
Networked Data Management Design Points

James Hamilton

Microsoft SQL Server Development
One Microsoft Way

Redmond, WA
USA

JamesRH@microsoft.com

1. Introduction

Data management in a networked world presents us with
some of the same challenges that we’ve seen in the past,
but emphasizes our ability to deal with scale, in that there
are several orders of magnitude more database users, and
database sizes are rising more quickly than Moore’s law.
We have considerably less control over the structure of
the data than in the past and must efficiently operate over
poorly or weakly specified schema.

After more than 30 years of evolution, and substantial
commercial success, database technology is more relevant
now than ever. We are close to being able to keep all
human produced information stored and machine
accessible, and to having all devices owned by all people
online. These advances will force us towards new client
device programming models, and will require much more
research in query processing techniques and algorithms,
not just on performance, but on returning approximate
result sets, new indexing techniques, and support for a
multi-tiered caching data management hierarchy.
Database administration will move from a job
classification to an automatic system performed operation,
and there will be dramatic changes in database server
architectures.

2. The Client DB Environment

International Data Corporation (www.idc.com) estimates
the number of US Internet users in 1998 at 51 million and
the worldwide count at 131 million. In 2001, they expect
the worldwide count to hit 319 million, at which point
there will be 515 million connected devices. And,
although these estimates seem quite reasonable, the
numbers could arguably be substantially higher once we
start networking non-standard computing devices such as
VCRs, televisions, and other home automation functions.
Just surveying my house and counting devices that have
memory or internal state that require setting or
configuration produces over a hundred count including
(often with multiple copies of each): cell phones, water
heater, clocks, radios, sprinkler controllers, oven (clock),
microwave (clock), watches, televisions, CD players,
VCRs, PH controller (fresh water aquarium), wave maker
(marine aquarium), aquarium light controllers, home
thermostat, desktop computers, laptop computers, several
palmtop computers, refrigerator, and many more. Each of
these devices requires independent attention to be set,
many need to be reset after a power failure, and none of
these devices cooperate or feedback today. Just setting all
the clocks in the house after a power failure can be a bit
painful given that few modern devices don’t include a
clock these days (VCR, stove, microwave, TV,
thermostat, etc.). Instead of having on average, 1 to 2
devices per person connected to the net, we could see
several hundred each, yielding a 2 orders of magnitude
increase in the number of network-connected devices
ranging to upwards of hundreds of billions.

Connecting these devices and having them interoperate
and share data is quite compelling. Rather than putting on
my home air-conditioning when the house temperature
starts to climb it might make sense for the system to

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

202

observe that I’m not currently in the house and shut off
the 4,000 watts of lights over the fish tank and ensure the
the tank still receives the appropriate daily photoperiod by
putting them back on once the house has returned to a
more moderate temperature.

Clearly there are many inhibitors to such
interconnection happening in the near future, such as the
multiple-hundred million non-networked install base, and
the lack of a widely supported appliance interconnection
standard. To be successful an existing infrastructure such
as power line, radio, or telephone must be exploited rather
than requiring that the home be rewired. So, although it
won’t happen immediately, it appears inevitable that it
will happen. Microsoft and a consortium of others have
proposed Universal Plug and Play (www.upnp.org) as an
appliance interconnection standard. Sony is aggressively
supporting IEEE 1394 as a digital appliance
interconnection mechanism
(www.sel.sony.com/semi/ieee1394wp.html) and they
predict that the market for these devices will grow from
the current 2 million devices to 460 million units by 2011.

The growth of the network-connected user population,
in conjunction with a substantial predicted increase in the
number of network-connected devices per user, will lead
to 100’s of billions of network connected devices. And,
of course, the whole point behind network connecting
these devices is so they can share data. In effect, each of
these devices is a database client in a huge web of
interconnected database management systems.

2.1. Is Client DB Size Really the Issue?

Currently, DB footprint has been the dominant issue in
discussions of client side database management systems
perhaps followed by the implementation language in
which the database was written (SIGMOD99, “Honey I
shrunk the database: footprint, Mobility, and beyond”). I
argue that both features are either irrelevant or rapidly
becoming so.

P alm to p R A M S ize T rend

0

5

10

15

20

25

30

35

90 91 92 93 94 95 96 97 98 99 00 01 02

P alm to p R A M M o o re ’s Law

S h a r p IQ7 0 0 0

S h a r p IQ8 3 0 0 m

H P 9 5 L X

H P 10 0 L X H P 2 0 0 L X
Ev e r e x A 2 0

Ev e r e x (u p d a t e)

Consider the device resource growth driven by
Moore’s law. We are very close to having the resources
even on the smallest devices to support standard
applications and programming infrastructure. In the
figure above, I plot the RAM sizes in black of the 5
palmtop devices I’ve owned over the last 10 years and, in
grey , I plot the Moore’s law predicted growth.

This data predicts that a commodity price point (under
$500) palmtop device will have 32 MB of memory by
2002 and, if the current memory growth rate continues,
will have 128 MB before 2005. Since most of these
devices exhibit a significant degree of specialization and
therefore have less than general system memory resource
requirements, it would appear that we are very near to
having the memory resources needed to support standard
operating systems, database management systems, and
applications. Special device specific programming
models and database programming interfaces can only be
justified when space is unaffordable. Even a year ago this
was obviously the case. However, with available memory
growing exponentially without increase in price, why
would we trade off programmer time to rewrite features a
second time in order to save memory resources?
Programmer costs are rapidly increasing, and the limiting
resource for most software projects is skilled developers.
Even saving half of the memory in a more memory
efficient implementation cannot justify or recover the
additional time and expense of a custom infrastructure.

Saving memory at this cost is unaffordable.

The argument that the database implementation
language is important centers around the need to
automatically install the application software and database
software infrastructure on each client when needed.
Obviously this is an important feature but, equally
obviously, Java isn’t required to achieve this goal. For
example, Office 2000 is composed of many components
most of which don’t need to be installed until needed.
When a feature is accessed, it can be automatically
installed on the client. As client-side devices evolve, all
the data stored on client system should just be a cache of
those most recently used applications and data. Nothing
should have to be explicitly installed. This is an
important attribute of a networked client database-
programming infrastructure but it does not dictate that any
particular programming language be used.

If database footprint and implementation language
aren’t the most important attributes of a networked data
management infrastructure, then what is? I argue that the
number one characteristic will be supporting a
programming interface and execution environment that is
symmetric with the server tiers. Any program should be
able to run on any device, anywhere in the multi-tier
computing hierarchy. Different devices will exhibit

203

different performance characteristics, many will be
optimized to support a narrow set of features at a given
point in time, but every device will support exactly the
same programming interface and execution environment.
Further, such infrastructures will support automatic
installation of both data and applications, in effect just
being redundant caches of resources available elsewhere
on the network. The distinguishing features of client-side
devices should be input/output device support, size, and
battery life.

3. Networked DB Design points

3.1. Save Everything for all Time

In “How Much Information Is There In the World”
(www.lesk.com/mlesk/ksg97/ksg.html), Michael Lesk
argues that we are on the cusp of being able to store all
information produced by the human race and never need
to delete anything. His argument is based upon summing
all the yearly media sales and information sources in the
US and then extrapolating to worldwide quantities using
GNP ratios:

• Paper sources: less 160 terabytes
• Cinema: less than 166 terabytes
• Images: 520,000 terabytes
• Broadcasting 80,000 terabytes
• Sound: 60 terabytes
• Telephony: 4,000,000 terabytes

These data yield a sum of approximately 5,000
petabytes. Others have estimated the number to be as
high as 12,000 petabytes but most estimates appear to
agree that the total amount of data produced annually is
on the order of thousands of petabytes.

Looking at the worldwide storage production as
estimated by Optitek for 1998, we get about 13,000
petabytes leading to the conclusion that annual tape and
disk production are on verge of being able to store all
human produced data.

At least three database management system related
conclusions follow from this data: 1) the amount of online
storage is climbing prodigiously fast and it’s increasingly
network attached, 2) the bulk of the data in the world is
unstructured or only weakly structured, and 3) current
query techniques and algorithms will perform poorly on a
corpus with these composition and size characteristics.
Much of the data that is currently without apparent
structure will be self-describing (with XML being the
most likely mechanism). Query systems will efficiently
exploit hidden structure returning less “noise” on each
query and allowing efficient joins between data in
different data storage systems.

Pre-computed results, summary tables, materialized
views, multiple redundant index structures, and detailed
distribution and cardinality metadata are all space/query
time trade-off that will make sense as our online data
sizes rapidly increase.

3.2. DB Administration a Major Deployment Barrier

Server administrative costs dominate both software and
hardware costs, and with hardware and software costs
continuing to decline, this ratio worsens each year.
However, some early research is showing significant
promise. Surajit Chaudhuri of Microsoft Research is
leading the Autoadmin project
(http://www.research.microsoft.com/research/db/AutoAd
min/default.htm) the focus of which is to automate all
database administrative activity. Early work on index
tuning was published at SIGMOD’98. Essentially, auto
administration techniques trade off machine resources to
perform database administrative tasks. Given that
hardware costs are rapidly trending towards zero while,
database administration costs stubbornly remain constant
or even climb year-to-year, this is an excellent trade-off.
SQL Server 7.0 shipped the first result of this research,
the index-tuning wizard. As research activity in this area
increases across the industry, we should eventually be
able to automatically create and destroy indexes as
dictated by query load balanced against update activity
and available system resources. Materialized views are
another form of redundant data that today require
administrative tuning but, over time, should be
automatically managed by the system. Another automatic
administrative feature demonstrated by Microsoft SQL
Server is the automatic computation of data distribution
and cardinality statistics as needed by the optimizer.
Resource-based administrative decisions are much better
made dynamically by the database management system
than left to an administrator, partly to avoid the
administrative costs, and partly because automatic
reconfiguration adapts more quickly and efficiently to
changing query loads. Microsoft SQL Server has
implemented dynamic memory reconfiguration, and other
features such as automatic degree-of-parallelism selection
are common in commercial products. So, the industry as
a whole is making progress, but it remains perhaps the
most important problem we face.

3.3. Affordable Availability

The ubiquity of the Internet allows many companies to
make their back office systems directly accessible to
customers without sales people as intermediaries. This
can dramatically decrease the cost of providing a service
and improve the quality of that service, but it has the
effect of making the back office system into the front
office. There no longer is a layer of service or sales
representative between the back office system and the
customer, so any interruption of service has immediate

204

negative impact. In addition to this intolerance to
unexpected downtime, 24-hour availability requirements
make it very difficult to perform periodic offline
maintenance and upgrade operations. Paradoxically,
database management system size and complexity has
been on the increase for years – many systems have
grown by at least a factor of two over the last 5 years – at
the same time that system availability is becoming
increasingly important.

From spending many attempting to build bug free
database management systems, it became increasingly
clear to me that, as an industry, we do an excellent job of
removing functional errors. The bugs that actually get
missed tend to be complicated combinations of different
operations and sequences of relatively unlikely events.
These problems are insidiously difficult to isolate without
years of testing and we simply can’t wait that long prior to
shipping. This class of bug is very difficult to remove but
their interesting characteristic is that, if a failed operation
is re-run, it’s very unlikely that the same sequence of
multi-user events will again lead to failure. Typically a
failed operation will succeed if it is re-run. Jim Gray has
described these bugs Heisenbugs in the talk “Heisenbugs:
A Probabilistic Approach to availability”
(http://research.microsoft.com/~gray/Talks) and in an
earlier paper. Several commercial database management
systems exploit characteristics of these bugs to increase
system availability. For example, Tandem will attempt to
re-run the operation on a surviving process pair and
Microsoft Exchange will re-try failed I/O operations. We
need to make systems resilient to such failures rather than
trying to remove them at great time and development
expense.

3.4. Redundant Data, Summary Data, and Metadata

Efficient point access to data, the core of most transaction
processing systems, is very close to a solved problem
across the industry. TP systems tend to scale with the
number of user, number of customers or, in the limit, the
number of people on the planet. However, large decision
support and data analysis problems are not nearly so well
behaved. Database size is growing faster than Moore’s
law (David Patterson; SIGMOD’98 keynote address) and
the amount of data referenced by a single query can be a
substantial part of the total database size. While many
improvements remain to be made, a couple of factors are
working in our favor. Perhaps the most significant is that
dramatic increases in the amount of available storage
online will allow use of multiple redundant copies of data
for more efficient data access. These copies include, for
example, mirrored disks where the non-busy member of
the pair can support a read while the other member is
busy. Also included in this class are index structures and
materialized views, which allow query results or sub-
results to be stored and automatically maintained. In

addition to being able to store redundant copies of data
affordably, we’ll also continue to allocate larger
percentages of the total database size to storing statistics
about the data (data distribution and cardinality
information), helping the query optimizer choose more
efficient query plans.

We need to continue improving indexing and
materialized view techniques, and devise other
mechanisms to exploit multiple data copies in support of
more efficient access. However, as we continue to
increase the number of possibilities, we need to recognize
that systems are becoming increasingly difficult to tune.
These indexing structures and other metadata need to be
automatically produced when needed and removed when
their cost/benefit is no longer positive for a given systems
work load. Leaving the decisions on which structures to
add and when to remove them to administrators, as many
current systems do, is contributing the scaling problem
rather than helping to addressing it.

3.5. Data Structure Matters

Most Internet content is today unstructured text and, as a
consequence, search techniques are restricted to simple
Boolean search through unstructured text, with the side
effect of the search not being particularly selective, and
typically returning many irrelevant documents mixed in
with the search targets. All of these documents actually
do have some structure, but it’s typically not explicit.
Search products, such as Yahoo, go through and
categorize the online corpus but as more and more data is
put on-line, this manual approach won’t scale. Further,
the categorization provided by these search products is
fairly limited, typically only categorizing at a high level
and not parsing out and representing finer document
structure.

There exist many possible solutions to this apparent
lack of structure, but XML is emerging as a good mix of
simplicity and potential richness to become the structure
expression language of the Internet. Database
management systems need to support XML data as a first
class type and support efficient searching and processing
of XML data.

3.6. Approximate answers quickly

Current database management systems have specialized
for years in computing the correct answer when queries
are posed, however, text search systems have shown for
years that an approximate answer computed quite quickly
can be more valuable than waiting for the right answer.

Joe Hellerstein has begun to exploit this observation
by working on database query processing techniques that
produce an approximate answer very quickly and then
steadily improve the accuracy of the result. This is a

205

novel approach that is made far more useful by constantly
showing both the current approximate answer and the
statistical confidence bound on this result. Peter Haas and
Hellerstein wrote up this approach and some incremental
query processing techniques in “Ripple Joins for online
Aggregation” (SIGMOD’99). Also, presented at
SIGMOD’99 was “Approximate Computation of
Multidimensional Aggregates of Sparse Data Using
Wavelets (Jeffrey Vitter and Min Wang).

I believe that these techniques have tremendous
potential to fundamentally improve the efficiency of
database users working on analytical problems. Clearly,
there will always be a place for conventional algorithms
that compute the exact answer as quickly as possible, but I
can imagine using approximate techniques to explore a
search space and form a hypothesis and then an exact
technique to prove that an interesting data trend actually
does exist.

3.7. Convergence of Data Processing and Data Storage

David Patterson in his SIGMOD 98 keynote address
(cs.Berkeley.edu/~patterson/talks) made the case for
intelligent disks arguing:

• I/O bus bandwidth is a bottleneck to delivering
bandwidth

• Fast switched serial networks can support
enormous bandwidth

• Processor/memory interface is a bottleneck to
delivering bandwidth

• Growing CPU-DRAM performance gap leading
to under-utilized CPUs

And, as a result, we have a new system opportunity in
combining CPU, high-speed serial network, and disk
together in a single package that, incidentally, was already
required by the disk. In fact, the power and chassis
requirements of these disks would be largely unaffected.

In the NASD presentation “Put Everything in Future
(Disk) Controllers (It’s not “if” it’s “when?”)”
(www.research.microsoft.com/~gray/talks) Jim Gray
agrees with Patterson’s prediction that we will need to
move processing power to data sources. Gray goes on to
state that these devices should be leveraging commodity
parts, including standard operating systems and standard
database management systems, rather than special
purpose real time kernels and purpose built software. His
point is very similar to the one that I made earlier in this
abstract when I argued that light-weight client devices
(palmtops, etc.) should be built using standard
applications, system software and data management
infrastructure. Leveraging the existing programming
environments and skills is much more important than
optimizing for hardware utilization and exploitation.

I agree that programs, data management software, and
standard operating system software will be implemented
in cyberbricks and this conclusion argues strongly that
database management systems will have to be built to
support clusters of thousands, rather than existing design
points of tens to, at a stretch, hundreds of nodes. And,
rather than a cluster only being suitable for very large
databases or very large numbers of users, it would
become the standard component from which all database
management systems would be constructed. The only
difference between a small system and a large system
would be the number of nodes employed.

4. Conclusion

Managing data in a networked world presents us with
some of the same challenges that we’ve always faced –
scale and robustness -- but on a scale several orders of
magnitude beyond past experience. XML will bring some
structure to what has appeared to be unstructured data and
provide a common language for the expression of
metadata about the documents and about the corpus as a
whole. Even with these expected improvements in
document structure, we’re expecting huge changes in our
handling of weakly structured or unstructured data and we
will need to introduce far more schema flexibility to
efficiently store and query this data. The sizes of our
databases will have grown to the point where the focus
has shifted from operational access to data analysis and
data mining – some data items may, over the course of
their storage lives, only be summarized or aggregated and
never directly accessed. A statistically near answer
quickly is rapidly becoming much more useful than the
“right answer” and, more than ever, we will be trading
space for performance in the storage of indexes, statistics,
summary tables, etc.

Rather than supporting low end client devices with
specially developed applications and data management
infrastructure, decreasing device cost and stable to
increasing programmer cost will force us to a model
where the programming model and infrastructure software
is the same across all tiers in the computing hierarchy.

Applications will continue to migrate to the data with
servers composed of many cooperating cyberbricks each
slice of which is a disk, CPU, memory, network connect
component. And, data will continue to replicate to client
devices where each client is a large cache of recently
accessed data and recently used programs.

206

