N1111110C 1 vueupdAauny 1uvl L Yuvouuv .L_LBBJ. _/Bul)_/ \o‘ub]. A O

Yvivlil

Multi-Threading'

Kian-Lee Tan

Cheng Hian Goh?

Beng Chin Ooi

Dept. of Computer Science, National University of Singapore

Abstract

In this paper, we study the progressive eval-
uation of nested queries with aggregates (i.e.,
the inner query block is an aggregate query),
where users are provided progressively with
(approximate) answers as the inner query
block is being evaluated. We propose an in-
cremental evaluation strategy to present an-
swers that are certainly in the final answer
space first, before presenting those whose va-
lidity may be affected as the inner query ag-
gregates are refined. We also propose a multi-
threaded model in evaluating such queries: the
outer query is assigned to a thread, and the
inner query is assigned to another thread. The
time-sliced across the two subqueries is nonde-
terministic in the sense that the user controls
the relative rate at which these subqueries are
being evaluated. We implemented a proto-
type system using JAVA, and evaluated our
system. Our results show the effectiveness of
the proposed mechanisms in providing online
feedback that reduce the initial waiting time
of users significantly without sacrificing on the
quality of the answers.

1 Introduction

Database management systems are increasingly be-
ing employed to support end users in their decision
making. Such users have a three-fold requirement:
(1) the answers are summary data that characterize
the datasets or are derived from or based on summary

tThis work is partially supported by the University Research
Grant RP982694.

{Deceased on 1 April 1999.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

18

data, (2) imprecise answers can be tolerated, i.e., “ap-

proximately correct” answers suffice, and (3) the an-
swers must be obtained quickly [7]. As such, database
support for efficient computation of summary statis-
tics in the form of aggregation queries becomes very
important.

Traditionally, aggregation queries are evaluated un-
der a blocking erecution model (i.e., all data are ex-
amined and all operations are performed before a final
answer is returned) to obtain precise answers. How-
ever, with greater availability of large volumes of data,
this i1s not only computationally expensive, but users
would find the waiting time unacceptable. Recently,
Hellerstein et. al. [7] proposed a promising approach
called online aggregation to meet the users require-
ments. Instead of presenting a final answer to the user
(after a long period of waiting), an aggregation query
is evaluated progressively: as soon as some data are
evaluated, approximate answers with their respective
running confidence intervals are presented; as more
data are examined, the answers and their correspond-
ing running confidence intervals are refined. In so do-
ing, users are occupied with approximate answers and
can terminate the evaluation prematurely if these an-
swers suffice for their decision making. However, the
work 1s restricted to simple non-nested queries.

Nesting of query blocks is a very interesting and
powerful feature of SQL. In fact, it has been noted that
the nested form is often easier for users to formulate
and to understand [12]. Existing research (on nested
queries) has sought methods of reducing the evalua-
tion costs, typically by transforming a nested query
into a logically equivalent form that can be evaluated
more efficiently [2, 3, 10]. However, the class of nested
queries with aggregates 1s especially interesting. First,
such queries are commonly encountered. For example,
to list employees who are high-earners where “high-
earners” are defined as a certain factor of the aver-
age salaries of employees, requires a nested query with
an average function. As another example, to list de-
partments whose budgets are less than a factor of the
average salaries of employees in those departments is
another nested query involving the average function.
Second, nested queries with aggregates cannot typi-
cally be expressed in a single query without nesting.
Third, while some nested queries are transformed into
non-nested forms that can be optimized into and eval-

traditional blocking execution model (1.e., the inner
query block is processed before the outer block is pro-
cessed) to evaluate such nested queries would frustrate
the users if they are forced to wait without feedback.

In this paper, we present a mnovel approach for
providing rapid online feedback for evaluating nested
queries with aggregates (i.e., nested query where the
inner query block is an aggregate query). For sim-
plicity, we restrict our discussion to single-level nest-
ing; the principles discussed can be easily generalized
to multiple levels of nesting. Our technique is simi-
lar but goes beyond the online aggregation approach
presented in [7]. Processing nested queries with aggre-
gates online pose several interesting challenges that
non-nested queries do not offer. First, it is not clear
what forms the answers to a query and how the results
should be interpreted, given that the inner query is an
aggregate query. Furthermore, the outer query may
or may not involve another aggregate, and the outer
and the inner query blocks may or may not be cor-
related. Second, it is not clear how processing of the
query can be optimally time-sliced across the outer and
inner subqueries. This paper presents our solutions to
these two issues. For the first problem, the answer
space to the query begins with a superset of the final
answers and is refined as the aggregates from the inner
query block are refined. For the intermediary answers
to be meaningful, they have to be interpreted with
the aggregates from the inner query. We also propose
an incremental evaluation strategy to present answers
that are certainly in the final answer space first, be-
fore presenting those whose validity may be affected
as the inner query aggregates are refined. For the sec-
ond problem, we propose a multi-threaded evaluation
model where the different query blocks are evaluated
concurrently in a multi-threaded fashion. The time-
sliced across the two query blocks is nondeterministic
in the sense that the user controls the relative rate at
which these subqueries are being evaluated. We imple-
mented a prototype system using JAVA | and evaluated
our system. Qur results show the effectiveness of the
proposed mechanisms in reducing the initial waiting
time without sacrificing on the quality of the answers.

The remainder of this paper is organized as follows.
In the next section, we present an overview of the pro-
posed approach, together with issues that need to be
addressed. In Section 3, we present a multi-threaded
model for evaluating nested-queries with aggregates.
Sections 4 and 5 present the various mechanisms and
algorithms that are needed for the evaluation of the
inner and outer query blocks respectively. Section 6
present the design, implementation and evaluation of
a prototype system. In Section 7, we review some re-
lated work, and finally, we conclude in Section 8.

19

e

posed approach with an example to reiterate the moti-
vation behind online aggregation, i.e., to provide fast
response of (approximate) answers to users. Before
that, we shall review the two types of nested queries
with aggregates that are relevant to our work.

L T T T o

2.1 Types of Nested Queries with Aggregates

In [10], Kim presented a classification of nested query
types, two of which involve aggregates in the inner
query block. For illustration, we shall use the example
of a large admissions database that records informa-
tion on persons (of different nationalities) applying to
graduate business schools. The database has the fol-
lowing schema:

applicant(pid,city,income,gmat)
location(city, country)

In the relation applicant, we assume that an individ-
ual is uniquely identified by pid, resides in city, earns
an annual salary given by income, and has a GMAT-
score of gmat. The relation location identifies the
country which a given city is in.

2.1.1 Type-A Nesting

A nested query is said to be of Type-A nesting if the
inner query block @ has no correlation with the outer
query block (i.e., it does not contain a join predicate
that references a relation in the outer query block)
and 1f the SELECT clause of () consists of an aggregate
function over a column in an inner relation. An ex-
ample is the query that asks for applicants that earn
a salary greater than 60,000 and have GMAT scores
higher than the average score of applicants from the
states. The SQL expression of this query is given by
the left expression of Figure 1.

Traditionally, this query is evaluated in two steps.
In the first step, the inner query block is computed
to determine the average GMAT score of US appli-
cants. In the second step, the outer query is eval-
uated with the inner query block being replaced by
its answer. Unfortunately, step 1 is time consum-
ing as the system needs to examine all result tuples
in (applicant b location) to compute the average
function. Thus, it takes a long period of time before
the answers to the (outer) query are returned to the
user. This is frustrating to users, and new mode of
computing such queries is desirable.

2.1.2 Type JA Nesting

Type JA nesting is present when the inner query block
and outer query block are correlated (i.e., the WHERE
clause of the inner query block contains a join predi-
cate that references a relation of an outer query block),

SELECT al.pid, al.salary
FROM applicant al
WHERE al.salary > 60000
AND al.gmat >
(SELECT avg(a.gmat)
FROM applicant a, location 1
WHERE a.city = l.city
AND 1.country = ‘‘USA’’);

SELECT al.pid, al.salary
FROM applicant al

WHERE al.salary > 60000
AND al.gmat >

(SELECT avg(a2.gmat)

FROM applicant a2, location 1
WHERE al.city = a2.city
AND a2.city = 1l.city

AND 1.country = ‘‘USA’’);

Figure 1: SQL expressions of sample Type-A and Type-JA queries.

and the inner SELECT clause consists of an aggre-
gate function over an inner relation. An example is
the query that asks for applicants that earn a salary
greater than 60,000 and have GMAT scores higher
than the average score of applicants from the same
US city (see the right expression of Figure 1). This
query can be evaluated efficiently by transforming it
into the following two queries [10]:

Inner Query:

(SELECT city, avg(a.gmat)

FROM application a, location 1
WHERE a.city = l.city

AND 1.country = ‘‘USA’’

GROUP BY city);

Outer Query:

SELECT a.pid, a.salary
FROM applicant a, tmpAgg t
WHERE a.salary > 60000
AND a.city = t.cl

AND a.gmat > t.c2

where tmpAgg is the temporary relation for the inner
query, and c1 and ¢2 are the first and second columns
in tmpAgg respectively.

Again, under the traditional query evaluation
model, the inner query will be completely evaluated
before the outer query can proceed. This may be un-
acceptable to users as the evaluation of the inner query
will take a long time.

2.2 Overview of Multi-threaded and Omnline
Evaluation of Nested Queries

The proposed approach works as follows. Instead of
blocking the execution of the outer query block (un-
til the inner query block completes), the outer query
block is allowed to proceed as soon as the inner query
block produces some estimates for its answers. In other
words, the inner query block will be evaluated progres-
sively to provide estimates quickly so that the outer
query block can proceed to be evaluated (progres-
sively). In this way, users can have rapid feedback (i.e.,

20

approximate answers) to their nested queries. Subse-
quently, both query blocks can be evaluated concur-
rently: as the inner query estimates are refined pro-
gressiwvely, the answers to the outer query block are
also refined based on the inner query block’s refined
aggregates.

The proposed user interface is shown in Figure 2.
The interface will appear (almost) immediately after
the user submits the query and can begin to display
output as soon as the system has examined sufficient
data to compute an estimate for the inner query. The
interface consists of two panels. The right panel dis-
plays the result of the inner subquery: the current
estimates of the aggregations together with the con-
fidence and intervals that reflect the probabilistic es-
timates of the proximity of the current running ag-
gregates to the final aggregate values. This result is
updated regularly as more samples are examined. The
% done and status bar display provide an indication
of the amount of processing remaining before the com-
putation of the aggregates completes. The left panel
displays the output of the query, the result of which
should be interpreted together with the current run-
ning aggregates. The Stop button in the right panel
allows us to terminate the sampling process in com-
puting the aggregates. The Next button in the left
panel will retrieve the next answer set that satisfies
the query. We note that terminating the aggregate
computation does not necessarily mean termination of
the query as we can still retrieve answers based on the
current estimated aggregate values. For example, Fig-
ure 2(a) shows a sample display of the Type A nesting
query in Section 2.1.1. From the right panel, we note
that 10% of the work on the inner query has been per-
formed, and the current running average for GMAT
scores is 500 & 12.6 at 95% confidence. From the left
panel, the user can browse through the answer tuples
that are retrieved based on the current estimate. In
fact, for all the answer tuples that are displayed, the
GMAT scores are much higher than the estimate, so
much so that the user can be quite certain that these
tuples will eventually be in the answer space. This

pid salary gmat pid salary gmat city
pa4 79000 598 p44 79000 598 LA City Avg Conf Int =
p25 86000 598 Avg 500 p25 86000 598 LA Avg 780 —
05 66000 598 LA 580 95 102 Avg 500
p3 p305 66000 598 NYC vy
%8 62000 597 NYC 570 95 121
Conf 95 p4498 62000 597 NYC 50 20 95 88 Conf 95
p678 88000 597 p678 88000 507 SFO : Conf 95
:ggg“ %%0 222 Int 126 pl024 90000 597 SFO Int 105 i 126
p332 10000 596 AU AU 555 95 111 n !
%se ?gg%g ggg p76 65000 596 AU Inner 500 5
p876 78000 596 SJ
P oo o PS03 - —
10% done
Nod I =3 I L —
= 10% done = 10% done 10% done
Terminate processing | l Terminate processing] IQl:. |OQ | Terminate processing I
(a) Type A nesting. (b) Type JA nesting. (c) Outer block with aggregate.
Figure 2: An online nested aggregation interface.

clearly demonstrates the advantage of the proposed
approach: correct results can be returned to the user
quickly compared to the traditional blocking execution
model. We shall defer the discussion on how we deal
with over- or under- estimation of the inner running
aggregates when we look at the evaluation strategies.

As another example, consider the Type JA nesting
query in Section 2.1.2. The sample display is shown in
Figure 2(b). Again, from the right panel, the user can
know the running average GMAT scores for the various
US cities. The result displayed on the left panel shows
those tuples that satisfy the query conditions using the
inner query block’s running averages.

We note that besides the targeted attributes, the
answers include the additional attributes involved in
the aggregation (gmat for the Type A nesting example,
and (city, gmat) for the Type JA nesting example).
This additional information allows the user to know
which answer tuples are likely to be correct, and which
are “approximately” correct (in the sense that future
refinement may remove them from the final answer
space).

The final example, which is more complex, 1s essen-
tially a Type A nested query with aggregate function
in the other query. The query

SELECT avg(al.gmat)
FROM applicant al
WHERE al.salary > 60000
AND al.gmat >
(SELECT avg(a.gmat)
FROM applicant a, location 1
WHERE a.city = l.city
AND country = ‘‘USA’’);

asks for the average GMAT score of applicants that
earn a salary greater than 60,000 and have GMAT
scores higher than the average score of applicants from
the states. The desired interface with sample results 1s
shown in Figure 2(c). The display on the right panel
is similar to the earlier examples. The left panel 1s
essentially similar to the right panel, except that the
results are presented differently. There is also the %

21

done and status bar display to indicate the amount
of processing remaining before the computation of the
outer aggregate completes. We have also introduced a
sliding bar to allow users to control the relative rate
at which the two query blocks should be evaluated.
Instead of displaying only one single aggregate that is
based on the current estimate, the interface allows the
user to view multiple average values based on different
estimates from the inner query block. For example,
the value shown represents the query’s average when
the inner query’s average is 500. The confidence and
interval represent the proximity of the average (of the
query) at 95% confidence given that the inner query
aggregate is actually 500. By clicking the up arrow at
the top of the scrollbar, we will get the answer (query’s
average with the confidence and interval) for the case
when the inner query’s average is 499. Similarly, by
clicking the down arrow at the bottom of the scrollbar,
the answer with the inner query’s average being 501
will be displayed. Such an approach allows the user
to have a feel of what the average would be had the
estimate change (as a result of refining the running
aggregate for the inner query).

From the above discussion, we have identified a
number of issues that have to be addressed to real-
ize the proposed online evaluation of nested queries:

1. How can we interleave the execution of the inner
and outer query blocks, i.e., how can we optimally
timeslice the processing time across the two query

blocks?

Inner query block. How much work must be
done for the inner query block before the outer
query block can proceed to be evaluated? How
can the confidences and intervals be determined?

Outer query block. What are the answer spaces
of a query (result of the outer query block)? The
answer space of a query is the set of answer tuples
relevant to the query. Since the inner query re-
sults are progressively refined, the answer spaces
also change (as the outer query is evaluated based

to be correct or approximately correct” Are there
mechanisms to provide users with answers that
are likely to be correct first, before those that are
approximately correct?

In this paper, we shall focus on issues 1 and 3. So-
lutions to the second issue can be borrowed from the
work in [4, 7], i.e., by randomly accessing the tuples
from the inner query, we can apply the formulas in
[4, 5, 7] to obtain the running aggregates and their
confidence intervals.

3 A Multi-Threaded Nested Query
Evaluation Model

Traditionally, query processing is performed under a
sequential (or single-threaded) model, i.e., one task has
to be completed before the next can be initiated. In
other words, for nested queries with aggregates, the
inner query has to be evaluated completely before the
other query can be evaluated. Even if we can inter-
leave multiple tasks (e.g., sample data from inner sub-
query, evaluate outer query, sample more data from
inner subquery, evaluate outer query, etc.), the sequen-
tial model would make it cumbersome to facilitate the
features discussed in Section 2.

In this section, we propose that the nested query
be evaluated using a multi-threaded model. Under the
multi-threaded model, two threads are used to evalu-
ate the nested query in a concurrent fashion — thread
IQ for the inner query block and thread 0Q for the
outer query block:

e Thread IQ evaluates the inner query block in
phases. In the first phase, the estimates and their
corresponding confidence intervals are obtained.
In subsequent phases, these are refined.

Thread 0Q also evaluates the outer query block
in phases (the number of phases is not the same
as that of thread IQ). In the first phase, some an-
swers are produced quickly based on the estimates
obtained from thread IQ. Subsequent phases re-
fine the answer spaces and produce refined an-
SWers or more answers.

The two threads operate in a producer/consumer re-
lationship, where thread IQ produces some estimates
of the inner query block (with increasing accuracy),
which are then consumed by thread 0Q in its evalua-
tion of the outer query block. We note that the two
threads have to be synchronized only once — when
thread IQ must produce some estimates before thread
0Q can begin evaluating the outer query. Subsequently,
both threads operate concurrently and there is no need
to synchronize between the two as thread 0Q can use
the current running aggregates from the inner query
block to proceed.

22

approach:

e For nested queries that retrieve answer tuples,
thread IQ is always in a ready state, i.e., it is al-
ways being processed to refine the inner block ag-
gregates (except when it is being preempted by
thread 0Q, terminated by user or blocked because
of /O operations). On the other hand, thread 0Q
is always suspended except when the answers are
to be produced. This occurs in the initial phase
to produce the first answer set quickly, and subse-
quently, when the user requests for more answer
tuples. In these instances, thread 0Q resumes pro-
cessing with a higher priority than thread IQ. This
allows it to preempt thread IQ so that it can re-
turn answer tuples to the user rapidly.

For nested queries that return aggregate values,
both threads share equal time-slice by default.
However, users may tune the time-slice by adjust-
ing a sliding bar at the user interface (see Fig-

ure 2(c)).

In both the above cases, the evaluation of the outer
query is “controlled” by the user. Thus, the allocation
of time-slice between the two query blocks is essen-
tially nondeterministic. In fact, the answers returned
may also vary in the sense that the outer query may be
based on different refined estimates at different time.
In other words, for a user who takes a longer time to
browse through each set of answers, each subsequent
answer set will be based on a more accurate estimates
(as more data are examined in the inner query). On
the contrary, for a user that browses through the an-
swers quickly, most of the answers are based on esti-
mates that are more “crude”.

4 Evaluation of Inner Query

In this section, we present the mechanisms and algo-
rithms employed in evaluating the inner query in order
to support the proposed online feedback approach.

The inner query is evaluated in phases, each of
which produces a set of answer tuples from which the
running aggregates can be estimated. At the end of
each phase, the updated running aggregates will be
reflected in the user interface as well as being passed
to the outer query. We note that the aggregates are
computed cumulatively. In other words, suppose there
are k phases, and phase i (1 <17 < k) produces #; an-
swer tuples; then, the aggregates at phase i are com-
puted from 23:1 t; answer tuples. Moreover, the first
phase 1s the most critical in the sense that sufficient
answer tuples must be produced before meaningful es-
timates can be obtained. For subsequent phases, since
the aggregates are computed cumulatively, the number
of answer tuples is less of a concern.

1. For the inner query to provide meaningful run-
ning aggregates, mechanisms to generate or access
random answer tuples (from which the aggregates
are computed) are needed. Randomness is crucial
since any biases may lead to poor estimates of the
aggregate which are far from the actual aggregate
values. In this paper, our focus is not on devel-
oping such strategies, and hence we opt to em-
ploy existing techniques. To access data randomly
from a relation, we can employ the heap scan for
heap files [7], indezx scan when there is no cor-
relation between the attributes being aggregated
and the indexed attribute [7] and the pseudo-
random sampling schemes for B*-trees [13]. For
join queries, the ripple join algorithms [5] can be
applied.

. For the result (of the full query) to be useful, the
estimate for the aggregate has to be meaningful.
The proximity of the running aggregate to the ac-
tual value can be expressed in terms of a running
confidence interval. The width of such a confi-
dence interval serves as a measure of the preci-
sion of the estimator. Furthermore, we need to
be able to determine the number of samples for
the aggregate to be meaningful. In this paper, we
restrict our work to large-sample confidence inter-
vals based on the central limit theorems (CLT’s)
which contain the final answer p with a proba-
bility approximately equal to p. [4, 7] provided
the formulas and efficient methods to do so. In
particular, given a confidence parameter p and a
confidence interval half-width ¢,,, let n denotes the
size of a random sample required for constructing
a large-sample confidence interval for y that meets

2.2
the given specification. Then ¢2 = % (see [4,7])
where z, is the (p+ 1)/2 quantile of ® (the cumu-
lative distribution function of an N (0, 1) random
variable), so that ®(z,) = (p + 1)/2, and s is the
sample variance.

5

In this section, we present the mechanisms and algo-
rithms that the proposed approach adopt in evaluat-
ing the outer query. We shall present the evaluation
strategies for outer queries without aggregates first,
followed by outer queries with aggregates.

Evaluation of Outer Query

5.1 Owuter Query Block Without Aggregate

Queries whose outer query blocks do not involve an
aggregate operation are of the form:

SELECT target-list FROM relation-list
WHERE qualification
AND R.A op (inner query with aggregate);

23

>, <, <, =. I'he sample queries 1n Section 2.1.1 and
Section 2.1.2 are examples of queries in this category.

Traditionally, there is only one answer space (i.e.,
one unique set of tuples) to the query and the answers
are the correct answers. However, under the multi-
threaded evaluation model, the answers are based on
estimates. Furthermore, as the estimates are refined,
the answers may change. We shall first discuss the an-
swer spaces and their interpretations before presenting

the evaluation strategies.

5.1.1 Type-A Nested Query

Consider first the case when the nested query is of
Type-A nesting. Let the set of running aggregates
produced for the inner query block in the course of
evaluating the nested query be [y + 61, f, £ s, .. .,
By * 6n, where r; &+ 4; is the running aggregate for
phase i, and [, is the final (actual) aggregate (and
d, = 0). Further, let the corresponding answer spaces

be ./41, ./42, cay .An

Answer Space and Its Interpretation

Since zz; may take on different value in different phases,
the answer space .4; is not likely to be the same as
A;, for ¢« # j. However, if the tuples of the relations
are randomly accessed, we can expect the overlap in
the answer spaces to be significant. We note that the
concept of answer space is only a logical one and not
all answers will be retrieved for the user at a single
phase (recall that we only display a set of tuples each
time). More specifically, suppose the current running
aggregate is §—4 < p < fi+4§. Then the corresponding
answer space is given as follows.

o If the operation
is “>” (or “>”) (i.e., R.A > aggregate or R.A
> aggregate), the answer space includes tuples
that satisfy the condition R.A >7T—d —¢ (or R. A
> i — & — ¢€) for some predetermined ¢ > 0. In
other words, the answer space should (hopefully)
contain a superset of the final answers. In this
way, we hope not to miss any answer should the
actual aggregate be out of the range bound by the
running aggregate.

Similarly, if the operation is “<” (or “<”), the
answer space includes tuples that satisfy the con-
dition R.A < T+ +¢ (or R.AL T+ +¢) for
some predetermined e.

Finally, if the operation is “=", the answer space

will include all tuples that satisfy the condition
A—3d—€e<R.A<T+6+e

As the estimate is refined, the current answer space
is also refined accordingly — tuples retrieved that no

remainder query may have to be generated to retrieve
the remaining tuples.

For the tuples to be useful, the user must have some
means of ascertaining its quality, 1.e., whether 1t is
likely to be correct (in the final answer set), approx-
imately correct (most likely to be in) or likely to be
incorrect (likely to be out). Our approach is to in-
clude the attribute R.A in the target list (if it is not
already user specified). In this way, the user knows
exactly the value of R.A, and hence can take note of
those tuples that are “fuzzy”. (Alternatively, we can
determine some statistical measures to reflect the con-
fidence intervals of the answer tuples. This method
is, in our opinion, less useful since the user is still not
clear which tuples are valid.) For example, if the op-
eration is >, and the estimate has running aggregate
of 150 £ 3, and an answer tuple has R.A = 200, then
the user can be quite sure that this tuple will be in the
final answer. Note that if the data are accessed ran-
domly, it 1s unlikely for the estimator to be way out of
the actual aggregate value.

Evaluation Strategy

Since answers are returned in sets (say 10 tuples each
time), we propose that answer tuples that are most
likely to be correct are returned to the users first. In
this way, the users are likely to be browsing through
correct answers (while the inner aggregates are being
refined), and hopefully by the time they browse answer
tuples that are towards the end of the answer space,
the actual inner aggregates would have been computed
and no (or few) poor quality answers are returned to
users. Moreover, as argued in [7], it is not uncom-
mon for users to terminate prematurely (i.e., before all
tuples are retrieved), in which case, browsing correct
answers at the initial phases would be highly desirable.

Let the running aggregate be r+ §. Let the nested
predicate be R.A > aggregate. Furthermore, let the
maximum value of R.A be V. This value is available
in the DBMS statistics. The proposed approach splits
the answer space into k partitions, each covering a
range of P = [M] In other words, records
in the range [V — P, V] are in partition 1, records
in the range [V — 2P, V — P) are in partition 2, and
records in the range [V — kP, V — (k — 1)P) are in
partition k. The proposed algorithm returns answers
in order of the partition number, i.e., answers are ob-
tained from partition 1, followed by partition 2, and
so on. The algorithmic description of the strategy is
shown in Figure 3. (For ease of presentation, we have
omitted the case when a remainder query is needed.)
The algorithm is highly abstracted. The routine Out-
erThreadWithoutAggregate is invoked whenever
the user requests for more records (or when the very
first set of results is to be displayed). Tt first ob-

24

of the aggregate. 'I'hen, 1t calls the next() 1iterator
multiple times (10 in the figure) to display a set of
(10) records. The next() iterator is the cruz of the
algorithm. Tt returns a record (according to the par-
tition order) each time when invoked. Tt essentially
comprises two fragments. The first fragment evalu-
ates the outer query, returns answer tuples from parti-
tion 1, and produces the other partitions (lines 2-14).
This is achieved by using another iterator getNex-
tResult() that evaluates the outer query based on
conventional algorithm, Note that only records that
are in the answer space will be returned (for exam-
ple, if R.A > aggregate, then the answers must be
greater than @ — § — ¢). The answer tuple from get-
NextResult() is either returned (being an output of
next()) if it belongs to partition 1 or written to the
appropriate partition. The second fragment retrieves
answer tuples from the partitions, beginning from par-
tition 2 (lines 15-22). Since the inner query aggregate
value may change, the tuples in the partitions have to
be checked again with the corresponding running ag-
gregate at the time when it is invoked. We note that
if the inner query completes before the outer query
completes, then § = 0 and ¢ = 0.

When the nested predicates involve the operations
>, >, <, <, the above strategy can be applied. How-
ever, for “=", we adopt the simple strategy of just
presenting all tuples whose R. A values fall in the range
[—30—¢, @+ d+¢]. This is because the number of
tuples are not expected to be many (compared with
those involving inequalities). Moreover, it is not com-
mon to have nested predicates with the = operation.

A final note before we leave this section: it is “fine”
for a displayed answer to fall out of the final answer
space as the user would have the value of R. A for him
to know the validity of the tuple.

5.1.2 Type-JA Nested Query

For Type-JA nested queries, the answer spaces, their
interpretations and the evaluation strategy are essen-
tially similar to Type-A nested queries. However, in
each phase, we have multiple answer subspaces each
associated with one of the running aggregate values in
the inner query block (and multiple ¢ values). More-
over, the target list will include the pair (join attribute,
aggregate value) so that user can assess the validity of
the answer tuples (see Figure 2(b) for an example).

5.2 Outer Query Block With Aggregate

This category of queries has the form:

SELECT aggregate FROM relation-list
WHERE qualification
AND R.A op (inner query with aggregate);

L. SCUlLulllllllsﬂsélCéﬂzUC\H’ U’ C}
3. for (1=0;71<10;i++4) {
4. r = next()

5. ifr£0

6. display(r)

7. else

8. exit()

9. }

0.}

1.}

L. Will11c \111ULC} 1

3. r = getNextResult(z, d, €)
4. ifr=0{

5. more = false

6. 1=2

7. } else {

8. J = determinePartition(r)
9. ifj=1

10. return(r)

11. else

12. cacheAnswer(r, P;)
13. }

14.

15. while j < n {

16. r = getNextPartition(P;, &, d, €)
17. fr=20

18. i+

19. else

20. return(r)

21}

22. if j > n return(f)

23. }

Figure 3: Algorithm for Type-A query without aggregates.

where the outermost query involves an aggregate oper-
ation, R is one of the relations in relation-1list and
A is an attribute of R, and op is one of the operations
>, 2>, < <, =

Traditionally, there i1s only one single answer tu-
ple. Under the new query evaluation model, the outer
query produces a set of answer tuples, each of which
is a running aggregate, based on the inner query esti-
mates. Consider first Type-A nested queries. Suppose
the current running aggregate is p — 8§ < pu < g+ 4.
Then, we compute the running aggregate of the outer
query for a number of distinct values in the range
[t — & —¢, pu+d+¢], for some predetermined ¢. For
example, let € = 2. If the inner query’s running ag-
gregate is 500 + 3, then we can compute 11 running
aggregates of the outer query: the first assumes that
the actual aggregate value of the inner query is 495,
the second for 496, and so on. Thus, the user can have
quick feedback on what the outer-aggregate (with its
confidence and interval) would be should the inner es-
timates be refined.

Figure 4 shows an abstracted algorithm. After de-
termining the current running aggregate of the inner
query block, the algorithm proceeds to obtain sam-
ple result tuples of the outer query (lines 6-9). This
is again achieved with the help of the next() iter-
ator. The next() here is similar to the one used
in routine OuterThreadWithoutAggregate() ex-
cept that the result tuples are generated using ran-
dom access methods and ripple join algorithms (rather

25

than conventional algorithms in iterator getNextRe-
sult()). The stopping criterion depends on how much
timeslice is allocated for the thread. Next, assuming
that there are n,g, aggregates to be computed for the
outer query, the aggregates and their confidences and
intervals are determined. Two points to note: first,
if the inner query block completes execution, then
dig = 0, ¢ = 0 and ngqyy will be reset to 1; second,
the loop from lines 12-16 is only logical (for ease of
presentation) in the sense that the actual implemen-
tation exploits the fact that the computation of the
aggregates and the corresponding confidences and in-
tervals at a later iteration can reuse results from ear-
lier computation. Thus, evaluating multiple running
aggregates is not that costly.

Type-JA nested queries are also interpreted and
evaluated in a similar manner. The only complexity
comes from the fact that the outer query involves an
additional join operation.

6 Implementation and Evaluation

To study and validate the effectiveness of the proposed
approach, we implemented the proposed approach. In
this section, we shall present our findings. We use
the initial response time (i.e., the time when the first
answer set is presented) as the metric for comparison.
The initial response time is taken to be the average
value over multiple runs of the same experiment.

L. scblLulllllllsﬂsélCéﬂbC\qu’ Ulq’ C}
3. lmin :,u_iq—(iiq—e

4. lmax :m+62q+€

5. currSample =

6. repeat

7. r = next()

8. currSample = currSample U r
9. until stopping criterion or r = §§
10. if 6;g =0

11. Nagg = 1

12. for (1 =0;1 < nagg; 1 ++) {

13. Mi = lin + (i + 1) % tmaz=tmin
14. computeConfIntervals(fiog, doq, conf, m;)
15. display (fog, doq, conf, m;)

16.

Figure 4: Algorithm for outer query with an aggregate.

6.1 Implementation and Experimental Setup

The proposed approach is implemented in Java on a
SUN UltraSparc2 workstation. Java is the language of
choice mainly because of its powerful graphical user in-
terface components and its support for multithreading.
The current implementation consists of basic compo-
nents necessary to facilitate online feedback: an access
method that retrieves data randomly, a hash-based
ripple join algorithm, a statistical analysis routine for
efficiently computing the confidence and interval of an
aggregate, and the proposed incremental evaluation
strategy. The current system only supports the av-
erage function.

We use the example database in Section 2. The
database has the following two self-explanatory tables:

applicant(pid, fname, lname, live_in, income, gmat)

location(cityid, city, country, region, description)

Here, pid and cityid are keys of the respective ta-
bles, and live_in is a foreign key (and hence has the
same domain as cityid). The applicant table has
1,000,000 tuples and are generated as follows: eno is
set by counting 1 to 1,000,000, income is randomly
picked from [10000,60000], gmat is generated using a
normal distribution with mean of 550 and is restricted
to the range [200,800]. The domain of live_in is
the same as that of location.cityid and will be
described shortly. We have fixed 50% of the appli-
cants to be from the US. fname and lname are simply
padded with “garbage” characters to ensure that the
applicant table is 200 bytes long.

The location table contains 10,000 tuples, and is
generated in a similar manner as applicant: cityid
is set from 1 to 10,000; region is randomly distributed
in [1,100] to reflect the region of a country (e.g.,

26

make up a 200-byte location tuple.

6.2 Experiment 1: Outer Queries Without

Aggregates

In our first set of experiments, we study nested queries
whose outer queries do not involve aggregates. The ex-
periments are evaluated with the incremental strategy
partitioning the answer tuples into two partitions. In
all experiments, we set € to be 1% of the estimated
aggregate from the inner query block.

For the first experiment, we examine a Type-A
nested query that selects the pid of applicants whose
salary is greater than 59500 and the GMAT score is
greater than the average GMAT-score of applicants
from the US region. The resultant answer space has
about 5000 tuples. Figure 5(a) shows the half-width of
the confidence interval over the initial response time of
the query. We note that the half-width is measured in
terms of percentage with respect to the estimated ag-
gregate value. As shown in the figure, the conventional
blocking model takes more than 700 sec before the first
set of tuples starts to appear on the display. For the
proposed approach, the half-width of the interval is
obtained with 99% confidence, and the evaluation of
the applicant table in the outer query is based on
a sequential scan of the table. We note that for the
proposed approach, we can have the first set of tuples
appearing as early as 10 sec when the half-width is
about 8% of the estimated aggregate. As shown, even
if we were to wait till the half-width is about 1% before
we start evaluating the outer query, the first set of tu-
ples would appear before 100 sec, which is far shorter
than that of the conventional approach. Our investiga-
tion also shows that the answer tuples retrieved from
partition 1 are all correct answers, 1.e., they are in the
final answer space. Thus, the result demonstrates that
the proposed approach can provide quick and correct
answers to users.

We also study the effect of user browsing time. As
users take longer time to browse the result, subsequent
requests will be based on better running aggregates.
On the other hand, a shorter browsing time will imply
that the results are likely to be based on running ag-
gregates generated by fewer samples. We study three
different user browsing time, t = 5, 10, and 20 sec, i.e.,
after every 10 tuples are retrieved, the user waits for
t sec before requesting for the next set of tuples. Fig-
ure 5(b) shows the result of the experiment. As shown,
in almost all cases, by the time the user has browsed
through 20 answer sets, the half-width is already re-
duced to 1%. Moreover, these 20 answer sets are all
from partition 1 which contains all correct answers.

Finally, we also study the effect of number of par-
titions on the incremental strategy. In this experi-
ment, we fixed the half-width to be 5%, i.e., the outer

BlocKing ivioael Lov T
o H Multithreaded Model N
g &0 o 160 8
5 5 g Br
T 500 - ® 140 T
£ T \ £
S £ 120 =
@ 400 - = o]
15 g 100 5 30 Index ——
= s Size = 5000
£ aop 5 8op g Size'=100000 -
o z | o
= 60 |- =
E 200 F : = 5}
a0 b
100 |- 2L
0 I B 1 1 J 0 g I L | 20 I L I I)
0 2 4 6 8 10 0 2 6 8 10 0 2 4 6 8 10

half-width (% of estimated aggregate) at 99% confidence

(a) Initial response time.

half-width (% of estimated aggregate) at 99% confidence

(b) Effect of browsing time.

Number of partitions

(c) Effect of answer size.

Figure 5: Type-A nested query where the outer query does not involve an aggregate.

query will be evaluated only after the half-width for
the aggregate of the inner query has reached 5% of
the estimated aggregate value. We vary the number
of partitions from 1 to 10. The result is shown in Fig-
ure 5(c). We shall look at the curve with result size of
5000 tuples. As shown, it turns out that the number of
partitions can be crucial (when the number of answer
tuples is small, i.e., 5000 out of 1000000 tuples). For
small number of partitions, the proportion of answer
tuples falling into these partitions is large. As a result,
it takes a shorter time to find a set of tuples in an ar-
bitrary partition (as table applicant is sequentially
scanned). On the contrary, for large number of parti-
tions, each partition contains a small number of answer
tuples; and hence finding a set of tuples in a partition
will take a longer time (more tuples in applicant has
to be scanned before we can obtain a set of tuples).
The same figure also shows another curve with result
size of 100000 tuples. This is produced by changing
the selection predicate on salary to retrieve applicants
who earn greater than 50000. However, we note that
the number of partitions is hardly a factor in this case.
The reason is because for large answer sizes, it does
not take a long time to find a set of tuples to display.
On the contrary, when the answer size 1s small, 1t will
take a longer time to produce a set of tuples, and the
time will be lengthened with smaller number of par-
titions. Thus, depending on the answer size, different
number of partitions may be employed for optimal per-
formance. We have also included a third curve which
shows the initial response time had the applicant ta-
ble been indexed. The response time to produce the
first set of tuples is the same regardless of the answer
size, and is clearly better than sequentially scanning
the applicant table.

We also repeated the experiment for a Type-JA
nested query. The query selects the pid of US ap-
plicants whose salary is greater than 50000 and the
GMAT score is greater than the average GMAT-score
of applicants from the same US city. Figure 6(a) shows
the half-width of the confidence interval over the ini-

27

tial response time of the query for one city only (since
the inner query generates an estimate for a city, there
will be as many half-width as the number of cities).
In our work, all cities have about the same number of
matching tuples, and so, one is sufficient to serve as
a representative example. As before, the half-width is
measured in terms of percentage with respect to the
estimated aggregate value. Once again, the conven-
tional blocking model takes a long time before the first
tuple is produced. However, we note that the initial
response time is also slightly above 700 sec despite that
the query is more complex now. The reason for this
is because the number of US cities is about 100, and
the intermediate results are being stored in the main
memory instead of writing out to disk. To produce the
first answer set to the query is thus not much slower
than the case without a join operation.

For the proposed approach, the half-width of the in-
terval is obtained with 99% confidence, and the evalua-
tion of the outer query is based on a conventional hash-
based join of the table (with the incremental strategy).
We note that the proposed approach remains effective.
The first set of tuples starts to appear at about 20 sec
when the half-width is about 10% of the estimated
aggregate. If we had picked a half-width of 1% be-
fore evaluating the outer query, the first set of tuples
would appear at about 200 sec. While this is 10 times
as much compared to the first experiment, it is still
much shorter than that of the conventional approach.
The initial response time is higher (compared to the
first experiment) because the inner query is generat-
ing a set of estimates, and each has to have sufficient
samples before the estimate can be meaningful. As in
the earlier experiment, we note that all answers in the
first partition are correct answers.

We also study the effect of user browsing time by
using three different user browsing time, t = 5, 10, and
20 sec. Figure 5(b) shows the result of the experiment.
As shown, if the user browsing time is low (i.e., 5 sec),
it will take about 60 answer sets before the half-width
is reduced to 1%. On the other hand, when the brows-

Blocking Voael
600 Multithreaded Model
c 500 -
g
= 400
8
=4
% 300
14
200
100
0 1 1 i 1 1 J
0 2 4 6 8 10

half-width (% of estimated aggregate) at 99% confidence

(a) Initial response time.

Number of interations

0 2 4 6 8 10
half-width (% of estimated aggregate) at 99% confidence

(b) Effect of browsing time.

Figure 6: Type-JA nested query where the outer query does not involve an aggregate.

ing time is 20 sec, it takes fewer than 20 answer sets
before the half-width dropped to 1%. In any case, the
number of answer sets is small in all cases. Again, all
the 20 answer sets contain the correct answers.

From the experiments, it is clear that the multi-
threaded model proposed can provide quick answers
to users without sacrificing on the quality of the ini-
tial answers.

6.3 Experiment 2: Outer Queries With Ag-
gregates

In this experiment, we study the performance of the
proposed approach for outer queries with aggregates.
We shall evaluate the Type-A nested query that finds
the average GMAT score of applicants whose salary is
greater than 50000 and has GMAT score greater than
the average GMAT-score of applicants from the US re-
gion. For this experiment, we also set € to be 1% of the
inner query’s running aggregate. Figure 7 shows the
result of this experiment. In this study, we use the de-
fault of equal time being allocated to each query block.
In the figure, the number of iterations represents the
number of timeslice that has been expended on each
thread.

Our first observation (see Figure 7(a)) is that the
proposed approach can provide very fast feedback to
the user compared to the traditional blocking model.
The traditional model requires evaluating both the in-
ner and outer query blocks completely before produc-
ing the final answer tuple. Because of the large table
sizes, this takes up a total of almost 1400 sec. On the
contrary, the proposed approach starts to produce the
first estimate on the 8th iteration which has an initial
time of 11 sec only!

Figure 7(b) and Figure 7(c) show the half-widths of
the inner and outer query running aggregates at 99%
confidence respectively. From the figures, we note that
the half-widths drop rapidly. Within 200 iterations
(which is about 200 sec from Figure 7(a)), the half-
width for the inner query has reduced to less than 1%

28

while that of the outer query has dropped to less than
0.1% (this is only for one value of the outer query;
the result is similar for other values). This results
clearly show that the proposed approach is a promising
alternative to the conventional blocking model: it can
produce reasonably good answers to users quickly.

7 Related Work

In [7], Hellerstein et. al. proposed modifications to
database engine to support online aggregation. These
include techniques to randomly access data, to evalu-
ate operations (such as join and sort) without block-
ing, to incorporate statistical analysis [4], etc. For
complex aggregate queries involving joins, the authors
also proposed a new family of join algorithms, called
ripple joins [5]. Experimental studies showed that on-
line aggregation is promising and can reduce the ini-
tial response time. Moreover, the confidence intervals
converge in a reasonable time. However, these work
focused on non-nested queries.

To facilitate online aggregation, it is important that
records be accessed in random order and that the run-
ning aggregate be computed meaningfully for it to be
useful. Sampling from base relations provide a means
of randomly accessing records [8, 9]. In [13], Olken
studied the methods to access records randomly from
Bt-trees and hash files, and how random samples can
be obtained from relational operations and from select-
project-join queries.

When records are accessed in a random order, the
running aggregate can be viewed as a statistical es-
timator of the final result. As such, the precision
of the running aggregate to the final result can be
expressed in terms of a running confidence intervals.
In [4, 7], formulas for running confidence intervals in
the case of single table and multi-table AVG, COUNT,
SUM, VARIANCE and STDEV queries with join and selec-
tion predicates are presented together with methods
to compute these formulas efficiently. Duplicate elim-
ination with GROUP-BY operations are also considered.

S 12
(2]
2 1000 g
= i 9
8 800 g T
& S
. P
= 600 | 3
fs =\
£ £ °
= 400 | g
5
g 3r
200 s
’ B
: H] -
0 1 1 1 1 J o 0 1
0 200 400 600 800 1000 & 0 200

Number of iterations

(a) Initial response time.

& 03
S o
o
5|
g
[=2
8 oz
B
3
E
B
‘5 01
g
<
] e
. H —
1 — — J w 0 1 1 1 1]
600 80 1000 = 0 200 400 600 800 1000

Number of iterations

(b) Half-width of inner query.

Number of iterations

(c) Half-width of outer query.

Figure 7: Type-A nested query where the outer query involves an aggregate.

Several earlier work [6, 8, 9, 11] have also addressed
the issue of obtaining confidence intervals.

There has also been some work on fast-first query
processing, that returns the first few answers to users
quickly. These work largely focused on developing
pipelined join methods or cost models that can pre-
dict the cost to obtain the first few rows of a query
result set [1, 15], and aim to minimize initial response
time. More recently, Tan et. al. [14] studied how a
query can be rewritten into subqueries so that users
can obtain the answers to the first subquery quickly.

8 Conclusion

In this paper, we have proposed a mechanism to pro-
vide rapid feedback to users issuing nested queries
with aggregates. The proposed approach evaluates
a nested query progressively using a multi-threaded
evaluation model: as soon as the inner query produces
estimates to its aggregates, the outer query is evalu-
ated to produce approximate answers to users; as the
inner query’s estimates are refined, the approximate
answers are refined too. We have implemented a pro-
totype system using JAVA | and evaluated our system.
Our results showed that the proposed mechanisms can
provide rapid online feedback without sacrificing much
on the quality of the answers.

References

[1] R. Bayardo and D. Miranker. Processing queries for
the first few answers. In CIKM’96, Rockville, MD,
1996.

U. Dayal. Of nests and trees: A unified approach
of processing queries that contain nested subqueries,
aggregates, and quantifiers. In VLDB’87, pages 197—
208, Brighton, England, September 1987.

(2]

R. Ganski and H.K.T. Wong. Optimization of nested
sql queries revisited. In SIGMOD’87, pages 23-33,
June 1987.

29

[4] P. J. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM’96, pages
51-63, 1997.

P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In SIGM0D’99, Philadelphia, June 1999.

P.J. Haas, J.F. Naughton, S. Seshadri, and A.N.
Swami. Selectivity and cost estimation for joins based
on random sampling. Journal of Computer and Sys-
tem Sciences, 52(3), June 1996.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. On-
line aggregation. In SIGMOD’97, pages 171-182, June
1997.

W.C. Hou, G. Ozsoyoglua, and B.K. Taneja. Statis-
tical estimators for relational algebra expressions. In
PODS’88, pages 276-287, Austin, March 1988.

W.C. Hou, G. Ozsoyoglua, and B.K. Taneja. Process-

ing aggregate relational queries with hard time con-

straints. In PODS’89, pages 68-77, Portland, May
1989.
[10] W. Kim. On optimizing an sql-like nested query. ACM

Transactions on Database Systmes, 7(3), September
1982.

R.J. Lipton, J.F. Naughton, D.A. Schneider, and
S. Seshadri. Efficient sampling strategies for relational
database operations. Theoretical Computer Science,
116, 1993.

G.M. Lohman, D. Daniels, ..M. Haas, R. Kistler, and
P.G. Selinger. Optimization of nested queries in a
distributed relational database. In VLDB’84, pages
403-415, Singapore, June 1984.

F. Olken. Random Sampling from Databases. PhD
thesis, University of California, Berkeley, 1993.

K. L. Tan, C. H. Goh, and B. C. Ooi. On getting some
answers quickly, and then more later. In ICDE’99,
Sydney, Australia, March 1999.

A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in parallel main-memory environment. In
PDIS’91, pages 68-77, Miami Beach, December 1991.

[11]

[12]

[13]

[14]

[15]

