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Abstract

The dynamic load balancing strategies for par-
allel association rule mining are proposed un-
der heterogeneous PC cluster environment.
PC cluster is recently regarded as one of the
most promising platforms for heavy data in-
tensive applications, such as decision support
query processing and data mining. The de-
velopment period of PC hardware is becom-
ing extremely short, which results in heteroge-
neous system, where the clock cycle of CPU,
the performance/capacity of disk drives, etc
are di�erent among component PC's. Hetero-
geneity is inevitable. Basically, current algo-
rithms assume the homogeneity. Thus if we
naively apply them to heterogeneous system,
its performance is far below expectation. We
need some new methodologies to handle het-
erogeneity. In this paper, we propose the new
dynamic load balancing methods for associa-
tion rule mining, which works under hetero-
geneous system. Two strategies, called can-
didate migration and transaction migration
are proposed. Initially �rst one is invoked.
When the load imbalance cannot be resolved
with the �rst method, the second one is em-
ployed, which is costly but more e�ective for
strong imbalance. We have implemented them
on the PC cluster system with two di�erent
types of PCs: one with Pentium Pro, the other
one with Pentium II. The experimental results
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con�rm that the proposed approach can very
e�ectively balance the workload among het-
erogeneous PCs.

1 Introduction

Recently commodity based PC cluster system is re-
garded as one of the most promising platforms for data
intensive applications such as decision support query
processing and data mining. The power of PC is su-
perior to the workstation for integer performance and
the price of PC is also much lower. The oating-point
computational power of workstation is higher than PC
but usually it is not necessary for database processing.
So far extensive researches on parallel database pro-
cessing algorithms have been done[6]. Most of RDB
vendors have developed engines with parallel exten-
sions. Currently parallel execution option is available
for most of RDB products. Parallel engine is essential
for large-scale data warehouse and is becoming pop-
ular nowadays. Thus combining the above two key
trends, namely, parallel database processing on PC
cluster would be a most cost-e�ective solution for large
scale data warehousing. Many researches on PC clus-
ters are being undergone. However most of them such
as Beowulf machines at JPL and Caltech are targeting
scienti�c applications[3]. We have built 100 node PC
cluster system named NEDO-100 for data base appli-
cations. We implemented parallel RDB kernel on it.
TPC-D benchmark and association rule mining were
run on the machine[8, 13] and, it showed su�ciently
high performance. We exempli�ed that the PC clus-
ter can achieve considerably improve cost-performance
ratio.

The problem we faced in that project is \hetero-
geneity." The system we built[8, 13] was completely
uniform. However, when we planed to increase the
number of nodes, it was extremely di�cult to �nd out
the same machines. Since the development period of
PC is extremely short, con�guration of machines is
changing so quickly. The clock speed of CPU, the size
of main memory, the capacity and transfer rate of disk
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drives, all these components are completely di�erent
from generation to generation and also di�erent from
vendor to vendor . We wanted to increase the num-
ber of nodes uniformly, but we could not �nd out the
same PC. Once six months have passed, we have to
introduce di�erent type of PCs. Thus heterogeneity is
inevitable.

Most of the parallel algorithms developed so far as-
sume the system be uniform. Very few papers address
heterogeneity problem[5]. If we apply the parallel algo-
rithm developed for uniform parallel system to the het-
erogeneous environment, apparently we will see signif-
icant performance deterioration. A high performance
node can process its allocated task quickly but node
with less powerful processor or with low bandwidth
disk usually takes longer time to �nish. Thus, we have
to develop some methodologies to handle these prob-
lems, which is the motivation of our research. In near
future, the high performance system will be built based
on a cluster system, where we will have to face the het-
erogeneity problem anyway. We picked up data min-
ing as a data intensive application and tried to solve
the heterogeneity problem. As the size of database
increases, the data mining workload becomes signi�-
cantly heavy. It is also common that users start from
small set of data and gradually increase the size of
the data set to be mined. Thus the mining platform
can not be uniform but should be heterogeneous PC
cluster.

In this paper, we propose run time load balanc-
ing algorithms for association rule mining under het-
erogeneous PC cluster environment. Two strategies
named candidate migration and transaction migration
are developed. Details on these two will be given
in later sections. PCs do not have to communicate
each other before the execution in order to normal-
ize the performance among di�erent CPUs and disks
etc. During executing data mining, the workload of
each node is monitored autonomously and the system
performance is controlled to be balanced by migrating
candidates/transaction among nodes at runtime.

Section 2 briey explains the association rule min-
ing and its parallel algorithms. Section 3 introduces
the fundamental idea of load balancing for association
rule mining. Section 4 describes the detail. Section 5
explains the PC cluster system, and implementation
details. Performance evaluation results are given and
examined in detail. Section 6 discusses the future work
and concludes the paper.

2 Association Rule Mining and Its
Parallel Algorithm

2.1 Association Rule

Association rule mining is one of the most well known
problems in data mining. Sometime it is also recog-
nized as basket analysis . Its typical application is

to �nd buying pattern in retail databases. An example
of an association rule is if a customer buys A and B
then 90% of them buy also C . Here 90% is called
the confidence of the rule. Another measure of a rule
is called the support of the rule.

Transactions in a retail database usually consist of
an identi�er and a set of items or itemset. fA;B;Cg
in above example is an itemset. An association rule
is an implication of the form X =) Y where X and
Y are itemsets, and X \ Y = ;. An itemset X has
support s if s% of transactions contain that itemset,
here we denote s = support(X). The support of the
rule X =) Y is support(X [ Y ). The confidence

of that rule can be written as the ratio support(X [

Y )=support(X).
The problem of mining association rules is to �nd all

the rules that satisfy a user-speci�ed minimum support
and minimum con�dence, which can be decomposed
into two subproblems:

1. Find all combinations of items, called large item-
sets, whose support is greater than minimum sup-
port.

2. Use the large itemsets to generate the rules.

Since determination of large itemsets from large
scale database requires much more processing time,
most researches to date have focused on �rst subprob-
lem. After �nding all large itemsets, association rules
are derived in straighforward manner.

2.2 Mining Association Rules and Apriori

Here we briey explain the Apriori algorithm for �nd-
ing all large itemsets, proposed in [1], since the parallel
algorithms we use are based on this algorithm.

In the �rst pass, support count for each item is
incremented by scanning the transaction database.
Hereafter we prepare a �eld named support count for
each itemset, which is used to measure how many times
the itemset appeared in transactions. Since itemset
here contains just single item, each item has a sup-
port count �eld. All items that satisfy the minimum
support are picked out. These items are called large 1-
itemset. Here k-itemset is de�ned as a set of k items.
The second pass, the 2-itemsets are generated using
large 1-itemset that is called the candidate 2-itemsets.
Then the support count of the candidate 2-itemsets
is incremented by scanning the transaction database.
Here support count of the itemset means the number
of transactions which contain the itemset. At the end
of scanning the transaction data, the large 2-itemsets
which satisfy minimum support are determined. The
following denotes the k-th iteration, pass k:

1. Generate candidate itemset:
The candidate k-itemsets are generated using
large (k � 1)-itemsets which were determined in
the previous pass. Apriori candidate generation
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includes pruning of candidate itemsets that is
deleting all of the itemsets in the candidate k-
itemset where some of the (k�1)-subset of candi-
date itemsets are not in the large (k� 1)-itemset.

2. Count support:
The count support for the candidate k-itemsets
are incremented by scanning the transaction
database.

3. Determine large itemset:
The candidate k-itemsets are checked for whether
they satisfy the minimum support or not, the
large k-itemsets which satisfy the minimum sup-
port are determined. The procedure terminates
when the large itemset becomes empty. Other-
wise k := k + 1 and goto 1 .

Thus the large itemsets are derived iteratively by
scanning the transaction data several times. Apriori is
sequential algorithm. In the next section, we examine
parallelization methods of Apriori.

2.3 Parallel Association Rule Mining

J.S.Park, et.al proposed bit vector �ltering for asso-
ciation rule mining and naive parallelization of Apri-
ori [2, 9], where every node keeps the whole candi-
date itemsets and scans the database independently.
Communication is necessary only at the end of each
pass. Local counts are gathered to a certain node at
the end of each pass and are summed up to calcu-
late the global count(=support value). Although this
method is very simple and communication overhead
is very small, memory utilization e�ciency is terribly
bad. Since all the nodes have the copy of all the can-
didate itemsets, it wastes memory space a lot.

In [11] Hash Partitioned Apriori(HPA) was pro-
posed. The candidate itemsets are not copied over all
the nodes but are partitioned using hash function. The
number of itemsets at second pass is usually extremely
high, sometimes three orders of magnitude larger than
the �rst pass in a certain retail transaction database
which we examined. If the candidate itemsets are par-
titioned over all nodes' memory space, we can fully
utilize the memory of all the nodes. When the user-
speci�ed support is low, the candidate itemsets over-
ow the memory space and incur a lot of disk I/O.
By utilizing whole space through partitioning the can-
didates over nodes instead of duplication, HPA can
minimize the extra I/Os.

Hybrid approach between candidate duplication
and candidate partitioning is proposed at [7]. The
processors are divided into some number of groups.
Within each group, all the candidates are duplicated
and among groups, candidates are partitioned. [12]
proposes the parallel algorithms for mining general-
ized association rule, which incorporates the classi�-
cation hierarchy. All the strategies above were pro-
posed for shared nothing parallel machines. Recently

parallel strategies for shared memory machines are
also proposed[15, 10]. Distributed algorithms are also
proposed[4].

However, the algorithms so far proposed assume ho-
mogeneous parallel processing environment. In this
paper, we propose dynamic load balancing algorithms
for heterogeneous parallel systems, where each node
might have di�erent type of CPU, and di�erent kinds
of disks, etc.

2.4 Hash Partitioned Apriori:HPA

HPA addresses the problem of main memory overow
caused by large number of candidate itemsets by par-
titioning those itemsets among nodes using hash func-
tion as in the hash join[11]. Although it has to ex-
change transaction data among nodes, its e�ective uti-
lization of memory space results in better paralleliza-
tion gain. And using hash function, HPA eliminates
broadcasting of all the transaction data and can re-
duce the comparison workload signi�cantly. In brief,
HPA performs following steps:

1. Generation of k-length candidate itemsets:
At pass k, HPA generates k-length candidate
itemsets using large itemsets with length k � 1
created at previous pass. Then it applies hash
function on those itemsets to decide the destina-
tion node ID. If the ID is its own, insert it into
the hash table. If not, it is discarded.

2. Support counting:
While reading transaction data, each node gener-
ates k-itemsets. Itemsets with support less than
user speci�ed minimum support are �ltered out
while k-itemsets are generated from transaction.
Applies the same hash function that used in phase
1 to the k-itemset, and derives the destination
node ID and setds the k-itemsets to it. For the
itemsets received from the other nodes and those
locally generated whose ID equals the node's own
ID, search the hash table. If hit, increment its
support count.

3. Determination of large itemsets with length k:
After processing all transaction data, each node
determines large itemsets from its own candidate
itemsets. Overall large itemsets for pass k are
obtained by accumulating large itemsets from all
nodes.

In the following sections, we employ HPA as an un-
derlying parallel algorithm.

3 How to balance load for parallel as-
sociation rule mining

Before describing the detail algorithms in the next
section, we will explain the fundamental idea of load
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balancing for parallel association rule mining. As de-
scribed in the previous section of HPA, each node re-
ceives the itemsets and probes them against its own
hash table. If a node is assigned more candidate item-
sets and keeps them as a hash table, it will receive more
itemsets from other nodes during counting phase. This
means that we can adjust the workload of each node
by adjusting the amount of candidate itemsets. If the
load of a certain node is higher than the other nodes,
we take some of the candidate itemsets from that node
and give them to the other nodes. Then the itemsets
that are originally directed to that node are now redi-
rected to the new nodes to which the removed itemsets
are relocated. Thus the counting workload is migrated
from the original node to the other nodes. We name
this strategy Candidate Migration. Figure 1 shows the
idea.

The workload depends on the itemset. Some item-
sets have higher support value, which means those
itemsets will receive more counting requests. Thus we
have to put weighting factor to each itemset. How-
ever real support value is obtained after the execu-
tion. So basically the weighting factor is not avail-
able before execution. In our approach, we exploit
information from the previous pass. Apriori algo-
rithm, as described in section 2.2, consists of sev-
eral passes. For each pass, transaction database has
to be scanned. When we do the load balancing at
pass-k, we use the information on the support value
of itemset at pass k � 1. For example, let's con-
sider pass 2, since almost all the time pass 2 is
most time consuming. We estimate the support of
2-itemsets at pass 2 using the information on sup-
port of 1-itemsets at pass 1. Before the execution of
pass 2, the support of 1-itemset is available. We es-
timate the support of 2-itemset, support(fi1; i2g) by
min(support(fi1g); support(fi2g)). Here support(x)
means the support of
itemset x. It can be proved that support(fi1; i2g) �
min(support(fi1g); support(fi2g)). There might be an
error, but much better than not giving any weighting
factor. This can be generalized to any pass. Thus we
estimate the support of k-itemset by using support of
large (k � 1)-itemsets derived at pass k � 1 and use it
to determine the weighting factor. The details of Can-
didate Migration algorithm will be given in the next
section.

The Candidate Migration is possible if the node still
has candidate itemsets to be migrated. The node can
transfer the workload by migrating the candidate item-
sets. If the skew is high, there arises the case where
migrating all the candidates is still not su�cient. In
order to handle such situation, we need yet another
strategy to migrate workload.

Let's examine the HPA algorithm again in more de-
tail. Each node has two major task. One is to receive
the itemset sent from other nodes, probe it against the

1, 2, 3, 4, 5, 7

Transaction

1, 2, 3, 5

Filtering (1-large itemset)
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2
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itemset (1,5) is
 directed to Node2
 instead of Node1
 after migration

Non large items 4 and 7
 are filtered out

Non large item 0
 is filtered out

Figure 1: Candidate Migration

hash table and increment the count corresponding to
that itemset. The other task is to read the transactions
from the disk, generate the itemsets and send them to
the nodes determined using hash function. We use the
former task for Candidate Migration.

Now we consider the latter task. Actually, the item-
set generation from transactions is rather complicated
process. Transaction contains the items whose support
is less than user de�ned support. So we can eliminate
such itemsets by examining the table of large itemsets
derived at the previous pass. This workload could be
migrated. The node with heavy workload reads the
transactions from the disk and it does not do item-
set generation itself but just sends the transactions to
the light nodes. We name this strategy Transaction
Migration.

Transaction Migration incurs overhead of network
transfer for each transaction. On the other hand, no
additional overhead is incurred for Candidate Migra-
tion. Thus, we put priority to the Candidate Migra-
tion. Initially heavy node migrates candidate itemsets
only. When there are no candidate itemsets remained
to migrate, then it migrates transactions. The algo-
rithm to derive the amount of transactions to be mi-
grated will be given in the next section.

4 Run Time Load Balancing Methods

We propose dynamic load balancing methods during
the execution of data mining to cope with the skew in
heterogeneous system. In this approach, a coordinator
node collects necessary information from all the nodes
and controls the distribution of workload.

Support counting for pass k in HPA can be divided
into 2 processes. The �rst process is SEND process
which comprises reading transaction data from disks,
generating k-itemsets and sending the k-itemsets to
destination nodes by applying hash function to the
itemsets. The second process is called RECV pro-
cess since processing node receives the k-itemsets from
other nodes then probes its hash table to increase the
support counts of candidate itemsets. If the time re-
quired by node i for SEND process and RECV pro-
cess are expressed by STi and RTi respectively, overall
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CPU processing time for that node can be formulated
by:

�Ti = �STi +�RTi (1)

Here � stands for de�nite time interval.
If we can estimate the required time for each node's

SEND and RECV processes to complete the process-
ing of remaining transaction data, we can obtain the
estimated remaining processing time for that node as
indicated by following expression.

restTi = restSTi + restRTi (2)

Each of restTi, restSTi and restRTi denotes estimated
remaining overall CPU processing time, estimated re-
maining CPU time for the SEND process and esti-
mated remaining CPU time for RECV process respec-
tively.

Since the goal is to have all nodes complete their job
at the same time, our method dynamically controls the
load allocated for each node so that every node has the
same restTi.

The skew is de�ned as follow,

skew =
max(restTi)�min(restTi)

avg(restTi)
(3)

�
skew � threshold : no skew
skew > threshold : skew exists

(4)

We can judge that the load control is needed if this
value exceeds some certain threshold. Here we pro-
pose two strategies for balancing the load: Candidate
Migration and Transaction Migration.

4.1 Candidate Migration

RECV process can be divided further into 2 subpro-
cesses: (recv1) receives k-itemsets and (recv2) probes
the hash table and increment the support count for
the corresponding candidate itemsets. If the time for
each subprocess are represented by RNTi and RCTi
respectively, RTi can be expressed as follow:

�RTi = �RNTi +�RCTi (5)

Since large scale data mining has to probe large
amount of candidate itemsets against hash table, most
part of processing time is dominated by (recv2). Thus
expression (5) can be reduced to:

�RTi � �RCTi (6)

RCTi itself is proportional to the amount of k-
itemsets to receive, thus if we express that amount
as RKi, we can assume:

�RCTi = �
1

i�RKi (7)

RKi varies according to the candidate itemsets allo-
cated to that node. RKi is unknown before execution.
But we can estimate RKi of pass k using the statistics

of pass k�1 1. The support count for a candidate item-
set candj = ftj1; tj2; : : : ; tjkg is always smaller than
the least support count of all its subsets[14]. If the
support count for an itemset X is de�ned as SX , we
can de�ne a weighting factor for that candidate item-
set as follow:

CWcandj = min(SLj1; SLj2; : : : ; SLjk) (8)

fLj1; Lj2; : : : ; Ljkg 2 Subj

Subj denotes a set of all large (k�1)-itemsets that are
subsets of candj .

RKi represents a set of all candidate itemsets in
pass k. Then if we represent CDi as a set of candidate
itemsets to be allocated to node i, the weighting factor
for that node can be de�ned as:

CVi =

jCDijX
j

CWcandj (9)

candj 2 CDi

If overall amount of transactions to be read by all
nodes is expressed as DR, RKi is proportional to the
product of CVi and DR. Therefore, expression (7) can
be expanded further into:

�RCTi = �
1

i�
2

iCVi�DR (10)

From expression (2) we can express restTi as:

restTi = restSTi + �
1

i�
2

iCVirestDR (11)

On the other hand, during SEND process each node
performs following subprocesses: (send1) read trans-
action data from database (send2) generate k-itemsets
(send3) send them to proper nodes. If the time for each
subprocesses are represented by SDTi, SCTi, SNTi
respectively, STi can be expressed as:

�STi = �SDTi +�SCTi +�SNTi (12)

In most cases of large scale data mining, process-
ing time is dominated by (send2). Therefore, we can
approximate expression (12) with:

�STi � �SCTi (13)

Since the load for (send2) subprocess depends on
the amount of k-itemsets to send and this amount is
proportional toDRi that is the amount of transactions
to be processed by node i, we can express SCTi as:

�SCTi = �
3

i�DRi (14)

Hence we have expanded expression (2) into:

restTi = �
3

i restSKi + �
1

i�
2

iCVirestDR (15)

Here SKi is denotes the amount of k-itemsets for node
i to send out.

1See the conclusion on the precision of this approach.
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Coe�cients �1i , �
2

i , �
3

i are determined using sta-
tistical information collected during previous interval.
Expression (15) indicates that we can adjust restTi by
varying CVi.

When skew de�ned in (3), (4) excesses threshold,
Candidate Migration reallocates candidate itemsets
among nodes so restTi of each node becomes equal.
In order to do this, Candidate Migration computes
CVi for all nodes using expression (15) and following
restriction:

Pn

i
CVi = constant We can solve these

equations if all CVis are non-negative, it means there is
a solution for candidate migration. Derived CVi's are
used to generate allocation plan for each node, sends
the plan and instructs all nodes to begin migration
process. Otherwise it sets the negative CVis to zero be-
fore creating allocation plan. Here zero means all the
candidate itemsets should be migrated to other nodes.
There remains no candidate itemsets. In this case we
also need Transaction Migration to be described soon.

As for the implementation, candidate migration
requires the remapping of hash table. Once the itemset
is migrated, new destination address is put onto the en-
try so that itemsets are appropriately distributed over
the nodes. If remapping is done itemset by itemset, it
costs a lot of space. We implemented migration based
on range of hash entries.

4.2 Transaction Migration

When load is extremely skewed, we can not rely only
on workload migration of RECV process. Thus, we
propose another load balancing strategy based on the
SEND process.

As described before, in most cases of large scale
data mining, processing time is dominated by (send2).
Since the load for (send2) subprocess depends on the
amount of k-itemsets to be sent, we can express SCTi
as:

�SCTi = �
1

i�SKi (16)

Here SKi is de�ned as the amount of k-itemsets for
node i to send.

Each node in PC cluster has its own partition of
transaction data, Transaction Migration sends some
part of that transaction data to other nodes and del-
egates the generation of k-itemsets to those nodes. In
order to do this, each node holds a list of destination
nodes and their assignment. This list is dynamically
updated during execution. This approach can remove
the burden of SEND process of heavy nodes to nodes
with excessive computing power, thus it can e�ectively
balances the workload.

As mentioned before, the amount of k-itemsets sent
to other nodes SKi is proportional to the amount of
k-itemsets generated by that node. Therefore if node
j delegates DMij (= �DMji) k-itemsets generation
to node i and the ratio of DMij against all the trans-
action data in node j is de�ned as TMij(= �TMji)

then SKi can also be expressed like following:

�SKi = �
2

i (�DRi +
X
j;j 6=i

�DMij) (17)

�DMij =

�
TMij�DRj TMij � 0
TMij�DRi TMij < 0

(18)

Then the expression (16) will be:

�SCTi = �
1

i �
2

i (�DRi +
X
j;j 6=i

�DMij)

= �
1

i �
2

i (�DRi +
X

j;j 6=i;TMij�0

TMij�DRj

+
X

j;j 6=i;TMij<0

TMij�DRi) (19)

Here coe�cients �1i , �
2

i are determined during execu-
tion.

Finally we have the restTi in the following form:

restTi = �
1

i �
2

i (restDRi +
X

j;j 6=i;TMij�0

TMijrestDRj

+
X

j;j 6=i;TMij<0

TMijrestDRi)

+ �
1

i�
2

iCVirestDR (20)

From expression (20), we can also control restTi by
delegating k-itemsets generation of SEND process. If
Candidate Migration is not enough to overcome the
skew, we can supplement it with Transaction Candi-
date. First, we compute CVis as described in previ-
ous subsection, substitute them into expression (20).
For candidate migration, we can analytically derive
the solution, but for transaction migration we use hill-
climbing method to determine TMij . TMij is dis-
tributed to the nodes. Nodes with negative TMij

migrate TMij parts of transactions to light nodes.
(1 � TMij) parts of transactions are processed in an
ordinary fashion. Nodes with positive TMij receive
the TMij parts of transactions from heavy nodes.

4.3 Migration plan derivation

Here we assume a coordinator who derives the
global migration plan. Coordinator can run on one
of the processing nodes or on a separate node. It
determines the Candidate Migration and Transaction
Migration plan. As mentioned earlier, since the cost
of Candidate Migration is smaller, we put priority to
Candidate Migration over Transaction Migration. The
derivation process is as follows:

1. Acquisition of workload information and skew de-
tection:
Coordinator acquires workload information from
every nodes and computes skew using expression
(3). If skew is detected, it proceeds to the follow-
ing steps.
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2. Migration planning:
Coordinator makes a plan for Candidate Migra-
tion using expression (15). If skew still presents,
it also creates another plan for Transaction Mi-
gration using expression (20).

3. The execution of migration plan:
Coordinator sends migration plan to all process-
ing nodes and instructs them to reallocate the
load. When Candidate Migration is employed,
each node transfers candidate itemsets according
to the plan and renews the hash table. It also
remakes the destination list of transaction data if
Transaction Migration is needed.

The above procedure is periodically invoked. Co-
ordinator checks the skew condition every �xed time
interval. The complete load balancing is di�cult by
any means. Error gradually accumulates. Once it be-
comes beyond the threshold, the coordinator tries to
balance the workload again.

5 Performance Evaluation on PC Clus-
ter

5.1 PC Cluster

We have developed a large scale PC cluster consists
of 108 PCs interconnected with 155 Mbps ATM and
10 Mbps Ethernet networks[8, 13]. Initially the PC
cluster was made up of 100 PCs with 200 MHz Pen-
tium Pro only and then we have added another 8 nodes
but with more powerful 333 MHz Pentium II since the
performance of PC hardware had improved dramati-
cally. We implement our load balancing strategies on
this heterogeneous system. We create two processes on
each node, one handles SEND process and the other
takes care of RECV process.

5.2 Experimental Environment and Transac-

tion Dataset

In order to simplify the problem and to show clearly
the e�ectiveness of our approach we have made per-
formance evaluation on a group of four nodes each
with di�erent CPU power, disk performance and data
distribution as shown in table 1. The datasets that
mimic retail sales data are generated using procedure
described in [1]. The parameters used are described in
table 2. Dataset 1 and dataset 2 have 1 and 1.5 million
transactions respectively. In practice, we are force to
mine database in various situation, so data distribu-
tion is skewed. The dataset 1 amounts to 80MB and it
is partitioned into 40MB, 20MB, 10MB and 10MB and
allocated to over four nodes. Thus, each nodes has dif-
ferent size of dataset. We put least amount of data to
node 4 while employing fast microprocessor in order to
arti�cially generate skew. This is prepared for candi-
date migration experiments. The dataset 2 is 120MB,

Node 1 Node 2 Node 3 Node 4

Proc. P.Pro P.Pro P.Pro P.II
Clock 200MHz 200MHz 200MHz 333MHz
Disk SCSI SCSI SCSI IDE

DataSet1 40MB 20MB 10MB 10MB
DataSet2 80MB 20MB 10MB 10MB

Table 1: Execution environment

DataSet1 DataSet2

Number of transactions 1000000 1500000
Avg. size of transactions 20 20
Number of items 5000 5000

Table 2: Datasets

and is devided into 80MB,20MB,10MB and 10MB. Ap-
parently experiment with dataset 2 has higher skew
than that with dataset 1. This is used for transaction
migration experiments. And in all of the experiments,
the skew value was set to 0.2 2. Here we changed
the size of data sets, just because the target data set
could be di�erent for each data mining applications.
Thus uneven data distribution naturally happens in
such situations.

5.3 Performance evaluation results

Experiment with Dataset 1 for candidate mi-

gration

The numbers of candidate itemsets(C) and large
itemsets(L) resulted from data mining of dataset 1
with 0.7% minimum support are shown in table 3. It is
known that generally second pass produces the largest
amount of candidate itemsets. The execution traces
without any load migration are shown in Figure 2.
The �gure shows four di�erent resource usage: CPU,
disk, interconnection network (send/receive). Hori-
zontal axis is elapsed time and vertical axis denotes
utilization ratio for CPU and data transfer through-
put for disk read and interconnection network. The
network throughput is divided into two parts, send
throughput and receive throughput.

Since we are activating four nodes, we could show
four di�erent traces. But we omit that for Node 3,
since the space is limited. The �gure shows that each
node generates k-itemsets and sends them to destina-
tion nodes consecutively. In the �rst half of second
pass Node 1 is too busy with RECV process receiv-
ing k-itemsets from other nodes, and could not even
a�ord to read its own transaction data and perform
SEND process. On the other hand, Node 4 with more
powerful CPU and less data �nishes reading its 10MB
transaction data in �rst 40 seconds and spends the
rest of time just waiting for incoming k-itemsets from
other nodes. Node 2 has more work than Node 4 but

2In this case, result of some experiments, we set skew 0.2.
But we think this parameter's tuning is one of the future works
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Figure 2: Execution trace without load balancing Figure 3: Execution trace with Candidate Migration
(DataSet1) (DataSet1)
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it completes reading the transaction data much earlier
than Node 1. The total execution time is 164.03 s.

When we apply Candidate Migration strategy, can-
didate itemsets are reallocated as soon as skew is de-
tected. The traces are shown in Figure 3. Every node
completes its task at almost the same time indicat-
ing the skew is eliminated and workload is evenly dis-
tributed. The processing time is also greatly improved;
data mining with Candidate Migration requires only
120.21 s.

Figure 4 shows the trace of weighted candidate
itemsets of all the nodes. We can see that Node 1 and
Node 2 migrate their candidate itemsets to Node 3 and
Node 4. The amount of migrated itemsets gradually
increases and �nally converged to a certain value. Cur-
rently the load skew is checked every 10 seconds. But
for �rst several tens of seconds we should not wait 10
seconds, such a long time. We had better wait longer
time for the system to reach certain stable condition,
where we can calculate � values in the expression (15)
precisely. However, if we wait too long, the nodes with
faster processor and small amount of transactions will
process their workload very quickly. So even though
some of the parameters are a bit imprecise, we should
migrate workload to light nodes as early as possible.
After that, we can gradually tune the workload by per-
forming additional migration.

During support counting, as shown Figure 3, we
can see that Node 4 receives much more k-itemsets
than it sends out. Since probing hash table for k-
itemsets received from the other nodes precedes that
for k-itemsets from node's own transaction data, read-
ing transactions from disk is suppressed. Thus by com-
paring Figure 2 and 3, we can conclude that Candidate
Migration strategy succeeds to evenly distributes the
work load among the nodes.

Experiment with Dataset 2 for both candidate

migration and transaction migration

We did an experiment with more skewed environment
using dataset 2. Result of data mining using dataset
2 and 0.7% minimum support is also shown in table 3.
It produces most of candidate itemsets during second
pass like dataset 1. Node 1 is becoming the bottleneck
of the parallelization as shown in Figure 5. Since the
space is limited, we omit the traces of Node 2 and 3,
and shows the behavior of only Node 1 and 4. The
total execution time is 287.09 s.

By introducing the Candidate Migration, perfor-
mance can be improved. The burden of workload is
dispersed from Node 1 since the candidate itemsets are
reallocated to other nodes, which is shown in Figure 6.
The processing time is reduced to 198.36 s. However
since the load is extremely concentrated at Node 1, as
�gure 6 shows, Candidate Migration alone can not get
rid of that skew completely. Node 4 �nishes reading
out the transactions from disk at around 125 s. After

0

20

40

60

80

100

120

0 50 100 150 200 250 300

W
eig

hte
d A

mo
un

t o
f C

an
did

ate
 Ite

ms
ets

Time[sec]

Node1
Node2
Node3
Node4

Node4

Node3

Node1

Node2

Figure 7: Migration trace for weighted amount of can-
didate itemsets(DataSet2)

that, it just receives the itemsets from other nodes.
Thus the CPU usage goes down between 125 s. to 180
s. We can see that all candidate itemsets of Node 1
has been transferred to other nodes, as shown at �g-
ure 7. There remains no candidate itemsets at Node
1. Thus candidate migration cannot migrate workload
any more. We need to introduce Transaction Migra-
tion.

When we introduce transaction migration in addi-
tion to candidate migration, we can achive almost per-
fect load balancing as shown at Figure 8. Transaction
migration works very e�ectively for highly skewed en-
vironment. Node 1 sends its transaction data and dele-
gates the generation of k-itemsets to other nodes. The
elimination of skew records processing time of 182.18 s.
Transaction Migration can remove the workload skew
which Candidate Migration is unable to handle.

Figure 9 shows the trace of amount of weighted can-
didate itemset and amount of migrated transactions
for Node 1 and Node 4. No candidate itemsets is left
at Node 1. Node 4 accepts candidate itemsets mi-
grated from Node1. In addition to it, it receives the
transaction given by Node 1. Node 1 sends out trans-
actions to the other nodes and Node 4 receives some
of the transactions from Node 1.

Experiment for scalability

We have also examined the scalability of our strategies.
We scaled up the system by multiplying the con�gu-
ration we used so far. We used the con�guration of a
group of 4 nodes as multiplication unit and expanded
the system from 4 nodes to 8, 12, 16, 24 and 32 nodes.
We retained the composition of the 4 node system as
described in table with dataset 1. Namely 8 node sys-
tem is composed by just duplicating the original 4 node
system. 12 node system is by replicating the original
system three times and so on.

The results are shown in �gure 10. The amount of
transaction on each node does not change. So the total
volume of transaction increases proportionally as the
number of nodes increases. Execution time increases
slightly as the number of nodes increases. As the num-
ber of nodes increases, the overhead time for synchro-
nization becomes non-negligible. We think this is the
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Figure 5: Execution trace without any load balancing(DataSet2)
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Figure 6: Execution trace with Candidate Migration(DataSet2)

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
[0

.1
M

B/
s],

 C
PU

 u
sa

ge
[%

]

Time[sec]

CPU
Send
Recv
Disk

CPU

Disk
Recv

Send

Pass2

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Th
ro

ug
hp

ut
[0

.1
M

B/
s],

 C
PU

 u
sa

ge
[%

]

Time[sec]

CPU
Send
Recv
Disk

CPU

Recv

Disk
Send

Pass2

(a)Node1 (b)Node4

Figure 8:Execution trace with both Candidate Migration and Transaction Migration(DataSet2)
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reason of slight performance degradation. We will de-
scribe this problem as a future extension at the con-
clusion. We are currently planing to introduce more
nodes with 450MHz Pentium II and Xeon and perform
larger scale experiment.

Experiment for the use of unused machines

So far we assumed that transaction database is par-
titioned over the nodes. Each node has some portion
of transactions. We could use PC's which do not have
transactions for data mining. In real situations, recent
organizations have a lot of PC's and some of them are
not used from time to time. We could make use of
such idle PC's, in addition to the PC's which are orig-
inally assigned for data mining. This experiment tries
to show how our scheme works in such environments.

Initially transactions are stored over two nodes.
Then we add four idle nodes. Here in order to sim-
plify the problem, we use same kinds of PC's. From
the machine hardware type point of view, this might
be homogeneous environment. But we store transac-
tions on the disks of the two nodes but no transactions
on the disks of other nodes, which can be regarded as
heterogeneous. The number of transactions is 1 mil-
lion. Figure 11 shows the experimental results. Figure
11(a) shows the execution trace of the experiment on
only initial nodes. When we add the idle nodes, we
can not exploit the resources of idel nodes e�ectively
as shown �gure 11(b). As you can see from the �gure
11(c), by migrating the workload from the initial two
nodes to the idle nodes, we can reduce the execution
time and exploit CPU and memory resources of idle
nodes e�ectively. And �gure 11(d) shows the scale-up
result, when initially 4 million transactions are stored
over eight nodes, then we add idle nodes from one to
sixteen. As shown �gure 11(d), by migrating the work-
load from the initial nodes to the idle nodes, we can
reduce the execution time signi�cantly.

6 Conclusion

In this paper, we proposed dynamic load balancing
strategies for parallel association rule mining on het-
erogeneous PC cluster system. Due to the short devel-
opment period of recent PCs, it is inevitable that the

PC cluster system becomes heterogeneous. Di�erent
types of CPUs are used from PC to PC. Di�erent kinds
of disks are also employed. In order to utilize all the
system resources as fully as possible, we have to make
the program adaptive to its runtime environment.

Compilation approach has its limitation, since the
available resource might be di�erent run by run. In
addition, recent softwares have a lot of knobs, that is,
tuning parameters, which makes system maintenance
so di�cult. This problem is pointed out also in Asilo-
mar Report [16]. Thus the system had better adapt
itself to the runtime environment autonomously.

In our proposed scheme, the parameters such as
performance ratios are not necessary. At run time,
the program derives several necessary coe�cients by
itself. Thus a programmer/compiler does not have to
care about them. If we plan to use the unused system
resources, say at night, the availability is unforseeable.
In some case, other program might enter the system
and start to run. So even during the execution, the
available power might change. Our approach is de-
signed to work even under such environment.

We adopted HPA(Hash Partitioned Apriori) algo-
rithm for underlying parallel association rule mining.
This partitions the candidate itemsets over the nodes,
while ordinary methods just copy candidate itemsets
all over the nodes. HPA can improve the memory ef-
�ciency signi�cantly. We proposed two kinds of dy-
namic load balancing strategies for parallel association
rule mining, Candidate Migration and Transaction Mi-
gration. We showed that by changing the allocation of
candidate itemsets among the nodes, we can control
the workload of PCs. The amount of candidates to
be migrated can be derived analytically. If the skew
is very high, Candidate Migration is not su�cient to
balance the workload. In such case, we introduced
yet another strategy named Transaction Migration.
Since generation of candidate itemset from transaction
is time consuming, heavy nodes send transactions to
light nodes to whom itemset generation is delegated.
This incurs extra data transmission but is e�ective to
remove the workload skew.

In order to clearly show the e�ectiveness of our ap-
proach, we set up rather simple 4 node cluster with two
kinds of PCs and varied the size of dataset for each PC.
We demonstrated the feasibility of our approach show-
ing the execution trace. By examining the trace, we
con�rmed that the proposed scheme e�ectively works
to remove workload inbalance. Candidate Migration
works under medium skew environment. If the skew is
high and candidate migration can not su�ciently help,
the system automatically invokes the Transaction Mi-
gration. In addition, we also showed the scalability
experiments. We increased the size of the system from
4 nodes to 32 nodes. We found su�cient scalability
can be archived

Currently, our algorithm estimates the itemset fre-
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Figure 11: Experiment for the use of unused machines

quency using the support values of the previous pass.
Based on this estimated itemset frequency, we derive
the relative workload of candidate itemsets and deter-
mine the migration plan. Apparently this estimation
can not be precise. During execution, we could mod-
ify the estimated value by using the runtime statistics.
We are now examining the e�ect of estimation error
and also implementing the extended version using run-
time learning. Another extension is on the synchro-
nization. In current implementation, the Candidate
Migration is performed using barrier synchronization.
That is, on migration all the nodes stop and migrate
candidate simultaneously. Once migration completes,
the system restarts again. If the size of the system be-
comes large, obviously it incurs a lot of overhead. So
asynchronous migration should be employed, which we
are going to investigate. And we also plan on imple-
menting our ideas in generalized association rules[12],
and sequential patterns. Still remains lots of inter-
esting extensions, such as elimination of coordination
nodes. Fully distributed algorithm is more challenging.
So far we have focused on heterogeniety of hardware
but same approach should work among PC's with dif-
ferent OS's. The number of nodes in our experiments
is not necessarily large. The experimental results on
100 node environments is being undertaken, which will
be reported in the future paper.
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