
Plan-Per-Tuple Optimization Solution - 
Parallel Execution of Expensive User-Defined Functions 

Felipe Carifio and William O’Connell 

NCR Teradata - Parallel Systems 
100 N. Sepulveda Blvd. El Segundo, CA 90245 

{ fcl,wto} @ElSegundoCA.NCR.com 

Abstract 

Object-Relational database systems allow users to 
define new user-defined types and functions. This 
presents new optimizer and run-time challenges to the 
database system on shared-nothing architectures. In 
this paper, we describe a new strategy we are 
exploring for the NCR Teradata Multimedia Database 
System; our focus is directing research for real 
applications we are seeing. In doing so, we will briefly 
describe optimizer challenges particularly related to 
predicate use of large multimedia objects, such as 
video/audio clips, images, and text documents. The 
motivation for this work is based on database tuning 
[SD961 for diverse queries related to multimedia 
objects. Most notably, expensive and/or high variant 
user defined functions [He198]. 

Our approach is referred to as plan-per-tuple. The 
primary focus being on large objects used as 
predicate-based terms when a non co-located join is 
involved in the query. But can also be applicable in 
non co-located join scenarios also. The execution 
engine can choose from among N! resource 
optimization strategies; where N represents system 
manageable resources. In our case, the N resources 
are: (i) interconnect saturation levels, (ii) available 
physical memory, (iii) CPU utilization, and (iv) 
available disk spool space percentages. However, this 
technique can be applied to any system resources 
being managed. The optimizer search space does not 
include these N! resource optimization strategies 
per’se, these are execution engine run-time 
optimization strategies. When the optimizer identifies 
expensive, or more importantly a high variant, user- 
defined function in the predicate (via collected 
statistics), then the optimizer can generate plans that 
incorporate plan-per-tuple optimization for that 
particular compiled query. When executing the plan, a 
different execution strategy can be used per tuple; the 
available execution choices do not necessarily equal 
N! We describe when such an overhead for run-time 
selection is acceptable. 

690 

1.0 Introduction 

With the enhancement of SQL3’s typing system, 
users are allowed to define new user-defined types 
and functions. In fact, many of our initial customer 
installations are employing large objects (out-of- 
line tuple attributes) into their applications; this 
includes large objects used as predicate-based 
terms [CS98]. This presents new optimizer and run- 
time challenges to the system on a shared-nothing 
MPP-based architectures. In this paper, we outline 
the strategy that we have been exploring in the 
NCR Teradata Multimedia Database System (M- 
DBS) in which development started in 1993 [CS98, 
Cat%, CSI94,OIS+96]. The M-DBS Release 1 was 
made generally available in 1997. This optimization 
approach was not incorporated into this release. 
The system’s fundamental design is based on NCR 
Teradata Database System (DBS) version 2 (V2). 
For in-depth discussions on the DBS, see [CK92, 
CSK95, WCP93]. 

M-DBS extends the DBS with SQL3 capabilities 
[Sto96]. A comprehensive analysis of the M-DBS 
architecture, key new concepts, and user-defined 
type (UDT) and user-defined function (UDF) 
optimizer issues can be found in [CSI94, CS98]. 
Many previous papers analyzed diverse 
optimization strategies, which include: cost- based 
[SAC+79], rule-based [Fre87], extensible [PHH92], 
libraries [MBH+96], multimedia [SG96], expensive 
UDFs [He198], and UDF predicate re-writes 
[CS96]. 

Permission to copy without fee all or part of this 
material is granted provided that the copies are not 
made or distributed for direct commercial advantage, 
the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given 
that copying is by permission of the Very Large Data 
Base Endowment. To copy otherwise, or to republish, 
requires a fee and/ or special permission from the 
Endowment, Proceedings‘ of the 24th VLDB 
Conference New York, USA, 1998 



This paper focuses on overviewing dynamic 
execution strategies [CG94] based on optimizer 
statistical decisions; most notably, predicate terms 
which are most likely defined as large object 
(LOBS) columns. A LOB is any column that does 
not fit in-line in the tuple. We will additionally 
highlight some of the complex UDF issues that 
arise in shared-nothing architectures; in particular, 
for non co-located joins when LOBS are in the 
predicate; this implies LOBS may be moved. 

As previously noted, we are concentrating on a run- 
time execution strategy based on optimizer 
statistics, not optimizer search strategies used when 
compiling the query. For a comprehensive 
discussion on optimizer search strategies with 
expensive predicate terms, see [He198]. The 
optimizer does not know, nor can it, the complete 
state of the system when the plan is executed while 
compiling the query. Moreover, compiled plans are 
many times cached for latter execution. 

Additionally, Teradata DBS installations 
commonly have hundreds to thousands of sessions 
currently connected to the DBS running typically 
tens of queries at anyone instant. Flow and load 
control management as well as systems resource 
management is critical; system resource must be 
utilized at lOO%, but no more. 

Modifying the behavior of a compiled plan based 
on the system state when it is executed can assist 
the execution engine in (i) keeping all critical 
resources at or near peak capacity, and (ii) 
controlling thrashing through data flow and 
resource management. As a result, our plan-per- 
tuple solution addresses the presence of variance, 
hot spots and diverse workloads on the system. In 
this case, variance is measured in main memory, 
interconnect saturation, CPU, and disk spool space 
utilization. 

The paper is organized as follows: 

Section 2 briefly overviews the DBS V2 optimizer. 
Section 3 overviews the M-DBS optimization 
issues. Section 4 contains a brief description of our 
plan-per-tuple run-time optimization strategy. 
Finally, concluding remarks are in section 5. 

2.0 Teradata Database V2 Optimizer Overview 

We will first briefly overview a few of the 
attributes of the DBS V2 optimizer. A detailed 
discussion is beyond the scope and purpose of this 
paper. The DBS has a mature cost-based optimizer 
for handling SQL-92 queries; rules and re-writes 
are built-in and cost based. It handles simple stored 
procedures (persistent stored modules), but does 
not handle UDFs. Its optimization strategy is based 
on system throughput. In doing so, it considers 
three system resources while evaluating all 
execution strategies at compile time’, which are 
CPU, disk usage, interconnection network usages, 
respectively. It relies on “.selectivizy” estimates 
when invoking its internal formulas; statistics are 
the key. 

There are several other important factors such as 
indexing, table demographics and other statistical 
information that is kept or generated at query 
compile-time. Memory is not directly part of the 
optimizer formulas (it’s correlated to other 
resources); at compile time it is difficult to predict 
what memory usage will be when a query is 
executed and what the memory contention will be 
during an execution. Our model attempts to address 
this by using memory utilization considerations at 
run-time, not only at compile or scheduling time. 

If the table has no statistics, the optimizer will 
generate table demographics by random sampling 
of the table data blocks. If the user has collected 
statistics on the involved tables, the join plan will 
always be consistent. The cost model used 
minimizes the total resource utilization, assuming 
exclusive use of the system. The optimizer 
minimizes the sum of the CPU utilization, the disk 
array utilization (calculated using maximum disk 
array throughput), and BYNET interconnect 
utilization. 

The optimizer also determines whether the use of 
an index is more efficient than a full file scan over 
the data. But, all this is compile time 
considerations, it can not consider what other 
queries may be running on the system when this 
query is executed. We believe that under certain 
UDF invocation classifications (via statistics), run- 
time considerations should be taken. Especially 
when LOBS are used as a joining or filtering term 
in a non co-located join operation. 

’ Most poor strategies are pruned very quickly. 

691 



Moreover, our focus is on maintaining peak 
performance on all managed system resources, not 
a subset. The ultimate goal is throughput. We will 
discuss this further in the subsequent sections. 

3.0 High Variance/Expensive UDF Run- 
Time Optimization Issues 

As previously stated, our analysis is for shared- 
nothing architectures focusing on high variance or 
expensive UDFs2; this typically implies LOBS are 
involved. We address several solutions for handling 
(i) data skew and load balancing when LOB 
columns are within the predicate, and (ii) 
maximizing total system throughput optimization 
under heavy loads. 

In general, SQL optimizers require and/or use cost 
estimation, tuple statistics, indexes and/or sampling 
to optimize queries. Large multimedia databases 
where LOBS are utilized in predicates (via UDFs) 
introduce new load balancing and skew problems 
for any one of the managed resources. 

Cost estimation of UDFs work when the average 
execution time has low variance, but can be 
problematic when there is high variance. Consider a 
UDF that does content analysis on a video column 
where video lengths in the column span from 2 
minutes in length to over 2 hours. Note that this 
says nothing about the skew pattern within the 
column itself relative to distribution of sizes of 
videos. Sampling implies running a random 
instance of every UDF in the query and using this 
information to generate an efficient query plan. 

Sampling is easy to implement, but assumes that a 
UDF execution time is uniform across all objects. If 
sampling is used on a UDF with large execution 
cost variance, then non-optimal plans may be 
generated. Allowing the execution engine to adapt 
to the characteristics of each tuple can help reduce 
load balancing and skew problems. 

We must realize that regardless of the techniques 
used to generate a query plan (e.g. sampling or 
historical data), if the cost variance varies widely 
per tuple, then an efficient (optimal) plan may not 
be possible to generate at compile-time. Also, an 

2 Variance and expense with respect to an attribute’s 
memory, interconnect, CPU, and disk spool space usage. 

692 

efficient execution plan depends on how the system 
resources (CPU, memory, disk and network) are 
being used by all active queries. This affects not 
only high variant UDFs, but expensive uniform 
ones too. This variance (or expense) is relative to 
any one or more managed system resources. 

Lets consider the video column example above. 
Also, lets assume that there were other predicate 
terms as well as a join being involved causing the 
video column UDF to be potentially executed on a 
non co-located node (with respect to the base table 
LOB’s physical location). If the interconnect has 
low utilization at execution time, then pushing all 
LOBS with the rows may be appropriate assuming 
high probability that the UDF will actually be 
invoked on all rows (the optimizer has statistics of 
this probability); else pulling may be more 
appropriate. 

However, if interconnect utilization is high, then 
the small LOBS (e.g., a few minutes in length) can 
be pushed while the large ones pulled. Alternately, 
the tuple’s column evaluation can temporally 
migrate to the physical location of the LOB. Then, 
the result is sent back. Note, no LOB movement 
was done in this case. However, the choice of these 
latter two again is based on the system’s state. 
Actually in this join example, there are really 
several strategies that can be used. They are 
summarized here: 

Push all LOBS from the source to sink along 
with redistributing the actual rows. 

Pull all LOBS (portion or whole) from source to 
sink; pulled portions can be written to local 
disk after pulling or discarded based on 
expected access patterns and/or available spool 
space. 

Intermix the pushing and pulling approaches 
based on the LOB size while re-distributing. 

Migrate tuple computation to location of LOB, 

process UDF there, then ship result back. This 
is function-shipping which prevents LOB 
movement over interconnect. Moreover, if two 
LOBS are required by a UDF (such as a joining 
predicate term), this may entail migration to 
one LOB site and pulling the other LOB. 

Re-decluster the joined result-set based on the 
partitioning strategy of the LOB. This also 
eliminates LOB movement; the UDF is invoked 
after the redistribution. 



Moreover, many join algorithms look at some tuples 
more than once in the joining phase., In cases where 
these tuples include LOB? being pulled, it is optimal 
to only pull them once. But, if disk spool space is low 
and there exists suitable interconnect bandwidth to 
continually stage the LOBS, then pulling for each 
reference may be appropriate. The same is true on 
main memory caching of LOBS. The default is no 
caching due to sequential flooding. However, if 
memory utilization is low and the LOB data is not 
excessive, then caching of LOB data may be 
appropriate3, this would eliminate allocating spool 
space in cases were the LOB was expected to be 
accessed multiple times during the joining phase. 
Table statistics are needed along with the current 
system’s state to make these decisions. 

The goal of the M-DBS optimizer is to balance the 
diverse resources and enhance either query response- 
time or throughput. The optimizer can either generate 
a query execution plan at compile-time (low variance, 
uniform system use) or generate a plan that indicates it 
can use dynamic execution based on resources. Both 
options utilize the same optimizer search strategies at 
compile time when generating the execution plan, but 
the latter allows the execution engine to make run- 
time decisions. 

4.0 Plan-Per-Tuple Run-Time Optimization 
Strategy 

The key items deal with: resources, selectivity and 
statistical variance. In shared-nothing architectures, 
the four key system resource factors: (i) CPU, (ii) 
memory, (iii) disk and (iv) network that must be 
managed for either response time or throughput. 

In processing the plan-per-tuple strategy, the optimizer 
can either generate a compile-time only plan (as done 
today), or place directives directly in the compiled 
plan to provide run-time options. The latter is only 
done when high-variant and/or expensive UDFs are 
involved in the predicate evaluation. In this case, it 
makes sense to generate “plan-per-tuple” series of 
execution plans. 

The idea behind a “plan-per-tuple” (Figure 1) is that 
the M-DBS Evaluator (which executes the query plan) 
checks that state of the (SMP) node for resource 
availability and then selects a plan with that resource 
as the dominant factor. For example, a query plan, that 
optimizes resources in CPU, disk, memory and network 
usage denoted by Plan (Rcpu, Rdisk, Rmem, 
Rnet) would be selected based on the resource 
availability for the (SMP) node. 

The resource state per node is kept and maintained by 
a Global Resource Object that is queried at execution 
by the evaluator in order to select an execution plan. 

As a result, if the variance is low, then a compile-time 
only plan is generated. Otherwise, for non-uniform 
UDF execution - which may have variance in UDT 
object values - numerous directives are added on a per 
access module processor (AMP) Step basis. 

We will denote resource usage for each of these 
resources by: Rcpu, Rmem, Rdisk and Rnet, 
respectively. 

The optimizer can have statistical knowledge of 
memory resource usage of a UDF on a LOB column, 
for example a UDF typically may access heap and/or 
buffer spool space while processing a LOB, these 
resources are tracked on the DBS. Moreover, CPU 
and disk accesses of a LOB4, as well as disk spool 
space required per invocation are also tracked. This 
indirectly indicates interconnect cost if the LOB must 
be used. 

The query executor considers these directives when 
processing the AMP Step. Four logical things are 
required when processing the step, they are (i) UDF 
statistical information applicable to the column, (ii) 
the tuple attribute information (such as size and 
location), (iii) applicable system resource utilization 
levels (of some reasonable granularity), and (iv) the 
plan-per-tuple directives. 

To evaluate the plan-per-tuple optimization, the order 
of importance of each resource must be determined 
(e.g. Rmem, Rcpu, Rnet, Rdisk); this may be 
different for any two tuples in the operation. In this 
case, there are 4! (24) ways to organize resource 
priorities. The goal must be to quickly select a plan 
that minimizes total resource usage for that tuple, yet 
considers existing utilizations. 

3 The alternative is to abort the transaction due to lack of 
disk resources spool space. 
4 Percentage of actual object accessed by UDF, such as 
10%. 

This execution model is only feasible when the 
predicate evaluation contains expensive UDFs. It 
works best when there is a high variance in some 
resource usage among the tuple attributes that make 
up the table. The variance is what really allows the 
alternative choices to be exploited. 

693 



OPTIMIZER 

I (Via Directives 1 in Query Steps: 

-[-iyE-] 

I UDF (Signature) History 

{Rcpu, Rnezn, Rdisk, Rnet} 

RUN-TIME EXBCIJ’I’ION ENGINE 

SELECT FROM I On Every Node 
Resource State 

{Rcpu, Rnem, Rdisk, Rnet} 

Figure 1: Plan-Per-Tuple Execution Flow 

5.0 Conclusion 

This paper described the major UDF issues that 
Object-Relational database optimizers and DBA 
must handle when optimizing expensive high 
variant UDFs. This variance does not only involve 
the algorithm used in the UDF, but also the data 
values stored in a table’s column (e.g., complexity, 
size, or density). 

The Teradata philosophy is that the database must 
handle optimizations with minimal DBA (e.g. no 
pragma) hints. The diverse and complex SQL3 
applications that customers are now approaching us 
on have led us to develop a plan-per-tuple approach 
to address highly diverse OR/DBMS UDF queries 
that high high/low skew and variance. We are 
continuing to explore its merits. 

6.0 Acknowledgments 

The authors would like to thank the anonymous 
referees, Bill McKenna, Pekka Kostamaa, Warren 
Sterling and Dave Schrader for their suggestions, 
comments and help. 

7.0 References 

[Car981 

[CG94] 

[CK92] 

Cariiio, F., “Teradata Goes Full Color”, 
Teradata Review, January 1998 

Cole, R. L. and Graefe, G., “Optimization 
of Dynamic Query Evaluation Plans”, 
Proceedings of the ACM SIGMOD, pp. 
150-160, June 1994. 

Carifio, F. and Kostamaa, P., “Exegesis of 
DBC/1012 and P-90”, Proceedings of the 
4th International Parallel Architectures 
and Languages Europe (PARLE ‘92), 
Springer-Verlag, ‘pp. 877-892 

694 



[CSI94] Cariiio, F., Sterling, W. and Ieong, I.T., 
“Teradata-MM - A Complete Multimedia 
Database Solution”, ACM Multimedia 
Workshop on Multimedia Databases, San 
Francisco, California, October 21, 1994. 

[CSK95] Cariiio, F., Sterling, W. and Kostamaa, P., 
“Industrial Database Supercomputer 
Exegesis - The DBC/ 1012, The NCR 
3700, The Ynet and The BYNET”, 
Emerging Trends in Knowledge and 
Database Systems, IEEE Computer 
Society Press, Los Alamitos, California, 
pp. 139 - 157,1995. 

[CS98] Cariiio, F. and Sterling, W., “Parallel 
Strategies & New Concepts for a 
Petabyte Multimedia Database 
Computer”, Parallel Database techniques, 
IEEE Computer Society Press, Los 
Alamitos, California, 1998. 

[CS96] Chaudhuri,. S. and Shim. K., “Optimization 
of Queries with User-Defined 
Predicates”, Proceedings of the 19th 
International Conference on Very Large 
Databases (VLDB ‘96), pp. 87 - 98. 

[Fre87] Freytag, J.C., “A Rule-Based view of 
query optimization”, Proceedings of the 
ACM SIGMOD, pp. 173-180, June 1987. 

[HS93] Hellerstien, J.M and Stonebraker, M., 
“Predicate Migration: Optimizing 
Queries with Expensive Predicates”, 
Proceedings of the ACM SIGMOD, pp. 
267 - 276. 

[He1981 Hellerstein, J.M., “Optimization 
Techniques For Queries with Expensive 
Methods”, To appear, ACM Transactions 
on Database Systems (TODS). 

[OIS+96] O’Connell, W., Ieong, I.T., Schrader, D. 
and et al., “Prospector: A Content-Based 
Multimedia Object Server for Massively 
Parallel Architectures”, Proceedings of 
the ACM SIGMOD, pp. 68 - 78,1996. 

[PHH92] Pirahesh, H, Hellerstein, J. M. and Hasan, 
W., “Extensible/rule-based query rewrite 
optimization in Starburst”, Proceedings 
of the ACM SIGMOD Conference on 
Management of Data (SIGMOD 92), pp. 
39-48, June 1992. 

[SAC+79]Selinger, P.G., Astrahan, M.M., 
Chamberlin, D.D., Lorie, R.A. and Price, 
T.G., “Access path selection in a 
relational database management system”, 
Proceedings of the ACM SIGMOD, pp. 
23 - 34,1979. 

[SG96] 

[SD961 

[St0961 

Surajit, C. and Gravano, L. “Optimizing 
Queries over Multimedia Repositories”, 
Proceedings of the ACM SIGMOD, pp. 
91 - 102,1996. 

Shasha, D. “Database Tuning Book: A 
Principled Approach”, Prentice Half, 
Englewood Cliffs, New Jersey, ISBN O- 
13-205246-6, 1992. 

Stonebraker, M., “Object/Relational 
DBMSs: The Next Great Wave”, Morgan 
Kaufmann San Francisco, California, 
ISBN l-55860-397-2, 1996. 

[WCP93] Witkowski, A., Cariiio, F. and Kostamaa, 
P. “NCR 3700 - The Next-Generation 
Industrial Database Computer”, 
Proceedings of the 19th International 
Conference on Very Large Databases 
(VLDB ‘93), pp. 230 - 243. 

[MBH+96] McKenna, W., Burger, L. Hoang, C. 
and Troung, M. “EROC: A toolkit for 
Building NEAT0 Query Optimizers”, 
Proceedings of the 19th International 
Conference on Very Large Databases 
(VLDB ‘96), pp. 99 - 110,1996. 

695 


