interestingpatterns.
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