
Heterogeneous Database Query Optimization in
DB2 Universal DataJoiner

Shivakumar Venkataraman
IBM Santa Teresa Labs

San Jose, CA 95141
shiv@us.ibm.com

Abstract

DataJoiner (DJ) is a heterogeneous database

system that provides a single database image

of multiple databases. It provides transparent

access to tables at remote databases through

user defined aliases (nicknames) that can be

accessed as if they were local tables. DJ is also

a fully functional relational database system.

A couple of salient features of the DataJoiner

query optimizer are: (1) A query submitted

to DataJoiner is optimized using a cost model

that takes into account the remote optimizer’s

capabilities in addition to the remote query

processing capabilities and (2) If a remote

database system lacks some functionality (eg:

sorting), DataJoiner compensates for it. In

this paper, we present the design of the Data-

joiner query optimizer.

Permission to copy without fee all ot part of this material is
granted provided that the copies are not made 07 distributed
for direct commercial advantage, the VLDB copyright notice
and fhe title of the publicdion and its date appear, and notice
is given that copying ir by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permiaaion from the Endowmeni.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Tian Zhang
IBM Santa Teresa Labs

San Jose, CA 95141
tzhang@us.ibm.com

1 Introduction

DataJoiner (DJ) is a heterogeneous database sys-

tem [AL901 that provides a single database image of

multiple databases. The database clients access re-

mote data through user defined aliases (or nicknames).

The presence of remote tables is completely transpar-

ent to the user. The Cost based query optimizer in

DataJoiner explores the capabilities of the remote op-

timizer and remote query processor to determine the

portions of the query/updates to be executed at the

remote databases. DataJoiner uses an optimizer mor-

phing technique that enables the optimizer to model

the remote optimizer characteristics (left deep plan

vs bushy plans) in addition to the remote query pro-

cessing capabilities (joins, selects, subqueries, nested

table expressions, common subexpressions) to deter-

mine the globally optimal plan. This enables Data-

Joiner to generate global plans that closely reflect the

actual plans generated by the remote database sys-

tems when segments of the queries are shipped to the

remote database for execution.

Figure 1 illustrates the architecture of DataJoiner.

DataJoiner is based on the DBZ/CS code base, and is

a fully functional relational database system support-

ing access to data at heterogeneous databases. Data-

685

i DATAJDHER ENGINE ;

c ._............................. i ‘.

DATA ACCESS MODULES IDAhi I

Figure 1: DataJoiner Architecture
Joiner communicates with remote databases through

Data Access Modules (DAM). Each DAM under-

stands the SQL dialect and communication protocol

of the remote database that it communicates with.

Figure 1 shows the remote databases supported by

DataJoiner. Associated with each DAM is a Server

Attributes Table (SAT). The SAT records important

information about the remote database system, specif-

ically about its remote query optimizer and its SQL

dialect. This information is used by the DataJoiner

optimizer to model the remote query optimizer char-

acteristics. Changes to the values in the SAT can be

accomplished through data definition language (DDL)

statements. This provides a powerful mechanism by

which global plans produced by DataJoiner can be

tuned, without having to make changes to the code.

For example, if a database were to come out with sup-

port for merge join, when it previously did not support

it, DDL statements can be used to inform DJ about

this feature, and the optimizer will take this informa-

tion into account while generating a global plan. The

following are some of the salient features of DataJoiner

(DJ):

l Single database image of multiple databases

l Global catalog

l Local storage of data

l Cost-based optimization of heterogeneous

database queries

l Modeling remote query optimizer characteristics

l Insert, Update, and Delete to remote databases

l DDL transparency

l Heterogeneous multi-site updates with two-phase

commit

l Global stored procedures

2 Query Optimizer

Most relational database systems that DataJoiner

supports access to have cost-based query optimizers.

However, these databases differ significantly in their

query processing and optimization capabilities. For

example, while most databases support some form of

joins, some databases only support nested loop join

while others support both merge and nested-loop join.

Some query optimizers consider a left-deep plan space,

while others consider a bushy plan space. We take

these differences into account while generating global

query plans in DataJoiner. It is important for Data-

Joiner to model the capabilities of the remote opti-

mizer, since the global plan generated mostly depends

on how the remot,e query optimizer plans the SQL

query sent to it.

Earlier work on heterogeneous query optimization

have studied how to model the costs of remote

plans [DKS92]. Recently, Haas et al. [HKWY97] and

Tork-Roth et al. [TRS97] have studied the problem

686

of modeling the query processing capabilities of non-

relational data sources. In DataJoiner, in addition to

modeling the capabilities of the remote database, we

provide a framework for modeling the remote query

optimizer capabilities. A comparative study published

by Rezende et al [RH98] shows the performance of of

gateway products.

The query optimizer in Data-Joiner is based on the

DBZ/CS Starburst optimizer [PHH92] [GLS93] tech-

nology. The relational query optimizer of DB2/CS

is extended to model the remote query optimizers.

The information in the SAT is used to parametrically

model the remote query optimizers. The intention of

using the SAT is to enable DataJoiner to generate

query plans that closely reflect the plans that the re-

mote query optimizers generate. Accurate statistics

for tables at remote database is maintained in the lo-

cal DataJoiner system catalogs. Catalog refreshes is

either done by fetching the information from the cat-

alogs of the remote database, or by using the runstats

utility to scan the remote table, to generate the de-

tailed statistics used by the DB2 query optimizer.

Figure 2 shows the six stages of the DataJoiner query

optimizer. The non-shaded boxes correspond to the

stages in the base DB2 query optimizer. The shaded

stages correspond to the new stages introduced by

DataJoiner. Each stage is described in detail here:

l Parser:The query from the user is parsed, se-

mantically analyzed, and translated int.0 an int’er-

nal data structure that reflects the query. This

data structure is referred to as the Query Graph

Model (QGM). The QGM semantically repre-

sents the query.

l Pushdown Analysis (PDA): Pushdown anal-

QUERY

I QUERY
AEwRlTE I

Plan

CODE
GEN

I
CODE

Figure 2: Query Optimizer
ysis is used to determine as well as maximize the

portions of the query that can be evaluated by the

remote databases. By using the knowledge of the

remote databases, PDA prepares the QGM for

the optimizer with useful information about the

portions of the query that can be evaluated at the

remote databases, however it still leaves the deci-

sion of whether the evaluation should take place

remotely to the DJ query optimizer.

Query Rewrite: The QGM is transformed by

a set of heuristic rewrite rules [PHH92] to enable

the optimizer to generate better plans. Since the

capabilities of the remote databases are different,

the rewrite rules have to be sensitive to the ca-

pabilities of the remote databases so that we can

send a significant portion of the query to the re-

mote database. For example, scalar subquery to

join rewrite rule may transform a query contain-

ing a scalar subquery into a join query with a

687

nested table expression. The original query usu-

ally can be sent in its entirety to the remote

database because most relational databases sup-

port scalar subqueries, whereas the transformed

query might not be processed completely at the

remote database because some databases do not

support nested table expression. In order to avoid

this, we use the capabilities dictionary of the re-

mote database stored in the SAT to condition-

ally invoke the query rewrite rules. In addi-

tion, we also added some new rewrite rules that

are targeted towards reducing the communication

costs in a heterogeneous environment. For exam-

ple, UNION operands are grouped by their data

sources so that instead of opening a connection

for each UNION operand, we only open a con-

nection for each group of UNION operands. This

rule, while reducing the number of requests, does

not limit the optimizer’s capabilities in generat-

ing the best global plan.

l Query Optimizer: The optimizer uses the

QGM as input to generate query plans. It uses

the PDA markings to determine if a remote plan

can be generated. If a query block is pushdown-

able to a remote database, both, remote and local

plans are generated. The SAT table is used by the

optimizer to determine the capabilities of the re-

mote database. For example: if the property in

the SAT indicates that a remote database does

not support merge joins then the DataJoiner op-

timizer will not consider merge joins for the re-

mote plan. In addition to the query processing

capabilities, the optimizer models the character-

istics of the remote database optimizer. An ex-

ample is the plan space search. Some optimizers

may generate plans containing bushy joins, while

others only generate plans with left-deep joins.

DataJoiner’s optimizer is sensitive to the abilities

of the remote database optimizer and generates

a global plan accordingly. The query optimizer

computes the cost of the various plans based on

the statistics maintained in the catalogs. The op-

timizer’s cost model takes into account the com-

munication cost, the difference between the local

and the remote CPU and I/O speeds.

l Statement Generation: The best plan gen-

erated by the query optimizer is then fed to

the statement generator. The statement gen-

erator, traverses the portion of the query plan

that needs to be evaluated remotely and gener-

ates SQL statements for these portions.

l Code Generation: The best plan is then con-

verted into executable code.

The code generated is interpreted by the runtime en-

gine during query execution. The SQL statements

generated are sent to the remote databases for exe-

cution. The query results obtained are combined and

returned to the user.

3 Performance

Preliminary performance results with the industry

standard benchmarks indicates that queries executed

through DataJoiner performs extremely well, since the

global plan produced by DataJoiner contains subplans

that closely reflect the plan produced by the remote

optimizer. In many instances, queries directed to a

single database system sent through DataJoiner per-

formed much better than queries executed on the re-

mote database system directly. The aggregate timing

688

measurements on the seventeen queries of the indus-

try standard benchmark executed through DataJoiner

on database systems of commercial database vendors

showed that the execution times that were either com-

parable or significantly faster than the queries that

were executed directly at the remote database system.

shows the superiority of DataJoiner query optimizer

over those of other gateway products.

4 Conclusions

The DataJoiner query optimizer models the query op-

timizers of the remote database systems. It recog-

nizes the sensitivity of the remote database optimiz-

ers to the query syntax. Knobs provided in the form

of catalog updates in DataJoiner enables one to easily

model changes to the remote database system capabil-

ities, without requiring changes to the code. This en-

ables Datajoiner to generate query plans that closely

reflect the actual plan that get generated at the re-

mote databases during query execution. This enables

DataJoiner to generate very efficient plans and this in

turn leads to high performance. DataJoiner version

2.1 is now generally available and more information

on DataJoiner is available from the DataJoiner web

site at:www.software.ibm.com/data/datajoiner

References

[AL901 Sheth A.P and J.A. Larson. Fed-

erated Database Systems for Manag-

ing Distributed, Heterogeneous, and Au-

tonomous Databases. ACM Computing

Surveys, 22(3):183-236, March 1990.

[DKS92] W Du, R Krishnamurthy, and M.C Shan.

Query Optimization in a Heterogeneous

DBMS. In Proceedings of the 16th Inter-

national Conference on Very Large Data

Bases, pages 277-291, 1992.

[GLS93] P. Gassner, G.M. Lohman,

and Y Schiefer, B. Wang. Query Op-

timization in the IBM DB2 Family. Data

Engineering Bulletin, 16(4), 1993.

[HKWY97] L.M. Haas, D. Kossmann, E.L. Wimmers,

and J. Yang. Optimizing Queries Across

Diverse Data Sources. In Proceeding of

th,e VLDB Conference, Aug 1997.

[PHH92] H Pirahesh, J.M Hellerstein, and W. Has-

san. Extensible/Rule Based Query

Rewrite Optimization in Starburst. In

Proceedings of the ACM SIGMOD Con-

ference, pages 39-48, 1992.

[RH98] Rezende, F. and Hergula, K. The hetero-

genity problem and middleware technol-

ogy: Experiences with and performance

of database gateways. In Proc. of the Intl

Conf on Very Large Databases (VLDB),

New York, 1998.

[TRS97] M. Tork-Roth and P. Schwarz. Dont

Scrap It, Wrap It! A Wrapper Architec-

ture for Legacy Data Sources . In Proceed-

ing of the VLDB Conference, Aug 1997.

