
The ADABAS Buffer Pool Manager 

Harald Schijning 
Software AG, Uhlandstr. 12,64297 Darmstadt 

hsgasoftware-ag.de 

Abstract 

The buffer pool manager is a central component 
of ADABAS, a high performance scaleable 
database system for OLTP processing. High 
efficiency and scalability of the buffer pool 
manager is mandatory for ADABAS on all 
supported platforms. In order to allow a 
maximum of parallelism without facing the 
danger of deadlocks, a multi-version locking 
method is used. Partitioning of central data 
structures is another key to performance. 
Variable page sizes allow for flexible tuning, but 
make the buffer pool logic more sophisticated, in 
particular concerning parallelism. 

1 Introduction 

SOFTWARE AG’s ADABAS is a database system with a 
very long history. It is successfully used in business- 
critical OLTP applications which depend on the 
robustness and the high performance of the underlying 
database system, such as flight reservation systems, 
emergency management, etc. Over the years it has been 
ported to all major operating systems. Today, ADABAS 
databases can operate on UNIX machines running various 
flavors of UNIX, WINDOWS PCs, various mainframe 
operating systems such as MVS, VSE, and BS2000, and 
other platforms. 

To cope with the evolving world of environments, 
continues re-engineering of ADABAS has been necessary. 
In particular, multi-processing architectures (symmetric 
multi-processing) have caused considerable changes to the 
whole system. One component which has recently been 

Permission to copy without fee all or purt of this material is granted 
provided that the copies are not made pr distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its data appear, and notice is given that copying is by 
permission of ihe Very Large Data Base Endowment. To copy 
othetwise, or to republish, requires a fee and/or special permission 
from the Endowment. 

Proceedings of the 24th VLDB Conference 
New York, USA, 1998 

completely redesigned during this process is the 
ADABAS buffer pool manager. 

The primary task of the buffer pool manager is to cache 
database pages which have been read from disk, in order 
to save I/OS if those pages are re-referenced. Changes of 
the database pages are performed in the buffer pool only 
and not immediately written to disk. Of course, adequate 
logging is needed to guarantee the persistence of 
committed transactions, but logging algorithms are 
beyond the scope of this paper. 

The buffer pool also handles temporary information 
which is written to disk only if there is a lack of space. 

In the following, we will shortly mention some 
characteristics of ADABAS which are important for the 
buffer pool design. 

1.1 Container Types 

ADABAS data on disk are organized in two so-called 
container files. The DATA container stores the mere data 
of a database in a compressed form, while the ASS0 
container stores the schema information, the database 
translation table (called Address Converter in ADABAS), 
and the indexes. Each record in the DATA container has a 
unique identifier. The Address Converter maps the unique 
ID to a physical location. The indexes contain logical 
identifiers only. There is a third container file called 
WORK which is used to store temporary data and log 
information. 

Container files can be distributed over an arbitrary 
number of disks, using raw device or tile system access 
(or mixing both). A container consists of pages, which are 
numbered in ascending sequence. These pages are the unit 
of input and output. The buffer pool stores pages from 
each of the three container types. 

1.2 Varying page sizes 

The pages within a container may have different size. 
Depending on the size of the data of a database table and 
the typical access pattern, the database administrator 
(DBA) can adjust the page size (in a range of 1 to 32 
Kilobytes). For example, if a table is typically accessed 
with exact match queries via an index, the DBA might 
choose a page size for the data storage such that a page 
contains only a few data records. The page size for the 

675 



index, and for the address converter, can be chosen 
independently. This flexibility in page size can also be 
used for an adaptation of the database to changing storage 
medium characteristics, as pointed out in [GG97]. 

As a consequence, the ADABAS buffer pool manager 
must cope with pages of various sizes from all three 
container types. In particular, the varying page sizes affect 
the buffer replacement algorithms. 

Other commercial database systems do not have this 
freedom in configuration, and, as a consequence, do not 
need to handle such complex replacement problems. The 
research database system PRIMA [HMMS87] developed 
at the University of Kaiserslautern, also supports multiple 
page sizes. The replacement algorithm implemented there 
[Si88], however, differs from the one used in ADABAS. 
There, a free list is kept separate from the LRU chain. 
This list is then copied and a the buffers contained in the 
LRU chain are consecutively marked as replaceable. 
When an area has been found which is large enough for 
the new buffer, the process stops. This algorithm, 
however, lacks the flexibility of the ADABAS algorithm 
described below. 

1.3 Parallel access 

The buffer pool manager has to care for a proper 
synchronization of the accesses to the pages in the buffer 
pool. Several threads which execute in parallel on 
multiple CPUs may want to access the same database 
page, and hence the same buffer. Of course, the 
synchronization has to be very efficient, not only avoiding 
deadlocks, but also keeping waiting times as short as 
possible. 

The following sections discuss the architecture and the 
algorithms chosen for the new ADABAS buffer pool 
manager. 

2 Architecture of the buffer pool manager 

The buffer pool is allocated as a contiguous piece of 
memory. In order to avoid double page faults [EH84], i.e. 
page faults in the operating system’s virtual memory, the 
whole buffer pool can be pinned in the physical memory. 
When a block from disk is read into the buffer pool, a 
header structure is assigned to it, which stores all 
information needed for the management of the block, 
including, of course, the identification of the database 
pages this block corresponds to. These headers 
themselves are allocated in the buffer pool in contiguous 
areas. Note that the variable page size in ADABAS makes 
it impossible to predict the number of headers needed (of 
course, the least possible page size determines an upper 
limit to the number of headers, but allocating that much 
headers in advance could waste a lot of space). 

ADABAS directly references the pages in the buffer 
pool. Therefore, the address of a page must not change 

and the page must not be removed from the buffer pool 
while a command is still working on it. To guarantee this, 
database management systems usually FIX and UNFIX 
the pages in a buffer pool explicitly [EH84]. In the 
ADABAS buffer pool manager, this functionality is 
combined with the synchronization of page accesses 
by the ADABAS commands. For this purpose, each 
header contains a readers/writer lock. 

The headers are linked in physical sequence (so-called 
physical chain) and in LRU sequence (LRU chain). 
Furthermore, to enable an efficient search for a specific 
database page, a hash structure is allocated. Each hash 
bucket contains the pointers to the corresponding headers 
and is protected by its own latch. Hence, lock conflicts on 
the hash structure are rare. The overflow of a hash bucket 
is organized as AVL tree. Thus, even in the case where a 
bucket has a large amount of overflow information the 
access remains fast - another pre-requisite for low lock 
contention on the hash structure. The buffer pool 
architecture is depicted in Figure 1 (LRU chain not 
shown). 

3 Page Access Synchronization 

The access to a database page works as follows: The page 
is searched in the hash structure. The hash bucket is 
protected by a latch (a short time mutual exclusion lock). 
If it is not found, a header for the database page is 
allocated, exclusively locked, and entered into the hash 
structure such that other tasks have a reference to it. Then 
the physical I/O is started. When it is finished, the 
exclusive lock can be downgraded to a shared lock if the 
database pages was needed for reading only. 

If the page had been found in the hash structure, the 
buffer pool tries to acquire a lock of the requested quality 
(shared or exclusive) and, if successful, returns a pointer 
to the corresponding location in the buffer pool. 

Locks on database pages in the database are held until 
the command has performed its changes to the page, i.e. 
for a very short time only. 

When database pages are logically linked (e.g. nodes in 
an index tree), and updates affecting this link have to be 
performed, more than one page has to be exclusively 
locked at a time. While deadlocks in such situations often 
can be prevented by enforcing a certain sequence of 
locking, this is not possible in all cases. For example, 
positioning in an index is done from root to leave, while 
index updates occur from the leave to the root. Hence, 
positioning and updating simultaneously could lead to a 
deadlock. Locking the whole index would lead to 
unacceptable waiting situations. To cope with this 
situation, the ADABAS buffer pool manager uses a multi- 
version locking scheme: when an exclusive lock is not 
granted, the buffer pool tries to acquire a shared lock. If 
this is granted, a copy of the database page is generated in 

676 



the buffer pool, and the pointer in the hash structure is set 
to this copy. Hence, all threads that subsequently search 
for this page will find the copy. The block containing the 
original page remains in the buffer pool, but is placed at 
the end of the LRU chain, thus being prime candidate for 
replacement once all (shared) locks on it are released. Its 

Hash structure 

Buffer headers 

Contiguous buffer area containing database pages 
of varying sizes 

Figure 1: The architecture of the ADABAS buffer pool 

access time stamp is set to zero. 
A consequence of this locking scheme is that shared 

locks do not protect a logical link between pages against 
changes. Therefore, pages found by following a link 
always have to be re-evaluated before they can be used. 
Example 1 illustrates this effect. 

Note that in high-load situations, more than one thread 
could copy the same database page. Only one of these two 
copies must survive. For this purpose, the exchange in the 
hash structure for search must be atomic. It fails if the 
address to be replaced is not the expected one. 

4 Saving Changes to Disk 

The ADABAS buffer pool managers saves changed pages 
to disk in an asynchronous manner. When a certain 
(configurable) percentage of all pages has been modified, 
an asynchronous thread (called the buffer flush thread) 
starts to write all changed pages to the disk. Of course, the 
pages must not be modified while they are written to disk. 
On the other hand, it is not acceptable to defer changes to 
those pages until the writing has been done. If a page 
which is locked by the buffer flush thread is to be changed 
by another thread, the same multi-version locking as 
described above is applied. The pages involved in the 
buffer flush are locked by the buffer flush thread using a 
privileged read lock. If a page is currently write locked, it 
is entered into a refused-lock list and skipped. After all 
other pages are locked, the buffer flush thread blocks on 
the pages in the refused-lock list if necessary. Typically, 
the updating command that had held a lock on those pages 
has meanwhile released the lock 

677 

The asynchronous writing of changed pages has some 
consequences: 

l A page which has been chosen for replacement need 
not be written to disk before it is replaced, allowing a 
fast replacement. 

l Pages cannot be replaced if they had been changed 
after the last buffer flush. Therefore, a buffer flush 
must occur before too many pages are “dirty”. On the 
other hand, flushing too early destroys the caching 
effect for updates because pages are written to disk 
after fewer updates per page. Obviously, finding a 
reasonable percentage of dirty pages for the start of a 
buffer flush is not trivial. In order to relieve the DBA 
from this task, ADABAS can choose a useful 
percentage and internally adapt it to the current 
situation. 

l The crash recovery algorithms are tightly coupled to 
the asynchronous writing. The start and the end of the 
buffer flush are logged. From this logging information 
the crash recovery algorithm can infer which database 
changes are already reflected on disk and which are 
(possibly) not. Therefore it is essential that all changed 
pages are covered by the buffer flush. On the other 
hand, pages which are very frequently updated could 
defer the whole buffer flush considerably. To cope 
with such situations, the buffer flush can be split into a 
first part which contains all pages which could be 
locked without blocking on the lock, and a second part 
which flushed all the other pages (and usually handles 
very few pages). 

5 Buffer Replacement Handling 

As pointed out earlier, buffer replacement in ADABAS is 
quite sophisticated. If a page of a certain page size is to be 
read into the buffer pool, and the buffer pool is filled up 
(which is the normal case after an initial filling phase), the 
necessary space must be provided by selecting another 
buffer which can be overwritten. However, caused by the 
varying page sizes in an ADABAS database, it might be 
necessary to overwrite several other pages of smaller page 
size. In databases with one fixed page size, the first 
available page when searching from the end of the LRU 
chain can be chosen for replacement. This is not true for 
ADABAS. 

Consider the following case: A page with size 4 KB 
has to be read into the buffer pool. At the end of the LRU 
chain, only 2 KB pages can be found. The next 4 KB page 
is quite at the begin of the LRU chain, i.e., it is a quite 
new page. In this case, one of the 2KB pages and its 
physical neighbor should be replaced. However, the 
physical neighbor might also be a very new page. To find 
good replacement candidates, the following handling is 
applied. The LRU chain is searched from its end. When a 
page is found which is available for replacement (i.e. 
contains no unwritten changes and is not locked), 
ADABAS searches for the necessary space starting from 
this page. The left neighbors are considered, as long as 



they can be replaced and the necessary space is not yet 
gathered. Then, the right neighbors are checked. The 
space between the left-most neighbor found and the right- 
most one usually leaves several choices for so-called 
overlay sets, i.e. sets of buffers which could be replaced 
to gain the needed space (cf. Figure 2). The overlay set 
with the lowest costs is stored. 

I--+ LRU chain 

Buffer headers 

L-Y- 

Figure 2: Two overlay sets based on page 1567 

Then the LRU search is continued, until an upper limit 
of found pages is reached, or until a single page is found 
which is large to render the necessary space. This page is 
a singleton overlay set. The cheapest overlay set is chosen 
for replacement. 

The cost of an overlay set is determined by applying a 
function to the access time stamps of the pages in the set. 
The choice of this function heavily influences the 
replacement algorithm. If the function is MIN, for 
example, the first overlay set found would be selected. If 
the function is SUM, the likelihood of a multi-buffer 
replacement decreases rapidly with the number of pages. 
In the case of MAX, an overlay set is chosen only if all its 
pages are older than the oldest replaceable single page of 
sufficient size. 

Obviously, search for replacement candidates is an 
operation which takes quite long due to the need to cope 
with different page sizes. Unfortunately, the LRU chain 
cannot be changed while such a search is performed. 
Since every access to a database page should update the 
LRU chain (placing the accessed page in front of the LRU 
chain), there is a considerable bottle neck. To avoid lock 
contention on the LRU chain, ADABAS splits the buffer 
pool into several physical regions, where each region has 
its own LRU chain. The number of regions depends on the 
size of the buffer pool, the maximum parallelism allowed 
by the DBA, and other criteria. 

These physical regions are chosen for replacement in a 
round-robin manner. Only the affected LRU chain is 
locked. Furthermore, the updates to the LRU chain are 
deferred. Obviously, the updates need not be done before 
a replacement search is performed. Hence, the access to 
pages is memorized, but it is reflected in the LRU chain 
only when the lock for replacement search is required 

anyway. Note, that in contrast to the procedure used in 
ORACLE [Br97], the ADABAS algorithms reflects the 
correct sequence of accesses in the LRU chain. 

6 Prefetching 
Sequential operations which scan the data of multiple 
adjacent database pages are quite common. In ADABAS, 
the DBA can optimize for such operations, e.g. by 
choosing large page sizes. However, such optimizations 
are complex and might decrease the performance of 
commands with different access patterns. Therefore, 
ADABAS recognizes sequential access, and can read 
several pages in one IO into a contiguous buffer pool area. 
The replacement algorithm described above obviously 
covers this case without adaptation. Although read with 
one I/O, all pages have their own header and are managed 
by the buffer pool manager as if they has been read 
separately. The number of pages to be read in one IO is 
dynamically determined according to the following 
criteria: 
l Maximum number of pages needed by the current 

command 
l Number of pages which fit into a single physical IO. 

This is platform dependent, but it also depends on the 
distribution of the container files over disks. 

l Next page which is already in the buffer pool. In order 
to avoid inconsistencies with updates on this page, the 
page must not be re-read into the buffer pool. 

l Available space in the buffer pool 

7 Summary 

The ADABAS buffer pool manager has completely been 
redesigned for the latest parallel version of ADABAS. In 
particular, the locking of the LRU chain had been a 
bottleneck, in particular because the replacement 
algorithm is very complex due to the different page sizes 
used in a database. To prevent lock contention on the 
LRU chain , the chain has been split into several areas. 
Furthermore, the update of the LRU chain is done lazily. 
In order to increase parallelism and avoid deadlocks in 
particular in index operations, dedicated multi-version 
locking protocols have been introduced. Various dynamic 
optimizations relieve the DBA from too sophisticated 
tuning. The use of further self-tuning algorithms such as 
LRU-2 [OOW93] is constantly investigated. 

678 



a) Thread 1 wants to insert value 
20 into the index. It locks leaf 3 
exclusively. 

X(thr. 1) /\ 

b) Thread 2 wants to read value 30. 
It acquires a shared lock on 
node 1. Before it gives up the 
lock again, thread 1 tries to lock 
node 1 because leaf 3 has to be 
split due to lack of space for 
value 20. It does not get the lock 
and creates a copy of node 1. 
Then it creates a new leaf 5. 

c) Thread 2 had blocked on the 
shared lock on leaf 3. After 
thread 1 has finished thread 2 
gets the shared lock now. The 
value 30, however, cannot be 
found in leaf 3 any longer. 
Thread 2 must check whether 
the version of node 1 that it had 
seen is still the current one. If 
so, the value 30 is not in the 
index, otherwise thread 2 must 
repeat the positioning. 

Xl 

root 
I 

Example 1: The need for repositioning 

References 

Br97 

EH84 

GG97 

Bridge, W., et al: The Oracle Universal 
Server Buffer Manager, in: Proc. 231d Int. 
Conference On Very Large Data Bases, 
VLDB 97, pp. 590-594. 
Effelsberg, W., Harder, T.: ACM 
Transactions on Database Systems, Vol. 9, 
No. 4, Dec. 1984, pp. 560-595. 
Gray, J., Graefe, G.: The Five-Minute Rule 
Ten Years Later, and Other Computer 
Storage Rules of Thumb, in: SIGMOD 
RECORD Vol. 26, No. 4, Dec. 1997, pp. 63- 
68. 

HMMS87 

oow93 

Si88 

Harder, T., Meyer-Wegener, K., Mitschang, 
B., Sikeler, A.: PRIMA - A DBMS Prototype 
Supporting Engineering Applications, in: 
Proc. 131h VLDB, 1987, pp. 433-442. 
O’Neil, E.J., O’Neil, P. E. , Weikum, G.:The 
LRU-K Page Replacement Algorithm for 
database disk buffering, in: Proc. ACM 
SIGMOD Int. Conf. On Management of Data, 
1993, pp. 297-306. 
Sikeler, A.: VAR-PAGE-LRU: A Buffer 
Replacement Algorithm Supporting Different 
Pages Sizes, in: Proc. Int. Conf. On 
Extending Database Technology, EDBT88, 
Venice, Italy, Springer-Verlag, Berlin, 1988, 
pp. 336-35 1. 

679 


