
A Database System for Real-Time 
Event Aggregation in Telecommunication 

Jerry Baulier Stephen Blott Henry F. Korth Avi Silberschatz 

Information Sciences Research Center 
Bell Labs, Lucent Technologies 

600 Mountain Ave, Murray Hill, NJ 07974 

jdb,blott,hfk,avi@research.bell-labs.com 

Abstract 

Telecommunication networks process very- 
large numbers of events in real time. In 
this environment, database applications de- 
mand both high throughput (at reasonable 
costs), and predictable, millisecond response 
times. Conventional disk-based database sys- 
tems were not designed to meet such require- 
ments. This paper sketches some real-time 
telecommunications applications, describes 
their database requirements, and then intro- 
duces Sunrise, a specialized, database system 
for real-time event processing and aggregation 
in telecommunication. Sunrise’s architecture 
features shared-nothing parallelism, a main- 
memory storage manager (DataBlitz), and a 
programming tool which allows new services 
to be authored and installed in an on-line 
system without interrupting event processing. 
Sunrise is an industrial-strength system, and 
has been used as the platform for a num- 
ber of telecommunication applications with 
real-time event-processing and aggregation re- 
quirements. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 24th VLDB Conference 
New York, USA, 1998 

1 Introduction 

Telecommunication systems process very-large num- 
bers of calls in real time, and with a remarkable degree 
of reliability and predictability. While the principal 
goal of the telecommunication network is establish- 
ing circuits and carrying network traffic, other tasks 
such as billing, fraud detection or prevention, and net- 
work management are equally critical to the operation 
of those networks. Consider, for instance, the case 
of billing. Billing is clearly fundamental to revenue 
collection; however, it has also become important as 
a marketing differentiator. With little other service 
differentiation, carriers in the US (and increasingly 
also elsewhere) compete based on the novelty and ap- 
peal of their billing plans. In addition, prepay billing 
capabilities (where charges are deducted immediately 
from a prepaid account) also open up the large mar- 
ket for which credit-based billing is inappropriate. As 
of 1997, approximately 30% of new applications for 
cellular telephones in the US were rejected because of 
inadequate credit history. 

A billing application, in its simplest form, assigns a 
charge for each call. However, determining the charge 
usually requires accessing and maintaining a database 
of customer and billing information. First, a database 
access is usually required to read a customer’s sub- 
scription information. Subsequent accesses may then 
be necessary to determine, for example, whether the 
caller and the callee have a special discount relation- 
ship (such as MCI’s ‘Friends and Family’ program in 
the US), or to establish a rate based on the distance 
of the originating number from the terminating num- 
ber, etc. In addition to these read-only database ac- 
cesses, it is also common to maintain summaries over 
events. In billing, summaries typically include per- 
customer usage aggregations, such as the total number 

680 



of calls, the total call duration, or the total charge in 
each billing cycle. This information is used to calculate 
usage-based rates and discounts. 

In fraud detection or fraud prevention applications, 
summaries, termed ‘fraud signatures’, are stored for 
each customer. Fraud signatures capture each cus- 
tomer’s typically usage pattern, and are updated with 
each new call. They can be used to detect irregular 
usage patterns-with similarity to known fraudulent 
patterns-when and if they occur. If a call can be 
identified as potentially fraudulent, then the call may 
be rerouted to a voice recognition system or an opera- 
tor for authentication. This requires a fraud-signature 
database to be accessed during call setup (that is, be- 
tween the time when the caller completes dialing and 
when they receive the ring-back tone), and updated 
in a timely manner upon call completion. Moreover, 
fraud signatures and their algorithms must be adapted 
over time as fraud patterns change. 

Another telecommunication application requiring 
database processing during call set-up is intelligent 
toll-free number mapping. In the US, so-called ‘toll- 
free numbers’ are those where the charge for a call to 
that number is assigned to the callee (rather than to 
the caller). However, a toll-free number is often also a 
virtual number in the sense that it is mapped within 
the network to different terminating numbers based 
on criteria such as the day, the time of day, and the 
load-balancing policies in effect. For example, calls 
using the same toll-free number may be routed to an 
eastern location during the morning, and to a western 
location in a different time zone during the evening 
and at night. During the day, a load-balancing algo- 
rithm may be used to distribute calls between these 
two locations. This application requires a database 
of number mappings and algorithms for each toll-free 
number. Moreover, the database is accessed as part of 
call set-up, and must be programmable since the map- 
ping can be non-trivial and may change frequently. 

These types of telecommunication applications re- 
quire many of the standard data-management features 
of conventional database systems such as data inde- 
pendence, high-level, declarative programming inter- 
faces, and the ACID correctness guarantees for trans- 
actions [GR93]. In addition, however, they also gener- 
ally exhibit the following characteristics and require- 
ments: 

l The predominance of ‘rifle-shot’ transactions, 
where each transaction consists of one or a small 
number of keyed table accesses using existing in- 
dexes, frequently hashed indexes; 

l In many cases (including prepay billing, fraud 
prevention, and intelligent toll-free number map- 
ping), predictable response times-on the order 

of only tens of milliseconds-such that event pro- 
cessing can take place during the critical set-up 
phase of a telephone call; 

The ability to scale a system up or down to 
achieve whatever peak, busy-hour throughput is 
required (at a reasonable cost), while continuing 
to meet response-time goals; 

The reliability of an utility such as gas or electric- 
ity, whereby the system cannot be taken off-line 
at will for maintenance and upgrades; and 

The ability to define new event-processing steps 
and new summaries-or adapt existing processing 
steps and summaries to new requirements--and 
install those changes in an on-line system, without 
interrupting on-going event processing. 

Currently, custom database systems are often used in 
practice to meet the needs of applications with these 
requirements. Such custom solutions work well, but 
make it impossible to amortize the cost of a system 
over a large number of applications, and thus become 
expensive to develop and maintain. 

This short paper describes Sunrise, a database sys- 
tem developed at Bell Labs! Sunrise is general pur- 
pose in that it serves as a platform for many real-time 
telecommunication applications. However, it is also 
specialized in that its architecture and functionality 
have been adapted specifically to meet the require- 
ments sketched above. Only an architectural overview 
and selected highlights are presented here, and the in- 
terested reader is referred to the corresponding white 
paper for more details [BBKS98]. 

2 Architectural Overview 

This section discusses several highlights of the Sunrise 
architecture, which is illustrated in Figure 1. 

2.1 A Main-Memory Database Platform 

Current network applications with real-time perfor- 
mance requirements do not rely on conventional disk- 
resident database systems. Disk-resident database sys- 
tems buffer only a small part of a database in main 
memory. The rest of the data is accessed from the 
disk when and if it is required. A single disk access 
can account for from tens to hundreds of milliseconds, 
making the goal of predictable response times (on the 
order of tens of milliseconds) unachievable. Moreover, 
there can also be comparable overhead due to commu- 
nication costs among clients and servers, and due to 

‘Sunrise has been announced as a Lucent Technologies prod- 
uct under the name QTM. 

681 



Figu 1: Sunrise’s run-time architecture: Real-time event processing and aggregation for network applic; 
with a data warehouse for long-term archiving of processed-event records 

the lookups required to locate pages in the database 
buffer. 

To meet its real-time performance requirements, 
Sunrise uses DataBlitz, a main-memory storage man- 
ager, as its underlying storage system? DataBlitz, hav- 
ing been designed under the assumption that the entire 
database resides in main memory, processes database 
operations at main-memory speeds. The only disk op- 
erations during normal processing are those necessary 
to write the log records of committed transactions to 
disk. As memory prices fall, main-memory residency is 
becoming an increasingly-attractive means to achiev- 
ing the performance demanded by many telecommu- 
nication applications. 

For performance reasons, Sunrise and DataBlitz ex- 
ecute within the same process address space. The ad- 
vantage of this approach is that the communication 
overheads of a client-server architecture are all but 
eliminated, and database data need not be copied be- 
tween buffers. The potential disadvantage, however, is 
that any error condition occurring in Sunrise could cor- 
rupt the persistent database. This is a serious concern 
since Sunrise is programmable at the user level, and 
cannot be shipped as an exhaustively-tested and veri- 
fied unit of code. This potential safety risk is addressed 
through the service authoring environment, which is 
discussed in Section 2.4. 

2.2 Storage of Processed-Event Records 

For many applications, processed-event records can- 
not simply be discarded, and storing all such records 

*DataBlitz is a Lucent Technologies product baaed on the 
‘Dali’ research prototype developed at Bell Labs [BRSS97, 
JLR+94]. 

ions, 

in a main-memory database would be prohibitively 
expensive. As such, Sunrise uses DataBlitz for stor- 
ing only summary data, while processed-event records 
are archived in a conventional, disk-based data ware- 
house. This situation is illustrated in Figure 1. Sunrise 
provides an interface through which one popular com- 
mercial DBMS can be used as the data warehouse, 
although that can easily be replaced with any other 
functionally-equivalent relational system. 

The distinction between main-memory data and 
archived data is fundamental to the Sunrise architec- 
ture. Event processing, which is response-time criti- 
cal, generally depends only on main-memory resident 
data, while a conventional, disk-based data warehouse 
is used for more voluminous, archived data with less 
stringent access requirements. In particular, because 
of the costs and addressing limitations of main mem- 
ory, Sunrise itself requires the space complexity of 
its applications to be bounded over any sequence of 
events, regardless of the length of the sequence. 

2.3 Scalability and Parallel Processing 

Sunrise in fact consists of a number of components. 
The ‘real-time event-processing engine’ is the database 
component which is coupled to DataBlitz and performs 
event processing. To achieve scalability, Sunrise allows 
a number of instances of this engine to run in parallel, 
as illustrated in Figure 1. In particular, the database 
is partitioned according to some key attribute (such as 
a phone number or an account number), and config- 
uration, summary, and aggregation data for each key 
is clustered at a single site. Sunrise’s external inter- 
faces are exposed through components known as ‘event 
mappers’. Event mappers assign each event for pro- 

682 



cessing at the site at which the corresponding key data 
is stored. In the (infrequent) case that event process- 
ing spans several sites, then a single site is designated 
as the coordinator. The coordinator is then respon- 
sible for dispatching sub-events to participating sites, 
and aggregating the results of sub-event processing. 

All components are usually tightly coupled on a 
fast interconnect, and communicate with one-another 
using TCP/IP. This parallel, shared-nothing architec- 
ture is well-suited to the rifle-shot transactions com- 
mon in telecommunication systems, and can deliver 
close to linear scale-up. 

2.4 The Service Authoring Environment 

Sunrise provides a high-level, fourth-generation pro- 
gramming interface referred to as the ‘service author- 
ing environment. The service authoring environment 
consists of a set of graphical user interfaces for ad- 
ministration, maintenance and authoring, and a so- 
called service-authoring language (or ‘SAL’) in which 
new services are programmed. SAL consists of a primi- 
tive set of event-oriented programming constructs, and 
a small but rich set of declarative data-management 
features. 

The data-management features of SAL are re- 
stricted versions of the four table operators of 
SQL (insert, delete, update, and select). SAL 
scripts are validated at a high level, then translated to 
C++ code and compiled. The resulting object code 
is then dynamically linked into the event-processing 
engine, without interrupting regular event processing. 
This approach to the compilation and installation of 
authored code achieves three goals: 

l Compilation in this way avoids the costly over- 
head of interpreting event-processing logic at ex- 
ecution time, thereby improving performance. In 
particular, event-processing logic which is au- 
thored in a high-level language, is then executed 
as compiled C++ code directly within the same 
address space as the database itself. 

l Through the use of dynamic linking, applications 
can be installed or upgraded on-line, without in- 
terrupting on-going event processing. 

l The use of a high-level language such as SAL 
allows many classes of errors to be eliminated. 
In particular, errors such as infinite loops, mem- 
ory leaks, erroneous updates through misdirected 
pointers, or segmentation violations cannot occur. 
Other data-dependent errors such as division-by- 
zero are handled safely as exceptions. This miti- 
gates the potential safety risks associated with ex- 
ecuting application-specific code within the same 
process address space as the database itself. 

In addition to compiling and installing services in 
this way, SAL also provides a mechanism to control 
the services which are executed for each event, and the 
order in which they are executed. In particular, event 
processing is subscription based. We assume that, for 
each event, a ‘subscriber identifier’ can be extracted 
and used to access subscriber-specific information in 
a subscription table. The subscriber identifier is the 
same as the ‘key’ mentioned in Section 2.3 above, and 
need not correspond to any notion of customer or a 
person. Subscription information is used to determine 
the set of services to invoke in processing an event 
for a particular subscriber. Subscription information 
is encoded in a form which is amenable to efficient 
interpretation at run-time (much like Java byte-codes). 

This approach was chosen as a compromise between 
the performance benefits of compiled, stored queries, 
and the flexibility of ad hoc queries. The service part 
is compiled, and the subscription part interpreted. 
Moreover, subscription information consists of data 
entries in a table, which can be updated without re- 
compilation or dynamic linking. 

2.5 Summary and Aggregated Data 

SAL supports two approaches to maintaining sum- 
mary and aggregation tables. The first approach is 
to define a service that encodes the logic necessary for 
summary maintenance in terms of explicit table in- 
serts, updates and deletes. This approach, however, 
places the programming burden on the author, and 
is inherently error prone since all authors must be 
aware of when and how summary maintenance rou- 
tines should be invoked. The second approach to main- 
taining summaries is through a view mechanism. As in 
SQL, views are defined declaratively. In Sunrise, how- 
ever, views are always materialized within the main- 
memory database. Given a view’s declaration, its ma- 
terialization is kept up-to-date automatically as a side- 
effect of updates to base tables. Thus, a lookup in a 
view is processed at the same speed as a lookup in any 
other database table. 

The semantics of Sunrise views differs somewhat 
from the semantics of conventional database views. In 
conventional databases, views are defined over other 
tables and views in the database. In Sunrise, the base 
data for aggregation and summary is the processed- 
event records, which are usually stored in the data 
warehouse. To accommodate this case, SAL defines 
the concept of a ‘chronicle’, or an append-only ta- 
ble [JMS95]. Although chronicles can be thought of as 
tables, they are not stored in the main-memory store, 
but rather are an abstraction in terms of which out- 
puts are generated, and views are defined. The only 
update operation on a chronicle is insert. Whenever 

683 



a tuple is inserted into a chronicle, a record is gener- 
ated on an output stream. Views can be defined over 
base tables, chronicles and other views, and are always 
materialized. 

Chronicles and views are defined in such a way that 
incremental view maintenance can be performed with- 
out visiting the processed-event records of the under- 
lying chronicles. This is important since lookups in 
the data warehouse would have a serious impact on 
response time, and possibly also on throughput too. 
Views can frequently be maintained in time which 
is independent of or logarithmic in the size of the 
database. A ‘chronicle algebra’ has been defined pre- 
viously [JMS95], and SAL provides an adapted version 
of that formal algebra cast into an SQL-like syntax. 

2.6 Machine Architecture and Performance 

Although Sunrise should run on many Unix systems, 
so far it has been developed and fully tested only on 
SUN Solaris platforms. Portability from one plat- 
form to another is limited mainly by the portability 
of DataBlitz, the underlying storage manager. 

Performance tests from an early implementa- 
tion phase have shown throughput on the order of 
600 events processed per second on a single-processor 
SUN UltraSPARC machine (using group commit). 
This was for a simple, update-intensive billing appli- 
cation with the data warehouse running on the same 
processor. Performance tests with DataBlitz directly 
have demonstrated 860 updates per second, and nearly 
60,000 reads per second. 

3 Conclusion 

This short paper has sketched a class of telecommu- 
nication applications requiring high throughput and 
real-time responsiveness. We have also presented an 
overview of Sunrise, a real-time event-processing and 
aggregation system developed at Bell Labs to meet 
the needs of such applications. A first full release of 
the Sunrise platform, which consists of nearly 400,000 
lines of code, was made in January 1998, and the first 
products based on Sunrise are scheduled for delivery 
during the third quarter of 1998. 

Another emerging area for real-time event process- 
ing and aggregation is internet network management, 
authentication, authorization and billing. Consider, 
for instance, the case of billing for internet access. The 
two currently-prevalent pricing models-based on ei- 
ther flat monthly fees or connection times, or a combi- 
nation of these-have limitations. Flat-fee pricing has 
the advantage of simplicity, but is unattractive to low- 
volume customers (those who perhaps access e-mail 
only once or twice a week). Moreover, since there is no 
incremental cost to using the network, there is little to 

prevent a small group of users from consuming a large 
proportion of the network’s resources. Also, emerging 
technologies such as Digital Subscriber Line (or DSL) 
and cable modems make connection-time-billing some- 
what obsolete. In particular, DSL offers the possibility 
of permanent network connectivity, with no need to 
start and stop dial-up connections explicitly. In this 
context, a move towards usage-based billing for home 
internet access seems possible, and we are currently 
considering the real-time event processing and aggre- 
gation capabilities which will be required to support 
such internet billing applications. 

More detailed information on Sunrise is available at 
http://www.bell-labs.com/project/sunrise, in- 
cluding a white paper [BBKS98]. Also, more 
detailed information on DataBlitz is available at 
http://www.bell-labs.com/project/dali. 

References 
[BBKS98] 

[BRSS97] 

[GR93] 

[JLR+94] 

[JMS95] 

Jerry Baulier, Stephen Blott, Henry F. Korth, 
and Avi Silberschatz. Sunrise: A real-time 
event-processing system. The Bell Labs Tech- 
nical Journal, 3(l), January-March 1998. 

Philip L. Bohannon, Rajeev R. Rastogi, Avi Sil- 
berschatz, and S. Sudarshan. The architecture 
of the Dali main memory storage manager. The 
Bell Labs Technical Journal, 2(1):36-47, Winter 
1997. 

Jim Gray and Andreas Reuter. ‘I+ansaction 
Processing: Concepts and Techniques. Morgan 
Kaufmann Publishers, Inc., 1993. 

H. V. Jagadish, Daniel Lieuwen, Rajeev Ras- 
togi, Avi Silberschatz, and S. Sudarshan. Dali: 
A high performance main memory storage man- 
ager. In Proceedings of the International Con- 
ference on Very Large Databases (VLDB), 1994. 

H. V. Jagadish, Inderpal Singh Mumick, and 
Avi Silberschatz. View maintenance issues for 
the chronicle data model. In Proceedings of the 
ACM SIGACT-SIGMOD-SIGART Symposium 
on Principles of Database Systems (PODS), 
1995. 

684 


