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Abstract

Answeringqueriesapproximatehhasrecently
beenproposedas a way to reducequery re-
sponsdimesin on-line decisionsupportsys-
tems, whenthe preciseansweris not neces-
saryor early feedbacks helpful. Most of the
work in this areausessampling-basedech-
niguesand handlesaggrejatequeries,ignor-
ing queriegthatreturnrelationsasanswersin
this paperwe extendthescopeof approximate
gueryansweringto generalqueries. We pro-
posea novel and intuitive error measurefor
qguantifyingthe errorin anapproximateguery
answey which can be a multisetin general.
We also study the use of histogramsin ap-
proximatequery answeringas an alternatve
to sampling. In that direction, we develop a
histogramalgebraanddemonstratéonv com-
plex SQL querieson a databasenay betrans-
lated into algebraicoperationson the corre-
spondinghistograms.Finally, we presenthe
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resultsof aninitial setof experimentswhere
varioustypesof histogramsand samplingare
comparedvith respecto their effectivenessn

approximatequery answeringas capturedby
theintroducederrormeasureTheresultsindi-

catethatthe MaxDiff(V,A) histogramgrovide
qualityapproximationgor bothset-\aluedand
aggreatequerieswhile samplingis competi-
tive mainly for aggreyatequerieswith nojoin

operators.

1

The usersof a large numberof applicationsposevery
complex queriesto DatabaseManagementSystems
(DBMSs), which take a long time to execute. Exam-
plesof suchapplicationsare decisionsupport,experi-
mentmanagementetc. Given the exploratory nature
of suchapplicationsmary of thesequeriesendup pro-
ducingno resultof particularinterestto theuser Much
wastedime couldhave beensavedif userswereableto
quickly seean approximateanswerto their query, and
only proceedvith thecompletesxecutionif theapprox-
imateanswetlindicatedsomethingnteresting.

It is easyto conceptualiz@approximatingaqueryan-
swerwhenthatanswelis animage;insteacbf theactual
image,acompressedersionof it is retrieved. Alterna-
tively, a seriesof compressed@magesmayberetrieved,
eachone beinglesscompressedmore accuratehan
the previousone,with thelastonebeingtheactualim-
age.Thekey questionthatwe wantto answelis how to
provideasimilarkind of functionalityfor alphanumeric
gueries.For easeof presentationye usetherelational
modelastheunderlyingervironmentin this discussion,
but the problemandthe methodologyfollowed canbe
appliedin moregenerakettings.

Intr oduction



Given an SQL query its answeris a relation, i.e.,
a (multi)set of tuples(we usethe term setto meana
multisetwheneer no confusionarises). Most earlier
work in approximatequery answeringhasbeendeal-
ing with approximatingndividual valuesin the results
of aggreyatequerieq1, 6] anddoesnot handlegeneral
(non-aggrgate)SQL queries.Thefew instance®f past
work that have dealtwith generalqueries,have been
basedon definingapproximationsassubsetand/orsu-
persetof theactualanswei2]. Thisis notvery useful,
however, for mary databasapplications.Much better
intuition is givenby a setwith roughlythesamenumber
of tuplesasthe actualqueryanswercontainingvalues
thatareapproximation®f the actualvalues(e.g.,a nu-
meric field having the value 10 insteadof 9). This is
moreapparentvhenthe queryresultis presentedisu-
ally, wherethe analogyto approximatingimagescan
be dravn much closer: a large numberof somevhat
misplacedbointsform a more desilable approximation
thana smallnumberof theactual points

As anexample,considerthe typical employeerela-
tion, andassumehata queryasksfor the valuesof the
‘salary’, ‘age’, and‘departmentattributes. Furtheras-
sumethatthe resultis to be displayedvisually asa set
of points(starfield in the salary-agespacegachpoint
representingnemployeewith thecorrespondingalary
andage. The shadeof eachpoint representshe corre-
spondingemployee’s departmentA typical display of
thisinformationmaybeasshawvn in Figurel.

Considertwo approximationdo this query answey
asshavn in Figures2 and3. The first one (Figure 2)
is asmallsubsebf the actualansweye.g.,obtainedby
sample-baseduery processingaiming at a 20% sam-
ple. The secondone (Figure 3) is a setwith elements
closeto thoseof the actualquery answer We believe
that,in mostcasesusersvould muchratherrecevethe
latterthanthe former, asit generatea muchbetterfeel
for thetrueanswer

The obvious questionthat arisesis how we canob-
tainqueryresultapproximation®f theaboseform. The
ideawe pursuen this papeiis usinghistogramsfor this
purpose.Briefly, we usehistogramgin the usualman-
ner)to approximatdhedatain thedatabasandemploy
novel techniquego provide approximateanswersising
SQL querieson the histogramswhich arestoredasre-
lations. A greatadvantageof taking this routefor ap-
proximatequeryanswerds thatalmostall commercial
databasesystemsalreadymaintainhistograms,so ob-
taining suchapproximationsioesnot requireary fun-
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damentathangego thesesystems.
Our contributionsaresummarizedsfollows:

¢ We have defineda novel measurgo quantify the
errorin the approximateanswer ldentifying such
ameasuras essentiafor any systematicstudy of
approximatiorof set-\aluedqueryanswergo take
place, becauset presentscommongroundsfor
comparingmultiple techniques. We have shavn
via aseriesof exampleghatthis measurerovides
a satishctoryideaof the quality of anapproxima-
tion to a generalquery while other well known
metricsfail to do so.

¢ We have proposedstoring histogramsas regular
relationsin a relationalDBMS andappropriately
translatingregular databasejueriesinto equia-
lentqueriesonthehistogramsothatapproximate
guery answerscan be obtainedusing the same
mechanisnmas exact query answers. To this end,
we have defineda histagram algebra that canbe
usedto expressall requiredquerieson histograms,
andhaveimplementedts operatorsn aquerypro-
cessotthatwe have usedfor experimentation.

e We have performedan extensie set of experi-
mentscomparingvariouskinds of histogramsand
samplingwith respecto their effectivenessn ap-
proximatinggeneralquery answers. The results
point to a specificclassof histogramsasthe most
effective overall.

2 RelatedWork

Therearethreeaspectf this work for which we dis-
cussrelatedwork. Thefirst aspects approximatequery
answering There has been extensive work on this
topic for quite sometime now rangingfrom establish-
ing theoreticalfoundations[2, 11], to building actual
systemge.g.,CASE-DB[12], APPROXIMATE [20]).
All theseworks are basedon the subset/supersatef-
inition of approximations,which they obtain mostly
through partial query processing.Recently there has
beensomework on providing approximateanswerso
aggregatequeriesusingprecomputedampleg1], his-
tograms[14, 15|, and wavelets[19], which doesnot
addresggeneralqueries. Online aggreyation[6] con-
stitutes anotherstyle of sampling-basedpproximate
gueryansweringfor aggreyatequerieswhereinthean-
swersare continuouslyrefinedtill the exact answeris
computed. In contrastto all earlier work, this paper
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Figurel: Visualdisplayof queryan-

dealswith producingoneapproximategueryanswerno
eitheraggreyateor non-aggregatequeries.

The secondaspectof our work is statistical tech-
niqgues Therehasbeenconsiderableamountof work
in using statistical techniquesto approximate data
in databasesparticularly for selectvity estimationin
guery optimizers. The three widely studied classes
of techniquesare sampling [10], parametric tech-
niques[3] (approximatingthe datausinga mathemat-
ical distribution), and histogram (or non-pamametric)
techniques[9, 13, 17]. Of these histogramsareprob-
ably the most widely used statisticsin commercial
databaseystemge.g.,they areusedin the DBMSs of
Oracle,SybaseMicrosoft, IBM, etc.),because) they
occupy smallamountsof spaceanddo notincur much
overheadat estimationtime andb) they areparticularly
suitedfor accuratelyapproximatingthe skewed distri-
butionsarisingin real-life. In our earlierwork, we have
identified several novel classesf histogramsto build
on one or more attributes[16, 17] and also proposed
techniquedor maintainingmary of themincrementally
up-to-dateasthe databasés updated5]. However, his-
togramshave notbeenstudiedin the context of approx-
imatequeryansweringbefore.

Thethird aspecbf ourwork is quantifyingthe error
in an approximateanswer(a multisetin general).One
way to computethis erroris to usea known distance
metric betweentwo multisets. However, sincesetsare
notembeddablén metricspacesypically, thereis very
little advancedwork in this area. We list threecom-
monly usedmetricsnext. First, it is commonto define
set-diferencebasenthe cardinalityof the symmetric
differencebetweentwo setsS; andSs, i.e.,

diSt{}(Sl,Sz) = |(51 — 52) U (52 — Sl)|
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Figure?2: Visualdisplayof approxi-
swer mationof queryanswer(asasubset)

SALARY

Figure 3: Visual displayof approx-
imation of query answer (through
valueproximity)

This canbe generalizedor multisetsby makingeach
copy countin the multisetdifference.Secondfor data
distributions, thereis the approachbasedon the vari-
ousdistribution moments.If £ = {fi1,..., fin} and
Fy, = {fa1,-.., fon} representhe frequeny setsof
two datadistributionson a universeof n elementsthe
family (for m > 1) of moment-relatedistancesareas
follows:

n 1/m
. (m 1 m
dzst((ld)(Fl,Fg) =~ <Z|f1k_f2k| > .
k=1

Finally, the Hausdorf distanceis anotherwell known
metric for comparingtwo sets[7]. Briefly, two sets
arewithin Hausdorf distanceh from eachotheriff ary
item in onesetis within distanceh from someitem of
theotherset.

However, noneof theseapproachesaptureproxim-
ity betweenthe setsin the way we believe is required
for approximatequeryanswering.One of the key lim-
itationsof the first two metricsis thatthey do not take
into accountthe actualvaluesof the setelements.For
example,accordingto thesetwo metrics,the sets{ 5 }
and{ 100 } areatthesamedistanceéromtheset{ 5.1 }.
Ontheotherhand theHausdorf metricignoresthefre-
gueny of the elementsn the sets. For example, the
sets{5} and{5,5,5 } areatthe sameHausdorf dis-
tance(equalto 0) from theset{5}. In contrast,our
errormeasurestrikesa balancebetweenvaluesandfre-
guenciesandis thereforemore naturalfor evaluating
approximateanswers.

3 Error Measure for Set-Valued Approxi-
mate Answers

For queriesreturninga single numericalanswey there
is a straightforward metric for the error of an approx-



imate answer It is simply the differencebetweenthe
actualandapproximateanswers.For queriesreturning
asingletuplecontainingonly numericalfields,onecan
usethe EuclideanDistance(squareroot of the sumof
squarediifferencesetweerthe correspondindields).
In this section,we develop a novel androbustmeasure
of theerrorin ananswerto a queryreturninga multiset
of tuplesor numbers.We have examinedmary formu-
lasbeforeconcludingontheonethatwe presenbelow.
The key criterion in our choicehasbeencapturingas
muchas possiblethe natureof approximationimplied
in approximategueryansweringwhereboththeactual
valuesin ananswerandtheir frequenciegount.

3.1 Error Formula

Considertwo multisetsS; = {u,...,u,} andS; =
{v1,...,vm} correspondingo the actualandapproxi-
mateanswersrespectiely. Let dist beanerrormetric
for the objecttype of the multisetelements.Basedon
this, our metric of the errorof S, with respecto S is
computedasfollows: first, determinewhich elemenin
theapproximateanswemestcorrespondso anelement
in the exactanswerandvice versa;then, computethe
error by usingthe dist betweenthe objectsmappedo
eachother

In more detail, considera completebipartite graph
Gs,,s, Wherethe two classesf nodescorrespondo
the elementsof the two answerg(eachelementrepre-
sentedby as mary nodesas there are copiesof it in
the answer). Eachedge(u;,v;) is associatedvith a
costequalto dist(u;,v;). Let C be a minimumcost
edge coverof Gg, s,, i.€.,it is asubsebf the edgesf
Gs,,s, suchthat(a) for eachnodethereis atleastone
edgein C adjacentto the node,and (b) the following
expressioris minimized:

MINCOVER(S1,8) = Y dist(us,v;).

(uiv;)eC
1)

Then,theerrorin theapproximateansweywhichwe
call its Match And Compae (or MAC) distanceandde-
noteby MAC ™) for ary powerl > 0,m > 0, is:

MAC(Z’m) (51, 52) =

Z mult! (u;,v;) x dist[q]™ (ui,v;), (2)
(us,vj)€C

wherefor eachedge(u;,v;) in C suchthatd; edges
areincidentto u; andd, edgesareincidentto v;, the
following hold:

mult(u;,v;) = maz(l,mazx(dy,ds) — 1)
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. dist(ug,vy),if maz(d;,ds) =1
distlq](ui, vs) = { dist(ui,vj-) + g, otherwise
Essentially mult(u;, v;) captureshe extentto which
oneof u; or v; is pairedup with multiple elementsof
the othermultiset. By choosingl = 0, onecanalso
optto ignorethe effectsof multiplicities, e.g.,whenin-
terestedn the set(not multiset) propertiesof the two
answers.Likewise, g (for guantum,any smallinteger,
typically 1), increaseghe error dueto pairedup ele-
mentswheneerthis pairingup is notexclusive on both
sides.

Figure 4 showvs a small set of examplesthat illus-
trateMAC andthemappingC'. We notethatmary well-
known metricsoftenfailedto captureour intuition be-
hind the errorin multisetapproximationwhereasMAC
hasworked quite satishctorily.

Some indication of the naturalnessof the for-
mula is that it is symmetric (i.e, MAC(S1,S2) =
MAC(S2,51)) andfor certainspecialcasesit reduces
to well-acceptedspecializeddistancesand error met-
rics: for singletonanswers MAC is the dist between
their elements;for frequeng distributions with the
samesetof elementsappearingn both (andfor ¢ = 1),
MAC is closelyrelatedto the correspondingnoment-
relateddistanceaisedto thelth power; andfor accurate
answersMAC is alwaysequalto zero.

It should be noted that this representsa first at-
tempt at evaluating an approximateanswerset. In
fact, MAC hassomedrawvbackswhenusedas a gen-
eral setdistancemetric. It doesnot satisfy the trian-
gleinequalityrequiredof generadistancemetrics,i.e.,
MAC(S:1,S2)+ MAC(S,, Ss) maysometimesbeless
than MAC(S;,S3). The following counterexample
shavsthis: S1= {1}, S2= {3}, S3={5,5}. It fol-
lows that MAC(S1,S3)= 8 + 2q, which is greaterthan
MAC(S1,S2)+ MAC(S2,S3)= 2 + (4 + 2q). Our at-
temptsto fix this deficieny have revealedthat MAC
will have to be significantly simplified in the process,
causingit to facethe sameproblemsasthe othermet-
rics, i.e., not capturingintuition behind approximate
guery answering. Another minor problemwith MAC
is thatin somecasegheremay be multiple minimum-
costedgecoversresultingin differentvaluesfor MAC.
In suchcasespneshouldideally usethe leastvalueof
MAC.

1t canbe easilyshavn that min(dy,d2) = 1 aways. If both
degreesare greaterthan 1, one candrop the edgebetweenthe two
nodesyesultingin alower costedgecover.
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Figure4: Examplesof MAC distancedetweemnswers

3.2 Computation of MAC

The difficult partof computingMAC is identifying the
minimum costedgecover C' betweerthetwo answers.
For this,we haveidentifiedanefficient polynomialtime
algorithm basedon a reductionto the minimumcost
perfectmatd problem. The detailsof this algorithm
aregivenin arelatedtechnicalreport.Here,we present
amoreefficientheuristic.First, mapeachelemento its
closestelementin the otherset(this is doneefficiently
by first sortingthe two sets). This may resultin some
surplusedgesj.e., edgeshatcanbe removed andstill
obtainacover. Thesearetheedgesdothof whosenodes
have degreesgreaterthan1. Next, go throughthese
edgedn decreasingrderof their costs(distancesand
eliminate eachone that remainsredundantwhenit is
examined. The compleity of this algorithmis easily
seernto beO(nlogn), becausef thesortingoperations.

4 Histograms

In this section, we give an overvienw of standard
histogram-basetkechniqguedor summarizingthe data
in a databasg17, 16]. First, we presentsomeuseful
definitions.

The value set V; of attribute X; of relation R is
the set of valuesof X; that are presentin R. Let
Vi = {vi(k): 1 <k <D;}, wherev;(k) < v;(j)
whenk < j. Thesprads;(k) of v;(k) is definedas
S,’(k) = Ul(k' + 1) — ’l)i(k), for1 < ¢ < D;. (We
take s;(D;) = 1.) Thefrequencyf;(k) of v;(k) is the
numberof tuplesin R with X; = v;(k). The area
a;(k) of v;(k) is definedasa;(k) = fi(k) x s;(k).
The data distribution of X; is the setof pairs7; =
{ (i), £i(1)), (vi(2), £i(2)), ..., (vi(Ds), fi(D3)) }-
Typically, real-life attributestendto have skeweddata
distributions, i.e., they may have unequalfrequencies
and/orunequakpreads.

Example 4.1 Thefollowing tableshons how eachpa-
rameterdefinedabove is instantiatedor a hypothetical
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attribute.
| Quantity ||  Data Distrib ution Element
Value 10 60 70 | 90 100
Frequeng || 100 | 120 | 10 | 80 | 2000
Spread 50 10 20 |10 |1
Area 5000 | 1200 | 200 | 800 | 2000

A histogramon anattribute X is constructedy us-
ing a partitioning rule to partition its datadistribution
into 8 (> 1) mutually disjoint subsetscalled buckets
and approximatingthe frequenciesandvaluesin each
bucketin somecommonfashion.In particular themost
effective approachor valuesis the uniformspreadas-
sumption[17], underwhich the attribute valuesin a
bucket areassumedo be placedat equalintervals be-
tweenthe lowestandhighestvaluesin the bucket. The
most effective approachfor frequencieds to approxi-
matethe frequenciesn a bucket by their average(uni-
formfrequencyassumptioh In practice gachbucketin
a histogramkeepsthe following information: the total
numberof tuplesthatfall in the bucket (tot), andfor
eachdimensior, thelow andhigh values(lo;, hi;) and
the numberof distinct values(count;) in that dimen-
sion (the subscriptsaredroppedfor single-dimensional
histograms)For the purposeof this work, we storehis-
togramsasregular relationsin the databaseavith each
bucket forming a tuple. For easeof explanationin later
sectionswe alsoincludeadditionalfields: the average
spreadsalongeachdimension(sp; = 24=L1) andthe
averagefrequeng for thebucket (avg = ;—I%—-).

As anexample,considera3-buckethistogramonthe
above datawith thefollowing bucketizationof attribute
values: {10}, {60,70,90}, {100 }. The bucketsin
this histogramaregivenbelow.

[tot [lo [hi [count] sp]avy |
100 10 10 1 - 100
210 60 90 3 15| 70
2000 | 100 | 100 | 1 - 2000

Conceptuallyone can“expand” a histograminto a
relationcontainingthe approximateattribute valuesas



its tuples,with eachtuple appearingasmary timesas
the approximatefrequeng of thatvalue. We call this
theapproximaterelation(ApproxRe) of thathistogram.
For a 1-dimensionahistogramH, its approximatere-
lation canbe computedusingthefollowing SQL query,
calledExpand. sql 2.

SELECT
FROM
WHERE

(H.lo+ I¢.idx x H.sp)
H,Ic,Ia
Io.idx < H.ct and I4.idx < H.avg,

Here,H isthehistogranstoredasarelationandly, Io
areauxiliary relations,eachwith a singleattributeidz.
RelationI4 (resp.,I¢) containsthe integersl, 2, .., A
(resp.,1,2,..,C), where A (resp.,C) is the largestav-
erage frequency(resp.,coun) in the bucketsof H. Es-
sentially this queryusesIc to generatehe positions
of valueswithin eachbucketandthenusesthelow and
spreadvaluesof the bucket to computeeachof the ap-
proximatevalues, underthe uniform spreadassump-
tion. Then,it usesl4 to replicateeachvaluebasedon
its frequeng.

The approximatedistribution capturedby the above
histogramooksasfollows.

| Quantity | Data Distrib ution Element |

Approx. Value 10 | 60| 75| 90 | 100
Approx. Frequeng || 100 | 70 | 70 | 70 | 2000

Histogramscan alsobe built on multiple attributes
togethey by partitioning the joint distribution of the
attributes into multi-dimensional buckets and using
extensionsof the uniform frequengy and spreadas-
sumptions. It is also possibleto combinetwo his-
togramson differentsetsof attributesto obtaina sin-
gle histogramon the union of thosetwo setsby mak-
ing the attribute valueindependencassumption De-
tails on multi-dimensionalhistogramsare given else-
where[16]. In practice,there may be several one-
or multi-dimensionahistogramamaintainedon the at-
tributesof arelation R. For simplicity of presentation,
we assumethat thereis a single (multi-dimensional)
histogrammaintainedon the full set of attributes of
eachrelation.

Given the mechanism®f approximationwithin a
histogrami,it is clearthatthe accurag of the approx-
imation is determinedby which attribute valuesare

21t is straightforvard to generalizét sothatit workswith amulti-
dimensionahistogram but it becomegyuite complex without offer-
ing ary new insight,sowe do not presentt.
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groupedtogetherinto eachbucket. Several partition-
ing ruleshave beenproposedor this purpose.For ex-
ample,in an equi-widthhistogram,all bucketsare as-
signedvalue rangesof equalwidth; in an equi-depth
histogramall bucketsareassignedhe sametotal num-
ber of tuples. In earlierwork, we have introducedser-
eral new classesof histogramsand identified a par
ticular classof histogramsthat we call MaxDiff(V,A),
which performsthe bestin estimatingthe selectvities
of mostkinds of queries. In a S-bucket MaxDiff(V,A)
histogramthereis abucketboundanbetweertwo suc-
cessve attributevaluesf thedifferencebetweerthear-
easof thesevaluess oneof the 3—1 largestsuchdiffer-
ences.By avoiding groupingdissimilarfrequenciesor
spreadsthe MaxDiff(V,A) histogramensureghat the
uniformfrequeny andspreadissumptiongonotcause
mucherrors.As anillustration, considerthe histogram
presentedn Example4.1, which is a MaxDiff(V,A)
histogram. Note that it clearly separateshe value 10
(skewedattribute value)andthevalue100 (skewedfre-
gueng) from others.

5 Query ProcessingJsing Histograms

In this section,we develop a histogram-basedolution
to approximategueryanswering.

First,we definethenotionof avalid approximatean-
swerto aqueryusinghistogramsLet ApproxRel#) be
the approximaterelationcorrespondindgo a histogram
H onrelation R (Section4). The following definition
capturegheintuition behindanapproximategueryan-
swerbasedn histograms.

Definition 5.1 Considera query () operatingon rela-
tions Ry..R,,, andlet H,..H, be correspondinchis-
tograms. The valid approximate answerfor ¢ and
{H;} is the result of executing@ on ApproxRel(H;)
in placeof R;, for1 <i <mn.

Next, we presentwo differentwaysto provide valid
approximateanswers.

5.1 Naive Approach

This approachis a direct applicationof Definition 5.1
andinvolvestwo steps:first, computethe approximate
relationsof all the histogramson the relationsin the
qguery(usingtheExpand. sql querygivenin thepre-
vious section);next, executethe query ) on thesere-
lations. This approachis clearly impracticalbecause
ApproxRelH;) mayhave asmary tuplesasR; itself.



5.2 Efficient Approach

First, we formally defineavalid translationof a query

Definition 5.2 Considera query Q operatingon rela-
tions R,..R,,, andlet H,..H,, be correspondinchis-
tograms. A query Q' on thesehistogramsis a valid
translationof @ if theresultof Q' is ahistogramwhose
correspondingapproximaterelationis identicalto the
valid approximateanswerfor Q and{H;}.

Expand.SQL
w ______ ~ (_ APPROXIMATE
RELATION

Translated \ Original

Query Y QueryQ

RESULT HISTOGRAM >—=> CAPPROXIMATE ANSWER

Expand.SQL

Figure5: Valid QueryTranslation
Def|n|t|0n 5.2is illustratedin the transitiondiagram

of Figure5. Essentially @’ is a valid translationof @

whenboth pathsfrom the HISTOGRAMS nodeto the
APPROXIMATE ANSWERSnNodegeneratehe same
answer The dashedpathin Figure 5 correspondgo

the above naive applicationof Definition 5.1 to obtain
avalid queryanswer Thesolid pathin thefigure,how-

ever, suggestghe following, much more efficient ap-

proachto obtainthe sameresult:

1. Obtainavalid translation®)’ of @)

2. Execute®’ on {H;} to obtaina resulthistogram
HT‘GS

3. ComputeApproxRel(H,..s) usingExpand. sql

Sincemostof thequeryprocessindgakesplaceonsmall
histogramrelations,this approachs clearly very effi-
cient.

The last two stepsabove are straightforvard. The
restof this subsectiorconcentratesn thefirst stepand

provides valid translationsfor various query classes.

We consideraggrggateandnon-aggrgateSQL queries
containingjust SelectFrom andWheke clausesbut no
nesting Group-By, or Having clauses.Thesefeatures
canbeaddedn astraightforvardmanner

5.2.1 Non-AggregateQueries

Thesequeriesare equivalentto relationalalgebraex-
pressiongnvolving just selection,projection andjoin
operations.A query( in this catgyory is translatedas
follows:
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1. ConstructanoperatottreeT of selectproject and
join operationghatis equivalentto Q).

2. Replaceall the baserelationsin T' by their corre-
spondinghistogramgthat is, histogramrelations
asdescribedn Section4 to obtainanothertreeT”.

3. Startingfrom the bottomof 7", translateeachop-
eratorinto anSQL querythattakesthehistograms
from theoperators childrenandgenerateanother
histogramasoutput.

Note that, in general,thereare mary algebraicex-
pressionshatmaybechoserin stepl of thetranslation
processgeachgiving a differentvalid translation. Al-
thoughthey may differ in cost,thesecostsare so low
thatthereis no real needto optimize amongthe alge-
braicexpressions.

The key contribution in the above processis step
3, asit involvesvalid translationsof individual oper
ators,which althoughnot very complex are not com-
pletely straightforvard either They are describedin
detail belon. For simplicity, we only deal with one-
dimensionalhistograms(the proof of validity and ex-
tensionsto multi-dimensionalhistogramsare straight-
forwardandaregivenelsavhere[8].

1. Equality Selection(o4=.): Equality selectionis
translatednto thefollowing query@—:

SELECT ¢,c,1,avg

FROM H

WHERE (¢ > lo) and (c < hi) and
(mod(c — lo, sp) = 0);

2. Range Selection (c4<.): Rangeselectionis
translatednto the query @, = Q, U @3, WhereQ,
and@), aregivenbelow:

Q,: SELECT *

FROM H
WHERE  hi <c;
Qv: SELECT lo,lo+ spx Lc;—;"J*
count, | £712 | * count, avg
FROM H
WHERE  (lo < ¢) and (hi > ¢);

3. Projection (7 4): Projectionwith duplicateelim-
inationis translatednto thefollowing query@:
SELECT lo, hi, count, 1
FROM H;
Projectionwith no duplicateeliminationis just the
identity query (i.e., selectingall tuplesfrom the his-
togramrelationwith no changes).



4. Equi-Joins (Ry ™pg,.A=Rr,.B R2): Let H; be
the histogramon the joining attribute of R;, andN; be
the largestcountin the bucketsof H;. Joinis trans-
latedinto a sequenc®f two queries,Q 1y, andQ2,°.
Query@1,, computeghefrequeng distribution of the
approximatgoin resultby joining the approximatefre-
gueng distributionsof H; and H,. It assumeshe ex-
istenceof two auxiliary relationsof integersiy, and
Iy, definedin thesamefashionasI- describeckarlier

SELECT (Hi.lo+ In,.idx * Hy.sp) asv, Hy.lo asloy,
Hs.lo aslos, Hy.avg * Hy.avg asnavg
FROV Hy,Hs, In,,In,
VWHERE (Hl.lo + INl.ida;' * Hl.Sp =
Hs.lo + In,.idz *+ H.sp) and
(In,.idz < Hi.count) and
(In,.idx < Ha.count);
Query (2, corverts the result of query Q1. (say
Q1R) into a histogram by appropriate grouping.

SELECT min(v), maz(v), count(x), navg
FROM O1R
G oup By loi,los, navg;

Example 5.1 Considerthefollowing SQL query:
SELECT R2.B
FROM R1, Ry
VWHERE R1.A <10and R1.B = R2.B,;
An equialent operatortree and the corresponding

translatiorresult(a histogramquerysequencelepicted

asnodesn atree)areshovnin FigureG.
APPROXIMATE HISTOGRAM

EXACT ANSWER T

4 L.

PO G

Ry ()

ORIGINAL QUERY TRANSLATED QUERY

Figure6: ExampleQueryTranslation

5.2.2 AggregateQueries

In general,an aggrgjate query @Q,,4, iS equivalentto
an aggreate computationover someof the attributes

31n our implementationwe malke this schememore efficient by
runninganotheisimplequeryin thebeginningto identify overlapping
bucketsin thehistogramsndthenexecuting@Q 1, andQ@2y4 for each
pair of overlappingbuckets.
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in the result of a non-aggrgatequery Q. Hence,a
valid translationfor @,4, consistsof a valid transla-
tion for @ producinga histogramH followed by an
aggrejate-specificSQL queryon H computinga sin-
gle bucket histogramcontainingthe aggrejate value.
Thesequeriesare given in Table 1 for the mostcom-
monaggreateoperatorsHere,bsum is thesumof all

the attribute valuesin a bucket as mary timesaseach
appearsi.e.,bsum = avg*countx* (lo+ w)

5.2.3 Computational Complexity of Translated
Queries

It canbe easilyseenthatthe queriesfor selectionsand
projectionsaccesgust g tuples,whereg is the number
of bucketsin the histogram. This is usually insignifi-

cantcomparedo the numberof tuplesin therelations.
For joins, thetranslatedjueriesaccess; +us+ 31+ 32

tuples,whereu; is the numberof distinctattribute val-
uesin H; andg; is the numberof bucketsin H;. The
total numberof operationds also proportionalto this
term becausehis query can be bestrun using Sort-
Merge joins by always storing the histogramsandthe
auxiliary relationsin sortedorder The compleity is
significantlysmallerthanthe costof runningthe origi-

nalquerybecause; is typically muchsmallerthanthe
cardinalityof the correspondingelation.

6 Experiments

We have conductedan extensie setof experimentsus-

ing AQUA to studythe effectivenesof variousstatisti-

caltechniquesn providing approximatejueryanswers.
Our experimentdnvolve differentdatasetsandqueries
with set-\aluedaswell asaggreateresults. First, we

presenthetestbed.

6.1 Testbed
6.1.1 Approximation Techniques

We have useddifferentclasse®f histogramgo approx-
imatethe data. They includethe MaxDiff(V,A), Equi-
Width, andEquiDepthclassesWe call the correspond-
ing approximateansweringtechniquedviaxDiff, Equi-
Wdth, andEquiDepthrespectrely. We have alsostud-
ied the traditional uniformity assumptiorover the en-
tire data,which is equivalentto a histogramwith a sin-
gle bucket. We call this techniqueTrivial. The final
technique,which we call Sampling usessamplingto
provide approximateanswersHere,a setof sampless



di stinct COUNT | SUM | AVG MAX | MN |
SELECT SUMcount) | SELECT SUMbsum) | SELECT St | SELECT MAX(hi) | SELECT M N(lo)
FROMH; FROMH; FROMH; FROMH; FROMH;

Tablel: Querieso ComputeAggregateValuesfrom Histograms

collectedon eachrelationin the databas@ndthe sub-
mitted queryis executedon the samplerelations,with
appropriatescalingof thefinal result.

In orderto ensurea fair comparisonamongthese
techniqueswe have allocatedhesameamountof space
to eachone. We have computedthe numberof buck-
etsandsamplescorrespondingo a spaceof s bytesas
follows. Considera relationwith d integer attributes.
Sinceeachbucketin a d-dimensionahistogramstores
(3 * d + 1) numbers(Section4), the numberof buck-
etsis 1357 (assumingt bytespernumber).Similarly,
sinceeachsampleduple containsd numbersthe cor-

respondingsamplesetcontains;Z; tuples.

6.1.2 Data Sets

We have primarily useda syntheticdatabasdhat we
have created We have alsoexperimentedvith the TPC-
D benchmarldatabas§l8], generatet scalefactorof
0.6. Dueto lack of spacewe focuson our synthetic
data,which offers more insightsinto the performance
of varioustechniqueghanthe TPC-D data,which has
mostly uniform and independenattributes. The syn-
theticdataconsistof two relationsR; andR,; R; con-
tainstwo numericalattributes(A, B), and R, consists
of a single numericalattribute (A4); having additional
attributesdoesnotimpactour study Thedistribution of
datain theseattributesis describechext.
Value Domain: The attribute valueswere generated
from a combinationof Zipf distributions[21]. Thede-
tails of all suchcombinationsaregivenelsavhere[17];
herewe describethe two that we choseto presentin
this paper The Cusp-Maxdistribution consistsof in-
creasingspreadgdistancedetweersuccessie values)
followedby decreasingpreadswith the spreadsaken
from a Zipf distribution. The skew in the spreadss
controlledvia the z paramete(higherz implieshigher
skew). The Uniform distribution consistsof equally
spacedialues.
FrequencyDomain: The frequencief the different
attribute valuecombinationsverealsogeneratedbased
on Zipf distributionswith differentlevelsof skew.
Thesetof valuesthatwe have experimentedvith for
all datasetparameterss givenin Table2.
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| Parameter | Values
ValueSkew for Cusp-Max(z,) 02-3
Frequeng Skew (zf) 0-3
Num. Distinct ValuesperDimension(u) | 10 — 10K
Num. Attribute CombinationgU) 500 — 50K
Num. Tuplesin the Relation(T) 50K — 500K

Table2: SyntheticDataSetParameters
6.1.3 Queries

Non-Aggregate Queries: The SQL queriesusedare
listedin Table3. Here,we summarizeheir key charac-
teristics.

e Rang Queries: Thesequeriescontain a single
two-dimensionaftange selectionpredicateon R1.
In eachexperimentwe have usedl00 querieswith
randomlygeneratedaluesfor a andb. Theseval-
ueswerechoserfrom asubsebf theentirecolumn
rangein orderto vary theaverageselectvity of the
gueries.

¢ ProjectionQueries: Thesequeriessimply project
arelationontooneof its attributes,with duplicate
elimination.

e SJQueries: Thesequeriescontainboth join and
selectionoperations.

AggregateQueries: In additionto theseset-\alued
gueries,we have also examinedversionsof themthat
producecommonaggreationson their first column.
Due to lack of space,we only presentthe resultsfor
averge.

Error Metrics: For all queries,we have usedthe
MAC error measureintroducedin Section3. In the
graphdor aggreggatequerieswe plot thepercentageel-
ative error, i.e., MAC(=actual—estimate) £ 100.

actual

6.2 Experimental Results

Here,we first presenthe experimentalresultsfor dif-
ferentquery setsandthen provide the explanationfor
them.

6.2.1 RangeQueries

For this setof experimentsthe numberof tuplesin R1
was200K andtheaverageselectvity of thequeriesvas
approximately0.15.

Non-aggregateQueries:



RangeQuery ProjectionQuery SJQuery
SELECT R:.A,R1.B SELECT distinct R1.A | SELECT R;.A
FROM R FROM R, FROM R1, R>
VWHERE (R1.A<a)and (R1.B <b) V\HERE (R1.A = Ry.A) and (R1.B < ¢);

Table3: Non-AggregateQueriesin the ExperimeniTestbed

Effectof Space:Here,we have fixedthe frequeng
skew of bothattributesR1.A and R2.A atz; = 0.86
(which roughly correspondgo the “80-20" rule) and
have chosenthe value domainas Uniform. Figure7
shavstheerrorsdueto varioustechniquegin log scale
onthey-axis)asthespacds varied(in log scaleon the
x-axis). The error for Trivial is not givenbecausat is
very high (above 4 x 108) andfalls out of the range
depicted.As expected the performanceof the various
techniquesmproveswith increasingspace.

Effect of FrequencySkew: For this experiment,we
havefixedthespaceat400 bytesandhave choseragain
a Uniform value domain. Figure 8 depictsfrequengy
skew (z value)on the X-axis and MAC errors(in log
scale)onthey-axis.

Aggregate Queries: The errors for average are
givenfor varyingamountsof spacen Figure9.

Notethat MaxDiff performsvery well underall cir-
cumstances.

6.2.2 Projections(with no aggregates)

In Figure 10, we comparethe performanceof various
techniquedfor the Cusp-Maxvalue distribution. The
frequeng skew is 0 andthevaluesof R.A1 rangefrom
0 to 10000. Onceagain,MaxDiff performsthe bestand
Samplingperformsvery poorly.

6.2.3 SJQueries(with no aggregates)

Here, R; and R, contain100000 and 1000 tuples,re-
spectvely, andhave 500 distinctvalueseach.Therange
predicatehasa selectvity of 10%. The valuedistribu-
tionsof R; and R, areboth Cusp-Maxwith z, of 0.2
and1, respectiely. Thefrequeng distributionsof both
relationshave a skew of z; = 1.5. Theerrorsin es-
timating the resultsetare givenin Figures1l and12
asfunctionsof spaceandfrequeng skew, respectiely.
NotethatMaxDiff performsverywell for theSJ-queries
aswell.

6.2.4 Explanation of Results

All of the above resultsdemonstrate similar pattern
in the relative behavior of the techniquesstudied. In
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particular MaxDiff performsthe bestin mostcircum-
stancesThereasonarethata) it approximateshe en-
tire datadistribution,andb) it captureshemoreskewed
attribute valueswith high accurag using a constant
amountof spacg(1 bucket persuchvalue).In contrast,
Samplingcapturesa fraction of the given setprecisely
and missesthe remainingparts completely Further
more, it allocatedisproportionat@mountsof spaceto
the high frequeng values. Sinceour selectionqueries
cover the entire value domain mary of them contain
the low-skewed regions that may not be captured(or
even approximatedat all in Sampling resultingin a
high error. The problemgetsworsefor SJ-queriede-
causgoin of two samplesoften containsfew or no tu-
ples[1]. Someof the sampling-relateghroblemshave
beenaddresse@lsavherein a differentcontet [4, 1].
We are currently incorporatingtheseoptimizationsin
ourwork.

As for the effect of skew, errorsdueto Samplingin-
creasewith skew becausét allocatesmore and more
sampledor the high frequeny values. This degrades
performancdor querieson the remainingregions. On
the other hand, EquiWdth and EquiDepth perform
poorly becausdghey do not considerfrequeny skews
muchin forming the buckets, unlike MaxDiff. Inter-
estingly MaxDiff performsbestfor extremevaluesof
skew (0 & 3). Thereasonsreasfollows: at high skew
values therearevery few “important” valuesin there-
lation thatneedto be capturedandhistogramsareable
to dothatusingasmallnumberof buckets: atlow skew
valuesalmostall frequencieareidenticalandevenone
or two bucketsareenough.For mediumvaluesof skew
thereare sufficient numberof distinct frequenciesso
thatthehistogranneedsnorebucketsto accuratelyap-
proximatethedistribution.

6.2.5 TimesTaken by Differ ent Approaches

We have measuredhe times taken by various tech-
niguesin answeringthe SJquerieson a SUN SFARC
machinewith 250MB of memory and 10GB of disk
space Evaluationof the exactanswetrfor thesequeries
took around248 secondgaveragedover 30 runs). Ta-
ble 4 lists the timesfor differentvaluesof space.Note
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Technique

Sampling
MaxDiff

Table4: TimesTakenfor AnsweringSJ-Queriegsec)
thatMaxDiff takesslightly moretimethanSamplingas
join querieson histogramgequireasmary operations
asthe numberof distinct valuesin the join attributes.
Neverthelessthetimesarestill very smallandarein-
significantcomparedo theactualtime of execution.

7 Conclusions

Approximatequery answeringis likely to becomean
essentiatool in applicationddemandindgastresponses,
suchason-linedecisionsupportsystemsandinteractive
datavisualizationtools. However, thework in this area
so far hasbeenlimited in its scope. First, it hasonly
consideredaggreyate queriesand has not dealt with
gueriesthat return multisetsof tuples. Second,sam-
pling hasbeenessentialljthe only techniqueused.

In this paper we have attemptedto increasethe
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scopeof approximategueryansweringasfollows:

¢ Wehave developedanumericaimeasuréMAC) to
guantify the quality of an approximateanswerto
set-aluedquery We have demonstratedhatthis
measurds intuitive, reduceso well-known met-
rics in simple casesandworks well for mostin-
stance®f answersets.

¢ We have proposedistogram-basetkchniquedor
providing approximateanswergo generalaswell
asaggreyatequeries. In this regard, we have de-
viseda histogramalgebrafor transforminggueries
onregularrelationsto querieson histograms.

We believe thatthe errormeasureandthe histogram
algebraform a reasonabldirst steptowardssystemati-
cally providing approximategueryanswergor general
gueries Furthermoretheresultsof ourexperimentsn-
dicatethat MaxDiff histogramsanswermostkinds of
gueriesvery accuratelylike in selectvity estimation.

Acknowledgements: The authorswould lik e to thank
S. Muthukrishnarfor helpwith the exactalgorithmfor
identifying the minimum costedgecover.
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