
Active Views for Electronic Commerce∗

S. Abiteboul, S. Cluet,
L. Mignet

B. Amann T. Milo, A. Eyal

INRIA/Verso
Rocquencourt, France

CNAM/CEDRIC
Paris, France

Computer Science Dept.
Univ. of Tel. Aviv

Abstract

Electronic commerce is emerging as a major Web-
supported application. In this paper we argue
that database technology can, and should, provide
the backbone for a wide range of such applica-
tions. More precisely, we present here the Active-
Views system, which, relying on an extensive use
of database features including views, active rules
(triggers), and enhanced mechanisms for notifica-
tion, access control and logging/tracing of users
activities, provides the needed basis for electronic
commerce.

Based on the emerging XML standards (DOM,
query languages for XML, etc.), the system offers
a novel declarative view specification language,
describing the relevant data and activities of all
actors (e.g. vendors and clients) participating in
electronic commerce activities. Then, acting as
an application generator, the system generates an
actual, possibly customized, Web application that
allows users to perform the given set of controlled
activities and to work interactively on the speci-
fied data in a standard distributed environment.

The ActiveView system is developed at INRIA on
top of Java and ArdentSoftware’s XML reposi-
tory.

∗Work partially founded by a French Israeli grant.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

1 Introduction
Internet has revolutionized the electronic publication of
data. We should expect to see more and more Internet ap-
plications allowing clients to interact on the net notably by
sharing data. It is possible to develop such applications to-
day but this is at the cost of intense software developments
by sophisticated programmers. We believe that (i) the need
for fast application deployment, (ii) the generalization of
such applications, and (iii) the often-met requirement of
proving properties of these applications, will require the
use of declarative specifications of applications. The situa-
tion is somewhat similar to what lead in the 70’s to declar-
ative query languages. Indeed, we believe that declarative
query languages and databases form an essential compo-
nent of the problem. This paper proposes such a specifica-
tion language (theActiveViewlanguage) and discusses how
it is supported in theActiveViewsystem.

To illustrate the issues, consider electronic commerce.
(Our examples will be based on a Web catalog.) Elec-
tronic commerce is emerging as a major Web-supported
application. In a nutshell, electronic commerce supports
business transactions between multiple parties via the net-
work. This activity has many aspects, including security,
authentication, electronic payment, and designing business
models [25]. Electronic commerce also requires database
support, since it often involves handling large amounts of
data (e.g. product catalogs, yellow pages, etc.) and must
provide transactions, concurrency control, distribution and
recovery. It also involves strong interactions between par-
ticipants (e.g., customers and vendors) and a control of the
sequencing of activities (i.e., workflow management). All
these aspects will be addressed by active views.

More generally, the applications we are interested in in-
volve: (i) sharing of data and (ii) some cooperative work by
a number of actors connected via the network. These are
typical features found also for instance in digital libraries
or information manufacturing systems.

We believe that database technology provides the back-
bone for such applications. Indeed, the ActiveView system

138

can be seen as adatabase application generator. The sys-
tem enables adeclarativespecification ofcertain kindsof
database applications. By declarative, we mean here that
there is little (or no program) to write and that the descrip-
tion of the application is in a high level language (or via
a graphical user interface). The specification of an appli-
cation includes definitions of the main actors involved in
the application. For each actor, we specify: i)the data and
operations available to this particular actor (aview mech-
anism) and these with a sophisticate access control; ii)the
activities this actor may be engaged in and the data and
operations available in each; ii)some active rules that no-
tably specify the sequencing of activities (aworkflowcom-
ponent) but also the events this actor wants to be notified
of (a subscriptioncomponent) and those that have to be
logged (atracingcomponent).

So, the ActiveView language allows to declaratively
specify a number of features that are often considered in
isolation. A main contribution of this paper is to show how
these various aspects may be combined in a simple coher-
ent framework. Active views rely heavily on four key com-
ponents:

XML : From a data viewpoint, we selected the eXtended
Markup Language (XML) [20] as the model for data.1 All
data stored, exchanged or presented to users are XML;

Active rules : Our active rules are rather simple com-
pared to what may be found in the literature [24, 15]. The
novelty is in the way they are integrated into a general
framework and the way they are used for many purposes
(workflow, change control, tracing);

Method calls and notifications :The events that enable
active rules are method calls. The system relies on some
subscription mechanism that allows views to be notified of
certain events;

View management :Views have been quite studied in
databases [9, 11]. We build here on our experience with
O2-Views [17], a system developed at INRIA. The views
we are considering here are much simpler. The novelty is
in the combination with active features.

To see an example, suppose a product is added to the
catalog. A notification is issued to all actors that are inter-
ested in this event, i.e. a change in the catalog. For instance,
vendors may want to always see the most recent version of
the catalog. Their specification should thus include an ac-
tive rule to specify that, when such an event occurs, their
view of the catalog should be updated. Observe that both
the detection of the event and the maintenance may take
advantage of incremental techniques. In particular, if the
update affects a portion of the catalog a specific vendor is
not interested in, we should avoid updating the view. Fur-
thermore, when a vendor view has to be updated, we want
to do it incrementally to avoid re-sending large portions of
the catalog on the net.

1The Web has so far relied primarily on HTML that emphasizes an hy-
pertext document approach. XML, although originally a document mark-
up language, includes more structure. It is believed that XML will soon
be the standard for data exchanges on the Web.

A second contribution consists in the presentation of a
system that implements these concepts. A guideline was to
follow the standards as much as possible. An ActiveView
application is compiled into a running application based on
the following environment:

• We use the O2 XML repository developed by Ar-
dentSoftware [6] and its DOM interface for storing
and querying XML data and methods.

• We intend to use the standard query language for
XML when available. In the meantime (and in the
examples of the present paper), we use a simple lan-
guage inspired by Lorel [3].

• Each active view session corresponds to a multi-
threaded repository client using the Java-DOM bind-
ing of the XML repository server. We also use the
notification mechanism provided by the O2 system2.

• We intend to use for Web interfaces XML documents
and XML browsers interacting with the views via Java
remote method invocation. Until XML browsers offer
the support we need, we use dynamic HTML with em-
bedded Java applets. From a user viewpoint, an appli-
cation presents a sequence of Web pages containing
(modifiable) data and buttons, in a standard manner.
The pages may evolve dynamically (e.g., new promo-
tions may appear).

• A running application can be automatically generated
from a view specification. We offer flexible means to
customize such applications.

We already implemented a first prototype that was sup-
porting only very partially the ActiveView features. The
first prototype on top of O2 was based on ODMG data
and OQL. We were lead to XML mostly because a lot of
data relevant for Web applications do not have the regular
structure of ODMG and because of the (future) existence
of many standard tools for XML such as sophisticated ed-
itors and browsers. In this paper, we describe the system
that we are currently implementing. We mainly focus on
the functionalities it provides.

The paper is organized as follows. Section 2 intro-
duces active view applications. Using an example, it illus-
trates the needs for the various functionalities of our sys-
tem, presents the data model and query language on which
we rely and the architecture of a running application. In
Section 3, we show how the data part of the application
is specified before considering active features in Section 4.
Section 5 discusses the default application generated by the
system and different ways to customize it. A more detailed
description of the user interface toActiveViewis beyond the
scope of the present paper.

2This mechanism existed already for C++ and we had to adapt it to the
Java-O2 binding.

139

2 General framework
In this section, we introduce active views. We briefly give
some minimum background on XML. Finally, we present
the architecture of the system.

2.1 Active views

An ActiveView application allows different users to work
interactively on the same data in order to perform a partic-
ular set of controlled activities. An electronic commerce
application, say, a virtual store, typically involves several
types of actors, e.g, customers and vendors, and a sig-
nificant amount ofdata, e.g. the products catalog (typ-
ically searched by customers) or the products promotion
information (typically viewed by customers and updated
by vendors). Each of the actors (i)viewsdifferent parts
of the repository data (e.g. a customer can only see his/her
own orders and the promotions relevant to his/her category,
while vendors may view all the orders and promotions),
(ii) performs differentactions, and (iii) has differentaccess
rights (e.g. promotions can be updated only by certain ven-
dors). Also, the requirements forfreshnessof data differ.
For example, when promotions are updated, we may want
to immediately refresh the customers screen with the new
data, whereas catalog updates are only propagated to the
customer interface when the customer explicitly clicks on
a specific “refresh” button.

Each actor typically performs severalactivitiesduring
a session. For example, a customer’s activities might be
searchingthe catalog,ordering products andchanginga
passed order. In each of these activities, we expect to show
a different Web page to the actor that includes only that
part of the data and actions which is useful for the specific
activity.

The main contribution of ActiveViews is the declarative
specification and automatic generation (by compilation) of
Web applications which might else be produced only by
large amounts of application specific code. We will first fo-
cus on the declarative specification. We will see in Section
5 various ways to customize the application that is auto-
matically generated.

An ActiveView specification is a declarative description
of an application which specifies for each kind of actor par-
ticipating in the application: (i) the available data and oper-
ations, (ii) the various activities, and (iii) some active rules.
Thus, the general specification of an application has the fol-
lowing form:

ActiveView application applicationname

ActiveView actor-kind1 in application applicationname
view data specification
methods definition
activities specification
active rules...

ActiveView actor-kindn in application applicationname...

Such a specification is compiled by the ActiveView sys-
tem into some actual application that allows the different

<catalog>
<name> the catalog </name>
<dept>
 <name> Books </name>
 <item myid="b1">
 <name> Leagues under the sea, J. Verne </name>
 <price> 4.75 </price>

 <suppliers supps="s1 s2" />
 <seealso otheritems="b2 b3"> Books by the same author </seealso>
 </item>
 <item myid="b2">
 <name> Around the world in 80 Days, J. Verne </name>
 ...
 </item>
....
</dept>
....
</catalogue>

Figure 1: The Catalog
users to perform the given set of controlled activities, work-
ing interactively on the specified data. An ActiveView ap-
plication may of course use an existing application of the
repository and in some ways can also be seen as a means
to export to the Web an existing database application in a
controlled manner.

We will detail in the following sections the syntax and
semantics of the various parts of a view specification. In
the remaining of this section, we briefly introduce the XML
data model and query language on which the system relies
and then give an overview of the architecture of an Active-
View application.

2.2 Data Model and Query Language

XML [23] is emerging as the new standard for data ex-
change on the Web. Its simplicity, the features and tools
that it supports or will soon support (such as dynamic fea-
tures, query language, sophisticated editors, browsers, etc.)
makes it particularly attractive to both end-users and pro-
grammers. The database industry has recognized the po-
tential of this new format and many vendors are now ex-
tending their technology so as to propose XML reposito-
ries (e.g., ArdentSoftware [6], Poet [16], ODI [13]). Given
that and the fact that our goal is to support Internet applica-
tions such as electronic commerce, we chose this emerging
technology as the basis for our work. For lack of space, the
presentation of XML, DOM and the XML query language
is rather brief. Full definition of XML, DOM, and the query
language constructs can be found in [20, 19, 3, 2].

XML : Figure 1 shows an XML document correspond-
ing to the catalog of some electronic commerce applica-
tion. The<item > </item > tags are used to delimit
the information corresponding to one catalog item, each
item consisting of a sequence of tagged fields such as
name, price , etc. Note that items can be given an identi-
fier (e.g.,myid=‘‘b1’’) which can be used to reference
them within the document (e.g., in elementseealso) or
in some other documents. As a matter of fact, in our ex-
ample, each item references a list of supplier elements (see
field suppliers) that are defined in some other docu-
ments of our repository.

An XML document can be typed. This is achieved by
means of a Document Type Definition (DTD). Typing is not
a mandatory feature in XML, i.e. one can have documents,

140

The catalogue

4.75

catalog

name

item

dept

name

itemid: b1 pricename ... suppliers

supps: s1 s2

Books

dept

Leagues ...

Figure 2: The Dom Representation of the Catalog

or document parts, without an associated DTD. However,
since most optimization techniques rely on typing, it is re-
alistic to assume that large XML applications will come
with appropriate DTDs. In the sequel, we will denote ele-
ment type definitions using theElem suffix. For instance,
catalogElem will denote the type definition associated
with the catalog element<catalog>...</catalog>
of the XML document in Figure 1. Also, we assume that
(using XML namespace mechanism if needed) names of
element types are unique in our context.

DOM (Document Object Model) provides an API to de-
velop applications using XML data. It gives a uniform way
to view and access XML documents. It is a standard and for
instance, ArdentSoftware and Poet repositories use DOM
interfaces. In DOM, an XML repository is abstractly de-
scribed as a graph, whose internal nodes represent data el-
ements and whose leaves represent text or attributes. As
expected, the parent-child relationship typically represents
the component-of relationship. This is illustrated by Fig-
ure 2 which shows a partial DOM representation of our
catalog. Rectangles and ovals represent, respectively, el-
ement and attribute nodes.

The DOM standard basically consists of a collection of
classes and methods, providing generic access and update
interface for the different kinds of nodes in the graph. For
instance, thegetElementsByTagName method, when
applied on an element node, returns all the sub-elements
(children) of the node having the given tag name. In the
sequel, we assume that the interface of each element type
can support a set of methods defined within the XML
repository.3 This feature is essential for most applications,
e.g., to define a method onDept element that will allow to
update the price of all its items according to some change
of VAT.

Query Language : So far, XML does not provide a
standard query language. However, there is a major stan-
dardization effort in that direction [8, 21, 22]. Our goal here
is not to propose a new language or to compete against the
up coming standard. Indeed, the ActiveView system will
use this standard as soon as it becomes available. In the
meantime, we rely on the Lorel language [3] to query DOM
graphs.

For example, the following query searches forItem el-
ements whose price is less than 50 within the catalog doc-
ument of Figure 2.

3Note in particular that this feature will be supported by the coming
release of the ArdentSoftware XML repository.

select i
from i in Catalog.?.Item
where i.Price< 50

Note that we use the “?” symbol to denote paths of arbitrary
length.

The above query constructs a new DOM node whose
children are the selectedItem elements. But what data
exactly, besides the nodes corresponding to the selected
items, is considered a part of the user’s view? Does it in-
clude all the DOM graph rooted at these nodes? And what
about referenced nodes? (e.g. should the suppliers refer-
enced by the selected items be included or not?)

As observed in [2], it is useful in a distributed environ-
ment to provide in the query language means for specify-
ing the exact scope of a query result. Furthermore, as we
shall see later, this will also turn to be useful for specifying
appropriate access rights for the retrieved data. We follow
here the syntax of [2] and add awith clause to queries. This
extra clause describes, using path expressions, the subgraph
reachable from the selected elements to be included in the
view. For example, when added to the above query, the
clausewith i.name, i.pricespecifies that only thenameand
price elements of each selected item should be viewed.
In general, awith clause may contain complex path expres-
sions and introduce new variables. We will see some exam-
ples of that in the sequel. Observe that thewith clause is a
nonstandard syntax we are using. We believe that an XML
query language will support such a feature, possibly as a
separate clause as here or embedded in theselectclause of
the query.

2.3 Architecture of an application

The ActiveView system is based on a three-tier architec-
ture (Figure 3) composed of an (i) O2 XML repository
server and (ii) various repository clients which are com-
municating with (iii) remote Web user interfaces (standard
Java enabled Web browsers). The O2 XML repository
server provides all the usual database features such as per-
sistency, versioning, concurrency control, etc. An active
view application (such as the one that will be specified in
the next sections) consists of several independent repos-
itory clients communicating between them and with the
repository server through notifications and the DOM pro-
gramming interface. As can be noted, there are two kinds
of repository clients: a singleactive view application man-
agerfor each application, and anactive viewclient for each
user connected to the system.

The ActiveView application manager consists of a set of
modules managing: (i) connection and authentication, (ii)
tracing, and (iii) active rules. More precisely:

• The connection/authentication module is in charge of
authenticating users and giving them the means to
create4 or quit a view (via the network).

4An active view is started from the Web using a particular URL.

141

 XML
Repository

Repository
 server

(DOM) Interface
(HTML with
 Java applets)

 Interface
(HTML with
 Java applets)

AV application

Active View
Application
 Manager
(Java DOM)

Authentication

Active Rules
 Manager

 Tracing
Manager

Active View
(Java DOM)

Active View
(Java DOM)

.

.

.

Notification
RMI

Figure 3: Three-tier Architecture of ActiveViews
• The tracing module keeps a log of specified events.

These events are generated by the application or by
some views.

• The active rule module manages a programmer-
specified set of rules. (We will see their role in the
application later on). These rules are fired according
to events and may have impact on the repository and
on some or all of the active views. They form the es-
sential components to specify a business model.

The last two modules (tracer, rule manager) rely heav-
ily on a stream of notifications managed by the repository
server that enables the interaction between views at run
time. These notifications are generated according to the
views specification. Two kinds of events can be notified:
(i) events generated by the repository server after the cre-
ation/deletion/update of objects and (ii) user defined events
generated by the clients. The notifications mechanism on
which we rely has been partially developed by the Verso
team at INRIA.

An active view client is basically implemented as an in-
stance of a subclass of a class calledActiveView, which
is an abstraction of the class used in the actual imple-
mentation. This abstract class contains certain instance
variables (whose role will be explained later), includ-
ing in particular theowner instance variable that is used
for storing information on the user initiating the view.
The ActiveViewclass also defines some methods such as
transaction/commit/abort to handle a transaction mode, or
init/quit/sleep/resume to change the execution state of a
view.

Each active view instance has access to the repository
as well as to some local data (the instance variables of the
view object). It reacts to user commands and may be re-
freshed according to notifications sent by the server or the
application manager. The methods available in a view in-
stance depend on the view specification and the users ac-
cess rights and may read, update, write, etc. part or the
whole the data it sees.

An active view is generally related to an actual Web win-

dow opened by a user of the system. Some views indepen-
dent of any interface may also be introduced, e.g., for book-
keeping. Users interfaces are currently being implemented
as dynamic HTML documents with embedded Java applets.
Our goal is to switch to XML as soon as XML browser
supports the needed dynamic features. There is one HTML
document per user and activity of that user. The applets are
built on top of an API generated by the system according
to the view specification. Although the system generates
default interfaces, the application programmer may rede-
fine/customize them using the generated API that captures
the semantics of the application.

In principle, the server, clients and interfaces may run
on different machines. Typically, the interface is actually
on a remote system. The view data is obtained by check-
in/check-out, so the propagation of repository updates to
the view can be controlled by the programmer. On the
other hand, the view and the interface see the same data.
In the current prototype, each ActiveView session corre-
sponds to a Java repository client (Figure 3). We are aware
that this solution is sufficient for managing simultaneous
connections to only a restricted number of users and has to
be improved by a more scalable architecture, e.g., based on
threads.

3 Data and method specification

As stated in the previous section, an active view applica-
tion involves several sorts of actors, each with a different
view of the system. The specification of each kind of view
consists of four parts that define respectively (i) data, (ii)
methods, (iii) activities and (iv) active rules. In this sec-
tion, we illustrate how the viewed data and the methods
are specified and discuss related issues. The activities and
active rules will be considered in the next section.

3.1 Data specification

An active view has local instance variables and derived
ones defined using XML-queries. When specifying derived
data, one also specifies the access modes (e.g., read). We
illustrate this here using a very simple example in which
we consider the interaction of three kinds of users: a set
of Customers andVendors and a singleDispatcher. A cus-
tomer may browse the catalog, pass or modify an order.
The dispatcher is in charge of assigning vendors to cus-
tomers. At any time, there is only one active dispatcher.
When someone tries to enter the system as a dispatcher, the
person is simply turned down if a dispatcher is already in
charge or if the person has not the proper qualification to
be dispatcher. A vendor is mainly in charge of some cus-
tomers and may interact with them, e.g., by offering them
new promotions.

Consider first the customer view. A simple mode of im-
porting data to the view isread. This is what is achieved
for the catalog as follows:

142

let catalog : CatalogElem
be RepCatalog
with catalog.?
mode read all

This essentially imports the root element of the XML
repository namedRepCatalog(in our examples, the repos-
itory entry points are prefixed byRep), and, as specified
in thewith statement, all the data in theRepCatalogdocu-
ment. That is, the entire DOM tree rooted atRepCatalog
is imported. Themodeclause specifies that we can read all
we imported. This last statement is in fact not needed since
the default on imported data isreadfor everything.

The possible modes besidereadarewrite, append, and
remove. An example ofappendin theVendoractive view
is as follows:

let promos: (PromoElem)*
be RepPromos
with promos.?
mode appendpromos

This allows the vendors to see the set of promotions (im-
plicit read) and to append new promotions to it. Removal
of promotions from within the view is disallowed. The ex-
pression(PromoElem)*indicates that the view document
consists of a sequence of promotion elements5. To see a
slightly more complex example, suppose vendors are also
allowed to update the end-date of promotions. This is spec-
ified as follows:

let promos: (PromoElem)*
be RepPromos
with promos.end-date X, promos.?
mode write X, appendpromos

The query bindsX to promotionsend-dates. The expres-
sion write X indicates that these can be modified by ven-
dors.

So far, we have defined only derived variables. Local
instance variables are defined in the same way, except that
they are not associated with a query specifying their value.
Let us illustrate this with the variablecaddyin the customer
view.

local caddy : (ItemElem)*
mode append, remove

As illustrated above, thewith clause is used to spec-
ify which data can be reached (i.e., viewed) from the ob-
jects bound to some query variables. Specifying this for
each and every variable may be tedious, especially when
the same element type is reachable from different variables
and we want the same scope and access modes in all cases.
One way to simplify the specification is to specify things at
the element type level, i.e.. define for a given element type,
the data that can be seen or modified when such elements
are accessed.

To see an example, remember that the catalog contains
references to suppliers. The following instruction, when

5In some cases it is possible to derive the type of an XML query [12].
We will ignore this issue here.

added to the customer view, specifies that whenever a sup-
plier element is included in the view, its name and full de-
scription are also included, in read mode (default), and its
evaluations are included in an append mode (i.e., a cus-
tomer may add his/her own evaluation of the supplier):

element SupplierElem
with self.name, self.description.?, self.evaluations E
mode appendE

3.2 More on read and write

We consider next two issues related to read/write. The first
has to do with the materialization of derived instance vari-
ables. The second is related to writes and transactions.

An issue is whether the views that we are using are ma-
terialized or not (loaded in the client interface). In general,
the system must decide whether a derived instance variable
of the view is fully computed at initialization time, partially
computed only (e.g., two levels of the tree of the query re-
sult are materialized), or computed (fully or partly) only
when there are specific requests for data it contains.

The current default in the system is that instance vari-
ables are fully loaded at the initialization of the view. Also,
when we read an instance variable, we read all elements
specified by thewith clause that are contained in the same
document. Elements accessible by references to other doc-
uments are loaded only upon request. A similar philosophy
is followed when reading an element based on anelement
specification. Observe however that certain applications
may have some specific different requirements:

1. Consider an application that allows the user to check
out a report to work on it at home, disconnected from
the repository. Then the system should load the entire
report. Suppose the report includes bibliographic ci-
tations that are references to some other bibliography
document. The system should also load them imme-
diately since the connection may not exist anymore
when the user may request to see one of these cita-
tions.

2. On the other hand, consider a stock market applica-
tion. We do not want to load in advance all trading
rates since such information becomes rapidly stale. In
this case it is better wait until a user explicitly requests
a particular trading value before loading it.

To overrule the default, one can use two specific kinds of
read modes, namelydeferred reador immediate read. The
first instructs the system to load elements only on demand,
while the later indicates that elements should be loaded im-
mediately when encountered. The keywordreadcan be re-
placed by one of these more specific modes anywhere in a
view specification. For instance, one may add the keyword
deferredto thereadmode in theCustomerspecification of
catalog. The elements contained in the catalog will then
not be loaded at the initialization of the view but only upon
explicit request from the customer.

143

Once some data is materialized and loaded into the
client’s interface, the user can view it or modify it, ac-
cording to the specified access modes. Observe that these
updates are not propagated to the database until explicitly
requested by the user (i.e. by an explicit call to thewrite
method that is part of the view interface). We will consider
the problem of update propagation in more details later on.
For now we only want to highlight the issue of transactions.

By default, a view is not in a transaction mode. Us-
ing base methods of the classActiveView, a view can start a
transaction and terminate it with an abort or commit. Reads
are allowed outside transactions; so by default all reads re-
quested by a view aredirty, i.e., no locks are installed. For
updates, all updatesfrom a method callin the repository is-
sued by a view are required to be within a transaction. If an
update is requested as a consequence of some method call
and the view is not in transaction mode, an error is raised.
The only exception is when the user issues an explicit call
to thewrite method mentioned above. In this case, if the
view is not already in a transaction, a new transaction is
automatically started that lasts for the duration of thewrite.

3.3 Methods

The active view specification also includes definition of the
methods available to the user in the given context. For ex-
ample, assume that the dispatcher (more precisely, the user
who is running a dispatcher view) is always aware of the
connected customers in need of a vendor and of the ac-
tive vendors. To support this, the dispatcher view may con-
tain instance variables whose values are computed from the
repository and describe the relevant customer and vendor
sets. The dispatcher also has a method, namelyassign, that
allows to perform assignments, i.e., assign a customer to
vendor. In the view specification, this method is defined as
follows:

method assign(v: Vendor, c: Customer) is v→attend(c)

Note that the implementation of that method is speci-
fied in the view. But it essentially consists in calling some
method known by the repository. Therefore, the view spec-
ification does not contain real code (besides XML queries)
and is independent of any particular programming lan-
guage. The methods in the XML repository may be in Java
or C++ or in any language supported by DOM and the par-
ticular repository.

When activated by the application dispatcher, the above
method will send a message to one specific vendor. This
message will entail the execution of some code within the
active view corresponding to the vendor (see Figure 3) and,
potentially, the vendor interface will be modified. Another,
sometimes more interesting way to modify a client inter-
face, is to have it run its own code, independently from the
repository server or the active view. In order to do, the Ac-
tiveView system allows the declaration ofremote methods.
For instance, one can specify the following remote method
in the Vendor view:

remote method new customer (c: Customer)

and change theassignmethod to also invokenewcustomer.
Note that the code of the method is not specified. In the de-
fault application, it corresponds to a simplemessagewith
the name of the method as title and the parameters of the
method as content. Thus in the default application, the
vendor who is assigned to a new customer will receive a
message titled “newcustomer” with an objectCustomerin
it. The visible portion of this object will have to be de-
fined with anelementstatement in theVendorspecifica-
tion. Now, as will be explained in Section 5, this default
application is in fact built on top of an API, generated by
the application compiler. A programmer desiring to cus-
tomize the interface has the means to redefine the method
newcustomerwhich is executed locally when a call is re-
ceived by the interface.

3.4 Access Rights

It should be stressed that access rights have to be much
more sophisticated in the kind of Web applications we are
targeting, e.g., electronic commerce applications, than in
most standard repository applications. We therefore pro-
vide the means to attach an access predicate to any instance
variable or method of a view. This predicate may use, for
instance, the actual content of the view data and the user
identification.

In general, access rights determine the modes of in-
stance variables (e.g., read/write), and determine if meth-
ods are active or not. For instance, a customer may be dis-
allowed to submit orders if its approved credit is negative
or if he/she is in the group of blacklisted clients. This can
be implemented by adding an access control clause to the
specification of the methodsubmitorder:

method submit order()is self.owner→passorder(neworder)
if (owner→approvedcredit()>= 0 and

!(“blacklisted”in owner→group))

In the if clause, we allow arbitrary XML queries returning
a boolean.

Remark : Access right may be quite expensive to check.
In many cases, the access rights will depend only the pa-
rameters of the initialization procedure of the view. The
access rights may then be evaluated once and for all dur-
ing the initialization of the view. This optimization may
result in enormous gains in performance. But observe that
it may be difficult to detect that it is indeed the case that
some rights depend only on immutable values of the view.
So, to indicate to the compiler that access writes have to
be computed at initialization only, one can use the clause
static if instead ofif to specify the access rights.�

To conclude this section, we consider the issue of update
propagation.

3.5 Update propagation

In one direction, when a derived attribute is modified in
the view and awrite is requested, we have to propagate the

144

change from the view to the repository. In the other direc-
tion, when the repository changes and aread is requested
for some derived attribute whose value was already pre-
viously computed for the view, we have to propagate the
changes from the repository to the view. The detection of
changes will be considered in Section 4.

Let us consider first theview updateproblem. We touch
here upon one critical issue in databases. Most works on
view updates have focused on updating views defined by
complex relational queries involving joins and projections,
e.g., [7]. This is a quite complex problem that we avoid
here by an extensive use of objects and simply disallowing
updates to views defined by too complex queries.

We maintain a correspondence between the repository
and the modifiable portion of the view. In the best cases,
an atomic value in the view (say a string) corresponds to
an atomic value in the repository and the modification of
the value in the view is easily propagated to the repository.
In other cases, a view value does not have any exact corre-
spondence in the repository (e.g., it is defined as a selection
on some collection). We can still accept the update and
propagate it to the repository in some simple unambigu-
ous cases. In many cases, we simply disallow the update
through the view unless the application programmer pro-
vides a method for it – and in that case, the system is not
responsible for correctly propagating the update.

We mention next two important cases where the update
is propagated, more on the subject can be found in [1]:

1. Strict correspondence between two collections: this is
the case when each element in the repository collec-
tion has a corresponding element in the view, e.g., a
set of objects and the same set of objects with a dif-
ferent interface specified by the view. Updates to el-
ements are propagated when possible, i.e., when the
propagation is defined at the element level. If an el-
ement is removed from the collection, we remove it
from the corresponding repository collection. If one is
inserted, we construct a corresponding element (even-
tually with a default value) if possible.

2. Partial correspondence between collections: this may
happen if the view is obtained by filtering only some
elements in a repository collection (and possibly re-
structuring them). This is a case quite frequent in
practice that raises a number of issues. The main dif-
ficulty is upon insertion of an element (in the view)
to verify that the view element that has been inserted
when propagated to the repository actually results in
an object that passes the filtering test. If this is not the
case, the update is simply rejected.

To illustrate the previous discussion, we consider a def-
inition of Customerwhere a customer may modify his or-
ders by updating an instance variablemyordersdefined in
the view:

let myorders: (MyOrderElem)*
be select O

from O in RepOrders
where O.buyer = owner

with O.*
mode write all exceptO.buyer

A customer may now update the result of a filtering of
the entire set of orders,RepOrders. The system maintains
a correspondence between the elements ofmyordersand
those ofRepOrders, so that an update to such elements can
be propagated to the repository. The removal of such an el-
ement would result in removing the corresponding element
from RepOrders. The addition of a new element would re-
sult in adding a new order toRepOrder. Observe that the
customer cannot modify the identity of the buyer who is-
sued a passed order because ofexcept O.buyer. However,
as it is defined here, the customer may in principle add a
new order as if it was issued by another customer by sim-
ply putting the description of another customer in thebuyer
field. This could be anticipated using active rules to be de-
fined further.

Let us now consider therepository update propagation
problem. An issue is the re-computation of some view val-
ues when the database changes. Suppose that a user has
loaded in a view the catalog and asks to re-read this cata-
log at some later time. The sequence of updates between
the two reads is not available. One may consider using the
repository versioning mechanism. It would suffice to com-
pute the∆ between the version the user has and the current
version. Clearly, sending a∆ instead of the entire value
may result in large saving in communication. Versions are
not considered in the ActiveView system for the moment.
We will see further how, in some cases, we may have the
list of updates and consider directly the incremental main-
tenance of the view.

4 Active features

The previous section considered the static part of the view
definition. We now illustrate how a view can be made ac-
tive. Note that we touch here a subject in close relation
with workflow management. The main difference between
our approach and workflows is the importance we give to
data specification.

Workflow systems give declarative means for specifying
the operations flow, but the data involved is typically de-
scribed in a very abstract manner, often disconnected from
the description of the flow itself. This makes the analysis
of the connection between various pieces of information,
their sources, and mutual effect of operations on them, very
hard. A good example is the newly adopted standard, UML
[14], which includes state-charts and activity diagrams for
business process modeling but where data objects, whose
value are used or determined by the action, are modeled
only as parameters of some messages.

Most workflow models available today lack a seman-
tic definition other than the operational definition implied
by the tools [10]. The meta-model proposed by the Work-

145

flow Management Coalition [18] connects input and output
data to activity, but doesn’t provide implementation details.
Due to lack of concrete guidelines, workflow management
system as promoted by industry, uses a process-centric ap-
proach. Those models are extended by customized fea-
tures for modeling and executing applications, but do not
have adequate support to satisfy the modeling and correct-
ness requirements of advanced applications [5]. Some of
the deficiencies include lack of support to keep track of
data dependencies for distributed workflow, lack of sup-
port to control concurrent accesses to objects managed by
non-transactional activities, insufficient support for recov-
ery etc.

In our system, activities are specified in two steps. First,
for each kind of actors (i.e., each view), the programmer
declares a set of activities along with the data and methods
that can be used in those activities. Then, a set of rules
specifies the semantics of the view. Typically, rules specify
how to react to certain events. Two particular kinds of rules
are of particular importance: (i) notification rules that allow
to be notified that certain events took place, and (ii)tracing
rulesthat allow to keep a log of some selected events.

We next consider the declaration of activities, the gen-
eral rules, then the notification and tracing rules.

4.1 Declaring Activities

From end-user viewpoint, each activity corresponds to a
hypertext document with some data and buttons. For in-
stance, the activitysearchdefined within a customer view
will show the catalog, some promotions, a collection of se-
lected items (i.e., a caddy) and some buttons allowing the
user to search the catalog, add some items to the caddy, or-
der (i.e., change activity) or quit the application. This is
specified as follows:

activity search includes
catalog, promotions, caddy
search(), gotoorder(), addto caddy(), quit()

A default stylesheet is attached to each activity. More gen-
erally, an activity declaration has the following form:

activity <activity-name> includes
<variable-name>* <method-name>* | all

where<variable-name> (resp. <method-name>) denote
variables (resp. methods) specified within the view where
the activity is being defined. The keywordall may be used
to specify that all variables and methods of the view are
visible.

It should be noted that although a given activity sees
only a specific part of the view stated in its definition,all
the ActiveView data is maintained (at least virtually) by the
system. This allows different non consecutive activities to
share data, and is in particular useful when a user resumes
some activity after having gone temporarily to another one.

4.2 Rules

We consider here very standard active rules. Rules are
specified inside a view. If global rules need to be consid-
ered in an application, one can clearly add a particular view
that does it in the style of theDispatcherof our example ap-
plication. This provides some modular way of specifying
active rules.

The specification of a view may therefore contain some
active rules. The rules are processed by arule manager.
Rules are expressions of the form:

on <event> if <condition> do <action>

The components of an active rule are defined as follows:

• the events are (remote) methods calls (e.g., switch
of activity), operations on instance variables or ob-
jects (i.e., write/read/append/remove) and detection of
changes;

• the conditions are XML queries returning a boolean;
and

• the actions are (remote) methods calls, operations on
instance variables or objects, notifications or traces.

We illustrate active rules with some simple examples.
The discussions on variable changes, notifications and
traces are postponed to the following sections.

Suppose that when a new order is issued, we want to
modify the stock of the store. This may be achieved by a
method, sayupdate-stock. The following rule in theDis-
patcherview may be used:

on submit order(owner,neworder)
do neworder→update-stock()

(An absentif clause is assumed to be always true.)
Next, let us consider remote method calls. For instance,

suppose that a remote methodmissivehas been defined in
the Customerview and that we want to send a particular
welcome-back message to good customers when then start
their searchactivity. This can be achieved by defining the
following rule:

on goto (owner, activity)
if activity = Customer::searchand “good-customer”

in owner→group
do owner→missive(“Welcome back.

We appreciate your business.”)

Observe that the bindings ofactivity andownerin the trig-
gering event is used by theif clause.

4.3 Notifications and change monitoring

Notifications are based on remote method calls that can be
sent to the interface of a view to notify that certain events
(as specified in the previous section) have occurred. An
important kind of events are (potential) changes of an in-
stance variable. In the application default interface, the de-
tection of a change for an instance variable (or an object)

146

results in changing the background color for the display
of the variable. The notification of other events results in
a message being displayed to the user with a “notification”
icon. These messages resemble the remote method calls we
already discussed. Indeed, notification may be customized
in the same manner as remote method calls.

To see an example, suppose all vendors need to be noti-
fied of submissions of important orders by customers they
are in charge of. This is achieved by the following rule in
theVendorview:

on submit order(owner,neworder)
if neworder.amount> 10000and ownerin MyCustomers
do notify-me

In this statement, the keywordnotify-mespecifies that the
particular event must be notified to this view. In some
sense, the view is issuing asubscriptionto certain events.
Observe that only the views that explicitly subscribe are
notified.

Now, let us consider derived instance variable monitor-
ing. It is easy to detect that a repository object has changed.
If an instance variable is defined by a complex query, the
situation is more intricate. To see an example, consider the
instance variablepromosin theCustomerview. In order to
have the customer be notified of a change in itspromos, the
following rule must be included (changedpromosindicates
that the variablepromoshas changed):

on changedpromos do notify-me

The variablepromosmay change if a new promotion that
applies to the particular customer is appended or deleted. It
may also change if one existing promotion is modified. The
view therefore maintains the list of objects whose change
may affect the derived data. (In this case, the collection
object and each element in the collection.) When such a
possible change has been detected, two cases occur:

1. The derived data cannot be maintained incrementally.
In this case a notification is issued. Clearly, this may
result in false “alarms”.

2. The derived data can be maintained incrementally. An
incremental evaluation of the changes is performed in
the style of [2] to see whether actually changes oc-
curred. No false alarm may occur.

Notification are just warnings. Data can be updated by
the user by clicking on areadbutton or, automatically, by
a customized user-interface (Section 5). Even when an in-
cremental evaluation has been used and the new value is
known by the system, it is sent to the client only when
requested. It is possible to include in the view a rule to
actually force changes to be sent to the client whenever de-
tected. For instance, one could use the rule:

on changedpromos do promos→read()

In this particular case, the derived instance variable is sim-
ple enough to be maintainable incrementally. In case (2),

such a statement may be costly since each detection of pos-
sible change will trigger the full re-computation of the in-
stance variable and its shipping to the client.

Remark : The need to “monitor” instance variables or
to “refresh” them when changes occur is encountered in
many applications. We therefore provide syntactic short-
cuts to specify such features without having to explic-
itly write the corresponding rules. Instead of usinglet
<variable> in the view specification, one may uselet mon-
itored <variable> or let fresh<variable>. This results
in generating the appropriate rules to notify changes and
eventually (in the case offresh) trigger automatically a read
when a change is detected.

4.4 Traces

Typically, database systems providelogs that are (i) low
level and (ii) difficult or impossible to access. Yet, tracing
the run of a business transaction is essential for electronic
commerce applications. This may be required for legal rea-
sons, to be able to handle eventual disputes between the
participants, or to analyze buying patterns. In ActiveView,
events and rules are at the core of thetracer module. We
explain this next.

In a view specification, in the same manner we request
to notify the view of certain events, we can request totrace
them, i.e., notify the tracer. For instance, we may request
to trace all order submissions:

on submit order(owner,neworder) do trace

If such a statement is included, the tracer will be notified of
the new orders and record them in the repository. The tracer
also records the parameters and the time of the event. The
log can then be viewed as a partial history of the activity
of the application and can be queried. For instance, the
following query returns the orders of a particular customer
in 1998:

select O
from O in Trace.submitorder
where O.neworder.buyer.name = ”J. Doe”and O.date = 98

In this query,Traceis an entry-point to the XML repository
that allows to access traces.

5 Default interface and customization

Compared to traditional database applications, electronic
commerce and, more generally, Web applications are
evolving very rapidly according to new commercial needs.
For this reason, the ActiveView system not only supports
the declarative definition of views and activities on the
server side, but also a fast exploitation on the end-user side
by generatingdefault user interfaces. In this section, we
briefly discuss the default interface, then various means of
customizing the application and its interface.

147

5.1 Default User-Interface

When a user starts a new active view client by following a
URL link, e.g.

http://www.activestore.com/customer,

a default HTML page is displayed and asks for identifi-
cation information before proposing all possible activities
that can be executed by the registered user. For example,
all unregistered clients may be able to browse the catalog
(activity search), but only registered users can also buy the
selected products (activitypay).

Activities form the basic interface metaphors perceived
by end-users (e.g. client) interacting with the ActiveView
system. Each activity is represented by a distinct HTML
page which displays all accessible variables and methods in
form of simple applets/buttons. (As previously mentioned,
we intend to move soon to XML and stylesheets.) Applets
are necessary to implement active features for calling meth-
ods and modifying/monitoringvariables by communicating
with the system via Java RMI calls (see architecture in Fig-
ure 3). Essentially, each variable corresponds to an applet
editing the variable value and providing specific buttons for
all access modes (read/write/append/remove)defined in the
view.

The editing of view variable is an interesting issue. The
ActiveView system is based on the XML document model
and some XML query language for representing and query-
ing data. This also means that variable values are XML
fragments that should bedynamicallymerged into a com-
prehensive and uniform XML document. Whereas this is-
sue is outside the scope of this paper, we believe that future
XML browsers will propose some script language for mod-
ifying documents dynamically based on the DOM standard.
Observe that a similar mechanism is already existing for
HTML browsers in form of the JavaScript language.

View methods are called by simple button clicks. For
example, in order to add a product to the caddy, the user
calls a methodadd to caddywhich adds a selected product
to the caddy. Observe that this assumes to be able to select
a product, e.g., in the catalog, and provide it as argument to
add to caddy.

5.2 Application Customization

As defined so far an ActiveView application includes prac-
tically no code besides XML queries. Although we did not
insist on that, it is clear that it may call repository methods
that are implemented in conventional (DOM compatible)
programming languages such as C++ or Java. Such code
may be part of database application somewhat independent
of the view application itself. View applications can also be
customized in various ways at the cost of writing someview
specificcode. For instance, one may want to redefine the
authentication procedure or the HTML page layout. Cus-
tomization is briefly considered next.
Customizing view components: Each Web client inter-
face is communicating with an active view which is an in-

stance of a subclass of classActiveView. For instance,Cus-
tomer is a particular subclass ofActiveView. Instances of
this class provide the necessary functionalities for logging
into the system (init, owner, startdate), choosing among
available activities and controlling the view status (quit,
transaction, commit, abort, sleep, resume, timeout, see Sec-
tion 3 for details). The class features also instance variables
(i) the kind of the view (e.g.vendor, client), (ii) the owner,
(iii) the date of creation, (iv) the current status (running,
asleep), (v) the current activity, and (vi) the list of other
available activities.

Customization essentially is possible by creating sub-
classes and overloading existing method codes. For exam-
ple, theinit method is executed when a new user logs into
the system (creates a new view instance). It executes a pri-
vate authenticationmethod that verifies (by password or
more sophisticated third-party authentication services) the
identity of the user and fills in the value ofowner. Both
methodsinit and authenticationare defined in the class
ActiveViewand may be redefined in a subclass, e.g.,Cus-
tomer, by the administrator, for example, to change the ac-
cess right rule (Section 3), authorization mechanism or add
additional preprocessing.

To see another example, considertimeout. Since active
view applications run over the network there is no means to
control the liveliness of a network client. Therefore, view
objects come equipped with a simple timeout method that
may force a view intosleepmode if the view has been in-
active for too long. (The “too long” is specified by de-
fault.) The application programmer may decide to redefine
this method in a particular subclass ofActiveViewand in-
deed may also make it take into consideration some values
of the view or specific resource parameters (transmit rate,
client architecture, ...).
Customizing the interface: One may customize the inter-
face at several levels: presentation, method redefinition or
total rewriting of the interface.

Users choose among various activities which corre-
spond (by default) to different HTML and, in the future,
XML pages. At the lowest level, it is obviously very easy to
modify the presentation of an XML page by simply chang-
ing the stylesheet. Note that by doing so, one may hide
certain functionalities of the particular activity.

Each interface is attached to a particular activity that
specifies the available data and (remote) methods. Each
such interface is implemented by an applet that commu-
nicates with a remote object that corresponds to that par-
ticular Activity. For instance, we may have anActiv-
ity:Customerclass. It is possible to redefine the code of
some methods of the class. As mentioned in Section 3,
remote methods have to be implemented by the user in-
terface. The default behavior of methods, i.e. display the
parameters on the screen, can be modified. For instance,
when a vendor receives the notification that a new customer
is assigned to him/her, the interface might save in a local
file the data about this particular customer.

Finally, one may want to completely redefine the inter-

148

face to some activity, e.g.,Activity:Customer. The API to
the ActiveView system for this activity remains fixed. It is
however possible to develop a Java applet (or application)
that interacts with the ActiveView system via this particular
API.

Acknowledgments

We thank V. Vianu, B. Fordham and Y. Yesha for works
with one of the authors [4] that somewhat initiated the
present work. The first prototype of the system was imple-
mented by S. Arnoud, M. Bani, R. Dhaou and F. Hubert.
V. Aguilera, S. Ailleret, B. Hills, A. Marian and B. Tessier
are thanked for their work on the second prototype. We
also thank G. Ferran, S. Gamerman, J.C. Mamou (from
ArdentSoftware) and A. Sahuguet for discussions on this
work. Finally, members of the Verso and Rodin groups
at INRIA provided valuable comments, and in particular,
S. Amer-Yahia, J. Sim´eon and A.M. Vercoustre.

References
[1] S. Abiteboul, S. Cluet, and T. Milo. A logical view of

structured files.The VLDB Journal, 7(2), May 1998.

[2] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and
J. L. Wiener. Incremental maintenance for materi-
alized views over semistructured data. InInt. Conf.
on Very Large Databases (VLDB), New-York, August
1998.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The lorel query language for semistruc-
tured data.International Journal on Digital Libraries,
1(1), April 1997.

[4] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce.
In ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages 179–
187, New York, USA, 1998.

[5] G. Alonso, D. Agrawal, A. El Abbadi, Mohan. U.
Kamath, R. Guenthoer, and C. Mohan. Advanced
transaction models in workflow contexts. InProc. Int.
Conference on Data Engineering, 1996.

[6] Ardent Software.http://www.ardentsoftware.fr.

[7] F. Bancilhon and N. Spyratos. Update semantics of
relational views.ACM Transactions on Database Sys-
tems, 6(4):557–575, 1981.

[8] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. Xml-ql: A query language for xml.
http://www.w3.org/TR/NOTE-xml-ql/.

[9] A. L. Furtado and M. A. Casanova. Updating rela-
tional views. In W. Kim, D.S. Reiner, and D.S. Ba-
tory, editors,Query Processing in Database Systems.
Springer-Verlag, New York, 1985.

[10] M. U. Kamath and K. Ramamritham. Bridging the
gap between transaction management and workflow
management. InIn NSF Workshop on Workflow and
Process Automation in Information Systems, Athens,
Georgia, 1996.

[11] A. M. Keller. Updates to relational databases through
views involving joins. In Peter Scheuermann, editor,
Improving Database Usability and Responsiveness.
Academic Press, New York, 1982.

[12] T. Milo and D. Suciu. Type inference for queries on
semistructured data. InACM Principles of Database
Systems (PODS), 1999.

[13] Objectstore.http://www.odi.com.

[14] OMG. Uml notation guide, version 1.1, 1 september
1997, 1997.
http://www.omg.org/techprocess/meetings/schedule/-
TechnologyAdoptions.htm.

[15] Philippe Picouet and Victor Vianu. Semantics and
expressiveness issues in active databases.Journal of
Computer and System Sciences, 57(3):325–355, De-
cember 1998.

[16] Poet.http://www.poet.com.

[17] C. Souza, S. Abiteboul, and C. Delobel. Virtual
schemas and bases. InProc. EDBT, Cambridge, 1994.

[18] WfMC standards. The workflow reference model,
version 1.1, wfmc-tc-1003,19-jan-95, 1995.
http://www.aiim.org/wfmc/mainframe.htm.

[19] W3C. Document object model (dom).
http://www.w3.org/DOM.

[20] W3C. Extensible markup language (xml) 1.0.
http://www.w3.org/TR/REC-xml.

[21] W3C. Extensible stylesheet language (xsl).
http://www.w3.org/Style/XSL/.

[22] W3C. The w3c query languages workshop, dec 1998,
boston, massachussets.
http://www.w3.org/TandS/QL/QL98/cfp.html.

[23] W3C. The word wide web consortium.
http://www.w3.org/.

[24] J. Widom and S. Ceri.Active Database Systems: Trig-
gers and Rules for Advanced Database Processing.
Morgan-Kaufmann, San Francisco, California, 1995.

[25] Yelena Yesha and Nabil Adam. Electronic commerce:
An overview. In Nabil Adam and Yelena Yesha, ed-
itors, Electronic Commerce. Lecture Notes in Com-
puter Science, Springer-Verlag, 1996.

149

