
KODA - The Architecture And Interface Of A
Data Model Independent Kernel

Gopalan Arun, Ashok Joshi
Oracle Corporation

(garun, ajoshi}@us.oracle.com

Abstract

In this paper we describe the architecture and
interface of KODA, a production strength database
kernel. KODA is unique in the industry in its
ability to support two different data models viz.
Oracle Rdb (a relational database system) and
Oracle CODASYL DBMS (a CODASYL database
system). Our experience in designing and
implementing KODA demonstrates
. the feasibility of implementing multiple data

models on top of a common kernel,

l the benefits of leveraging performance and
feature enhancements for multiple products,

. the benefits of maintainability of a common
code base,

. ease of migration and interoperability between
the two products without customers having to
re-learn common kernel utilities like backups,
data file organization and analysis tools.

Over the years, KODA based products have
performed exceptionally well in industry standard
benchmarks. This clearly demonstrates that
including data model dependent functionality in the
kernel is not a pre-requisite for high performance.

A data model independent kernel like KODA can
thus be used, without much change, as the database
industry moves from CODASYL to Relational to
Object-Relational data models and beyond.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

1.0 Introduction

KODA was consciously designed to support multiple data
models in a shared disk environment. It provides a simple,
powerful interface that carefully isolates the data model
dependent aspects from the data model independent
aspects of the functionality. This makes the kernel easier to
maintain and also makes it possible for multiple clients to
leverage the benefits of the functionality in the kernel. The
focus of this paper is to describe the interfaces that a full
function database kernel can provide and yet be data model
independent.

The shared disk architecture of KODA means that
special care was taken in areas like message passing and
buffer cache coherency algorithms (implemented using
underlying distributed lock manager functionality). In
addition, by encapsulating most of the operating system
dependencies within KODA, it is possible to easily port the
KODA client products to multiple platforms.

The rest of the paper is organized as follows. We begin
with a description of the common components in KODA
that all clients share. In each component, we also describe
the interfaces that KODA makes available to clients. This
is followed by a description of the client specific portions
in KODA. It is interesting to note that less than 5% (in
lines of code) of KODA is client specific.

2.0 Common Components

KODA follows a layered architecture with each major
component being independent of the others. This makes it
possible to evolve each component separately. During
execution, only the components that are needed are
invoked. This aspect of KODA makes it easy to extend its
support to different data models. Some of the major
components of KODA and their layering is shown in
Figure 1.

671

SESSION MANAGEMENT

TRANSACTION MANAGEMENT

CLIENT SPECIFIC

RECORD MANAGEMENT

PAGE MANAGEMENT

4 b

C
4

L

*) I

E
4) N

T

S

FILE MANAGEMENT T
I

Figure 1 : Components in KODA

2.1 Session Management Component

Thus component deals with the task of managing a
database user context. A client can establish a new session
context with a database by performing a “database bind
sequence” with KODA. As part of this bind sequence,
KODA creates a user session context, sets up on-disk and
in-memory data structures to handle the user’s context and
also initiates a deadman-lock termination protocol to
detect the abnormal termination of a user while still bound
to the database.

The client-visible interface to KODA for this component
is a call to BIND (which specifies the database name) and
the call to UNBIND (to terminate a session).

2.2 Transaction Management Component

Once a client has established a session with the database,
a transaction can be initiated with options to declare the
desired isolation levels, the read-write or read-only nature
of the transaction and intention lock modes. Within a
transaction, KODA maintains a markpoint. This
markpoint can be set and reset under the client’s control,
and can be used to support verb-rollback. A verb is
sin ply a unit of work that can be rolled back (e.g. a single
SQL or CODASYL statement). The client has an option
of committing or aborting a transaction. Aborting a
transaction when a client has terminated abnormally or in
the event of a system failure is handled completely within
KODA. A two phase commit protocol is also supported

with the option to call PREPARE before a call to
COMMIT.

The client visible interface to KODA for this component
are the calls to START a transaction, ABORT a verb,
PREPARE a transaction, COMMIT a transaction and
ROLLBACK a transaction.

2.3 Record Management Component

The record manager handles data at the record and
segment (portion of a record) level. A KODA record is
simply a stream of bytes. The record manager is
responsible for fetching, modifying, storing and deleting
records specified by the caller, one record at a time. In
addition, the record layer controls and performs:

- Generation and application of before and after image
journal records

- Supporting record level locking protocols and isolation
levels.

- Supporting versioned read capability.

The interfaces in the record layer that are visible to the
client are FETCH a record, MODIFY a record, STORE a
record, ERASE a record, and FETCH the next record in a
table (relational sequential scans).

2.4 Page Management Component

The page manager controls data at the page level. It reads

672

BEFORE

DATA SNAP DATA SNAP
FILE 1 FILE 1 FILE2 FILE2

AFTER
IMAGE
FILE_ -...___ ‘.._. ---.__.,
n

Figure 2 : Database File Structure

blocks from disk using the operating system primitives,
and constructs database pages for presentation to the
record layer. It is also responsible for writing changed
pages back to disk. In addition, the page layer handles
physical correctness requirements using global page locks.
A variety of caching policies and replacement algorithms
are also implemented in this component. See [JOSHI91]
for more details on the distributed lock protocols in
KODA.

In general, page layer interfaces are hidden from the
client and are accessed only internally by KODA. There
are some client entry points for diagnostic support
(described in a later section).

2.5 File Management Component

The structure of the on-disk database tiles is common to
all KODA clients. This aspect is essential if the goal is
have ease of migration and interoperability between the
clients. A typical KODA file structure for a database
consists of a root file, one or more data tiles and files for
the before and after image of transactional changes. The
root file contains information about the current status of
all database operations. Data files contain user data and
database metadata. Each data file has a corresponding
snapshot file which is used to support versioned reads.
Figure 2 shows the different database files.

The KODA interfaces for file management is internally
used by the page layer. These interfaces are not visible to
the clients.

2.6 Utility Support Component
This section deals with KODA support for database
utilities. KODA provides interfaces to CREATE,
hy)DIFY, VERIFY, ANALYZE, and DELETE databases.
Clients can also BACKUP and RESTORE databases to

DATA
FILE n

SNAP
FILE n

and from stable storage.

In addition, KODA has diagnostic interfaces to dump
into files the contents of various user, page and record
layer data structures. Contents of database pages and
before and after image files can also be displayed. A
SHOW STATISTIC entry point into KODA provides an
interface for a comprehensive statistic collection utility.

3.0 Oracle CODASYL DBMS Specific
Component

Oracle DBMS is a multi-user, general purpose database
management system fully compliant with the CODASYL
standard. Oracle DBMS can be used to access and
administer databases ranging in complexity from simple
hierarchies to complex networks with multi-level
relationships.

An Oracle DBMS database consists of records and sets.
The smallest entity in a Oracle DBMS database is called a
data item. Data items are grouped together to form a
record. The relationships among records is defined by a
set. A typical set includes an owner record and one or
more member records. Physical data files called areas, are
used to store records and sets. Refer to [OracleDBMS] for
a more detailed explanation of the terms.

Most of the Oracle DBMS specific logic in KODA is
encapsulated in a thin access layer that interfaces to the
record manager. The access layer uses set owner and
membership information to direct the record manager to
store and retrieve records. KODA supports the notions of
parent record id, next record id and previous record id
(within a set), to facilitate set traversal.

The KODA interfaces that are available to Oracle
DBMS in addition to those mentioned in the record
manager are; to READY an area (acquire appropriate lock
on the data file), to FIND MEMBER(s) of a particular set,

673

and to FIND OWNER of a particular set. The KODA
interface for creating an Oracle DBMS has options to
create sets and records.

4.0 Oracle Rdb Specific Component

[OracleRdb] Oracle Rdb, Guide to Database Design and
Definition, Release 7.0, Oracle Corporation, Part No.
A41749-1.

[OracleDBMS] Oracle CODASYL DBMS, Introduction
to Oracle CODASYL DBMS, Release 6.0, Oracle
Corporation, Part No. A24850-1.

Oracle Rdb is a fully functional relational database system
that is ANSI SQL compliant. An Oracle Rdb database
consists of records that belong to logical entities called
tables. Each record consists of one or more columns.
KODA supports partitioning of a table into horizontal and
vertical fragments. Each of these fragments is called a
logical area. One or more logical areas can be assigned to
a physical area. A physical area is a physical data file. See
[OracleRdb] for more information on physical and logical
area definition and assignment.

The KODA interface that is available to Oracle Rdb in
addition to those mentioned in the record manager are;
RE4DY logical and physical areas in the desired lock
mode. The KODA interface for creating an Oracle Rdb
database has options for creating logical areas (partitions)
for tables and assigning them to physical files.

5.0 Summary

As is demonstrated in the preceding sections, with just a
few client specific interfaces, KODA is able to satisfy the
requirements of two client products based on different
data models. The clear and powerful client visible
interface in the different layered components in KODA is
the single biggest contributor to achieving data model
independence. The full functionality and high
performance of KODA further asserts that this
independence can be achieved without compromises. We
believe KODA in the future can seamlessly adapt to the
next generation data models.

5.1 Acknowledgements
Steve Klein gets the credit for many of KODA’s early
algorithms. Rick Anderson, Jeff Arnold, Jay Banerjee,
Keith Brefczynski, Ananth Raghavan, S. Raghupathy,
T.K Rengarajan, Mike Rubino, Peter Spiro, Bill Wright,
and Craig Zastera have all made valuable contributions to
KODA over the years.

5.2 References
[Joshi91] Joshi, A.M, Adaptive Locking Strategies in a
Multi-node Data Sharing Environment, VLDB, 1991.

674

