
An Adaptive Hybrid Server Architecture for Client Caching
Object DBMSs

�

KaladharVoruganti M. TamerÖzsu
Universityof Alberta
Edmonton,Canada

RonaldC. Unrau
CygnusSolutions

Sunnyvale,California

Abstract

Currentclient-serverobjectdatabasemanagement
systemsemployeithera pageserver or anobject
server architecture. Both of thesearchitectures
have their respective strengths,but they alsohave
key drawbacksfor importantsystemandworkload
configurations.We proposea new hybrid server
architecturewhich combinesthe bestfeaturesof
both pageserver and object server architectures
while avoiding their problems. The new archi-
tectureincorporatesnew or adaptedversionsof
datatransfer, recovery, andcacheconsistency al-
gorithms;in this paperwe focusonly on thedata
transferand recovery issues. The data transfer
mechanismallows the hybrid server to dynami-
cally behave asbothpageandobjectserver. The
performancecomparisonof thehybridserverwith
objectandpageserversindicatesthat the perfor-
manceof thehybridserver is morerobustthanthe
others.

1 Introduction
We proposea new hybrid server architecturefor client-
server object databasemanagementsystems(ODBMSs)
which candynamicallyadaptandoperateeitherasa page
server or as an object server. Our fundamentalthesisis
thatpageserversandobjectserversaregenerallypreferable
undera limited setof systemandworkloadconfigurations
[DFMV90, CFZ94,DFB

�
96] andadaptivetechniquesthat

combinethe featuresof both are likely to respondbetter
to a larger classof systemand workload configurations.
Moreover, objectserversarenotaspopularaspageservers,

�
This researchis supportedin partby theNaturalSciencesandEngi-

neeringResearchCouncil(NSERC)of Canada.

Permissionto copywithoutfeeall or part of thismaterial is grantedpro-
videdthat the copiesare not madeor distributed for direct commercial
advantage, theVLDBcopyrightnoticeandthetitle of thepublicationand
its dateappear, and noticeis giventhat copyingis by permissionof the
Very Large Data BaseEndowment.To copyotherwise,or to republish,
requiresa feeand/orspecialpermissionfromtheEndowment.

Proceedings of the 25th VLDB Conference
Edinburgh, Scotland, 1999

becausepreviousperformancestudieshave shown thatob-
ject servers are not scalablewith respectto datatransfer
[DFMV90] andconcurrency control/cacheconsistency al-
gorithms [CFZ94]. In this paperwe presentnew tech-
niquesandreport performanceresultsthat show that ob-
jectsserverscancompetewith pageservers.

1.1 Background

Object servers and page servers are the two compet-
ing data-shippingarchitecturesemployedby the existing
ODBMSs[DFMV90, CFZ94]. In data-shippingsystems,
theclientsfetchdatafrom theserver into their cachesand
perform someof the databaseprocessinglocally. Thus,
from scalability standpoint,clients help the server from
becominga bottleneckby off-loading someof the work.
Prefetchingusefuldataalsoreduceseffective networkla-
tency. Figure 1 presentsa classificationof the differ-
ent data-shippingODBMSsaccordingto their datatrans-
fer mechanism. In data-shippingobject server systems
(THOR, Versant),the server respondsto client data re-
questsby returninglogical objectsto the client (the first
columnin Figure1). In pageserver data-shippingsystems
(ObjectStore,BeSS,O2, SHORE),the server respondsto
clientdatarequestsby returningphysicaldisk pagesto the
client (thesecondcolumnin Figure1). Thus,thegranular-
ity of thedatatransferredfromtheserverto theclientsis the
key distinguishingfactorbetweenobjectandpageservers.
Thedatatransfergranularityfrom theserver to theclient,
in turn,hasanimpacton buffer management,concurrency
control, recovery andpointerswizzlingalgorithms.These
issuesarediscussedin Section2.

 BeSS
O2

ObjectStore

SHORE
THOR
Versant

Object Page
Server to Client

Page

ObjectC
lie

nt
 to

 S
er

ve
r

Figure1: ODBMS Client-Server ArchitectureClassifica-
tion Accordingto theDataTransferMechanism

150

1.2 Motivation For Adaptive Hybrid Server

The needfor a hybrid client-server architecturewasrec-
ognizedfrom thevery beginningof client-server ODBMS
research[DFMV90], becausethe page server and ob-
ject server architecturesaredesirableunderdifferent(but
overlapping)setsof workloadsandsystemconfigurations.
However, therehasbeenno hybrid server systemdesign
thatcandynamicallychangeits modeof operationto effec-
tively satisfythe needsof differentworkloadsandsystem
configurations.

Pageserversystemscanoutperformobjectserverswhen
the applicationdataaccesspatternmatchesthe dataclus-
tering patternon disk (which we refer to in the rest of
the paperas good clustering)[DFMV90]. By receiving
pagesundergoodclustering,theclientsin thepageserver
architectureare able to prefetchuseful objectsthat they
will likely usein the future. Prefetchinghelpsto amor-
tize communicationcostsin pageservers. In comparison,
objectserversincur highercommunicationoverheadsince
they transferindividualobjectsfrom theserver to theclient
[DFMV90]. However, whenthedataclusteringpatternon
diskdoesnotmatchthedataaccesspattern(badclustering),
transferringtheentirepagefrom theserver to theclientsis
counter-productive sincethis increasesthe networkover-
headand decreasesclient buffer utilization. Dual client
buffer schemes[KK94, CALM87], which allow the stor-
ageof well clusteredpagesandisolatedobjectsfrom badly
clusteredpageshelpimproveclientbuffer utilization.

Page servers are inefficient for the emerging hy-
brid function-shipping/data-shippingarchitectures[KJF96]
where,in additionto requestingdatafrom the server, the
clientsalsosendqueriesto beprocessedat theserver. The
server processesthe queriesand returnsonly the results
backto the client. If a queryresult is spreadacrossmul-
tiple disk pageseachof whichcontainsonly a few objects,
thenit is very inefficientto sendall of thediskpagesto the
client [DFB

�
96].

An importantstudyonclustering[TN92] hasshown that
it is difficult to comeup with goodclusteringwhenmulti-
ple applicationswith differentdataaccesspatternsaccess
thesamedata.Therefore,goodclusteringcannotbetaken
for grantedandtheproblemof transferringbadlyclustered
pagesis a fundamentalissuein pageservers.

The datatransferproblemof objectserverscanbe re-
solvedby transferringa groupof objectsratherthana sin-
gle objectfrom theserver to the client (so calledgrouped
object servers). A dynamicobject groupingmechanism
hasbeenproposed[LAC

�
96] that makesgroupedobject

servers competitive with pageservers with respectto the
datatransfermechanism.However, groupedobjectservers
incur higher group forming/breakupoverheadthan page
serverswhenclusteringis good. Thus,thereis a needfor
anarchitecturewhichdealswith pageswhentheclustering
is good. Cacheconsistency/concurrency control is still a
problemin objectserversbecausethey sendseparatelock
escalationmessages(for escalatingfrom readlock to write
lock) to the server for eachobject[CFZ94]. Pageservers
areableto sendlock escalationmessagesat the granular-
ity of a pageand are thusable to reducelocking related
communicationoverhead.In orderto avoid this problem,

object servers typically use optimistic concurrency con-
trol algorithmswhichhave noexplicit lock escalationmes-
sages[LAC

�
96]. However, the resultinghigh abort rate

is undesirablefrom performanceandusabilitystandpoints
[OVU98]. Thus, at present,theredoesnot exist an effi-
cient,low abortconcurrency control/cacheconsistency al-
gorithmfor objectservers.Objectserver recoveryhasbeen
a neglectedarea,perhapspartially asa resultof giving up
on object servers due to their perceived problems. Cur-
rently thereareno publishedobjectserver recovery algo-
rithmsthatarecomparable,performance-wise,to thepage
server recovery algorithms [MN94, FZT

�
92]. Finally,

when clients in the object server architecturereturn up-
datedobjectsto theserver, theserver hasto re-installthese
updatedobjectson their correspondinghomepage(redo-
at-server recovery) beforewriting thepagebackto disk. If
theserverbuffer is heavily contended,thenthehomepages
might not bepresentin theserver buffersnecessitatingin-
stallationreadsto retrieve thehomepagesfrom disk. The
proponentsof objectservershave introducedthenotionof
amodifiedobjectbuffer (MOB) [Ghe95] at theserver. The
MOB storesthe updatedobjectsthat have beenreturned
by theclients. TheMOB helpsto intelligently schedulea
groupof installationreadsandthusreducetheinstallation
readoverhead. However, in workloadswherethe clients
areupdatinglargeportionsof a page,it is desirableto re-
turn updatedpagesto the server. Thus,a client-server ar-
chitecturemustbeflexible andshouldallow for thereturn
of updatedpagesfrom theclient to theserver.

1.3 Paper Scope and Contributions

In this paperwe proposean adaptive hybrid server archi-
tecturewhich adjustsits behavior betweena pageandan
objectserver, andis thusableto incorporatethestrengths
of bothpageandobjectservers.Theadaptivehybridserver
architectureincorporatesthefollowing contributions:

1. An adaptivedatatransfermechanismthatdynamically
decideswhetherto shippagesor objectsbetweenthe
server andtheclient.

2. A new efficient object server recovery mechanism,
which is usedby the hybrid server and can also be
adoptedby existing objectserver architectures.

3. An efficient, low abort rate cacheconsistency algo-
rithm for object servers. Asynchronousavoidance-
basedcacheconsistency(AACC)algorithm[OVU98]
for pageservers hasbeenshown to have both good
performanceand and a low abort rate. We adapt
AACC for objectservers.

We comparethe performanceof the hybrid server with
three other prominent architectures: grouped object
servers,pageserversthatusehardwarepagefaulting, and
pageserversthatusesoftwarepagehandling.Theresults,
reportedin Section5, show thatperformance-wisethehy-
brid server architectureis morerobustthantheothers.Be-
sidestheseresults,the performancestudy is importantin
its own right for two reasons:

151

Page Object Object Object ObjectPagePage

[OVU98]

[LAC+96] [LAC+96]

ObjectPage

[CALM97]

Data Transfer RecoveryCache Consistency Buffer Management Pointer Swizzling

High Abort Low Abort High AbortLow Abort

Page

[DFVM90]

[PBJR96]

[KGBW90]

[MN94]
[FZT+92]

[KK94][GK94] [WD94]

[This Paper] [This Paper]

[OS94]

[LLOW91]

[FCL96]

[FC94]
[CFZ94]

[CFZ94]

[BP95] [AGLM95] [Ghe95] [WD95][AGLM95]

[This Paper][This Paper]

Figure2: Decadeof researchinto pageandobjectserver ODBMSs

1. This is the first multi-userclient-server performance
studythatcomparesthe performanceof pageservers
and groupedobject servers. Previous studieseither
focusedon single-usersystems[DFMV90, CDN93,
LAC

�
96], or they did not considergroupedobject

servers[DFMV90, CFZ94].

2. This is the first multi-userclient-server performance
studythat looksat datatransfer, buffer management,
cacheconsistency, concurrency control,recovery and
pointer-swizzlingsystemcomponentsin anintegrated
manner. Currently, theexisting ODBMSproductsuse
differentcombinationsof algorithmsfor thesesystem
components,anddueto theinteractionbetweenthem,
it is difficult to properlyassessthestrengthsandweak-
nessof thedifferentarchitecturesunderarangeof im-
portantworkloads.

1.4 Paper Organization

Section2 discussesthe relatedwork. Section3 presents
thenew hybridserver architecture.Section4 describesthe
experimentalsetupandworkloads.In Section5 wepresent
resultsof ourexperiments.Section6 containsa discussion
of the experimentresultsandSection7 containsour con-
clusions.

2 Related Work
Figure 2 summarizesthe client-server ODBMS research
thathasbeenperformedover thelastdecadeontopicsrele-
vantto thispaper. Theseplayasignificantrolein determin-
ing the overall performanceof data-shippingclient-server
ODBMSs. In this sectionwe summarizetheresearchthat
hasbeenconductedinto datatransfer, cacheconsistency,
buffer management,recovery andpointerswizzling.

Data Transfer: Theinitial client-serverperformancestudy
[DFMV90] identified pageserver, object server, and file
server asthethreealternativeclient-serverarchitectures.A
key conclusionwasthat pageservers aredesirablewhen
the data accesspatternmatchesthe data clusteringpat-
tern on disk. This study promptedthe developmentof
prefetchingtechniquesfor both pageand object servers
[GK94, LAC

�
96]. A static hybrid datatransfermecha-

nism hasbeenimplementedin Ontos[CDN93] in which,
for eachobjecttype, the applicationprogrammersspecify

whetherthey wantto dealwith objectsor pages.In thispa-
perweproposea dynamichybriddatatransfermechanism
which usesrun-timeinformationto automaticallyadaptit-
selfandoperateaseithera pageor anobjectserver. A par-
tial hybrid server architecturein which the server always
sendspagesto theclients,but theclientscandynamically
chooseto returneitherupdatedpagesor updatedobjects
hasbeenproposed[OS94]. This flexibility requiresrevi-
sionsin theconcurrency controlandrecoverymechanisms,
but thesehave not beenaddressedin the partial hybrid
server proposal.Moreover, thestudywasin favor of archi-
tecturesthat returnpagesbecauseclientsupdateda large
portionof a page.This increasedserver buffer utilization
andled to their algorithmalwaysreturningupdatedpages
if they arepresentin the client cache. Our performance
resultsshow that returningpagesis not alwaysdesirable.
Finally, while dealingwith largeobjectsthatspanmultiple
pages,it is desirableto beableto transferonly portionsof
thelargeobjectbetweenclientsandservers.Bothpageand
objectservershave to bemodifiedto ensurethat theentire
largeobjectis not transferredasa singleunit betweenthe
server andthe client. Our proposalis a full hybrid archi-
tecturewhereboth the server and the clientscantransfer
pagesor objects.As discussedin Section3, our proposal
addressesmany of theissuesraisedabove.

Cache Consistency: Most of the existing cachecon-
sistency researchhas beenconductedwithin the context
of page servers (for an excellent survey see [FCL96]).
For most user workloads, invalidation of remote cache
copies during updatesis preferredover propagationof
updatedvalues to the remote client sites. Moreover,
caching of read-locksacrosstransactionsat the clients
is preferredover caching of both read and write-locks
[FC94]. It has beenshown that adaptive locking algo-
rithms that switch betweenpage level and object level
locks are more robust than purely pagelevel locking al-
gorithms [CFZ94]. Cacheconsistency algorithmshave
beenclassifiedasavoidance-basedanddetection-basedal-
gorithms[FCL96]. Avoidance-basedalgorithmsdo not al-
low for the presenceof staledata(datathat hasbeenup-
datedand committedby remoteclients) in client caches,
whereasdetection-basedalgorithmspermitclientsto have
staledatain theircachesandaborttransactions(stalecache
aborts)whenthey have accessedstaledata. Client cache
consistency algorithmscanalsobeclassifiedaccordingto

152

when the clients senda lock escalationmessageto the
serv� er. Clients can sendlock escalationmessagesin a
synchronous,asynchronousor deferredmanner[FCL96].
In a previous paperwe showed that a new adaptive al-
gorithm,calledasynchronousavoidance-basedcachecon-
sistency(AACC),outperformsotherleadingcacheconsis-
tency algorithms[OVU98] suchasACBL [CFZ94],which
is a synchronousavoidance-basedalgorithm, and AOCC
[AGLM95] which is a deferreddetection-basedalgorithm.
AACC is anavoidance-basedalgorithm,and,therefore,it
has a much lower abort rate than AOCC. It usesasyn-
chronouslock escalationmessagesto have lower blocking
overheadthanACBL, anda lower abortratethandeferred
avoidance-basedalgorithms.AACC alsopiggybackslock
escalationmessageswhile updatingdatathatis not cached
atmultipleclientsto reduceits messagehandlingoverhead.
Finally, sincetherecurrentlydoesnotexist acacheconsis-
tency algorithmfor objectserversthat providesboth high
performanceandlow abortratewehavemodifiedthepage-
basedAACC for objectservers.

Pointer Swizzling: Thepointer-swizzlingresearchhasled
to thedevelopmentof hardware-basedandsoftware-based
algorithms[WD94]. In the former the pagelevel virtual
memory facilities provided by the operatingsystemare
usedto eagerlyswizzlethepointerson a page.In the lat-
ter, a function call interfaceis provided to the client ap-
plicationsto accessthe pointers. The function codeper-
forms residency checksanddereferencingof pointers. In
softwareswizzling, the swizzledpointersusuallypoint to
the target object's entry in an indirection data structure
(object table). Thus, thereis a level of indirectionwhile
traversingfrom thesourceobjectto thetargetobject.Page
serverscanuseeitherthehardwareor thesoftwarepointer
swizzlingmechanism,but objectserversuseonly software-
basedpointerswizzling,sinceit is inefficientto reservevir-
tual memoryframesat theobjectlevel. Currently, mostof
thehardwarepointerswizzlingmechanismsstoretheswiz-
zled in-memoryversionof the object identifierson disk
[WD94, LLOW91]. Sincethein-memoryversionof anob-
ject identifier is usuallysmallerthanthe on-diskversion,
this reducesthesizeof theobjectson disk,which, in turn,
leadsto fewer disk I/Os (in comparisonto the software
swizzlingalgorithms)while readingthe objectsfrom disk
[WD94]. Thesecondadvantageof storingswizzledpoint-
erson disk is that if a client's working setfits completely
into its virtual memoryaddressspace,thenthe hardware
pointer swizzling mechanismhas to swizzle the on-disk
versionof the object identifieronly onceduring its initial
access.Storingof swizzledpointersondiskis animportant
strengthof the hardwareswizzlingmechanism.However,
thehardwarepointerswizzlingcreatesproblemsrelatedto
objectmigration(bothbetweenpagesandacrosssystems)
anddeletion,sincethereis no level of indirectionbetween
the sourceandthe target objects. Finally, sincethe hard-
wareswizzling relieson operatingsystemprovided page
faultingmechanism,it usuallyemployspagelevel locking,
datatransfer, recoveryandbuffermanagementmechanisms
[LLOW91,BP95] andthishasnegativeperformanceimpli-
cationsasdemonstratedby ourperformancestudy.

Recovery: In pageservers,clientscansendto the server
eitherupdatedpages(whole-pagelogging),updatedpages
andlog records[FZT

�
92, MN94], or log records(redoat

server) [WD95]. For pageservers, returningboth pages
andlog hasbeenshown, in general,to have the bestnor-
mal operationperformance[WD95]. Existingpageserver
recovery mechanismsusethe STEAL/NO-FORCEbuffer
managementpolicy wherethepageson stablestoragecan
beoverwrittenbeforea transactioncommits,andpagesdo
not needto be forced to disk in order to commit a trans-
action. STEAL/NO-FORCEis generallyregardedasthe
mostefficientbuffer managementpolicy, but thepublished
object server recovery proposals[KGBW90] do not use
it. The needfor an efficient objectserver recovery algo-
rithm hasbeenidentifiedasanoutstandingresearchprob-
lem [FZT

�
92, MN94]. It has also beenshown that for

ODBMS workloads,it is not desirableto generatea log
recordfor eachupdatesincethesameobjectcanbeupdated
multiple timeswithin a transaction.Instead,it is moreeffi-
cientto performa differenceoperationat committime be-
tweenthebefore-updateandafter-updatecopiesof dataand
to generateasinglelog record[WD95].

Buffer Management: Buffer managementinnovations
have beenmadefor both pageand object servers. Dual
buffer managementtechniquescanbeutilizedby clientsin
pageserversto increaseclientbuffer utilization[CALM87,
KK94]. Dualbufferingallowsbufferingbothwell clustered
pagesandisolatedobjectsfrom badlyclusteredpages.Ob-
jectserverscanusethemodifiedobjectbuffer (MOB) atthe
server that storesthe updatedobjectsthat arereturnedby
theclients[Ghe95]. Theobjectsstoredin theMOB have to
beinstalledontheircorrespondinghomepagesandwritten
backto disk. The MOB allows the server to intelligently
scheduleinstallationreadsusinga low priority processand
thushelpsto amortizetheinstallationreadcost.

3 Adaptive Hybrid Server Design

Thefundamentalprincipleof thehybridserver is thatit can
dynamicallyadaptandbehave asbothpageandasgrouped
objectserver; hencethenameadaptivehybridserver. The
hybridserver architecturethatweproposein thispaperhas
thefollowing key components:

Data Transfer: A key featureis theability to dynamically
adaptbetweensendingpagesor agroupof objectsbetween
theserverandtheclient.Boththeclientandtheserverhave
animportantroleto playto maketheadaptivebehavior fea-
sible(detailsarepresentedin Section3.1).

Buffer Management: Sinceclientsandtheserver canre-
ceive eitherpagesor objects,bothclientandserver buffers
needto beableto handlepagesandobjects.Theclient im-
plementsa dual buffer managersimilar to [KK94] which
canmanagebothpagesandobjects.Theserver containsa
stagingpagebuffer to storethepagesthatarerequestedby
the clients,anda modifiedobject/pagebuffer to storethe
updateddatareturnedby theclients[Ghe95].

Pointer Swizzling: Sincethe hybrid server needsto ma-

153

nipulatedataatboththeobjectandpagelevel it canusethe
software� pointerswizzlingmechanism.However, thisleads
to an increasein the databasesize, becausethe software
swizzlingschemestoresobjectidentifierswhich arelarger
in sizethanmemorypointersthatarestoredondisk.There-
fore, in orderto have theflexibility of manipulatingdataat
anobjectlevel while storingmemorypointerson disk, the
hybrid server architectureusesa hybrid pointerswizzling
mechanism.In this techniquethe sourceobjectpoints to
an entry in an indirection structure[BP95] that, in turn,
containsa pointer to the target object. The disk version
of the object storesthe memorypointer from the source
object to the indirectionstructureentry. Oncethe appro-
priatepartof theindirectionstructurehasbeenfaultedinto
memory, the target object is broughtinto memoryusing
DBMS software(similar to the softwareswizzling mech-
anisms)aspart of an objectgroupor a page. Therefore,
unlike the hardwareswizzling schemes,operatingsystem
pagefaulting supportis not usedto bring in dataobjects
and this giveshybrid swizzling the flexibility to manipu-
late dataat both objectandpagelevels. Moreover, unlike
the hardwareswizzling approach,the level of indirection
enablesthe hybrid pointerswizzling mechanismto avoid
objectmigration/deletionproblems,andit alsoallows for
fine-granularityobjectlevel locking.

Since the hybrid pointer swizzling approachusesthe
sametechniquesanddatastructuresthathave beendevel-
opedby thehardwarepointerswizzlingalgorithmsfor stor-
ing andhandlingmemorypointers[WD94], wearenot re-
peatingthedetailshere.Theindirectionstructureis anad-
ditional datastructure(alsopresentin softwareswizzling
mechanism)thatis not usedby thehardwarepointerswiz-
zling mechanism,but it hasto bestoredandretrievedfrom
a persistentstore. As a minimum,eachentry in the indi-
rection structurecontainsthe OID of the target object, a
pointerto a structurecontainingrun-timeinformation,and
alsoa pointer to the target object. The indirectionstruc-
ture'spagesareunderthecontrolof theDBMS.

Recovery: Recovery managementand client-to-server
datatransferare tightly linked becausethe client can ei-
ther return both pagesand log records,or it can return
only log recordswhenthepageis not presentin theclient
cache.The server storesboth the redoandundoportions
of a log recordin its log buffer, but it storesonly theredo
portion of a log recordin its MOB. If the client returns
only log recordsthenthe server usesa redo-at-server re-
covery mechanism,but if theclient returnsbothpagesand
log records,thentheserver dynamicallyswitchesanduses
theARIES-CSA[MN94] recoverymechanism.Therecov-
erymanagementdetailsarepresentedin Section3.2.

Cache Consistency/Concurrency Control: Since the
clientsin thehybrid server architecturehandlebothpages
andobjectgroups,thehybridserver shouldbeableto sup-
port locking operationsat bothpageandobjectlevels. As
discussedin a previousclient-server locking performance
study [CFZ94], it is very inefficient to sendlock escala-
tion messagesfromtheclient to theserver for eachindivid-
ual objectin anobjectgroup. Sincepageserverscanper-
form lockingoperationsatthegranularityof apage,they do

not incurhigh lock processingandlock escalationmessage
overheads.In this paper, we adaptthe page-basedAACC
[OVU98] algorithmfor objectservers. Theobjectservers
usethe physicaldisk pageitself asthe granuleof locking
whendealingwith objectgroups.It is importanttonotethat
this lockingarrangementstill giveseachclient thefreedom
to dynamicallyform objectgroupsfor datatransfer. There-
fore, therecanbesituationswhentheobjectgroupsizeis
muchsmallerthanthepagelevel unit of locking. If object
groupsareallowedto spanacrossmultiplepages,thenone
canincrementallylock only thosepageswhoseobjectsare
accessed.Sinceour unit of locking is a page,even if the
sizeof theobjectgroupis smallerthana pageandthepage
doesnotexist attheclient,westill lock theentirepage.The
server includestheid of thelockingunit (page)alongwith
eachobjectthatit sendsto theclient. If thereareconflictsat
the pagelevel, thenthe clientsdynamicallyde-escalateto
individualobjectlevel locks. Theclientsmaintainlocking
informationat both individualobjectlevel andat thepage
level. The server primarily maintainslocking information
at the pagelevel, but it alsomaintainsinformationabout
objectson pagesthat are accessedin a conflicting man-
ner by differentclients. Thus, the hybrid server can lock
dataat bothpageandobjectlevels. A detaileddescription
of AACC alongwith a performancestudy that compares
it with othercacheconsistency algorithmscanbefoundin
[OVU98].

In this paper, dueto spaceconstraints,weonly providethe
detailsof thedatatransferandrecovery mechanism.

3.1 Adaptive Hybrid Data Transfer Mechanism

Thedatatransfermechanismthat is usedin our server ar-
chitectureis hybrid becausethe granularityof datathat is
sentfrom theserver to theclientandsubsequentlyreturned
fromtheclientto theservercanbeeitherpagesor groupsof
objects.Clientsprovidehintsto theserver asto whetherto
senda pageor anobjectgroup.If theclientswanta group
of objects,thenthey alsoprovide a hint aboutthe sizeof
the objectgroup. If the server noticesthat its buffersare
contended,thentheserver overridesclient hintsandsends
pagesto the clients. The server also informs the client
whethertheserver resourcesarecontended.After perform-
ing anupdate,theclient returnsa pageto theserver only if
a largeportionof thepagehasbeenupdatedandtheserver
is busy, otherwise,theclient returnsupdatedobjectsback
to theserver. We now discussthespecificsof this mecha-
nismin detail.

Initial Client Request: A client's first requestis for an
object; it sendsanobject id to the server andrequeststhe
correspondingobject. It also initializes the object group
sizeto beequalto thepagesizeandsendsthis to theserver
alongwith theobjectid.

Request Processing at Server: In servicingthe request,
theserverchecksif its disksandbuffersarecontended(the
detailsaregivenbelow):

� If its disksandbuffersarecontended(server is busy),
thentheserver ignoresclient's objectgroupsizehint

154

andsendsbackthe pageon which the requestedob-
ject resides. In this case,the server doesnot con-
siderwhetherthe clusteringis goodor bad. Return-
ing apageduringperiodsof highcontentionhelpsthe
server to reducethegroupformingoverhead.

� If theserver is not busy thenit checkstheclient pro-
videdhint to seewhetherit shouldreturna pageor a
groupof objectsback to the client. If the client re-
questeda page,thentheserver returnsthepageto the
client. If theclient requestsanobjectgroup,thenthe
clientspecifiesthesizeof theobjectgroup.Theserver
partitions the pageinto n equalsizedsub-segments
whosesizeis equalto thesizeof theobjectgroupre-
questedby theclient [LAC

�
96]. Theserver thenre-

turnsto theclient sub-segmentin whichtherequested
objectresides.Theserver alsodetermineswhetherit
is busy and piggybacksthis information along with
othermessages.

The server determinesthat its resourcesarecontendedif
thediskutilization,andthepagebuffermissratio areabove
their respective thresholds,otherwiseit considersitself not
busy. Pagebuffer missratiomeasuresthenumberof server
pagebuffer misses. We empirically determinedthe disk
utilizationandtheserver pagebuffer missratiosto be0.80
and0.60 respectively. Thesethresholdsweredetermined
by runningmultiple experiments(not reportedin this pa-
per) with different thresholdvalues. For disk utilization
valuesbetween0.70and0.90,theoverall systemthrough-
put did not changeappreciably. Similarly, theserver page
buffer missratio valuesbetween0.50and0.70,theoverall
systemthroughputdid not changeappreciably. Disk uti-
lization needsto be checkedbecause,if the disksarenot
contended,thentheclientscanreturnobjectsandtheinstal-
lation readscanbe performedin the background.Hence,
returningobjectsto theserver will not bea problem.Sim-
ilarly, server pagebuffer miss ratio is importantbecause
if no client readrequestsare presentat the server, then,
onceagain,theinstallationreadswill not beanissue.It is
importantto notethat otherheuristicsusingothersystem
parameters(suchasCPUandnetworkutilization)arepos-
sibleandwearenow exploring these.

Client Receives Object Group: If the client receives an
objectgroupit registersthe objectsin the residentobject
table,andloadstheobjectsin theobjectbuffer. Theclient
determineswhetherthereis a goodmatchbetweendataac-
cessand dataclusteringpatterns(i.e, whetherthe group
sizeis accurate).It determinesaccuracy by keepingtrack
of the numberof objectsusedin the previously received
object groups[LAC

�
96]. Therefore,if many objectsin

thepreviously receivedobjectgroupshave beenused,then
thereis a goodmatchbetweenaccessandclustering.The
objectgroupsize is dynamicallyincreasedif the dataac-
cesspatternmatchesthe dataclusteringpattern,and de-
creasedotherwise.In thispapertheobjectgroupsizevaries
in incrementsof 5 objects,wherethe upper limit of the
groupsizeis the numberof averageobjectsallowedon a
page,andthelower limit is the incrementsizeitself. Each
client adjuststhe groupsize using two parameters:fetch
anduse. Fetch is thenumberof objectsin theobjectgroup

receivedby theclient,anduseis thenumberof objectsthat
have beenusedfor thefirst timeby theclientafterthey are
fetched.Whenanobjectgroupof sizeN arrives,theclient
recalculatestheseparametervaluesusingexponentialfor-
getting[LAC

�
96]: fetch = fetch/2 + N anduse= use/2+

1. Theclientdecreasestheobjectgroupsizeby 5 objectsif
use/fetch is lessthanthethreshold(whichis empiricallyde-
terminedto be0.3)andincreasesit by 5 objectsotherwise.
This thresholdof 0.3 wasdeterminedby runningmultiple
experiments.For thresholdvaluesbetween0.20and0.40,
the overall systemthroughputdoesnot changeapprecia-
bly. Moreover, if theclient determinesthat thegroupsize
is over 30percentof thepagesize,thenit switchesto page
requestmodefor subsequentrequestsfromtheserver in or-
der to reducetheobjectgroupforming/breakupcosts.We
found that switchingfrom object to pagemodefor group
sizevaluesbetween25 percentand35 percentof thepage
sizedid not changetheoverall systemperformanceappre-
ciably.

Client Receives Page: If the client receives a pagethen
it registersthepagein theresidentpagetable,andputsthe
pageinto its pagebuffer. Thepagestaysin theclient page
buffer as long as thereis no client buffer contentionand
the pageis well clustered. Otherwise,the client flushes
the pageand retainsonly the objectsthat have beenal-
readyusedby moving themto the objectbuffer [KK94].
Onceagaintheclientdetermineswhetherthecurrentobject
groupsize(now equalto a page)is accuratein themanner
describedabove. The client switchesback to requesting
objectsif thegroupsizefalls below 30percentof thepage
size.

Client Returning Updated Data: Whena clientperforms
anupdate,it canreturneitheranupdatedpageor anobject.
If theserver is busy, thentheclientreturnsanupdatedpage
if thepageis presentin theclient buffer andmorethan10
percentof thepagehasbeenupdated(for a rangebetween
5 and10 percent,the overall systemperformancedid not
changeappreciably).Otherwise,theclient returnsupdated
objects.Theclientsdonot wantto returnsparselyupdated
pageswhentheserver buffersarecontended.

Server Receiving Updated Data: After receiving theup-
datedobjects/pagefrom the client, the server loadsthem
into its modifiedbuffer, andthenflushesthemto disk in the
background.

3.2 Hybrid Server Recovery Algorithm

Sincethehybrid server canbehave aseithera pageserver
or an objectserver, its recovery mechanismmustbe flex-
ible to handleboth modesof operation. In this paperwe
describea recovery algorithmthatmeetsthis requirement.
Weshouldnotethatthealgorithmcanalsobeusedby pure
objectserversbut thedetailsarenotpresentedin thispaper.

Ouralgorithmis basedon theARIES-CSArecovery al-
gorithm [MN94], which we adaptfor hybrid servers. We
do not presentthedetailsof this algorithm,andinsteadre-
fer thereaderto [MN94]. Similar to ARIES-CSA,our re-
covery algorithmgenerateslog recordsat theclientswhich

155

PageHard

PageSoft

ObjSrv

HybSrv

Client->Server Cache Consistency Pointer-Swizzling Server Buffer Client Buffer

ARIES
Logs and Page

 Adaptive AACC

Adaptive AACC

Hardware Page

Dual

Object

Dual

 Logs
Redo At Server

Redo At Server
 Logs

Modified Page
Page/

Page/
Modified Object

Page/
Modified Object

Page/
Modified Dual

Adaptive AACC

Page Level AACC

ARIES Or
Redo at Server
Page/Logs

Objects

Page

Page

Objects
Page /

Recovery
Server->Client

Hybrid

Hybrid

Hybrid

Figure3: Systemsundercomparison
arestoredpersistentlyat theserver (logsarenot storedon
local client disks),andthe server doesnot rely on clients
for its restartrecovery. The transactionrollback opera-
tions are performedat the clients. Our algorithm uses
the STEAL/NO-FORCEbuffer managementpolicy at the
server. Clientsgeneratelog recordsby comparingthepre-
updatecopy of the datawith the post-updatecopy of the
data. The log generationoperationis performedat com-
mit time or whendataareflushedfrom the client buffers.
Clientscantakecheckpoints,andtheserver cantakea co-
ordinatedcheckpointwhich contactsall of the clients for
theirdirty pagetableandtransactiontableinformation.The
server andclient failure recovery operationsusethe stan-
dardARIES3-passapproach.

3.2.1 Hybrid Server Recovery Issues

The following recovery issueshave to beaddressedwhen
ARIES-CSA recovery algorithm is extended to hybrid
servers:

Absence of pages at the client: The log recordsgener-
atedattheclient,theclientdirty pagetable,andthestateof
a pagewith respectto the log (PageLSN)all requirepage
level information.Eachgeneratedlog recordcontainsa log
sequencenumber(LSN).TheLSNsaregeneratedandhan-
dledin thesamemannerasin ARIES-CSA.Eachpagecon-
tainsa PageLSN,which indicateswhetherthe impactof a
log recordhasbeencapturedonthepage.In hybridservers,
objectscanexist at theclientswithout their corresponding
pages.Hence,thepagelevel informationmightnot always
beavailableat theclients. Thehybrid server passesto the
client thePageLSNandthepageid informationalongwith
everyobject.After theclientreceivesagroupof objects,in
additionto creatingresidentobjecttable(ROT) entries,the
clientalsocreatestheresidentpagetable(RPT)entry. For
eachreceived object,the client storesthe PageLSNin the
correspondingpageentryin theRPT. Thisallowstheclient
to generateLSNsfor the log recordscorrespondingto the
page,andalsoRecLSNvaluesfor thepagein thedirty page
table. RecLSNrefersto the log recordof the earliestup-
dateon the pagethat is not presenton disk. Thus, even
thoughthe clients might have only objectsand not their
correspondingpagesin their caches,the clientsstill keep
trackof thenecessaryrecovery informationfor theobjects
atpagelevel.

Presence of updated objects at the server: The updated

objects returnedby the clients are stored in the server
MOB. The pagescorrespondingto the updatedobjects
might not beresidingin theserver pagebuffer. Therefore,
it is necessaryto keeptrackof thestateof theupdatedob-
jectsin theMOB with respectto the log records.That is,
if a client fails andthe server is doing restartprocessing,
thentheserver needsto know thestateof theobjectsin the
MOB in orderto correctlyperformtheredooperations.In
pageservers,thedirty pagetableat theserverhelpsto keep
track of the pagesin the server buffer. Consequently, in
additionto thedirty pagetable,we introducethenotionof
a dirty objecttable(DOT) at theserver. Each(DOT) entry
containstheLSN of boththeearliestandthelatest(because
objectsdonot containPageLSNfield) log recordsthatcor-
respondto anupdateon thecorrespondingobject.

Fine-Granularity Locking: In hybrid servers, different
objectsbelongingto a pagecanbesimultaneouslyupdated
at differentclient sites. In centralizedsystemsthe LSNs
are generatedcentrally, so the combinationof PageLSN
andtheLSN of thelog recordis enoughto assesswhether
the pagecontainsthe updaterepresentedby a log record.
In client-server systems,sincethe clientsgeneratethe log
recordLSNs, two clientscangeneratethe sameLSN for
log recordspertainingto a page.Therefore,the PageLSN
alonecannotcorrectlyindicatewhetherthe pagecontains
the updaterepresentedby a particularlog record. Two of
the previous pageserver recovery solutionsdo not allow
the simultaneousupdateof a pageat multiple client sites
[FZT

�
92, MN94]. A morerecentproposal[PBJR96] per-

mits this andrequirestheserver to write a replacementlog
recordto the log disk beforean updatedpageis written
to datadisk. For every client thathasperformedanupdate
sincethelasttimethepagewaswrittento disk,thereplace-
mentlog recordcontainsdetails(client ID andclient spe-
cific PageLSN)abouttheclient'supdateto thepage.Thus,
thereplacementlog recordhelpsto overcometheproblems
encountereddue to the generationof the samePageLSN
valueat multipleclients. In our hybrid server solution,we
alsousethenotionof replacementlog records.

Returning pages or logs to the server: In the hybrid
server architecture,clientsreturneitherbothpagesandlog
recordsor only log records(redo-at-server recovery). In
the latter, the log recordshave to beinstalledon their cor-
respondinghomepageswhereasARIES-CSAavoids this.
Therefore,eachlog recordis classifiedat the client as a

156

redo-at-server (RDS) log record or a non-redo-at-server
(NRDS)� log record. At the server, the RDS log recordis
storedboth in the server log buffer andalsoin the MOB,
whereas,theNRDSlog recordis only storedin theserver
log buffer. As pertheadaptivedatatransferalgorithm(Sec-
tion 3.1),if theclientdecidesto returna pageto theserver,
then it generatesa NRDS log record,else it generatesa
RDS log record. When the client returnsan NRDS log
recordto theserver, it ensuresthatthecorrespondingpage
is alsoreturnedto theserver. Theclientdoesnot returnthe
correspondingpagewhenit sendsa RDSlog recordto the
server.

4 Experiment Setup
We compareour hybrid server (HybSrv)architecturewith
asoftware-basedpageserver (PageSoft),a hardware-based
pageserver (PageHard),and an object server (ObjSrv).
Thesoftware-basedpageserver fallsunderthePage-Object
server classificationof Figure1 andis similar to SHORE
[CDF

�
94]. Thehardware-basedpageserverfalls underthe

Page-Pageserver classification,and is similar to Object-
Store[LLOW91] andBeSS[BP95] in that it sendspages
in bothdirectionsduringclient-server interaction.Theob-
jectserver architecturefalls undertheObject-Objectserver
classificationand is similar to Versant[Ver98] and Thor
[LAC

�
96]. The existing hardwarepageserver systems

[BP95, LLOW91] employpagelevel datatransfer, concur-
rency controlandbuffer management.As a representative
of thesesystemsPageHardalsoadheresto thesepagelevel
restrictions,and theseare the key distinguishingfeatures
betweenPageHardand the other architectures.The data
transfermechanismfrom theserver to theclient is thekey
distinguishingfactor betweenPageSoftandObjSrv. The
ability to sendpagesor objectsfromtheserver to theclient,
andto returnpagesor objectsfrom the client arethe key
distinguishingfactorsbetweenHybSrvandtheotherarchi-
tectures(PageSoft,ObjSrvandPageHard).It is important
to notethatweareonly conductingaperformancestudyon
the client-server relatedissues. The overall performance
of a systemis alsoaffectedby otherissuessuchasquery
processing,queryoptimization,indexing andothers,which
arenot consideredin this paper. We have tried to incorpo-
ratethelatestadvancesin cacheconsistency, pointerswiz-
zling,buffer managementandrecoverystrategiesinto all of
thesystemsundercomparisonin thisstudy(referto Figure
3), ensuringthatthey all benefitfrom thesameadvantages.
Therefore,thesystemsundercomparisonin this paperare
similarbutnotthesameastheircommercial/researchcoun-
terparts.

4.1 Basic System Model

The baselinesetupof this performancestudyis similar to
the previousclient-server performancestudies[DFMV90,
CFZ94,WD94,LAC

�
96, AGLM95,OVU98], whichwere

useful in validating our results. As in the previous per-
formancestudies,the input work comesto the clientsas
a streamof object and pageidentifiers from a workload
generator;it comesto the server from the clients via the
network.Thenumberof clientswaschosento ensurethat
the server andclient resourcesandthe networkresources

do not becomea bottleneck,which wouldpreventusfrom
gaininginsightsinto thedifferentalgorithmsandarchitec-
tures.Disksaremodeledattheserverandnotat theclients.
Theserver is responsiblefor managingdataandlog disks.
A buffer manager, a lock manager, and a recovery man-
agerhave beenmodeledat both theclientsandtheserver.
The databuffersusethe secondchance(LRU-like) buffer
replacementalgorithm, and the log buffers and modified
objectbuffersusetheFIFObuffer replacementpolicy. The
server buffer spaceis partitionedequallybetweenthepage
buffer andtheMOB. We configuredtheclient dualbuffer
in a mannersimilar to theinitial dualbuffer study[KK94]
wherethe buffer is configuredas bestas possible,given
the application's profile and the total size of the client's
buffer. However, in future we plan to usea dynamically
configurabledual buffer [CALM87]. The client and the
server CPUshave a high priority anda low priority input
queuefor managingsystemanduserrequestsrespectively
[CFZ94]. EachdiskhasasingleFIFOinputqueue.Weuse
a fastdisk I/O ratefor installationI/O (becausetheI/O for
thedatain theMOB is intelligently scheduled)anda slow
disk I/O rate for normaluserreadoperations.The LAN
network model consistsof FIFO server (separatequeues
for the server to clients and clients to server interaction)
with thespecifiedbandwidth.In orderto preventnetwork
saturation,we ran our experimentsassuminga 80Mbps
switchednetwork. Thenetworkcostconsistsof fixedand
variabletransmissioncostsalong with the wire propaga-
tion cost. Every messagehasa separatefixedsendingand
receiving costassociatedwith it; the size of the message
determinesthevariablecostcomponentof themessage.

Cost Type Description Value

Client CPU Speed
Server CPU Speed
ClientBuffSize
ClientLogBuffSize
ServerBuffSize
ServerDisks
FetchDiskTime
InstDiskAccessTime
FixNetworkCost
VariableNetwork Cost
Network Bandwidth
DiskSetupCost
CacheLookup/Locking

DeadlockDetection
CopyMergeInstr

Database Size
PageSize
Object Size
GroupFormCost
NumberClients

Instr rate of client CPU
Instr rate of server CPU
Per-Client buffer Size
Per-Client Log buffer
Server Buffer Size
Disks at server
General disk access time
MOB disk I/O time
Fixed number of instr. per msg
Instr. per msg byte
Network Bandwidth

Lookup time for objects/page
Instr. to register/unregister a copy

Deadlock detection cost
Instr. to merge two copies of a page

Size of the Database
Size of a page
Size of an object
Group FormingCost per Object
Client Workstations

50 MIPS
100 MIPS
12% DB Size
2.5% DB Size
50% DB Size
4 disks

80Mbps
5000 cycles
300 cycles
300 cycles

300 cycles
300cycles/object
1000 cycles/object

4K

12

1600microsecs/Kbyte
1000microsecs/Kbyte
 6000 cycles

CPU cost for performing disk I/O

Pointer Handling Pointer handling Cost Per Object

40000 cycles
Register/Unregister
Page Pointer HandlingPointer Handling Cost Per Page

4 cycles/byte

100 cycles
100 bytes

2400 pages

Ptr indirection Cost per AccessIndirection Cost 15 cycles

Figure4: SystemParameters

Figure4 lists the costsof the differentoperationsthat
are consideredin this performancestudywhich aresim-
ilar to the ones used in previous performancestudies
[CFZ94, AGLM95]. Thepointerhandlingcostsrepresent
the overheadassociatedwith handlingthe memorypoint-
ersstoredon disk. We assumethat the diskscontainthe
swizzledmemorypointers. Thesecostsaresimilar to the
onesusedin thehardwarepointerswizzlingstudy[WD95].
Theschemesusingthehybrid swizzlingapproachassume
that the indirectionstructureis well clusteredwith respect
to theobjectsaccessedby eachclient in its privateregion.

157

Sincethis indirectionstructureis not presentin the hard-
ware� swizzling approach,we compensateit by allocating
10 percentmoreclient buffer space. The group forming
costconsistsof thecostof creatingtheobjectgroupheader,
thecostof copyingtheobjectsfrom thepage,andthecost
of determiningtheobjectslock group. Thegroupbreakup
costconsistsof the costof registeringeachobject in the
groupinto theROT. Theregistrationcostalsoincludesthe
costof loadingobjectsinto theclientobjectbuffer. We en-
suredthatthetypeandsizeof theobjectidentifiersandthe
objectrepresentationmechanismis the sameacrossall of
thearchitectures.

4.2 Workload Model

The multi-user OO7 benchmarkhas been developed to
studythe performanceof objectDBMSs[CDN93]. How-
ever, thisbenchmarkis inadequatefor client-serverconcur-
rency controlanddatatransferstudies.Multi-userOO7is
under-specifiedfor client-serverconcurrency control/cache
consistency studies,becauseit doesnot containdatashar-
ing patternsandtransactionsizes.It is alsounder-specified
for adatatransferstudy, becauseit doesnotcontaintheno-
tion of dataclustering.Therefore,we borroweddatashar-
ing notions from the previous concurrency control stud-
ies [CFZ94, AGLM95], and the data clusteringnotions
from the initial data transferstudy (ACOB benchmark)
[DFMV90]. We obtainedthe transactionsizeand length
characteristicsfrom the marketsurveys performedby the
commercialODBMS vendors[Obj98]. The key findings
of their survey is that the majority of the applicationdo-
mains using ODBMSs use short (in terms of time) and
small (numberof objectsaccessed)transactionswith mul-
tiple readersand few updatersoperatingon eachobject.
Moreover, mostof theseapplicationsusesmallobjects.We
have ensuredthatourbaseworkloadssatisfythesetransac-
tion characteristics.

In ourworkloadeachclienthasits own hot region (hot-
nessindicatesaffinity) andthereis asharedcommonregion
betweenall theclients.Eachregion is composedof anum-
ber of baseassemblyobjects. Eachbaseassemblyobject
is connectedto 10 complex objects.Eachcomplex object
consistsof 4 atomicobjects.A transactionconsistsof a se-
ries of traversaloperations.Eachtraversaloperationcon-
sistsof accessinga baseassemblyandall of the complex
objects(alongwith their atomicobjects)connectedto that
baseassemblyobject. Theclusteringfactor indicateshow
closelythedataaccesspatternmatchesthedataplacement
on the disk. It is desirableto have goodclustering(high
clusteringfactor) becauseit allows oneto easilyprefetch
usefuldataandthusreducethedisk I/O andnetworkover-
head. We usea similar notion of clusteringas wasused
in the initial pageserver/objectserver datatransferstudy
[DFMV90]. When creatingthe database,the clustering
factordeterminesthelocationof thecomplex objectscon-
nectedto abaseassemblyobject.For eachcomplex object,
arandomnumberbetween0 and99 is generated,andif the
randomnumberis smaller than the clusteringfactor, the
complex objectis placedon the samepageasits siblings.
Otherwise,thecomplex objectis placedonadifferentpage.

In this studywe examinePrivate andSh-Hotcolddata

sharing patterns[CFZ94, AGLM95]. Thesetwo shar-
ing patternsarethe mostcommonin ODBMS workloads
[CFZ94]. Thereis no datacontentionin thePrivatework-
load, but one encountersread-writeand write-write con-
flicts in the Sh-Hotcoldworkload. In the Private work-
load80 percentof the traversaloperationsin a transaction
areperformedon theclient's hot region and20 percentof
thetraversaloperationsareperformedonthesharedregion.
Moreover, the clientsonly updatethedatain their hot re-
gions.In theSh-Hotcoldworkload,80percentof thetraver-
saloperationsin a transactionareperformedon theclient's
hot region, 10 percentof the traversaloperationsareper-
formedon thesharedregion, and10 percentof the traver-
saloperationsareperformedontherestof thedatabase(in-
cludingotherclients' hot regions). Theclientscanupdate
objectsin all of theregions.Uponaccessinganobject,the
objectwrite probabilitydetermineswhethertheobjectwill
beupdated.Thereis aCPUinstructioncostassociatedwith
thereadandwrite operations.Thetransactionthink timeis
thedelaybetweenthestartof two consecutive transactions
at theclients. Figure5 describestheworkloadparameters
usedin thisstudy.

Parameter

Transaction size Private
Transaction size Sh-HotCold
Clustering Factor
Per Client Region
Shared Region
Object write probability

Think time between trans

Read access think cost
Write access think cost

50 cycles/byte
100 cycles/byte

Setting

0

50 pages
50 pages
10 to 90 %

800 objects
200 objects

2% to 30 %

Figure5: WorkloadParameters

5 Results of Experiments
In this sectionwe report the performancecomparisonof
the adaptive hybrid server architecture(HybSrv) with the
hardwarepageserverarchitecture(PageHard),thesoftware
pageserverarchitecture(PageSoft)andtheobjectserverar-
chitecture(ObjSrv).All of theexperimentsusethecostand
workloadsettingsasdescribedin Figures4 and5. In cases
wherethe defaultvalueshave beenchanged,it is explic-
itly specified.Theaverageresponsetime for a singleclient
in seconds(for 50 transactioninterval) is theprimaryper-
formancemetric. Datasharingpatterns,server andclient
buffer sizes,dataclusteringaccuracy, andwrite probability
arethekey parametersthatarevaried.

5.1 Large Client and Large Server Buffers

In this setup,(which we call Large/Large) both the client
andthe server have large buffers. In a large client buffer
the entireworking setof the client (all of the objectsac-
cessedby a particularclient) fits in the client's cache. A
largeserver buffer meansthata largeportionof thework-
ing setsof all the clientsfit into the server buffer result-
ing in low disk utilizationuponreachingsteadystate.Due
to theseconditions, buffer managementis not the per-
formancedifferentiatingfactorbetweendifferentarchitec-
tures. The client buffer is 12 percentof the databasesize

158

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
im

e
(s

ec
)

�

Write Prob %

6(a) Private Large/Large

ObjSrv
PageSoft
PageHard
HybSrv

5

5.5

6

6.5

7

7.5

8

8.5

2 4 6 8 101214161820

A
ve

ra
ge

 T
im

e
(s

ec
)

�

Write Prob %

6(b) Sh-HotCold Large/Large

ObjSrv
PageSoft
PageHard
HybSrv

4

8

16

32

64

10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 T
im

e
(s

ec
)

�

Clustering %

6(c) Private Small/Large

10

20

30

40

50

60

70

20 40 60 80 100120140

A
ve

ra
ge

 T
im

e
(s

ec
)

�

Net Speed (Mbps)

6(d) Private Small/Large (1 Client)

4

8

16

32

10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 T
im

e
(s

ec
)

�

Clustering %

6(e) Private Large/Small

8

16

32

64

128

256

512

10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 T
im

e
(s

ec
)

�

Clustering %

6(f) Private Small/Small

Figure6: ExperimentResults
andtheserver buffer is 50 percentof thedatabasesizeand
we ran the experimentwith 50 percentclustering. In the
privateworkloadthereis nodatacontentionand,therefore,
concurrency control/cacheconsistency is not an issue.As
seenin Figure6(a),theperformanceof all of thearchitec-
turesis quitesimilar. Our hybrid pointerswizzlingmech-
anismhasallowed ObjSrv, PageSoftandHybSrv to suc-
cessfullycompetewith PageHardin this workload. Since
all the architecturesstore memory pointerson the disk,
pointerswizzling is not an issue. PageSoft,HybSrv and
ObjSrv outperformPageHardby a very small margin be-
causethey returnupdatedobjectsinsteadof updatedpages
(like PageHard)andthusincur lowernetworkoverhead.In
the Large/Large buffer case,theserver buffer is not heav-
ily contended,therefore,the installationreadoverheadis
minimizedfor thearchitecturesthatreturnupdatedobjects.
For the Large/Large buffer configuration,we alsoran the
Sh-HotColdworkload with the clusteringfactor fixed at
30 percent(Figure6(b)). The softwarepagehandlingar-
chitecturesoutperformPageHard,becausethey areableto
lock dataat a finer granularitythanPageHard.The hard-
warepagehandlingmechanismsrely on theoperatingsys-
temprovidedpageprotectionmechanismsto lock dataonly
at pagelevel. For this experimentwe don't presentthe
resultsfor higher clusteringpercentages,but we noticed
that the performanceof PageHardimproved as the clus-
teringbecamebetterbecausehigherpagelocality leadsto
fewerpageaccessesandthuslesscontentionfor PageHard.
As evident from Figure 6(b), ObjSrv andHybSrv (when
it is operatingasanobjectserver) areableto successfully
competewith PageSoftfor theSh-HotColdworkload.This
showsthatAACC cacheconsistency algorithm,whichwas
originally designedfor pageservers, can be successfully
extendedto objectservers.

5.2 Small Client and Large Server Buffers

In this systemconfiguration(referredto as Small/Large)
theclient's working setdoesnot fit into its cache.This is
possibleif the size of the working set is very large or if
the client buffer is sharedby multiple applications. The
client buffer is 1.5 percentof the databasesize and the
server buffer is still 50 percentof the databasesize. We
ran the privateworkload with 10 percentwrite probabil-
ity. We variedtheclusteringfactor to seethe relationship
betweenclusteringandclientbuffer size.As shown in Fig-
ure 6(c), PageHardperformsworstduring low clustering,
becauseit managesthe client cachestrictly at pagelevel.
Therefore,theclientsin PageHardcontinueto cachebadly
clusteredpageswhich, in turn, leadsto low client buffer
utilization. However, the clients in ObjSrv, HybSrv and
PageSoftonly retainusefulobjectsin their cache.Thelow
buffer utilization in PageHardleadsto a highernumberof
cachemissesandthis,in turn,degradesPageHard's perfor-
mance.Thesecondimportantresultis thatHybSrvandOb-
jSrv performbetterthanPageSoftduringbad(10 percent)
clustering.EventhoughHybSrvandObjSrvincurahigher
numberof client cachemisses,they outperformPageSoft
becauseit transfersbadly clusteredpagesfrom the server
to theclientandthus,incurshighernetworkoverhead.The
third importantresultis thatHybSrvandPageSoftoutper-
form ObjSrv for 30 to 50 percentclusteringbecausein
thesearchitectureswhena client cachesa pageit is ableto
getmorecachehitsduringsubsequentaccessesto different
regionsof the page,whereasthe objectserver (dueto its
groupingalgorithm)hasto makemultiple requeststo the
server to get the differentportionsof the page. However,
if over time, theclient repeatedlyaccessesonly a particu-
lar region of the page,thenthe objectserver architecture
is more competitive due to the betterperformanceof its
groupingalgorithm.Theadaptivenatureof HybSrvallows

159

it to behave asa pageserver whenthe clusteringis good
and	 like anobjectserverwhentheclusteringis badandthis
allows it to be morerobust (performance-wise)thanpage
andobjectservers. We alsoranthis experimentwith slow
(8Mbps)and fast (140Mbps)networkspeedsfor a single
client. As evidentin Figure6(d),thearchitecturesthatsend
pagesfrom theclient to theserver suffer evenmorein the
presenceof slow networks.This resultis importantfor the
popularlow bandwidthwirelessenvironments.For the140
Mbps,wealsoreducedthesoftwareoverhead(reducedthe
variableandfixednetworkoverheadby 50percent)associ-
atedwith sendingandreceiving a message.We foundthat
asthenetworkspeedis increasedandthesoftwareoverhead
is reduced,thesystemsthatsendbadlyclusteredpagesare
ableto closetheperformancegap.

5.3 Large Client and Small Server Buffers

In Large/Smallconfiguration,theserver buffer is smalland
cannothold the working setsof the active clients (con-
tendedserver buffer) but the client buffer is large and it
canhold thelocal working set. It would have beenprefer-
ableto modelthe small server buffer caseby keepingthe
server buffer sizeconstantandby increasingthenumberof
clients.However, thememoryconstraintsof our simulator
did not allow for this typeof modeling. Therefore,by re-
ducingthe server buffer size,we aretrying to capturethe
essenceof theimpactof many clientson theserver buffer.
We settheclientbuffer at12.5percentof thedatabasesize
andtheserver buffer at 3 percentof thedatabasesize. We
ran the Large/Smallexperimentsfor the Privateworkload
configuration. We found that with a write probability of
20 percent,PageHardis beatenby all of the otherarchi-
tecturesbecausePageHardis returningsparselyupdated
pagesto a server whosebuffer is highly contended.There-
fore,theserverconsumesvaluablebuffer spacemuchmore
quickly (lower server buffer absorption)in PageHardthan
the schemesthatarereturningupdatedobjects. However,
aswe increasethe write probability to 30 percent(Figure
6(e)),PageHardandHybSrvareableto beatPageSoftand
ObjSrv becausePageSoftand ObjSrv return updatedob-
jectsandtheinstallationreadoverheadin PageSoftandOb-
jSrv offsetsthegainsdueto betterMOB buffer utilization.
SinceHybSrvdynamicallydecidesat theclientwhetherto
return updatedpagesor objects,its performanceis more
robustthantheotheralgorithms.

5.4 Small Client and Small Server Buffers

In Small/Smallconfiguration,theserverbuffer is smalland
cannothold the working setsof the active clientsandthe
client buffer is smallandit cannothold theworking setof
that particularclient. We set the client buffer at 1.5 per-
centof thedatabasesizeandtheserver buffer at 3 percent
of thedatabasesize. We ran this experimentwith 30 per-
centwrite probability for Privateworkloadto seewhether
a small client buffer has any impact on the resultspre-
sentedin the Large/Smallbuffer case. Figure6(e) shows
that HybSrv, PageSoftandObjSrv outperformPageHard
during low clusteringbecausePageHardhaslower client
buffer utilization than the other architectures.Moreover,
HybSrvandPageSoftoutperformObjSrvbecauseObjSrv

incursahighernumberof clientbuffermissesdueto theob-
ject groupingalgorithm,andin the Small/Smallcase(un-
like the Small/Largecase),a missin theclient buffer also
leadsto a missin the server buffer. Since,HybSrv sends
pagesto the clientswhentheserver is busy, it hassimilar
clientbuffer hit rateasPageSoft.As theclusteringpercent-
ageincreases,PageHardandHybSrvoutperformPageSoft
andObjSrv, becausePageHardandHybSrvreturnupdated
pagesto theserver, and,thus,incurfewerinstallationreads.
HybSrv returnspagessinceit takesinto accountthat the
server is busyanda largeportionof thepagehasbeenup-
dated.

6 Discussion
The integratedperformancestudy has provided us with
many interestinginsightsinto ODBMSclient-serverarchi-
tectures.A previousclient-serverrecoverystudyhasshown
that installationreadscanbecomea problem[WD95] for
the redo-at-server recovery mechanisms. However, the
combinedstudyof recovery andserver buffer management
mechanismhasshown that the presenceof a MOB at the
serverpreventsthedegradationof theredo-at-server recov-
erymechanismduringmedium-to-low server contention.

Previously [OS94], it wasthoughtthat it is betterto re-
turn an updatedpageto the server if the pageis present
at the client. However, we have found that if the server
buffer is highly contended,andthepagehasbeensparsely
updated,thenit is betterto returnupdatedobjectsbecause
this increasesthe MOB buffer absorption. Another pre-
vious study[Ghe95]hasshown that is desirableto return
updatedpagesto the server if a large portion of the page
hasbeenaccessed(highclustering)andupdated(highwrite
probability).Ourresultsagreewith thisstudy, andwehave
alsofoundthatin additionto clusteringandwrite probabil-
ity, theserver buffer contentionlevel is alsoa key compo-
nentwhichdictateswhetherit is desirableto returnupdated
pagesor objects.

Until now, hardwarepointer swizzling systemsstored
memory pointers on disk to attain good performance
[WD94, LLOW91]. However, sincethe hardwarepointer
swizzlingsystemsusetheoperatingsystemprovidedpage
handlingmechanism,they employpagelevel locking,data
transferand buffer managementmechanisms[LLOW91,
WD94]. Thecombinedstudyof datatransfer, pointerswiz-
zling andclientbuffer managementhasshown thatmanag-
ing clientbuffersatstrictly pagelevel andalwaysreturning
updatedpagesbackwhentheserver is busyhasa negative
impacton the performanceof hardwarepagehandlingar-
chitectures.

Initially, ODBMSswereprimarily usedby applications,
suchas computeraideddesign,which consistedof large
transactionswith little or no datacontention. However,
many of emerging applicationdomainssuchas network
management,financial trading and product information
managementwhich useODBMSs usesmall transactions
with read/writelockingconflicts[Obj98]. Therefore,hard-
warepagehandlingarchitecturesthatlock dataatonlypage
level areincreasinglylesssuitable.

Many techniqueswe have developed for the hybrid
server architecturecan be applied to other architectures

160

(to objectserversin particular). Lack of an efficient, low
aborting
 cacheconsistency algorithm,andthe absenceof
a Steal/No-Force recovery algorithm were consideredto
be two major drawbacksof object servers. Our adapta-
tion of AACC algorithmfor hybrid server eliminatesone
of theproblems.Thekey insightbehindthis adaptationis
that even thoughthe clients in the objectserver architec-
ture strictly manipulateobjects,andpagesdo not exist in
the client cache,the clientscanstill lock the pagescorre-
spondingto the objects.Therefore,we areessentiallyde-
couplingthe datatransferandconcurrency control mech-
anismfor object servers. Previously, this flexibility was
only provided to the pageservers [CFZ94]. Our adapta-
tion of ARIES-CSApageserver recovery to hybridservers
providesa STEAL/NO-FORCErecovery algorithmwhich
canalsobeusedby objectservers. The clientsin the ob-
ject server architecturemaintainpagelevel recovery infor-
mationfor theobjectsin theclient cache.This, in turn,al-
lowstheobjectserverstouseall of thepageserverrecovery
techniques.Thus,objectserversarenow quitecompetitive
with thepageserver architectureandtheseadaptationscan
bepursuedby theexisting objectserver architectures.

7 Conclusion
In this paperwe presenteda new adaptive hybrid server
architecturewith more robust performancethan pageor
objectserversacrossa spectrumof systemconfigurations
and workloads. Our hybrid server usesa new adaptive
data transfermechanismin which the clients and server
passvaluable information to eachother to dynamically
adaptbetweensendingpagesor objectsbetweenthem-
selves. The paperdescribes,in detail, the key points of
this adaptive datatransfermechanism.An adaptive data
transfermethodhasanimpacton datatransfer, cachecon-
sistency/concurrency control,recovery, andbuffermanage-
mentmechanisms.Eachof thesesystemcomponentsneed
to beableto supportbothpageandobjectserver architec-
tureswhile continuingto operatein anintegratedmanner.
Due to the absenceof efficient cacheconsistency andre-
covery algorithmsfor objectservers,we have adaptedthe
leadingpageservercacheconsistency [OVU98] andrecov-
ery [MN94] algorithmsfor objectservers. Theseadapta-
tionsareimportantin theirown right sincethey canbeused
by existing objectsever architectures.We have alsoshown
that it is possiblefor architecturesto both storeswizzled
memorypointerson disk while maintainingtheflexibility
to manipulatedataat theclientsat objectlevel. In addition
tocharacterizingthebehavior of thehybridserverproposal,
the performancestudyandits resultsthatarereportedare
importantfor a numberof reasons.First of all, this study
improves our understandingof the client-server architec-
tures, in particular, it shows that with our new recovery,
pointerswizzlingandcacheconsistency adaptations,object
serverscancompetesuccessfullywith pageservers. Thus,
the belief thatobjectserversarenot scalableis no longer
valid. Finally, we arenow investigatingalternative adap-
tivedatatransferheuristicswhich takevaryingobjectsize,
pagesize,CPUandnetworkcontentionsinto account.

References
[AGLM95] A. Adya, R. Gruber, B. Liskov, andU. Maheshwari.Efficient Opti-

mistic ConcurrencyControlUsingLooselySynchronizedCl ocks. In
Proceedingsof ACM SIGMODConference, 1995.

[BP95] A. Biliris andE. Panagos.A High PerformanceConfigurableStorage
Manager. In Proceedingsof 11th InternationalConferenceon Data
Engineering, 1995.

[CALM87] M. Castro,A. Adya, B. Liskov, and Andrew Myers. HAC:Hybrid
Adaptive Cachingfor Distributed StorageSystems. In Proceedings
of ACM SymposiumonOperatingSystemPrinciples, 1987.

[CDF� 94] MichaelCarey, D. DeWitt, M. Franklin,N. Hall, andetal. ShoringUp
PersistentApplications.In Proceedingsof ACMSIGMODConference,
1994.

[CDN93] M. Carey, D. DeWitt, and J. Naughton. The OO7 Benchmark. In
Proceedingsof ACM SIGMODConference, 1993.

[CFZ94] M. Carey, M. Franklin,andM. Zaharioudakis.FineGrainedSharing
in a PageServerOODBMS. In Proceedingsof ACM SIGMODCon-
ference, 1994.

[DFB � 96] S.Dar, M. Franklin,B.T.Jonsson,D. Srivastava,andM. Tan.Semantic
DataCachingandReplacement.In Proceedingsof VLDBConference,
1996.

[DFMV90] D. DeWitt, P. Futtersack,D. Maier, andF. Velez. A studyof threeal-
ternativeworkstation-serverarchitecturesfor OODBS.In Proceedings
of VLDBConference, 1990.

[FC94] M. Franklin and M. Carey. Client-ServerCachingRevisited. In T.
Ozsu,U. Dayal,P. Valduriez,editor, DistributedObjectManagement.
MorganKaufmann,1994.

[FCL96] M. Franklin, M. Carey, and M. Livny. TransactionalClient-Server
CacheConsistency:AlternativesandPerformance.ACM Transactions
onDatabaseSystems, 22(4),1996.

[FZT � 92] M. Franklin,M. Zwilling, C.K. Tan,M. Carey, andD. DeWitt. Crash
Recoveryin Client-ServerEXODUS. In Proceedingsof ACM SIG-
MOD Conference, 1992.

[Ghe95] S. Ghemawat.TheModifiedObjectBuffer: A StorageManagement
Techniquefor Object-OrientedDatabases. PhDthesis,MIT, 1995.

[GK94] C. Gerlhof and A. Kemper. A Multi-ThreadedArchitecture for
Prefetchingin Object Bases. In Proceedingsof EDBT Conference,
1994.

[KGBW90] W. Kim, J. Garza,N. Ballou, and D. Woelk. Architectureof the
ORIONNext-GenerationDatabaseSystem.IEEE TKDE, 2(1),1990.

[KJF96] D. Kossmann,B.T. Jonsson,andM. Franklin. A Studyof QueryExe-
cutionStrategiesfor Client-ServerDatabaseSystems.In Proceedings
of ACM SIGMODConference, 1996.

[KK94] A. Kemperand D. Kossmann. Dual-Buffering Strategiesin Object
Bases.In Proceedingsof VLDBConference, 1994.

[LA C� 96] B. Liskov, A. Adya, M. Castro,M. Day, andet al. SafeandEfficient
Sharingof PersistentObjectsin Thor. In Proceedingsof ACM SIG-
MOD Conference, 1996.

[LLOW91] C. Lamb,G. Landis,J. Orenstein,andD. Weinreb. TheObjectStore
databasesystem.Communicationsof theACM, 34(10),1991.

[MN94] C.MohanandI. Narang.ARIES/CSA:A Methodfor DatabaseRecov-
ery in Client-ServerArchitectures.In Proceedingsof ACM SIGMOD
Conference, 1994.

[Obj98] Objectivity. White Paper: Choosing an Object Database. In
www.objectivity.com/ObjectDatabase/WP/Choosing/Choosing.html,
1998.

[OS94] J.O'TooleandL. Shrira.Hybridcachingfor largescaleobjectsystems.
In Proceedingsof WorkshoponPersistentObjectSystems, 1994.

[OVU98] M.T. Ozsu,K. Voruganti,andR.Unrau.An AsynchronousAvoidance-
basedCacheConsistencyAlgorithm for Client CachingDBMSs. In
Proceedingsof VLDBConference, 1998.

[PBJR96] E. Panagos,A. Biliris, H. Jagadish,andR. Rastogi. Fine-granularity
Locking andClient-BasedLogging for DistributedArchitectures. In
Proceedingsof EDBTConference, 1996.

[TN92] M. TsangarisandJ.Naughton.Ontheperformanceof objectclustering
techniques.In Proceedingsof ACM SIGMODConference, 1992.

[Ver98] Versant.ODBMS. In http://www.versant.com, 1998.
[WD94] S. White and D. DeWitt. QuickStore:A high performancemapped

objectstore.In Proceedingsof ACM SIGMODConference, 1994.
[WD95] S.WhiteandD. DeWitt. ImplementingCrashRecoveryin QuickStore:

A PerformanceStudy. In Proceedingsof ACM SIGMODConference,
1995.

161

