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Abstract

Existing studies on outliers focus only on the
tdentification aspect; none provides any inten-
stonal knowledge of the outliers—by which we
mean a description or an explanation of why
an identified outlier is exceptional. For many
applications, a description or explanation is
at least as vital to the user as the identifi-
cation aspect. Specifically, intensional knowl-
edge helps the user to: (i) evaluate the valid-
ity of the identified outliers, and (ii) improve
one’s understanding of the data.

The two main issues addressed in this paper
are: what kinds of intensional knowledge to
provide, and how to optimize the computa-
tion of such knowledge. With respect to the
first issue, we propose finding strongest and
weak outliers and their corresponding struc-
tural intensional knowledge. With respect to
the second issue, we first present a naive and
a semi-naive algorithm. Then, by means of
what we call path and semu-lattice sharing of
I/0 processing, we develop two optimized ap-
proaches. We provide analytic results on their
I/O performance, and present experimental
results showing significant reductions in 1/0,
and significant speedups in overall runtime.
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1 Introduction

Knowledge discovery tasks can be classified into four
general categories: (a) dependency detection, (b) class
identification, (c) class description, and (d) excep-
tion/outlier detection. The first three categories of
tasks correspond to patterns that apply to many ob-
jects, or to a large percentage of objects, in the
dataset. Most research in data mining (e.g., asso-
ciation rules and variants [AIS93, BMS97, NLHP98,
SBMU98|, data clustering [KR90], and classification
[AGT+92, BFOS84]) belongs to these three categories.
In contrast, the fourth category focuses on only a very
small percentage of data objects. While such objects
are sometimes ignored or treated as “noise”, we note
that “one person’s noise is another person’s signal.” In
other words, for numerous knowledge discovery appli-
cations, the rare events can be more interesting than
the common events. Sample applications include the
detection of credit card fraud and the monitoring of
criminal or suspicious activities (e.g., [TN98]).

1.1 Related Work

Existing approaches to outlier detection can be
broadly classified into three categories. The first cat-
egory is distribution-based, which relies on fitting the
data with standard statistical models. (See [BL94] for
a comprehensive treatment.) However, distribution-
based approaches are mainly univariate in nature, and
require extensive and expensive testing to find a dis-
tribution to fit the data, thus making such approaches
unsuitable for most data mining applications.

The second category is depth-based, which relies on
organizing the data objects in some k-D space. Based
on some definition of depth (e.g., [Tuk77]), data ob-
jects are organized in layers in the data space, with
the expectation that shallow layers are more likely to
contain outlying data objects than are the deep lay-
ers. Depth-based approaches avoid the aforementioned
problem of distribution fitting, and conceptually allow
multi-dimensional data objects to be processed. Al-
though there are efficient techniques for 2-D spaces



Player Power-play | Short-handed | Game-winning | Game-tying | Games

Name Goals Goals Goals Goals Played
MARIO LEMIEUX 31 8 8 0 70
JAROMIR JAGR 20 1 12 1 82
JOHN LECLAIR 19 0 10 2 82
ROD BRIND’AMOUR 4 4 5 4 82

Figure 1: NHL Players’ Statistics: Outliers Identified

[JKN98, RR96], depth-based approaches do not scale
up well with the dimensionality k. Specifically, depth-
based approaches are lower bounded in complexity by
k-D convex hull computation. i.e., Q(nk/Q), where n is
the number of data objects.

The third category is distance-based. As we intro-

duced in [KN98§],

An object O in a dataset is a DB(p, D)-outlier if at
least a fraction p of the other objects
wn the dataset lies greater than distance D from O.

We showed that the notion of DB(p, D)-outliers gener-
alizes many of the distribution-based outliers discussed
above, and we developed (i) Algorithm NL with com-
plexity O(k n?)—thus, making it far more attractive
than the depth-based approaches for k-D datasets with
k > 4; and (ii) Algorithm CELL ! with a complexity
linear on n, and a guarantee of no more than 3 passes
over the data. However, the latter Algorithm CELL is
exponential on k, and is recommended only for smaller
values of k (i.e., k < 4). In [TN98], we documented a
case study that successfully applies the distance-based
outlier methodology to a video surveillance situation,
in which the dimensionality of the dataset exceeds 20.

1.2 Contributions of This Paper

All the studies on outliers research focus only on
tdentification; none is able to provide any intensional
knowledge of the outliers—by which we mean a de-
scription or an explanation of why an identified outlier
is exceptional. For many applications, the descrip-
tion/explanation aspect is at least as vital to the user
as the identification aspect. Intensional knowledge
helps the user to: (i) evaluate the validity or the cred-
ibility of the identified outliers, and (ii) more impor-
tantly, improve the user’s understanding of the data.

Consider an example based on 1995-96 National
Hockey League players’ statistics. (Such statistics can
be found at http://nhlstatistics.hypermart.net, among
many other sites.) For certain parameter values of p
and D and a specific choice of a distance function, the
four players in Figure 1 are identified as exceptional
(among 855 players) in the 5-D space of power-play
goals, short-handed goals, game-winning goals, game-
tying goals, and games played. Note that the num-
bers in the table cannot directly pinpoint the strengths

Tn [KN98], Algorithm CELL was called FindAllOutsM or
FindAllOutsD for memory or disk-resident versions, respec-
tively. For convenience, we use the name CELL. We deal ex-
clusively with disk-resident data in this paper.
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MARIO LEMIEUX:
(i) An outlier in the 1-D space of Power-play goals
(ii) An outlier in the 2-D space of Short-handed goals and
Game-winning goals
(No player is exceptional on Short-handed goals alone;
No player is exceptional on Game-winning goals alone.)
ROD BRIND’AMOUR:
(i) An outlier in the 1-D space of Game-tying goals
JAROMIR JAGR:
(i) An outlier in the 2-D space of Short-handed goals and
Game-winning goals
(No player is exceptional on Short-handed goals alone;
No player is exceptional on Game-winning goals alone.)
(ii) An outlier in the 2-D space of Power-play goals and
Game-winning goals
(But for Power-play goals alone, the current player is
dominated by another and is not exceptional.)
JOHN LECLAIR:
(i) An outlier in the 2-D space of Game-winning goals and
Game-tying goals
(But for Game-tying goals alone, the current player is
dominated by another and is not exceptional.)

Figure 2: NHL Players’ Statistics: Intensional Knowl-
edge Provided

or greatness of these players with respect to all other
NHL players. Specifically, the intensional knowledge
described in Figure 2 cannot be derived directly from
the numbers. While we shall discuss in detail in Sec-
tion 2 the nature of the provided intensional knowl-
edge, it suffices to say that the additional explana-
tions give new and valuable insights about the dataset
in general and about the outliers in particular.

The two main issues addressed in this paper are:
what kinds of intensional knowledge to provide, and
how to optimize the computation of such knowledge.
Specifically:

o We define in Section 2 two notions of outliers and
the corresponding intensional knowledge. The
two notions are strongest outliers and weak out-
liers. To illustrate, Jaromir Jagr in Figure 2 is:
(i) a strongest outlier in the 2-D combination of
short-handed goals and game-winning goals. but
(ii) only a weak outlier in the 2-D combination of
power-play goals and game-winning goals.

e We develop in Section 3. a naive and a semi-naive
algorithm for computing strongest and weak out-
liers and the corresponding intensional knowledge.
While the naive algorithm conducts its processing
in a bottom-up fashion over an appropriate lat-
tice, the semi-naive algorithm starts at a certain
intermediate level of the lattice, and “drills down”
to lower levels only if necessary.

o We show in Section 4 that, instead of processing
one node of the lattice at a time, it is possible to
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Figure 3: Intensional Knowledge in a Lattice Representation

process nodes in groups, thereby sharing the 1/0’s
among the nodes. We show that effective sharing
of I/O’s can be achieved in two flavours: a path
mode and a semi-lattice mode. We present ana-
lytic results guaranteeing their 1/O performance.
Finally, we give experimental results showing how
much improvement these optimizations can yield.

2 Strongest and Weak Outliers and the
Corresponding Intensional Knowl-
edge

In this section, we first introduce the notions of
strongest and weak outliers, and show examples.
Then, we offer a few justifications of why we opt to
work with these notions.

2.1 Definitions

Given an object P which has been identified to be
exceptional in some attribute space Ap (containing
possibly many attributes/dimensions), two items of

knowledge that would be of interest to the user are:
I. What is the smallest set of attributes to explain

why P is exceptional?
II. Is P “dominated” by other outliers?

With respect to question (I), given Ap, we seek to
find all the minimal subsets of attributes in which P
is exceptional. We have the following definition.

Definition 1 Suppose that P is an outlier in the at-
tribute space Ap. P is a non-trivial outlier in Ap if
P is not an outlier in any subspace B C Ap. a

Note that a subspace’s points are simply a projec-
tion of points of a given/original space onto a subset
of its attributes. While question (I) focuses on the ex-
amination of P alone, question (IT) concerns the eval-
uation of P against other outliers. With respect to
question (IT), we seek to find the minimal (sub)sets of
attributes in which there is an outlier—any outlier, be
it P, @, etc. We have the following definition.

Definition 2 Let Ap be an attribute space contain-
ing one or more outliers. Ap is called a strongest out-
lying space if no outlier exists in any subspace B C Ap.
Furthermore, any P that is an outlier in Ap is called
a strongest outlier. a

One reason for why a strongest outlying space Ap
is noteworthy is that this is the first time that Ap
and any of its subspaces contain an outlier. It fol-
lows immediately from the above definitions that if
P is a strongest outlier, then P must be non-trivial.
To completely classify non-trivial outliers, we have the
following definition.

Definition 3 Suppose that P is a non-trivial outlier
in the attribute space Ap. Then if P is not a strongest
outlier, P is called a weak outlier. O

In summary, we differentiate among three kinds of
outliers: strongest. weak, and trivial outliers. Trivial
outliers are the least interesting because they convey
no new information than what was already observed
or reported for some subspace of the given space.

2.2 NHL Players Example Revisited

According to the above definitions, we can represent
the intensional knowledge given in Figure 2 using the
lattice shown in Figure 3. This is the attribute lattice
formed by the 5 attributes in our example, with the
attributes denoted as A, B, C, etc. We use single-lined
rectangles to denote attribute spaces that do not con-
tain any outlier; we use double-lined rectangles to de-
note strongest outlying spaces; and we use dashed rect-
angles to denote spaces that cannot contain strongest
outliers but may contain weak outliers. All strongest
outliers are shown, but for simplicity, not all weak out-
liers and not all edges between nodes are shown. We
have labelled the nodes of the lattice with the outliers
that first appear at a given node (and nowhere below
it). Corresponding to Figure 2, Mario Lemieux is a
strongest outlier in: the 1-D space of power-play goals
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(denoted as “A” in the figure), and the 2-D space of
short-handed goals and game-winning goals (denoted
as “BC”). In the latter space, Jaromir Jagr is also a
strongest outlier. However, Jagr is only a weak out-
lier in the 2-D space “AC” of power-play goals and
game-winning goals, because Jagr is being dominated
by Lemieux in “A”. This example shows that a data
object can be a strongest and/or weak outlier in mul-
tiple spaces at the same time.

Although this is only a very small example, it is easy
to see that such a categorization of outliers conveys far
more information to a user than does a single, unqual-
ified list of all outliers for the largest space only. Thus,
a user who is not hockey literate can actually see which
players dominate which attributes. Even domain ex-
perts may be surprised to find players who surface as
outliers in unusual combinations of attributes. As our
earlier work [KN98] pointed out, outliers need not be
those observations which have extreme values. For ex-
ample, it is quite possible that a player with “average”
values 1s an outlier, simply because that player is so
different from the rest of the players in the dataset.

In a very large dataset containing many attributes,
there may be many outliers, but some of those out-
liers may be strongest outliers which noticeably stand
out among the larger pool of outliers. Such outliers
may get closer scrutiny, as might be the case involving
“worst offenders” in a fraud detection application.

2.3 Justification of Our Choices of Intensional
Knowledge

Earlier, we pointed out that it is valuable to pro-
vide explanations/descriptions about the identified
outliers, but explanations can clearly come in many
different forms. Below, we discuss why we opt to
work with the intensional knowledge associated with
strongest and weak outliers.

e First, we hope the NHL example has served
to argue that the knowledge corresponding to
strongest and weak outliers is intuitive and mean-
ingful to the user, and is otherwise not immedi-
ately derivable by just using the values of the at-
tributes in the space Ap.

e Second, the notions of strongest and weak outliers
are close in spirit with the subspace clustering
problem addressed by Agrawal et al. [AGGR9S].
They obtain not only the clusters in the original
attribute space, but also the clusters in the sub-
spaces. Our work is different from their work in
at least two ways. First, we go beyond minimal
description length (i.e., non-trivial outliers) and
seek to find out whether a non-trivial outlier is
dominated by others—in the sense formalized by
strongest outliers. Imposing a partial order de-
noting the dominance or strength of non-trivial
outliers is well-suited to our task. Second, find-
ing strongest and weak outliers is computationally

214

different from subspace clustering. The remaining
sections of this paper will illustrate why.

e Finally, there are numerous forms of explanations
possible. In general, there is the tradeoff between
what the explanation says and how long it takes to
compute it. For the two reasons given above, we
believe that the explanation offered by strongest
and weak outliers is meaningful. We will show be-
low that their computation is highly optimizable.

In closing this section, we comment that we can ex-
tend the definitions given in Section 2.1 by defining
the notion of top-u strongest or weak outliers, where
we rank strongest or weak outliers P in ascending order
of cardinalities of their associated space Ap. That is,
we prefer an outlier that can be explained with fewer
attributes. The top-u notion, in practice, i1s particu-
larly natural for weak outliers. This is because, given
their nature, weak outliers can be more numerous than
strongest outliers. The top-u notion helps to avoid a
situation whereby too many outliers are returned than
the user cares for, and yet the user is charged for the
entire computation. In the remainder of this paper,
though, we give algorithms that compute all strongest
and weak outliers; it should be easy to see how they
can be modified to give a top-u list.

3 Two Simpler Algorithms for Finding
Strongest and Weak Outliers

In this section, we present a naive algorithm, called
UpLattice, for finding all strongest and/or weak out-
liers. Then, we present a more intelligent algorithm,
called JumpLattice. Before doing so, however, we pro-
vide a short summary in Section 3.1 of the algorithms
developed and evaluated in [KN98] for finding outliers
in a particular space. Readers familiar with that paper
can skip the summary.

3.1 Background Summary: Algorithms for
Finding Outliers in a Particular Space

Given a particular space .4, with cardinality (dimen-
sionality) k, we considered in [KN98] primarily two al-
gorithms ? for finding all outliers in that space. First,
there is Algorithm NL, which for a given amount of
buffer space, uses a nested loop algorithm to find all
outliers. In the worst case, NL checks each pairwise
distance between two objects/tuples, and thus has a
complexity of O(k n?). See [KN98] for details of the
algorithm. Experimental results show that NL is the
faster algorithm for k£ > 5.

2 Actually, we evaluated another strategy, which we call Algo-
rithm INDEX, that is based on a multi-dimensional index such
as an R*-tree. Because this algorithm is dominated by CELL
for small values of &k, and by NL for the remaining values of k,
we skip that algorithm here.



Second, there is Algorithm CELL, which is based
on building an optimized cell structure. The gen-
eral idea is as follows. Let D be the radius of the
local neighbourhood (i.e., the D value selected for
DB(p, D)-outliers). The k-D space is divided into

cells with length equal to % along each dimension.

Each tuple is then quantized (mapped) to an appro-
priate cell. Because of the carefully chosen size of
each cell, we can first eliminate cells, called “red”
cells, that contain too many tuples quantized to them,
and also those cells which are immediate neighbours of
red cells. Thus, very quickly, a significant number of
cells—and the large number of tuples they contain—
are pruned. What remain are called “white” cells, con-
taining “white” tuples. These are tuples P that require
explicit distance calculations with each tuple @) in cer-
tain neighbouring cells. This phase, as expected, can
require many I/O operations, and makes the algorithm
essentially I/O-dominant. While readers are referred
to [KN98] for more details, because the focus of this
paper is on I/O optimizations, we summarize below
the four key phases of 1/O operations:

e Phase 1. Make one pass over the entire dataset
to quantize the tuples into cells, from which the
“non-white” cells are eliminated.

e Phase 2: Read the pages that contain some white
tuples P. We call such pages Class I pages.

e Phase 3: Read the pages that do not contain
any white tuples but contain non-white tuples )
needed by some white tuple P for tuple-by-tuple
processing. We call such pages Class II pages.

e Phase 4: Repeat Phase 2.

In [KN98], we showed why the above four phases of T/O
are all the I/O operations that are needed. Moreover,
we have the following performance guarantee.

Lemma 1 ([KN98]) (1) Class T pages and Class T
pages are mutually exclusive. (2) The total number of
pages read is equal to M+2M;+ M5, where M, M; and
M> are the total number of pages of the entire dataset,
of Class T pages, and of Class IT pages, respectively. (3)
Each page in the dataset is guaranteed to be read at
most 3 times. a

In practice, most pages are read only once or twice.
The complexity of CELL is O(c* n), and experimental
results show that Algorithm CELL is the faster algo-
rithm for k£ < 4.

3.2 A Naive Algorithm: Procedure UpLattice

As suggested in Figure 3, the computation of strongest
and weak outliers can be conducted over the lattice
formed by the attributes. As is done in association rule
mining [AIS93], subspace clustering [AGGR98], and
functional dependencies detection [HKPT98], a stan-
dard algorithmic strategy is to compute or traverse the
lattice in a bottom-up, level-wise fashion. That is to
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Procedure UpLattice(A4)

1 Insert into queue @ all the subsets of attribute set A in
ascending order of cardinalities.

2 While @ is not empty {

2.1 Remove the subset of attributes at the front of Q.
Let that be A’

2.2 Call Procedure FindOutliersInNode(A').
2.3 If there is some outlier found above {
2.3.1 If only strongest outliers are to be found, re-
move from Q all supersets of A’. } }
Procedure FindOutliersInNode(A’)
1 If |A’| < 4, call Procedure CELL(A")
2 Else call Procedure NL(A').

Procedure JumpLattice(A, k)

1 Insert into Q all the subsets of A (which have cardinalities > k)
in ascending order of cardinalities.

2 While @ is not empty {

2.1 Remove the subset of attributes at the front of Q. Let
that be A’

2.2 Call Procedure FindOutliersTnNode(A").
2.3 If there is some outlier found above {

2.3.1 If only strongest outliers are to be found, remove
from Q all supersets of A’

2.3.2 If |A’| = k, call Procedure DrillDown(A’).} }
Procedure DrillDown(A’)

1 Insert into queue @ the proper subsets of A’ in descending
order of cardinalities.

2 While @ is not empty {

2.1 Remove the subset of attributes at the front of Q. Let
that be B.

2.2 Call Procedure FindOutliersInNode(B).

2.3 If |B| > 1 and if no outlier is found in B, remove from Q
all subsets of B. } }

Figure 4: Skeletons for UpLattice and JumpLattice

say, we first find outliers in the 1-D spaces, then in
the 2-D spaces, and so on. This simple algorithm is
outlined in Figure 4.

There are three aspects worth noting about Proce-
dure UpLattice as shown in the figure. First, it should
be clear from Definition 2 that once the space A’ is
found to contain some outlier, any superset of A’ can-
not contain any strongest outlier. This is the purpose
of Step 2.3, and this is one of the few differences be-
tween the computation of strongest and weak outliers.
Note that if only strongest outliers are sought, and in
the very rare event that all strongest outliers appear
at level 1, then UpLattice is very efficient. Second, if
the skeleton shown in Figure 4 is to find weak outliers,
strictly speaking, there should be the additional step
to screen out trivial outliers after Step 2. We do not
include the step here because all the algorithms con-
sidered in this paper differ mainly in how the lattice
is traversed or grouped. Thus, Figure 4 only concen-
trates on this aspect. Third, as summarized in Sec-
tion 3.1, the sub-procedure FindOutliersInNode(.A")
chooses between Algorithms CELL and NL, based on
the cardinality of A’.



3.3 Procedure JumpLattice

A key problem with Procedure UpLattice is that there
could be few outliers (if any) found in the smallest di-
mensional spaces. In other words, a bottom-up strat-
egy may take a lot of wasted effort before a space
containing outliers is encountered. It would be nice
to be able to jump to some node in the intermediate
levels of the lattice, instead of climbing slowly from
the bottom. The advantage is that if there is no out-
lier in some intermediate level node .4’, then none of
the remaining 2¥ — 2 non-empty subsets of A’ (where
k = |A'|) needs to be considered anymore. Figure 4
shows a skeleton of Procedure JumpLattice. Note that
the only differences between JumpLattice and UpLat-
tice are: (i) Step 2.3.2, which deals with the situation
when a space A’ of cardinality k contains some outlier,
and (ii) the level k at which to begin processing. (Note
that JumpLattice is a strict generalization of UpLat-
tice because for k = 1. the former is reduced to the
latter.) We examine these differences below.

3.3.1 Procedure DrillDown

When the space A’ of cardinality k contains some out-
lier, what needs to be done, for both strongest and
weak outliers, is to consider the proper subsets of A’.
This is outlined in Procedure DrillDown in Figure 4.
Specifically, subsets B of A’ are processed one-by-one
by calling the same Procedure FindOutliersInNode(B).
If no outlier is found in B, then the “drill down” can
omit the subspaces of B. The fact that no outlier ex-
ists in B suffices to guarantee that no outlier exists in
any of its subspaces.

3.3.2 Choice of k for JumpLattice

In the above discussion, we motivated why JumpLat-
tice can be useful. However, if JumpLattice starts with
A’ at a level k that turns out to be too high, and A’
does contain some outlier, then the subsets of A’ need
to be examined. In the case that the task is to find
strongest outliers or the top-u strongest /weak outliers,
processing A’ can be completely wasteful (i.e., both
time consuming and unnecessary) in the event that
there is a subset containing an outlier. So the main
question is: What should the value of k& be? Unfor-
tunately, we do not know of any reliable analysis that
can be done to predict an optimal value for every sit-
uation. We do, however, offer the following heuristic.

Figure 5 shows the relative amount of (CPU+1/0)
time taken to find all outliers in a particular space A’
with all parameters set to identical values, except for
the dimensionality & = |.4’| (in effect, running Proce-
dure FindOutliersInNode for varying k). This graph
is based on using the best algorithms among those
summarized in Section 3.1. The results were experi-
mentally obtained and are representative of numerous
other cases. It is clear from the graph that as & in-
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Figure 5: Heuristic Selection of & for JumpLattice

creases from 1 to 3, the “marginal cost” is relatively
small. However, as k increases to 4 and beyond, the
“marginal cost” becomes substantial for each incre-
ment in k. Thus, our heuristic is:

In the absence of any information predicting the
value of k, 3 we pick k to be 3.

In Section 5, we present experimental results compar-
ing JumpLattice with UpLattice. We will report ex-
clusively the results of JumpLattice with & set to 3.
Due to the lack of space, results for other values of %
are not shown: however, for the conclusions we want
to draw, the results with k& = 3 are sufficiently repre-
sentative.

4 Grouped Processing of Multiple
Nodes and Performance Analysis

So far, we have considered two ways of processing the
nodes in the lattice to find strongest and/or weak out-
liers, but in both cases, nodes are processed or ex-
amined one at a time (i.e., via Procedure FindOut-
liersInNode). The objective of this section is to show
how multiple nodes, suitably selected, can be grouped
and processed together. We provide proof of correct-
ness and performance guarantees.

4.1 Grouping Two Nodes Satisfying an Edge
Relationship

We begin by considering the simultaneous processing
of two nodes/spaces using Algorithm CELL, and later

3We only recommend k = 3 in the event that no other in-
formation is available, and there are indeed situations whereby
other values of k& could be more beneficial. One example is a
situation in which the user runs the algorithms with varying
parameter values. Knowing which subspaces contain outliers,
given the current set of parameter values, the value of k& can be
set up more intelligently by comparing the new set of parame-
ter values with the previous set. For example, if the new set of
parameter values has the effect of decreasing the number of out-
liers, then k& should be set higher. We do not pursue the issue of
incremental processing here, but simply comment on the utility
of the general JumpLattice Procedure.



we will generalize this notion to many nodes.

Definition 4 Given two nodes A, B, we say that
A, B satisfy a (directed) edge relationship, denoted as
(A.B). if A D B and |A| = |B|+ 1. That is, an edge

exists between the two nodes in the lattice. O

For the example shown in Figure 3, A = {A, B, C'} and
B = {A, B} satisfy an edge relationship. Recall from
Section 3.1 that Algorithm CELL requires four I/0
phases. The task here is to examine how each of the
four phases can be extended to process the two nodes
simultaneously. During Phase 1 (quantizing the tuples
into cells and eliminating “non-white” cells), process-
ing two nodes together is easy, because separate cell
structures can be maintained. The situation is, how-
ever, very different for the other phases. We carefully
consider those phases. below.

4.1.1 Combined Reading of Class I Pages
(Phase 2)

By the definition given in Section 3.1, Class I pages are
data pages that contain some white tuples. For a given
white tuple P, we use the notation PgI(P) to denote
the single data page that contains P. For a space A,
we use the notation WTy to denote the set of all white
tuples in 4. Then, to generalize, we use the notation
PgI(S) to denote the set of data pages that contain
tuples in the set S, that is, PgI(S) = Upes PgI(P).
The following result identifies a key relationship be-
tween white tuples for two nodes satisfying an edge
relationship.

Lemma 2 Given the edge relationship (A, B), it is
the case that: P is a white tuple in B = P is a white
tuple in A. a

While details of a proof are left to [KN99], the basic
rationale behind this lemma is that the distance be-
tween P and any tuple @) grows from B to A. If there
are not enough tuples surrounding P in a fixed-radius
local neighbourhood in B, there cannot be enough tu-
ples surrounding P in the same-radius neighbourhood
in A. Tt is easy to see that the converse of the lemma
is not true. With the above lemma, we have the fol-
lowing result.

Lemma 3 Given the edge relationship (A, B), it is
the case that: the set of data pages containing white
tuples in B is contained in the corresponding set in A,
that is, PgI(WTg) C Pgl(WTy). m|

The rationale behind the above lemma is that from
Lemma 2, it is necessary that the set of white tuples
in B is contained in the corresponding set in A, i.e.,
WTs C WT4. The significance of the above lemma
is that as far as Phase 2 of Algorithm CELL is con-
cerned, it suffices to read in Class I pages for A for the
processing of both A and B, as summarized below.
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Corollary 1 Given (A, B), the combined set of Class
I pages to process both spaces simultaneously is given

by: PgI( WT4UWTg ) = PgIl(WTx). O

4.1.2 Combined Reading of Class II Pages
(Phase 3)

Next, we consider Class IT pages. We use the notation
PgII(P, A) to denote the set of data pages containing
non-white tuples needed to check whether white tuple
P is an outlier in A. * Then, to generalize, we use the
notation PgII(S,.A) to denote Upeg PgII(P, A).

Lemma 4 Given the edge relationship (A, B), it is the
case that: PgII(P, A) C PgII(P,B), for white tuples
P in B (and therefore in A). |

The rationale behind the lemma is that for checking
whether P is an outlier, because the distance between
P and any other tuple @) grows from B to A, there are
possibly more tuples @ to be examined in B than in A
within a fixed-radius neighbourhood. When compared
with Lemma 3 for Class I pages, the above lemma
points out that—for white tuples P in both B and
A—the containment relationship for Class IT pages is
opposite to that for Class I pages. And as a counter-
point to Corollary 1, we have the following corollary.
It says that for Phase 3 of Algorithm CELL, it suffices
to read in the Class II pages for B, as well as the Class
IT pages for all the white tuples in .4 but not in 5.

Corollary 2 Given (A, B), the combined set of Class
IT pages to process both spaces simultaneously is given
by: PgII(WT4, A)U PglI(WTg,B) = PgII(WTy4 —
WTg, A) U PglI(WTg, A) U PglI(WTg.B) =
PglI(WTy4 — WTg, A)U PglI(WTg, B). O

4.1.3 I/0 Performance Guarantee: Number

of I/0’s Saved

By now. it should be clear that the same four phases
of Algorithm CELL, as shown in Section 3.1, are suffi-
cient to simultaneously process two nodes satisfying an
edge relationship—so long as the Class I and II pages
are modified as given in the previous lemmas. Below,
we consider two kinds of I/O performance guarantees
for the shared processing. The first guarantee applies
to the number of I/O’s that can be saved.

Lemma 5 Compared with processing A and B sep-
arately, grouped processing of (A, B) saves at least
M + 2M, ;5 page reads.

Proof Sketch: Recall from Lemma 1 that if we are to
process A and B separately, the total number of I/O’s
will be (M + .ZMLA + MZA)“" (M + 2M17B + ngg).’

4For Class I pages, it is not necessary to use the space as a
parameter, because regardless of which space we are considering,
it is the same data page that contains the tuple P. For Class I
pages, however, the space A may make a difference.



where My s and M3 s denote the number of Class I and
IT pages for space S, respectively. Based on the two
corollaries above, the total number of 1/O’s required
by the grouped processing of (A, B) is upper bounded
by (M + 2My 4 + Mo+ |PgII(WTA — WTB,.A)l).
The last term is upper bounded by |PgIT(WTy4, A)| =
M> 4. Thus, the total number of 1/O’s saved is at least
M +2M; 5. O

4.1.4 1I/0 Performance Guarantee: Reads per
Page

The second 1/0O performance guarantee applies to the
number of reads per page.

Lemma 6 When applying CELL to process two
spaces (A, B) simultaneously, each page is guaranteed
to be read at most 4 times. a

Recall from Lemma 1 that when CELL is applied
to one space only, Class I and Class Il pages are
mutually exclusive. This is the reason why even
though there are four different phases involving 1/0,
each page is guaranteed to be read at most 3 times.
The situation for two spaces satisfying an edge re-
lationship is different, because the combined Class
I pages as given in Corollary 1 and the combined
Class II pages as given in Corollary 2 are not guar-
anteed to be mutually exclusive. To see this, let
us consider the intersection between PgI(WT4) and
PglI(WT4—WTg, A)\UPgII(WTg, B) by considering
two cases: (a) PgI(WTax) N PglI(WTys — WTg, A),
and (b) PgI(WTy4) N PgIlI(WTg,B).

(a) Since (i) PgI(WTa) N PglI(WT4,A) = 0, and
(it) PglI(WTa, A) DO PglI(WTy — WTg, A),
it is necessary that PgI(WTy4) N PgIlI(WTx4 —
WTg, A) = 0. There is mutual exclusion here.

(b) However, for the intersection PgI(WTy4) N
PgII(WTg,B), we know that (i) PgI(WTg) N
PglI(WTs.B) = §. but (ii) Pgl(WTx) O
PgI(WTg). Therefore, it is not sufficient to con-
clude that PgI(WT4) N PgII(WTg,B) = 0.

The above argument makes it clear that if in fact, for
the specific A, B, there is a page that is read 4 times,
the page must belong to the non-empty intersection
PgI(WT4)N PgII(WTg,B). Whenever this intersec-
tion becomes empty, Lemma 6 above can be strength-
ened to give back the three-reads per page guarantee.
In any case, it should be noted that the guarantee
provided 1s a very pessimistic worst-case. Experimen-
tal results reported in Section 5 will illustrate that in
practice, most pages are only needed once or twice.

4.2 Grouping Multiple Nodes Satisfying a
Path Relationship

So far, we have shown how to combine the processing
of two nodes simultaneously, and we have presented
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an analysis to show how such grouped processing can
be beneficial. Below, we generalize the grouping to
multiple nodes and give corresponding analytic results.

Definition 5 Given the nodes/spaces Aq, ..., Ay, we
say that these spaces satisfy a (directed) path relation-
ship, denoted as (A;, ..., Ay), if (4;, A;;1) satisfies

an edge relationship for all 1 <7 < w. That is, there
is a path in the lattice connecting all the nodes. a

For the example shown in Figure 3, the spaces
{A,B,C,D}, {A,B.C}, {A,B} and {A} satisfy a
path relationship. The following lemma generalizes
the lemmas and corollaries given above for an edge
relationship to a path relationship.

Lemma 7 Given the path relationship (A;, ..., Ay):

e The combined set of Class I pages to process all w
spaces simultaneously is given by: Pgl(WTy, U
D UWTy,) = PgI(WTa,).

e The combined set of Class Il pages to pro-
cess all w spaces simultaneously is given by:
UL, PglI(WTa, . A;) = PglIWTa,.As)
ULs PolI(WTa, —WTa =W Ta,). Ai).

i1

e Compared with processing all w spaces separately,
grouped processing of (A;, ..., Ay) saves at least
(w—1)M +25"_, My 4, page reads.

e When applying CELL to w spaces simultaneously,
each page is guaranteed to be read < 4 times. O

There are two interesting comments to make about
the last two parts of the above lemma. First, with
reference to Lemma 6, the last part says that regard-
less of how many edges there are on a path, the same
worst-case guarantee of at most four-reads per page
still applies. This suggests that the longer the path,
the more shared I/O is possible and the larger is the
saving. Second, the hidden overhead, however, is that
the intersection between Class I pages and Class II
pages grows as the length of the path increases. In
other words, more and more pages are needed four
times, instead of three.

4.3 Grouping Multiple Nodes Satisfying a
Semi-Lattice Relationship

The generality of the analytic framework presented in
Section 4.1 does not stop at the level of path relation-
ships. We now show how to group and process even
more nodes together, while preserving the properties
and the I/O guarantee shown above.

Definition 6 Given multiple spaces A, ..., Ay, we

say that these spaces satisfy a semzi-lattice ‘relafionship,
if there exists a T-element A; for some 1 < i < w
such that the entire set {Aj,..., Ay} consists of all

the subspaces of A; and nothing else. a



For the example shown in Figure 3, the spaces
{A.B,C},{A, B}, {A,C},{B,C}, {A}, {B} and {C}
satisfy a semi-lattice relationship, with the T-element
being the space {A, B, C}.

Like Lemma 7 is for a path relationship, we can
give a general lemma for a semi-lattice relationship.
However, we decide to omit the general lemma here
because the notation would be too messy for the points
we want to make. Instead, we only give results for an
instance of a semi-lattice relationship. and point out a
few interesting aspects.

Lemma 8 Consider a semi-lattice relationship, with
the T-element being the space {A, B, C}.

e The combined set of Class I pages to process all 7
spaces simultaneously is given by: PgI(WTapc).

e The combined set of Class I pages to process all
7 spaces simultaneously is given by:
PgII(WTy, A) U
PglI(WTp,B)U PglI(WTc,C)U PglI(WTap
—WTy — WTB,AB) U PgII(WTAC —WTy —
WTe, AC)U PglI(WTpe —WTp—WTe, BC) U
Pg[[((WTABc—WTAB—. . .—WTA—. . )ABC)

e Compared to processing all 7 spaces separately,
semi-lattice grouped processing saves at least
6M + 2Mi 4 + 2My p + 2Mi c+ 2Mi aB +
2Mi pc + 2Mi ac page reads.

e When applying Algorithm CELL to the 7 spaces
simultaneously, each page is still guaranteed to be
read at most 4 times. a

It is interesting to note that the “at most four-reads
per page” guarantee applies to the path relationship
({A, B, C},{A, B}, {A}), as well as to the semi-lattice
relationship with {A, B, C'} being the T-element. The
difference, again, is that there are many more pages
that need to be read 4 times in the latter relationship.

Finally. it is conceivable that we can simultaneously
process multiple semi-lattice relationships. This begs
the question: In terms of grouped processing of multi-
ple nodes. where is the limit?

e First, there is the limit on the memory side. Our
analysis of grouped processing focuses on I/0O, and
necessitates that there be sufficient memory space
to simultaneously handle multiple nodes. For very
large datasets returning many outliers, multiple
instances of semi-lattice processing may indeed be
problematic.

e Second, there are in fact scenarios where grouped
processing of multiple nodes may not be benefi-
cial. To illustrate, this 1s a good point to tie our
discussion back to Procedures JumpLattice and
DrillDown shown in Figure 4. Consider the space
{A,B,C}. If no outlier is found in {4, B,C},
DrillDown is never called from JumpLattice, and
none of the subspaces needs to be examined. In
contrast, if we begin by processing the whole
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semi-lattice relationship with {A, B,C} as the
T-element, we will have done more CPU oper-
ations and I/O reads (four-reads versus three-
reads) than necessary. In Section 5, we will com-
pare these different strategies experimentally.

4.4 Grouped Processing with Algorithm NL

So far in this section, we have focused on grouped pro-
cessing of multiple nodes using Algorithm CELL. This
has been the focus because grouped processing is ex-
pected to be prevalent in situations where CELL is the
baseline algorithm of choice and when strongest out-
liers are sought. But in some other situations, it is
possible that Algorithm NL would need to be used as
well (i.e., for k-D spaces where k£ > 5). Then, in those
cases, as with CELL, grouped processing of nodes with
NL can bring about an efficiency gain. For complete-
ness, we outline how to do that with NL.

Recall that to allow CELL to process multiple
nodes simultaneously, we deal with two key issues:
(1) how to make the algorithm itself process multiple
nodes/spaces (e.g., combined Class T and II pages),
and (ii) how to group and select the multiple nodes
effectively (e.g., path and semi-lattice relationships).
Here, we examine the same two issues for NL. The first
issue is conceptually simple. If there is only one space
for NL to process, NL keeps for each tuple P a count
of the tuples that are within the fixed-radius neigh-
bourhood of P in that space. If there are w spaces for
NL to process simultaneously, NL can keep for each
tuple P a count for each of the w spaces. Because the
w counts are so unrelated to each other (except that
they share the same I/0), the second issue of grouping
and selecting the w spaces for NL. becomes simple as
well, unlike the situation for CELL. Theoretically, any
w spaces can do. In practice, though, the heuristic
of picking the spaces in ascending cardinalities is the
most sensible, assuming we wish to find the strongest
outliers or the top-u strongest/weak outliers.

5 Experimental Evaluation
5.1 Experimental Setup

Our base dataset is an 855-record dataset consisting
of 1995-96 NHL player performance statistics. These
statistics include numbers of goals, assists, points,
penalty minutes, shots on goal, etc. Since this real-life
dataset is quite small, and since we want to test our
algorithms on large, disk-resident datasets, we created
a number of synthetic datasets mirroring the distribu-
tion of statistics within the NHL dataset. Specifically,
we determined the distribution of the attributes in
the original dataset by using a 10-partition histogram.
Then, we generated datasets containing up to 2 mil-
lion tuples, and whose distribution mirrored that of
the base dataset. Each data page held up to 13 tuples.
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Figure 6: Scenario I: Qutliers Found Only in 3-D Spaces

We implemented all four strategies analyzed so far.
Specifically, for the results reported below:

e “UP” denotes UpLattice shown in Figure 4.

e “DRILL” denotes JumpLattice using DrillDown
to process the subspaces if necessary.

e “PATH” denotes JumpLattice that, instead of
calling DrillDown, applies grouped processing of
nodes satisfying a path relationship.

e Finally, “SEMI” denotes JumpLattice that ap-
plies grouped processing of nodes satisfying a
semi-lattice relationship.

Our tests were run on a time-sharing environment
provided by a Sun Microsystems Ultra-60 workstation.
Unless otherwise indicated, all times shown in this pa-
per are CPU times plus I/O times. Buffer management
was done by the operating system. Even though dif-
ferent buffer management strategies may change the
reported results in absolute terms, they do not change
how the various algorithms compare with one another
in relative terms.

5.2 Computing All Strongest Outliers
In the first set of experiments, we focus on the com-
putation of all strongest outliers. The results reported
below are based on a 4-dimensional space. We compare
the number of I/O operations and the overall runtime
required by the four different strategies. As discussed
before, the relative performance of the strategies de-
pends on how many outliers are contained in the 3-D
space, and in its 2-D and 1-D subspaces. Below, we
report on the results of three different scenarios: (I)
outliers found only in the 3-D space but not in any of
the subspaces, (IT) a small number of outliers (e.g., 10)
found in some 2-D subspace(s) but not in any of the 1-
D subspaces, and (III) a large number of outliers (e.g.,
400) found in the 2-D subspaces. Later in this sec-
tion, we comment on the scenario where all strongest
outliers are found at the 1-D level.

Figure 6 shows how the four strategies compare un-
der Scenario (I). Figure 6(a) compares their overall
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runtimes, and Figure 6(b) shows their total number
of pages read for 2 million tuples. UpLattice is the
only strategy that does poorly, while the other three
give almost identical performance running more than
three times faster than, and requiring only about 30%
of the 1/O’s needed by, UpLattice. Thus, Scenario
(T) is highly unfavourable to the bottom-up approach
taken by UpLattice. Note that there is a strong 1-to-1
correspondence between the overall runtime and the
number of pages read, indicating that this is a very
I/O dominant job. From now on, we only show the
overall runtime figures.

Figures 7(a) and (b) show the overall runtimes of
the four strategies under Scenarios (IT) and (IIT), re-
spectively. While UpLattice remains a poor strategy.
DrillDown can do worse. Both the path and semi-
lattice strategies continue to be best, with relatively
little difference between them. Notice that as there
are more outliers contained in the 2-D subspaces, the
gap between UpLattice and the path and semi-lattice
strategies becomes smaller. Eventually, when all 1-D
subspaces contain outliers, even the path and semi-
lattice strategies deteriorate beyond UpLattice. In
practice though, the scenario where all strongest out-
liers are found in 1-D subspaces. is expected to be rare.
For more typical scenarios, it is clear that the path and
the semi-lattice strategies are the ones to use.

5.3 Computing Top-u Outliers

The experimental results reported so far pertain to
strongest outliers only. In this set of experiments,
we compare the performance of the four strategies
for computing the top-u non-trivial (i.e., strongest or
weak) outliers. Recall that when computing strongest
outliers only, once a space is found to contain outliers,
none of its superspaces needs to be computed. But
when it is necessary to compute the weak outliers also.
even the superspaces need to be examined. In general,
this scenario favours the path and semi-lattice strate-
gies because of the shared processing.

Figure 8 shows how the overall runtime changes for
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computing top-u outliers when u varies from 100 to
700, for 500,000 tuples. UpLattice starts off poorly
even for small values of u, and remains poor as u in-
creases. DrillDown starts off very well, but quickly
degrades to be the worst. Both the path and the semi-
lattice strategies are again the winners, with a slight
edge being given to the path strategy. The main rea-
son for this difference i1s: because computation stops
once the first u non-trivial outliers are found, the semi-
lattice strategy may over-do what is actually needed.

With respect to the four-reads per page guaran-
tee, we provide the following results to give readers
an appreciation for the fact that four-reads per page
are encountered relatively infrequently in practice. For
example, for a 2 million tuple dataset using the semi-
lattice strategy, with 4.8 million pages read in all, 0.17
million pages were read exactly once, 1.7 million page
were read exactly twice, 0.4 million pages were read
exactly three times, and only 13.025 pages were read
exactly four times.

In Section 4.3, we pointed out that we can gener-
alize from the path strategy to the semi-lattice strat-
egy. and even further. This leads to the question of
how far we can go and where we should stop. The
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experimental results presented so far indicate that for
computing strongest/weak outliers, there appears to
be little promise to go beyond the semi-lattice strat-
egy. In fact, between the path and the semi-lattice
strategies, we recommend the former. It gives results
at least as good as the semi-lattice strategy, and it is
simpler in many ways.

5.4 Grouped Processing with Algorithm NL

So far, we have seen how grouped processing pays off in
lower dimensional spaces using Algorithm CELL. We
now turn our attention to higher dimensional spaces.
As mentioned before, Algorithm CELL is the preferred
algorithm for & < 4. Now suppose that a lattice con-
tains two or more unprocessed nodes of cardinality
> 5, that more outliers are sought, and that all pro-
cessing for nodes of cardinality < 4 is complete. Then,
we can either use Algorithm NL to process each re-
maining node on an individual basis, or we can group
nodes and thus share I/O’s.

Below are some performance results for grouped
NL processing, in which seven nodes are processed
together—one k& = 6 node and all six of its £ = 5 sub-
spaces. For a dataset containing 500,000 tuples, using
25% buffering, individual NL processing on these seven
nodes took 24% longer than with grouped NL process-
ing. For this case, grouped processing requires 16 MB
of memory, which is almost twice as much memory as
each individual case requires. If we were to equate
the memory allocations to about 8 MB (by providing
only 9% buffering for the grouped case), then indi-
vidual processing took only about 1% more time than
grouped processing. Although we do not make perfor-
mance guarantees, we observe that grouped NL pro-
cessing generally yields only modest gains (e.g., 10%).
This is due to the fact that the overall time for grouped
NL processing is roughly broken down into 95% CPU
time and 5% I/O time. Thus, while it is true that
I/O operations are reduced significantly, the impact
of shared I/O may not be significant overall. In sum-
mary, because of simplicity and the somewhat unpre-



dictable nature of finding outlying spaces, we conclude
that individual NL processing should be used in place
of grouped NL processing.

6 Conclusions
This paper focused on finding intensional knowledge
of outliers to help explain why the identified outliers
are exceptional. To the best of our knowledge, we are
the first to go beyond identification to explanation.
The intensional knowledge considered in this pa-
per is structural in nature. Through the concepts of
strongest and weak outliers, our algorithms report, for
each identified outlier P in the original attribute space
Ap, the minimal subspaces in which P is outlying, and
how P compares against other identified outliers with
respect to these minimal subspaces. We believe that
the reported intensional knowledge is valuable to the
user in helping to evaluate the validity of the identi-
fication, and in improving the user’s understanding of
the dataset in general and the outliers in particular.
We presented four strategies for the computation
of strongest and weak outliers: UpLattice, JumpLat-
tice with DrillDown, JumpLattice with Path, and
JumpLattice with Semi-Lattice. For the latter two
strategies, we showed that the kinds of grouped pro-
cessing they perform are correct, and we presented a
detailed analysis on their I/O performance. We pro-
vided two I/O performance guarantees: one on the
minimum number of I/O’s saved, and the other on the
maximum number of times a data page has to be read.
The 1/O analytic results are confirmed by experi-
mental results. Under various scenarios, grouped pro-
cessing with the path or the semi-lattice strategies
can bring about a 65-75% reduction in 1/O opera-
tions and overall runtime, when compared with the
alternatives. And even though computing intensional
knowledge appears to be time-consuming, especially
for large and/or high dimensional datasets, our results
clearly show that effective sharing of I/O’s, via the
path or the semi-lattice strategies, can go a long way
towards reducing the overall runtime.
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