
Materialized Views In Oracle 
Randall G. Bello, Karl Dias, Alan Downing, James Feenan, Jim Finnerty, William D. Norcott, Harry Sun, 

Andrew Witkowski, Mohamed Ziauddin 

Oracle Corporation, 
400 Oracle Parkway, 

Redwood Shores, CA 94065 

{ rbello, kdias, adowning, jfeenan, jfinnert, wnorcott, hasun, awitkows, mziauddi} @us.oracle.com 

Abstract 

Oracle Materialized Views (MVs) are designed 
for data warehousing and replication. For data 
warehousing, MVs based on inner/outer equi- 
joins with optional aggregation, can be refreshed 
on transaction boundaries, on demand, or 
periodically. Refreshes are optimized for bulk 
loads and can use a multi-MV scheduler. MVs 
based on subqueries on remote tables support bi- 
directional replication. Optimization with MVs 
includes transparent query rewrite based on cost- 
based selection method. The ability to rewrite a 
large class of queries based on a small set of MVs 
is supported by using Dimensions (new Oracle 
object), losslessness of joins, functional 
dependency, column equivalence, join 
derivability, joinback and aggregate rollup. 

I Introduction 

Oracle first introduced support for deferred incremental 
maintenance of single-table select-project snapshots in 
1992. Recently, this capability has been expanded to 
include support for more classes of incrementally 
maintained Materialized Views (MV), query optimization, 
dependency management, bulk-mode refresh, and 
transaction-consistent refresh. Oracle 8.1 will support 
three classes of incrementally maintained MVs: a 
Materialized Join View (MJV), which is a materialization 
of a query with inner and outer equi-joins, a Materialized 

Petmission to copy without fee all or part of this material 
is granted provided that the copies are not made or 
distributed for direct commercial advantage, the VLDB 
copyright notice and the title of the publication and its date 
appear and notice is given that copying is be permission of 
the Very Large Database Endowment. To copy otherwise, 
or to republish, requires a fee and/or special permission 
from the Endowment. 

Proceedings of the 24th VLDB Conference New 
York, USA, 1998 

Aggregate View (MAV), which is an MJV with 
aggregation, and a Materialized Subquery View (MSV), 
which materializes EXISTS subqueries. In addition, 
Oracle allows creation of any other MV as defined by an 
arbitrary complex query; however, in this case only full 
refresh mode (i.e., complete recomputation) is supported. 
All MVs are also available for query optimization, where 
part of the query is replaced, transparently to the user, by 
pre-computed MV(s). Oracle MVs are part of an 
integrated solution for data warehousing that includes 
query rewrite, dimension support, and MV advisory 
functions. 

Oracle MVs address such diverse areas as OLTP 
replication, data warehousing, distributed databases, and 
mobile disconnected clients. The flexibility required to 
support this areas is provided by timing, type, location, 
and rewrite attributes. The timing attributes are used to 
perform deferred MV maintenance on demand, on a 
transaction boundary, or on a periodic basis. The refresh 
type attribute specifies whether to recompute an MV from 
scratch or to incrementally refresh it considering only 
changes to the master tables since the last refresh. The 
location attribute specifies whether to maintain an MV on 
a local or remote site with respect to the master tables. In a 
data warehousing environment where update transactions 
are mostly bulk loads, efficient bulk incremental refresh 
methods are provided. MVs with remote tables may be 
refreshed periodically to support replication from an 
OLTI? environment, or may be refreshed on demand to 
support mobile disconnected clients. The rewrite attribute 
determines whether the MV will participate in query 
optimization, where part of the query is replaced with the 
MVs pre-computed results. 

Oracle stores each MV in a regular relational table. This 
enhances MV’s flexibility because users can directly query 
them, put indexes on them for performance, partition them 
to improved scalability and maintainability, reorganize the 
table, etc. To support MVs created manually by users, an 
existing table can be registered as an MV for incremental 
maintenance, query rewrite, and dependency management. 
This is useful for data warehousing applications, which 
have pre-existing, manually maintained summary tables 

659 



that are used for manual rewrite of queries and for off-line 
instantiation of large, remote MVs, 

Query optimization with MVs is targeted towards 
OLAP, multi-dimensional analysis, and data warehousing 
domains where queries aggregate along complex 
dimensional and hierarchical relationships. The 
hierarchical and functional dependency relationships that 
are prevalent in these domains are captured by referential 
integrity (RI) constraints, primary key (PK) constraints, 
and by a new Dimension construct (D) that Oracle 
provides. All three relationships (RI, PK, and D) are used 
to rewrite a query using MVs. 

Query optimization is provided for both MJVs and 
MAVs and applies to queries where joins have inner-, 
semi-, anti-, and left-outer-join semantics. Additionally, 
with MAVs, opportunities to rewrite using aggregation 
along hierarchical relationships are fully exploited. To 
avoid degrading query performance, a cost-based method 
is used to determine if a query should be rewritten at all. 

2 Refresh algorithm for MJV 

The deltas for the incremental maintenance of MVs are 
obtained from two sources: row-DML logs and direct- 
loader logs. Each log is associated with a table that has one 
or more MVs defined on it. Row-DML logs record 
changes made to the individual rows of a table via DML. 
The log can be specified to store images of a set of 
columns of a changed row, a vector indicating all its 
changed columns, the rowid, the type of DML (insert/ 
update/delete), and a timestamp. The log is designed to be 
shared by many MVs that can be refreshed independently. 
A row’s timestamp is used when an MV is refreshed to 
determine whether the row needs to be applied to the MV. 
The timestamp is also used to purge the logs of entries that 
are no longer needed. MV logs are suitable for OLTP 
applications even though they tax each modified row with 
a small overhead. 

In Oracle, a direct load appends new data as a 
physically contiguous range of rows; consequently, the 
new rows can be compactly logged as a contiguous range 
of rowids. This approach enables Oracle to efficiently 
determine the pre-update state of the table as well as the 
new rows. The direct loader’s low-overhead approach to 
logging is required for data warehousing where loads are 
massive and frequent. The challenge in incremental MV 
maintenance is to correctly refresh MVs from both row- 
DML logs and direct-loader logs as they interact. For 
example, rows that are updated after they have been loaded 
may appear in both logs. In addition, a refresh is optimized 
for the more common case of one of the logs being empty. 

Oracle supports deferred incremental maintenance of 
MJVs using a memoryless refresh by applying the entire 

set of changes to a table at one time in bulk operations, 
without considering the order in which the changes 
actually occurred. We illustrate the refresh algorithms 
using examples that consider MVs with two tables; the 
algorithms are easily generalized to any number of tables. 
Consider two tables R and S and assume that the 
materialized view M consists of an equijoin between R and 
S (i.e., M = R><S.) Let R’= R + AR and S’ = S + AS denote 
the new, after update, versions of R and S respectively. In 
the equations below “+” and “-” have the same semantics 
as that of set union and difference respectively. Note that 
they are not commutative and they evaluate from left to 
right. If AM represents the changes to be applied to M, 
then it is easy to show that 

Ql AM =R><AS+AR><S+AR><AS 

If the row-DML logs are not empty, recovery of the pre- 
update states (i.e., R and S) can be expensive to compute. 
Therefore the previous equation is expressed using only 
the deltas and the post-update states, R’ and S’: 

Q2 AM=R’><AS-AR><AS+AR><S’ 

For an outer join between R and S, R+S, this equation 
changes slightly to AM =R’xAS - ASxAR + AR+S’. 

Q2 is the basis for our incremental refresh of MJVs. The 
first term in Q2, R’xAS, is responsible for changes 
caused by AS. AS is further divided into three sets: AS = 
{D} + {I} + [U), where {D), {I), (U} is the set of rows 
deleted, inserted and updated respectively. In many 
situations, the algorithm represents an update as a delete 
followed by an insert and includes it in (D} and {I} 
respectively. When this occurs, the memoryless refresh 
algorithm operates in two phases, which use Oracle’s 
parallel DML when possible: 
1. Delete Phase. Delete all rows in M whose rows have 

their S.rowid in (0) of AS. For an outer join, R+S, 
we set columns of M that reference S to null (instead 
of deleting them). 

2. Insert Phase. Insert the result of R’xAS into M. This 
set will compute the effect of newly inserted rows as 
well as updated rows. The rows considered are those 
in [I}. For an outer join, R+S, set columns of M that 
reference S to their values from S (instead of inserting 
these rows). 

After applying AS, the memoryless algorithm to M is 
applied to table R. In the delete phase for this step, all the 
rows that were inserted as a result of AR >< AS in the 
insert phase for table S would be deleted. This prevents the 
result from being counted twice. The delete phase 
accounts for the undo term, AR>-&?, in Q2. The insert 
phase will insert all rows resulting from m >< S’. 



3 Basic Refresh Algorithms for MAVs 

When only bulk inserts occur, then both the pre-update 
state and the delta rows of all tables can be efficiently 
recovered; therefore, equation Ql applies, and AM can be 
computed using at most one term for each detail table. If 
there are referential integrity constraints or dimensional 
relationships (see Section 5) defined on the tables, then 
some terms are guaranteed to be empty, and are not 
computed explicitly. 

Without reading the logs, Oracle can detect whether a 
log can be ignored, allowing simpler or fewer refresh 
operations. Note that each log is related to a master table 
and all MVs on that master table refer to the table’s log. 
Thus, Oracle can determine whether a table has been 
modified since the last refresh of an MV by comparing the 
commit time of the last update to the log (or master table) 
with the last refresh time recorded for the MV. 

For MAVs that join multiple tables, a common case in 
data warehousing, each term in Ql must be aggregated 
into a delta summary before it can be merged with AM. 
Each delta summary is merged, in turn, with the contents 
of the MAV. 

Because data warehousing typically requires that many 
MAVs be refreshed within a fixed refresh window, the 
Oracle RDBMS performs global optimizations that 
minimize the overall refresh time of a set of MAVs. It 
supports MAV-based refresh, which considers the 
relationships between MAVs and schedules them such that 
an MAV may be refreshed via parallel DML using the 
contents of another MAV rather than from master tables. 
This optimization improves refresh performance 
considerably by eliminating the cost of joining and 
aggregating over master tables. In addition, Oracle 
employs load-balancing scheduling algorithms that allow 
concurrent refresh of multiple MAVs. Moreover, Oracle 
supports a “refresh-dependent” functionality that 
refreshes only the MVs that require refresh after changes 
to one or more of their master tables. 

The need to refresh a plurality of multi-table MAVs 
within a fixed refresh window, in a production 
environment requires recoverability features in addition to 
performance optimizations. In this case, rather than a 
single long-running transaction, there is a series of 
checkpointed transactions. Therefore, during a refresh of a 
large number of MAVs, those that completed do not need 
to be restarted in the event of system failure. Only the 
MAVs that did not complete successfully will need to be 
re-executed, a property that improves recovery time in the 
event of system failure. 

In the special case when a MAV contains a single 
master table (and no joins), and when it does not contain a 
MIN or MAX function, Oracle can incrementally maintain 

the MAV in the presence of both direct loads and row 
DML operations. The refresh of a single-table MAV is 
performed using one of two techniques: self-maintenance 
or the memoryless refresh algorithm. Self-maintenance 
uses the row-DML logs to update the MAV without 
referencing the master tables, but it cannot be used unless 
the direct load log is empty. Because the size of the 
aggregate view in most cases is orders of magnitudes less 
than that of the master table, fewer rows than log entries 
need to be modified in the MAV. It is necessary to log the 
“before” and “after” values of the columns being 
aggregated in the row-DML logs to use this scheme. The 
memoryless algorithm is always safe to use. It consists of 
an insert and a delete phase for the table in the MAV 
similar to that mentioned in Section 2. 

4 Materialized Views with Subqueries 

Oracle 8.0 supports materialized subquery views where 
each join between tables is expressed by a correlated 
EXISTS subquery. For incremental maintenance, the join 
inside each level of the subquery is required to be based on 
a unique key of the table at that level. Predicates that are 
functions of the table in each level of the subquery are 
allowed as conjunctions. The refresh of an MSV is 
analogous to MJV refresh because the correlated subquery 
is converted to a join internally. 

A distinguishing characteristic of MSVs and of Oracle 
7’s single-table select-project MVs is bi-directional 
replication. Oracle allows the master tables for the MSV 
as well as the MSV itself to be updated. The updates to the 
MSV are then incorporated back into the master tables. 

A typical use of MSVs is mobile sales force automation, 
where we use them for bi-directional replication between a 
high-end database at the corporate repository (master site) 
and thousands of low-end databases on laptops (remote 
sites). The salesmen at remote sites receive replicas of 
their portion of the master via MSVs. They update their 
MSVs while disconnected from the master site. The 
master site performs its own updates, which most likely 
are reconciliations of MSVs from other salesmen. Updates 
to MSVs are propagated either synchronously or 
asynchronously to the master, where conflicting updates 
are resolved using Oracle’s symmetric replication 
[DDDEHJJLSSS94] [S95]. Furthermore, refresh groups 
allow multiple MVs to be consistently refreshed in a single 
transaction so that referential integrity relationships are 
maintained among multiple MVs. 

5 Dimensions 

Oracle 8, release 8.1, introduces the concept of a 
dimension that captures hierarchical (1 :n parent-child) and 

661 



attribute (1: 1 functional dependency) relationships in the 
database schema. A dimension may be thought of as a 
directed graph with each edge representing a hierarchical 
relationship and each node representing a level of 
aggregation. A hierarchy is a path through this graph. 

For example, a simple Time dimension may contain two 
hierarchies: date+vnonth+quarter+year and 
date+week, with arcs drawn from the child level to the 
parent level. Each arc in this graph has the property that a 
given value of the child is associated with exactly one 
value of the parent. For example, each month must be 
contained in exactly one quarter; consequently, a sum of 
sales by month can be rolled up to a sum of sales by 
quarter. A dimension may also contain attribute 
relationships between a hierarchy level and its functionally 
dependent columns. For example, if a time dimension 
table also contains a monthName column, then the 
attribute relationship would be month+monthName. The 
attribute relationships enable the Oracle optimizer to 
determine when an MV can be used to satisfy a query that 
references the dependent attribute columns that are not 
present in the MV. Note that the hierarchical and attribute 
relationships both represent functional dependencies 

Dimensions can be defined using normalized and 
denormalized dimension tables. If the columns of a parent 
level and child level are in different relations, then the arc 
between them specifies a 1:n join relationship that can be 
enforced by an RI constraint. Hierarchical relationship and 
some of the attribute relationships in a denormalized table 
cannot be represented using RI and PK constraints. 
Specifying them in a dimension enables the Oracle 
optimizer to greatly expand the class of queries that can be 
rewritten. 

6 Query Rewrite Concepts 

The Oracle optimizer utilizes information about lossless 
joins, functional dependencies, column equivalence, and 
join derivability to rewrite a large class of queries with a 
small set of MVs. Let R><S (R->S) denote an inner (left 
outer) join between relations R and S. A join R><S is 
lossless if it preserves all tuples of R. RI, PK, and D 
constraints are used to discover inner joins that are 
lossless. A left outer join R->S naturally preserves all 
tuples of R so it is lossless. Observe that the concept of 
losslessness is asymmetric. Based on losslessness, Oracle 
optimizer rewrites a query even if an MV contains non- 
overlapping joins which is a powerful capability. For 
example, in and a multi-dimensional star schema an MAV 
may store n-dimensional aggregates using joins to n 
dimension tables. A query requesting k-dimensional 
aggregates (ken) can be rewritten using this MAV 
provided non overlapping joins are lossless. 

In addition to potentially eliminating tuples in R, 
another effect of non-overlapping join is the duplication of 
R tuples unless each R tuple joins with at most one S tuple. 
Such duplication effect can be compensated by using 
DISTINCT clause on MJV, or scaling down the aggregates 
in an MAV by using scale factors (duplicate counts of join 
key in S). The scale factor can be either precomputed in 
MAV or computed on-the-fly by joining MAV back to S. 

The hierarchical and attribute relationships stored in a 
dimension represent the functional dependencies between 
column data. The functional dependency is also inferred 
from PK constraints wherein a primary key functionally 
determines every other column in a table. Functional 
dependency information is used in determining valid 
aggregate rollups and valid joinbacks. For example, if 
city+state then it is valid to rollup sum of sales by city to 
sum of sales by state. If city is a primary key in cities table 
then city+cityName. If city is stored in an MV but not 
cityName, and a if query references cityName then it is 
valid to rewrite the query using a joinback from MV to 
cities table. The column equivalences based on equi-joins 
are utilized to determine if R.x in an MV is equivalent to 
S.x in a query to avoid unnecessary joinbacks. 

Join derivability allows us to recompute a join in a 
query from a join in an MV. With an left outer join in MV 
it is possible to recompute inner join in a query by filtering 
anti-join rows, recompute semi-join by eliminating 
duplicate rows, and recompute anti-join by filtering 
theinner join rows. With inner join in an MV it is possible 
to recompute semi-join in a query by eliminating duplicate 
rows. The join derivability support of Oracle optimizer 
allows queries with IN and EXISTS subqueries (semi- 
joins) to be rewritten using MVs with inner or left outer 
joins, and queries with NOT IN and NOT EXISTS 
subqueries (anti-joins) to be rewritten using MVs with left 
outer joins. 

7 General Rewrite Algorithm 

Oracle performs query rewrite by comparing the join 
graphs of a query block (QB) and a candidate MV. The 
two graphs should intersect but non-overlapping subgraph 
is allowed in QB, in MV, or both. The algorithm is 
recursively applied to each QB of a query, and is attempted 
both before and after view flattening and subquery 
transformation. Subquery transformations include the 
conversion of IN or EXISTS subqueries to semi-joins, and 
NOT IN and NOT EXISTS subqueries into anti-joins, 
which enable highly complex queries that are common in 
OLAP and multi-dimensional analysis to be rewritten. 
Applying rewrite before view flattening allows MVs that 
are defined using views to be used. Simple view name 
matching between a QB and an MV is used which enables 

662 



the use of arbitrary complexity underneath the views. 
The algorithm is divided into two phases: eligibility and 

transformation. The eligibility phase determines whether 
rewrite is possible, determines how to join an MV to non- 
overlapping relations in a QB, and determines what 
additional join or filtering conditions are required, if any, 
upon rewrite. If aggregation is present in a QB, the 
eligibility algorithm also determines whether the QB 
aggregates are computable from MAV aggregates. 

The transformation phase replaces overlapping relations 
of a QB with an MV, and synthesizes additional joins and 
selection predicates as necessary to recover QB from MV. 
If aggregation is present in a QB, additional 
transformations may be required to compute the 
aggregated outputs of QB from the aggregated outputs of 
MAV 

The following eligibility checks are performed before a 
QB is rewritten: 

1) Join Compatibility Check: The join graph G(M) of an 
MV is compared with the join graph G(Q) of a QB and 
three join subgraphs are identified. The intersection 
subgruph G(1) represents the overlapped region between 
G(M) and G(Q), so G(1) = G(M) n G(Q), the delta 
subgruph AG(Q) represents the part of G(Q) that is not in 
G(I), so AG(Q) = G(Q) - G(I), and the delta subgruph 
AG(M) represents the part of G(M) that is not in G(I), so 
AG(M) = G(M) - G(1). G(Q) can be recovered by joining 
AG(Q) to MV when all the joins in AG(M) are lossless and 
the joins in G(1) are of the same type between MV and 
QB. A transformation is needed if some joins in G(1) are 
not of the same type but are compatible. For example, if 
G(M) = StL+O and G(G) = L><O><C, then AG(M) = 
S, G(1) = L+O, AG(Q) = C, and if StL is lossless then 
QB can be rewritten as MV>cC with a filter added to 
exclude the anti-join rows of L+O. If MV is an MJV that 
contains rowid or primary keys of 0, the filter “O.rowid is 
not null” or “O.pk is not null” is added to the rewritten 
QB. 

2) Data Sufficiency Check: All columns of matching 
relations in QB other than the join and aggregate columns 
should be either equal to or functionally determined by 
columns in MV. For example, if QB contains reference to 
column cityName of relation geography that is 
functionally determined by the cityZd column in MV then 
cityName can be recovered by joining MV to geography 
using cityld. If join key cityld in geography is not known 
to be unique then MV is joined to a derived table that 
selects distinct cityZd values along with other needed 
columns from geography. Column equivalence based on 
equi-joins is used in avoiding redundant joinbacks. If 
intersecting relations R and S are equi-joined on R.x=S.x, 
and MV selects column R.x while QB references S.x, then 
R.x is substituted for S.x during rewrite. 

3) Grouping Compatibility Check: If QB contains a 

GROUP BY clause then each grouping column of QB 
should match exactly with or be functionally dependent on 
a grouping column of a candidate MAV. Conversely, if the 
MAV groups by some columns which neither match nor 
functionally dependent, then aggregates in the MAV 
should be re-aggregated, i.e., rolled up when the QB is 
rewritten. Similarly, if QB grouping is found compatible 
based on functional dependency, then aggregates in the 
MAV should be rolled up. For example, if QB requests 
SUM(sales) by year, and the candidate MAV contains 
SUM(sales) by month, and further if it is known that 
month+year, then QB can be rewritten by rolling up 
SUM(sales) in MAV from the month to the year level. 

4) Aggregate Computability Check: If a QB contains 
aggregates, then each aggregate in the QB must be 
computable from one or more aggregates in a candidate 
MAV. For example, SUM(x) in a QB is computable from 
COUNT(x) and AVG(x) in a MAV If roll up of aggregates 
stored in the MAV is necessary then, certain types of 
aggregates require other auxiliary aggregates to be 
available. For example, AVG(x) can be rolled up only if 
COUNT(x) is also present. Aggregates with expressions 
are also supported. For example, SUM(a+b) in a QB is 
matched with either SUM(a+b) or SUM(b+a) in a MAV, 
and SUM(a) + SUM(b) in a QB is matched with SUM(a) 
and SUM(b) in MAV. Oracle supports rewrite of COUNT, 
COUNT(*), COUNT(DISTINCT), SUM, MIN, MAX, 
AVG, VARIANCE, and STDDEV (standard deviation) 
aggregates. 

8 Heuristic and Cost Based Rewrite 

An MV is defined on a set of relations, and there must 
be some intersection of this set with the set of relations in 
a QB for the MV to be a candidate for rewrite. In the case 
of a QB with aggregates, candidate MAVs are further 
restricted to contain all relations referenced in the 
aggregates of the QB. To identify a set of candidate MVs 
for a QB, a list of MVs is maintained for each relation. 
This list for relation R contains all the MVs that reference 
R as their master table. Using the intersection or union of 
MV lists that are attached to relations in a QB, candidate 
MVs are quickly identified. 

If a QB contains aggregates, then rewrite is attempted 
first using an MAV. Whether or not the QB is rewritten, if 
joins still remain, rewrite is attempted using MJVs or 
MAVs. Rewrite is repeated as long as joins in the QB 
remain or no eligible MV is found. Because aggregation 
shrinks the data size, rewrite using a MAV is always tried 
first to obtain this benefit up front. 

When attempting to a QB, it is possible to find more 
than one eligible MV. When this occurs, a heuristic called 
query reduction factor is used to identify the best choice in 

663 



a list of eligible MVs. The query reduction factor is the 
ratio of the sum of the cardinalities of matching relations 
in a QB to the cardinality of the MV This metric is further 
refined when it is determined that the MV needs to be 
joined back to some matching relations in the QB to 
account for the reduction in benefit due to joinback. 

After the entire query is rewritten using one or more 
MVs, it is optimized and its optimal cost is found. Because 
MVs in Oracle are maintained as normal tables with their 
own indexes and partitioning, the optimization will 
automatically include such table attributes, which will 
often cause further refinements. Next, the original version 
of the query is optimized and its optimal cost is found. The 
rewritten query is discarded if its optimal cost is found to 
be greater than the optimal cost of the original query. 

9 Related Work 

Many of the concepts discussed in this paper have been 
examined before. For example, incrementally maintained 
MVs have been in the literature for years including simple 
snapshots [LHMPW86], join indexes [BM90], bulk insert 
optimizations [MQM97], and aggregates [GM951 
[GMS93]. Scheduling of multiple MVs has also been 
investigated [CM96]. Similarly, query rewrite using MVs 
has been extensively researched. Query rewrite using 
conjunctive MVs without grouping and aggregation is 
shown in [CKPS95] [LMSS95]. Rewrite based on 
syntactic transformation of a query where a subset of it 
matches with an MV is described in [GHQ95]. In 
[SDJL96] rewrite based on MVs with grouping and 
aggregation is shown but no meta information (functional 
dependency, constraints) is used. [CCHJJMSW98] 
describes rewrite that utilizes declared hierarchy rollup 
paths. 

Oracle has focused on a practical subset of the problem 
space that is believed to be of most use to its customers. 
While most of the literature has concentrated upon 
immediate-mode maintenance, Oracle’s algorithms are 
based on deferred-mode maintenance. Also our algorithms 
include checkpointing of multiple-refreshes, a feature that 
enhances reliability. Query rewrite in Oracle utilizes as 
much meta information as possible including the 
hierarchical and attribute relationships declared in a new 
Oracle object called Dimension. 

References 

[BM90] J. A. Blakeley, N. L. Martin. Join Index, 
Materialized View, and Hybrid Hash-Join: A 
Performance Analysis Proc. IEEE Int’l. Con$ on 
Data Eng. Los Angeles, CA February 1990. 

[CCHJJMSW98] L.S. Colby, R.L. Cole, E. Haslam, N. 

Jazayeri, G. Johnson, W.J. McKenna, L. 
Schumacher, D. Wilhite. Red Brick Vista: 
Aggregate Computation and Management. Proc. of 
the 14th Int’l. Co@ on Data Eng., Orlando, FL, 
1998. 

[CKPS95] S. Chaudhuri, R. Krishnamurthy, Spyros 
Potamianos, K. Shim. Optimizing Queries with 
Materialized Views. Proc. of Int’l. Co@ on Data 
Eng., 1995. 

[CM961 L.S. Colby, I.S. Mumik, Staggered 
Maintenance of Multiple Views, Proc. of the 
Workshop on materialized Views: Techniques and 
Applications, Montreal, Canada, 1996 

[DDDEHJJLSSS94] D. Daniels, L.B. Doo, A. Downing, 
C. Elsbernd, G. Hallmark, S. Jain, B. Jenkins, P 
Lim, G. Smith, B. Souder, J. Stamos, Oracle’s 
Symmetric Replication Technology and 
Implications for Application Design, in the Proc. of 
ACM SIGMOD 199.5, Int’l. Con5 on Mgmt. of Data, 
Minneapolis, MN, 1994 

[GHQW A. Gupta, V Harinarayan, D. Quass. 
Aggregate-Query Processing in Data Warehousing 
Environments. Proc. of the 21st VLDB Co@, 
Zurich, Switzerland, 1995 

GMS93] A. Gupta, I.S. Mumick, VS. Subrahmanian. 
Maintaining Views Incrementally. Proc. of ACM 
SIGMOD 1993 Int’l. Con$ on Mgmt. of Data, 
Washington, DC, 1993 

[GM951 A. Gupta, I.S. Mumick, Maintenance of 
Materialized Views: Problems, Techniques, and 
Applications, IEEE Data Eng. Bulletin, Special 
Issue on Materialized Views and Data 
Warehousing, Vol 18, No. 2, 1995. 

[LHMPW86] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, 
P. Wilms. A Snapshot Differential Refresh 
Algorithm. Proc. of ACM SIGMOD 1995, Int’l. 
Con$ on Mgmt. of Data, 1986. 

[LMSS95] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. 
Srivastava. Answering Queries using Views. Proc. 
of the 14th Symposium on Principles of Database 
Systems (PODS), San Jose, CA, 1995 

[MQM97] I.S. Mumick, D. Quass, B.S. Mumick. 
Maintenance of Data Cubes and Summary Tables in 
a Warehouse. Proc. of ACM SIGMOD 1997, Int’l. 
Co@ on Mgmt. of Data, 1997 

[S95] G. Smith, “Oracle7 Symmetric Replication”, Oracle 
White Paper, Part #A33128, Oracle Corporation, 
Redwood Shores, CA, 1995 

[SDJL96] D. Srivastava, S. Dar, H.V. Jagadish, A.Y. 
Levy. Answering Queries with Aggregation Using 
Views. Proc. of the 22nd VLDB Co& Mumbai, 
India, 1996 

664 


