
Issues in Developing Very Large Data Warehouses

Lyman Do Pamela Drew Wei Jin Vish Jumani David Van Rossum

Applied Research and Technology
Shared Services Group
The Boeing Company

P.O. Box 3707, M/S 7L-70, Seattle, WA 98124-2207, USA
Email: {Lyman.S.Do, Pamela.A.Drew, Wei.Jin, Vish.Jumani, David.A.VanRossum}@boeing.com

Abstract

The size of The Boeing Company posts some
stringent requirements on data warehouse de-
sign and implementation. We summarize four
interesting and challenging issues in develop-
ing very large scale data warehouses, namely
failure recovery, incremental update main-
tenance, cost model for schema design and
query optimization, and metadata definition
and management. For each issue, we give
the reasons we think it is important but not
well-addressed in research literature and com-
mercial products, and our current research to
solve it.

1 Introduction

Several data warehouse development projects are be-
ing pursued in Boeing with sizes ranging from hun-
dreds of megabytes to terabytes. Some projects are
aimed at providing sophisticated decision support and
some are designed to re-distribute the workload of
OLTP systems. In the latter, some large read-only
queries will be re-directed to a data warehouse in order
to relieve the heavy workload of our OLTP systems.
This paper raises four issues that are challenging to
the development of large-scale data warehouses.

The size of Boeing posts stringent requirements on
data warehouse design. The largest data warehouse

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

633

project will have an initial size of two to three ter-
abytes and will operate on a 24x7 basis. Each airplane
typically has over one million parts and the informa-
tion of all parts and the airplane configuration will be
kept in the warehouse until the airplane itself is re-
tired. This means that the data lifecycle could be as
long as 70+ years, instead of 5 to 10 years in most
companies. This also implies that the data warehouse
will continue to grow for 70 years. In addition to size,
a long data lifecycle imposes a heavy requirement on
the evolution of the data warehouse which has to be
flexible enough to access 70 year old data. Moreover,
since Boeing is a global company, there is virtually
no “nighttime” for data warehouse refresh and main-
tenance. The refresh window is small and may not
be extended. Any failure during refresh may miss the
refresh window which delays business decisions or pro-
cesses. The size of the data warehouse, the length of
the data lifecycle, the flexibility to access data, and the
strict demands on system availability establish require-
ments that challenge the most sophisticated technical
solutions in data warehouse designs and implementa-
tions today.

In the following sections, we present four issues in
turn and discuss the research directions that we are
working toward.

2 Failure Recovery

Failure can happen anywhere, from populating
the data warehouse, to refreshing multi-dimensional
databases, to processing end-user queries; each task is
long and resource intensive, and each task is costly to
roll-back and restart. The situation becomes worse if
the refresh window is small and can not be missed.
This issue is not well addressed because failure re-
covery discussions typically only encompasses writing
data into persistent storage but in a data warehouse
environment, the most costly failures happen during
computation such as data cleansing, aggregation/roll-

up, indexing, etc.
Typical transactional roll-back and restart failure

recovery is not applicable in the above scenario be-
cause 1) it is too expensive (time and resources) to
rollback a long-lived task, 2) the recovery log may not
be available or too expensive to store due to the large
volume of updates, and 3) in a global enterprise, the
refresh window of a data warehouse is too small to
allow rollback and re-start.

There are two types of failure that we have been
looking into: (1) database/data warehouse update fail-
ure that happens during the data population and re-
fresh from data sources to data warehouse and (2)
computation failure during end-user query processing.
The former is similar to a typical database failure ex-
cept that it can happen even before writing records
into the database during data cleansing and scrubbing,
or it can happen during index or metadata updates.

The second type of failure happens during query
processing. A typical decision support query may scan
through multiple tables and require intensive compu-
tation to prepare summary information. Failure in any
step during the computation requires re-work that is
expensive in terms of query response time for mission
critical queries, and computational resources. Also,
re-work may eventually delay the warehouse refresh
window. The influence of re-work and delay is further
amplified since the data warehouse supports a large
user population.

We are looking into the technology of incremental
checkpointing to provide forward recovery. Ideally, all
long-lived tasks, such as data cleansing, warehouse
population and refresh, data summarization, index-
ing, roll-up, and query processing, should incremen-
tally write checkpoints to a persistent storage. In
case of failure, the system only needs to have par-
tial roll-back to previous checkpoint and re-start. The
concept is simple but technically challenging. Incre-
mental checkpointing requires modularization of those
long-lived tasks by analyzing and decomposing a long-
lived task into a pipeline of sub-tasks each of which
is loosely coupled with the others. Incremental check-
pointing is performed between sub-tasks. Sub-tasks
should be loosely coupled so that in case of failure,
the system can roll-back to a previous checkpoint for
each sub-task and re-start the pipeline. Another issue
related to the incremental checkpointing is the need of
an efficient and generic logging facility that provides
persistent logging for checkpoints of different tasks.

3 Incremental Update Maintenance

In addition to the differential relation [OV91] approach
of incremental update, we need a mechanism to sup-
port data sources that do not export differential rela-

tions. A differential relation captures the before image
and the after image of all tuples that each operation
affects. Most research work on data warehouse up-
date focuses on the problem that “given a differen-
tial relation, how do we refresh the data warehouse
efficiently.” These works differentiate each other in
terms of different data warehouse capabilities, such as
convergent warehouse consistency [ZGHW95,ZHW96],
replication of some source relations [QW97], version-
ing [QGMW96], etc. They are all based on the same
assumption that differential relations are available.
Likewise, commercial products either suggest refresh-
ing the data warehouse from scratch (the snapshot ap-
proach) if the refresh window is large enough or sup-
port incremental update using differential relations.

Such an assumption may not be valid for the rea-
son that some vital production systems do not export
differential relations. Even if we violate the local au-
tonomy by modifying the application code to extract
differential relations from each database update, it is
expensive to extract the before and after image of a
SQL statement. To do this, the system needs to run
a modified SQL statement with the same FROM and
WHERE clauses as the original update operation be-
fore the execution of that update operation, then exe-
cute the update operation, then run the modified SQL
statement again to collect the after image. Triggers
could be helpful if the trigger can be fired before and
after each execution (for INSERT, DELETE, and UP-
DATE) and if the triggers are tightly coupled with
the update operation, i.e., being executed in a single
atomic transaction. To further complicate the situ-
ation, some production systems use object wrappers
to encapsulate relational schema or complete transac-
tions and some commercial applications make it ex-
tremely difficult to interpret data storage structures,
not to mention the feasibility of implementing triggers
on them.

We have been working on incremental data ware-
house update maintenance by capturing the operation
descriptions at the sources. To differentiate, we re-
fer to the differential relation as value-delta and the
operation description as operation-delta (Op-delta).
We are motivated by the fact that Op-delta could
be extracted from database log and it is less expen-
sive, in terms of storage, communication, and com-
putation overhead, for programs to export Op-delta
instead of the value-delta. For example, the state-
ment: “UPDATE status= ‘revised’ from parts where
last-modified-date > l/1/98” may generate a value-
delta in the size of ten thousand records but the SQL
statement itself is already an Op-delta in the size of
70 bytes. We have identified sufficient conditions that
Op-delta alone is enough to refresh the data warehouse
(i.e., self-maintainability with respect to Op-delta),

634

and for some cases, a hybrid between value-delta (the
before image portion only) and the Op-delta is nec-
essary to refresh the data warehouse. In both cases,
the data warehouse does not need to refer back to the
source during the refresh.

Another advantage of Op-delta is allowing the data
warehouse to refresh concurrently with end-user query
processing. The data warehouse treats a refresh as a
series of execution of Op-delta. This implies that there
will be virtually no downtime for data warehouse re-
fresh, i.e., minimize or eventually eliminate the update
window. To achieve this, we are currently working on
the definition of data warehouse consistency in terms
of concurrent refresh and concurrency protocol(s) for
the data warehouse refresh.

4 Cost Model for Schema Design and
Query Optimization

We need a cost model to analyze the cost and benefit of
designing data warehouse schema. At large, the cost
model should help in selection of data model among
relational schema, star schema, and multi-dimensional
database. At a finer granularity, the cost model should
help in determining the dimensions of a multidimen-
sional cube or in a star schema.

During the design of a data warehouse, an intu-
itive requirement is to maximize query performance.
The resulting products are the star schema and multi-
dimensional databases that pre-compute a sub-set of
the most frequently asked queries (or asked by the
most important person) and materialize the result.
It is obvious that the query response time is tremen-
dously improved but it is less obvious (or promoted)
that a larger maintenance window is implied. Our
traditional database training tells us that material-
ized views can improve query performance if we can
manage to update the views consistently, i.e., we are
trading data warehouse update maintenance cost for
better query response time. But questions such as
where is the balance point between improved query
response time and the minimal maintenance window
arise. There is no cost model to provide guidelines on
how much information we should pre-compute and ma-
terialize, what kind of queries can benefit most from a
materialized view, what is the cost to maintain a star
schema or the equivalent multidimensional cube, etc.

In the Boeing Company, each airplane has poten-
tially one million attributes to describe it. It is im-
possible to develop a multidimensional cube that has
one million dimensions. An intuitive question will be
“which attribute should we include in the limited mul-
tidimensional cube?” What is the benefit to introduce
one more dimension and what will be the cost to main-
tain it? Again, we are looking for a cost model that

can analyze the cost and benefit of bringing additional
dimension into a multidimensional cube. The argu-
ment remains valid for a star schema. Assuming that
the fact table is populated from tables in a normal-
ized relation source, adding one more dimension table
to the star schema means adding one more table to
the join query that prepares the fact table. The cost
to populate the fact table will then increase exponen-
tially.

Last but not least, if a data warehouse cannot an-
swer a query (determining whether a query is answer-
able is yet another issue), the query will then be re-
formulated and submitted to operational databases.
What are the criteria that a query or a particular
set of queries should be supported by the data ware-
house? What is the cost of materializing additional re-
lations/multidimensional cubes in the data warehouse
in order to reduce the number of queries that have
to be submitted to operational databases? Again, we
need a cost model to analyze the balance among the
cost of query processing at operational database, the
cost of data warehouse update maintenance, and the
benefit of supporting that query by the data ware-
house.

5 Metadata Definition and Manage-
ment

An orthogonal issue is the metadata definition and
management. Example metadata includes: informa-
tion about the data source such as the cost model of
its query processing, whether value-delta is supported,
whether it is possible to extract the Op-delta; infor-
mation about the data such as source schema, data
warehouse schema, and their mappings, update fre-
quency and the average size of update; information
about queries such as the cost to process a particu-
lar query at source, cost to process the same query
if a multidimensional cube supports it, the frequency
of the query, the importance (priority) of the query;
information about the data warehouse such as the
schema definition, subject area of each multidimen-
sional cube/fact table, maintenance window, cost of
maintenance, etc.

Metadata begins to accumulate at the very begin-
ning of a data warehouse development project, either
physically or electronically, and it grows during the
development and beyond. We are particularly inter-
ested in the metadata that is 1) involved in the de-
sign/development decisions, 2) referred to during nor-
mal operations (data population, cleansing, refresh,
etc.) of a data warehouse, and (3) referred to during
end-user query processing. The first type of meta-
data includes the business model of data stored in
operational databases and the cost model described

635

in Section 4. This type of metadata is used to iden-
tify what information should be included in the data
warehouse and from where to populate and refresh the
identified information. The second type of metadata
is used to maintain the data warehouse by identifying
the methods to refresh the data warehouse, and for
each part (multidimensional cubes, fact tables, etc) of
the data warehouse, how to perform the refresh, how
frequent the refresh should be performed, and when to
archive the historical information. The third type of
metadata helps users to identify information or sub-
jects that are available in the data warehouse. It helps
users to determine if a query is supported by the data
warehouse. In an extreme, metadata helps the query
processing system automatically route a query to the
data warehouse or to the operational databases where
the query can be executed, allowing a better response
time and lower cost. End-user understanding of the
data is generally not based on a relational type model,
but a non-computing, business model, thus requiring
a mapping of a business model (and possibly the busi-
ness processes) to the physical data model used by the
data warehouse. Due to the magnitude of the meta-
data, an online access with a business interpretation
must be available.

After metadata is defined and the sources are iden-
tified, we need to manage changes to the metadata.
Change management should capture changes at het-
erogeneous and distributed data sources and propa-
gate the changes to a metadatabase. Besides, we need
tools to analyze the changes and evolve the data ware-
house. For example, changing the schema definition
at a data source will change the metadata of that
schema at the data warehouse and a mapping func-
tion between source to data warehouse tables/cubes.
The change may also affect the self-maintainability of
data warehouse tables/cubes, which in turn supports a
more effective refresh mechanism. Likewise, changes of
queries, their frequency, and priority may also trigger
similar evolution at the data warehouse.

We are working on the definition of metadata, the
schema definition in the “metadatabase”, the soft-
ware components in the “metadatabase” that supports
queries on the metadata and that supports continuous
update (change management) of the metadata.

6 Summary

Like most global enterprises, Boeing is looking into
the data warehousing solutions to improve end-user
query performance, to re-distribute some long-lived
read-only queries from our overloaded OLTP systems,
and to support a new-generation of decision support
systems. We presented four interesting and challeng-
ing large-scale data warehouse development issues and

we are actively working toward the solutions of them.

References

Our references include the research work at AT&T
Labs, Bell Labs, Stanford University, and various com-
mercial data warehouse products. For brevity, we
only include some of the references here. We di-
rect interested readers to Albert0 Mendelzon’s “Data
Warehousing and OLAP: A Research-Oriented Bibli-
ography” web page at University of Toronto (http:\\
www.cs.toronto.edu/Nmendel/dwbib.html).

[OV91]

[QGMW96]

[QWW

[ZGHW95]

[ZGW96]

M.T. ozsu and P. Valduriez. Princi-
ples of Distributed Database Systems.
Prentice-Hall, 1991.
D. Quass, A. Gupta, I.S. Mumick,
and J. Widom. Making views self-
maintainable for data warehousing. In
Proceedings of the Sixth International
Conference on Parallel and Distributed
Information Systems, Miami Beach,
Florida, 1996.

D. Quass and J. Widom. On-line ware-
house view maintenance. In Proceed-
ings of the ACM SIGMOD Interna-
tional Conference on Management of
Data, pages 405-416, Tucson, Arizona,
May 1997.

Y. Zhuge, H. Garcia-Molina, J. Ham-
mer, and J. Widom. View maintenance
in a warehousing environment. In Pro-
ceedings of the ACM SIGMOD Inter-
national Conference on Management of
Data, pages 316-327, San Jose, Califor-
nia, May 1995.

Y. Zhuge, H. Garcia-Molina, and
J.L. Wiener. The Strobe algorithms for
multi-source warehouse consistency. In
Proceedings of Conference on Parallel
and Distirbuted Information Systems,
Miami Beach, Florida, 1996.

636

