
The Drill Down Benchmark 

Peter A. Boncz, Tim Riihl, Fred Kwakkel 
Data Distilleries B.V. 

{boncz,tim,fred}Qddi.nl 

Abstract 

Data Mining places specific requirements on 
DBMS query performance that cannot be 
evaluated satisfactorily using existing OLAP 
benchmarks. The DD Benchmark - defined 
here - provides a practical case and yardstick 
to explore how well a DBMS is able to sup- 
port Data Mining applications. It was derived 
from real-life data mining tasks performed by 
our Data SurveyorTM tool running on a va- 
riety of DBMS backends. We describe initial 
results obtained using both the Monet system 
and a relational DBMS product as backend. 

1 Introduction 

Data Mining is the process of automated extraction of 
knowledge from databases, and involves building mod- 
els that explain observed phenomena in vast amounts 
of - historic - data. Being one of the most promising 
and profitable Data Warehousing applications, it has 
attracted much interest from both the commercial and 
research communities. 

Data Mining causes a DBMS query load that differs 
from OLAP in various ways. A mining task generates 
a search process through a large hypotheses space and 
checks the validity of possibly thousands of hypotheses 
~ where each check corresponds with a DBMS query. 
One mining task therefore corresponds to up to thou- 
sands of DBMS queries! These queries are run against 
one table, called the mining table, that contains all ob- 
jects of interest for the mining problem. These objects 
typically have a large number of attributes. 

Since most useful models for human understand- 
ing are simple ones, data mining algorithms tend to 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made 07 distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 24th VLDB Conference 
New York, USA, 1998 

drill down to interesting subgroups in the mining table 
that can be described with just a few characteristics. 
For these reasons, the generated DBMS queries typi- 
cally involve only a few attributes, on which selection, 
grouping, and aggregation operations are performed, 
but no complex join operations. 

This very specific system load makes other ana- 
lytical DBMS benchmarks, like TPC-D [Tra95] and 
SET [Gra93] inadequate for evaluating how well a 
DBMS is suited to support Data Mining. The test set 
often used by Agrawal [AS941 is specifically targeted 
to association rule algorithms and does not translate 
well to DBMS queries. 

As we use benchmarking to assure quality control 
and to steer product development, we decided to define 
the Drill Down Benchmark (or: DD Benchmark). 
It is based on real-life experience that Data Distil- 
leries has gathered since 1995 with the Data Surveyor 
tool [HKS95] on large-scale applications at clients from 
the financial sector in The Netherlands. 

We ran the DD Benchmark with Data Surveyor us- 
ing two different backend systems for DBMS query 
execution. One is a relational DBMS product, and 
the other is Monet [BWK98], a novel system licensed 
to Data Distilleries, which uses full vertical table frag- 
mentation to avoid I/O bottlenecks and employs effi- 
cient main-memory techniques. 

2 Data Surveyor Architecture 

In order to meet the interactive performance require- 
ments of Data Mining, most existing tools employ spe- 
cialized data structures and algorithms to manipulate 
mass data outside the DBMS. This stand-alone ap- 
proach defeats one of the prime purposes of a DBMS, 
which is integration of the data of an organization in 
one consistent, reliable and protected store. 

The Data Szlrweyor tool of Data Distilleries - in 
contrast - has a S-tier architecture, that facilitates in- 
tegration of Data Mining with the DBMS: 

GUIs taking the form of Java applets. Apart from 
a powerful expert data mining interface, we pro- 
vide pre-cooked user interfaces targeted to end- 
users, that solve one subproblem (so called ‘ver- 
tical applications’), like selecting the top mailing 

628 



addresses of the week for database marketing. 

Data Mining Kernel containing the data-mining 
specific algorithms. This component directs the 
Data Mining operations and translates a data 
mining task into multiple DBMS queries. Multi- 
query optimization and parallelization are em- 
ployed to improve performance. 

DBMS backend can be all SQL-speaking commer- 
cial (parallel) DBMSs. Data Distilleries also li- 
censed the novel high-performance Monet system 
for use as backend. 

The Data Mining Kernel uses a unique algorithmic 
framework that decomposes data mining algorithms 
in three orthogonal dimensions: 

l a modeling language for expressing hypotheses, 

l a quality function for testing the quality of a hy- 
pothesis, and 

l a search strategy for looking for interesting hy- 
potheses. 

This decomposition facilitates the translation of a data 
mining task into DBMS queries, which - thanks to 
its background in database research - is one of the 
strengths of Data Distilleries. 

3 Drill Down Benchmark 

The goal of the DD Benchmark is to measure DBMS 
performance on a typical Data Mining query load. 
Since SQL-like query languages are unsuitable to ex- 
press Data Mining algorithms, we chose to formulate 
the benchmark in terms of our algorithmic framework 
on an typical data mining task. Benchmark implemen- 
tors must translate this task into DBMS queries, while 
adhering to a number of implementation rules.’ 

3.1 Benchmark Case Study 

The task chosen for the DD Benchmark is a customer 
loyalty application, a common and prototypical data 
mining problem. In this task, a company wants to find 
profiles for (un)reliable groups of customers. 

The DD Benchmark uses decision rules as the mod- 
eling language to describe such customers, where rules 
are simple conjunctions of selection expressions on the 
attributes of the mining table. The quality of such 
rules is expressed with a confidence-interval(P) with 
P = .95, and the employed search strategy is beam- 
search(W,D). Beam-search is a form of breadth-first 
search, bounded both in width W and depth D. We 
use parameters D = 4 to find descriptions involving at 
most 4 conjunctions, and W = 10 to use only the best 
10 hypotheses for refinement in the next level. 

‘The full benchmark specifications, including database con- 
tent, implementation rules, query scripts and detailed bench- 
mark results can be obtained at http://uwu.ddi.nl/ddbench 

age in [65 ,601 

true 
100000 

gender=female 
2iroe 

70057 

< 

yes:13.09 0.37 

yes:10.86 0.19 city = Delft 
4510 

yes:i3.53 0.14 

\ 

yes:12.55 0.78 

ripcode 
3114 
yes:10.79 0.88 

The above figure shows an example decision rule 
model as a tree, where each node at depth X E {1,2} 
identifies a group of customers - characterized by 
a conjunction of X selections - and for each group 
its size and the probability(reliable = yes), with a 
95% confidence interval. More specifically, this tree 
states with a confidence of 95% that the probabil- 
ity of any client to be a reliable customer is between 
[8.53-0.14,8.53+0.14] percent. This range lies higher 
for the subgroup with zipcode= and for females. 
There are two extra-interesting subgroups of the fe- 
males: those in Delft and those of old age, which are 
even more reliable customers. 

3.2 Benchmark Data Definition 

The data mining task modeled in the DD Benchmark 
is scalable both in size and complexity. This translates 
into mining on more objects or mining on more char- 
acteristics. The first scaling dimension corresponds to 
the number of rows in the mining table (vertical scal- 
ing), whereas the second corresponds to the number of 
columns (horizontal scaling). 

The mining table of the DD Benchmark contains 
one tuple for each customer, and has l*VF million 
rows of lOO*HF attributes, of which 6*HF play a role 
in the queries. VF and HF indicate the vertical and 
horizontal scaling factors, respectively. The distribu- 
tion of the values in these 6*HF attributes is non- 
uniform, and their cardinalities vary: 

Attributes e 
attrlbute I domam 1 card. 

single,divorced,widowed } 
am ..,Rotterdam } 

The reliable attribute is the so-called ‘target 
attribute’; the others are called ‘query attributes’. 
Though we only use the above attributes, no a priori 
knowledge of this may be assumed by implementors. 
The mining task corresponds to one mouse click made 
by a Data Surveyor user after randomly selecting 6*HF 
attributes from the lOO*HF available for detailed ex- 
ploration. This means that before the mining task 
starts, it is not allowed to treat the 6*HF query at- 
tributes in any way different than the other attributes. 

629 



3.3 Benchmark Queries 

The data mining algorithm executes 5 query batches 

that contain data cube requests. ,We require each cube 
request to produce an ASCII dump of its table repre- 
sentation. Below we will outline the cube requests in 
SQL, but we do not pose specific requirements on the 
query syntax, or even on the language used. 

Each query batch corresponds to one level searched 
by the beamsearch algorithm. Based on the results of 
the batch, the data mining algorithm determines which 
subgroups are most interesting. As these groups are 
used for further exploration in the next level, the con- 
tent of the next batch directly depends on the outcome 
of the previous. 

The Drill Down Benchmark measures DBMS per- 
formance solely, hence the data mining algorithm (i.e., 
choosing the best groups for the next batch on the ba- 
sis of results from the current batch), is not part of the 
benchmark. The benchmark therefore consists of five 
fixed query batches, but we mimick the dependencies 
of real-life data mining by requiring that the current 
batch must be completed before the next may start. 
batch Bs computes a histogram on each query at- 

tribute and the target attribute. In SQL: SELECT 
count(*) FROM miningtable GROUP BY attr. 

With such a histogram, the data mining algo- 
rithm can make a preliminary decision whether 
this attribute is interesting, or not. For instance, 
an attribute like ‘client-number’ has unique val- 
ues for each customer. Knowing this, the Data 
Mining algorithm can already conclude that this 
attribute is not useful for characterizing groups 
of customers. In the case of the DD Benchmark, 
none of the attributes is discarded. 

batch Bi computes a histogram on each query at- 
tribute with respect to the target attribute 
reliable. In SQL, this becomes: SELECT count (*) 
FROM miningtable GROUP BY attrl , reliable. 

The output of this query is then used by the Data 
Mining Algorithm to find groups of values of the 
query attribute that have a significantly deviating 
distribution with respect to the target attribute 
(reliable). The beam-search(W=lO,D=4) al- 
gorithm keeps the 10 most deviating groups 
formed by a selection on this attribute (e.g., 
gender=f emale). 

batch Bz further explores each group. As each group 
is a selection on one attribute, 5 query attributes 
are still left for exploration. Hence, & consists 
of 10*5=50 queries that compute the distribution 
with respect to reliable for each group and for 
each attribute left. In SQL, Bz consists of a se- 
ries of SELECT count(*) FROM miningtable WHERE 
condl (attrr) GROUP BY attrz, reliable. 

With this information, new subgroups can be 
identified in terms of selections on two query at- 
tributes (e.g., gender=f emale AND 30sageL45). 
The Data Mining Algorithm again keeps the 10 
most significantly deviating groups for further ex- 
ploration. 

batch Bs further explores these groups. Now there 
are 4 attributes left for exploration. This turns 
into SQL as: SELECT count(*) FROM miningtable 
WBERE condl(attrl) AND conds (attrr) GROUP BY 
attrs, reliable queries. 

The Data Mining Algorithm again keeps the 10 
most significantly deviating groups - now based 
on selections on 3 attributes. 

batch B4 This last batch explores for each subgroup 
the 3 query attributes left. The SQL queries now 
have selections on a conjunction of tertiary con- 
ditions. Note that using these results, the mining 
algorithms can identify groups with four condi- 
tions; which ends the search process (D=4). 

Below we display the groups explored by the DD 
Benchmark; with between parentheses their size as a 
fraction of the table size: 

Bfcb Batch 2 Batch 3 Batch 4 

In total, when HF=l, the five batches of the DD 
Benchmark represent 7 + 6 + 50 + 40 + 30 = 133 SQL 
queries.2 Each such query needs a scan over the min- 
ing table. As the mining tool requires an interactive 
response, it may be clear that Data Mining is a very 
high performance DBMS application area. 

2When the database is scaled horizontally, this number 
grows. The benchmark definition document defines exactly how 
its query set is generated. 

630 



4 Experiments 

We have carried out DD Benchmark experiments with 
Data Surveyor version 2.0 using both Monet and a 
relational DBMS product as backend system. 

4.1 Monet 

Monet is a new DBMS developed at the CWI [BWK98] 
oriented towards the OLAP and Data Mining applica- 
tion areas. It uses full vertical data fragmentation, by 
column-wise slicing of each relational table: 

relational 4-attribute project 
must scan the full table... 

The DD Benchmark is especially heavy as each of 
its 133 queries requires a full table scan. In a standard 
query execution strategy, these table scans would make 
I/O the bottleneck in query execution. It is clear that 
Monet avoids a lot of I/O on the DD Benchmark, as 
it only has to scan the 6*HF slices of the query at- 
tributes, instead of the whole relational table. 

The downside of vertical fragmentation, however, 
is that extra effort (joins) must be done to recom- 
bine fragmented data. The novel aspect of the Monet 
system is that its database kernel is specifically de- 
signed to cope with sliced tables. Table slices are inter- 
related, as each slice contains the same tuple sequence. 
This inter-relatedness is exploited by Monet and hence 
it is able to prevent doing extra work introduced by 
the vertical fragmentation. 

The second important characteristic of the Monet 
system is that its code is heavily optimized for main- 
memory query execution. If vertical fragmentation is 
successful in avoiding unnecessary I/O, the balance of 
query processing cost shifts to CPU cycles and mem- 
ory access time. Past research done on main-memory 
databases [GMS92] has shown that main-memory ex- 
ecution favors totally different optimization criteria 
than those important in systems where the dominant 
cost is I/O. 

The increased complexity of modern hardware has 
added to the importance of main-memory specific op- 
timizations in the software architecture: all computer 
systems now come with a 3-level memory hierarchy 
and an extensive collection of register sets, whose op- 
timal use is crucial to leveraging the power of the CPU. 
Programs that do not take advantage of the memory 

cache or do deeply nested procedure calls that lead to 
register trashing, now suffer comparatively more per- 
formance loss than in the past [SKN94]. 

While Monet is designed to exploit main mem- 
ory when abundant, it is not an all-or-nothing main- 
memory system. That is, if the database hot-set ex- 
ceeds main memory, the system relies on operating 
system support for managing virtual memory. Access 
to virtual memory causes page faults, and in this way 
I/O does play its role in the system. Working with 
such a single-level store, and relying on the OS to man- 
age I/O, has the advantage that algorithms and data 
structures can stay simple, thus not compromising per- 
formance when the hot-set does fit in main memory. 

4.2 Relational DBMS 

Most relational DBMS products stem from a design 
line that originated in the 1970s and hence were care- 
fully designed and tuned to the application require- 
ments and hardware characteristics of that time. 

Technically speaking, their storage infrastructure is 
still optimized towards the needs of OLTP, which re- 
quires quick performance on large amounts of small 
updates. Query-intensive applications like OLAP and 
Data Mining, however, have an entirely different ac- 
cess pattern, as they condense large volumes of data 
into small and meaningful results. As mentioned ear- 
lier, this leads to table scans that use only a fraction 
of the generated I/O. Naive query execution of the 
benchmark on the relational DBMS product showed 
execution times of several hours, I/O being the bottle- 
neck. 

In order to speed things up, we decided to use the 
DBMS product in a pure main-memory situation, by 
introducing an additional run-time step. In this step, 
which takes just one table scan, all 6*HF query at- 
tributes are selected and put into a newly created tem- 
porary table: 

relational table that 

We increased the buffer size of the DBMS product 
so that this temporary table would then fit into mem- 
ory. The 133 SQL queries of the DD Benchmark are 
then performed on this temporary table; which is de- 
stroyed afterwards. 

631 



Summarized Resu ts of the DD Benchmark 
database size platform elapsed time 

small 1 1 relational 2 22m35s lm22s lm28s 7m48s 5m47s 3m9s 
(400MB) monet 2 39s 4.6s 4.7s 17.9s 9.1s 2.3s 

1 1mlOs 9.1s 8.9s 31.1s 17.0s 4.1s 
big 1 10 monet 2 8m32s 50.0s 54.0s 4m23s lm52s 33s 
(4GB) 1 13m58s lm27s lm38s 6m43s 3m14s 57s 
wide 10 1 monet 2 8m46s lm5s 53.0s 3m41 2m29s 37s 
(4GB) 1 15m25s lm39s lm38s 6m33s 4m29s lm6s 

4.3 Results 

The above table displays the performance results ob- 
tained by running the DD Benchmark on a Sun Ultra 2 
CreatorSD machine with two 168 MHz CPUs, 512 MB 
of memory, 2 MB L2 cache, and 12 MB/s of real disk 
throughput. 

The first row of the table contains the result of the 
relational DBMS using both CPUs on the small DD 
Benchmark (VF=HF=l). It shows that our optimiza- 
tion with the temporary table worked; creating this 
in-memory table cost 3 minutes; after which no I/O 
activity was observed during the remaining queries. In 
all, the relational DBMS was considerable sped up by 
our optimization (from several hours to 22 minutes). 
This made the query execution CPU-bound instead of 
I/O bound. 

The other lines describe the various Monet experi- 
ments. The parallel experiment of Monet on the small 
DD Benchmark takes 39 seconds of elapsed time; more 
than an order of magnitude faster than the relational 
DBMS. The sequential experiments take almost twice 
as much time; showing that Monet is able to use par- 
allelism of both CPUs effectively. The wide (HF=lO) 
and big (VF=lO) experiments scale reasonably well. 
The main memory of our hardware configuration was 
not large enough to try these experiments on the rela- 
tional system. 

These results indicate that a system like Monet that 
is optimized towards main-memory access in terms of 
data structures and algorithms, clearly outperforms 
a general-purpose relational system under conditions 
like the DD Benchmark. One might ask the question 
how relational DBMS products could be improved to 
perform better under conditions like the DD Bench- 
mark. In our view, this would mean introducing data 
structures and algorithms to relational DBMS prod- 
ucts that are better suited to main-memory execution. 

While this might seem an unrealistic option; we re- 
gard the emergence of object-relational DBMS prod- 
ucts as an opportunity to achieve this goal, as an 
object-relational DBMS gives the possibility to ex- 
tend the database system with new structures and 
primitives, packaged in a so-called data-blade or data- 
cartridge. 

5 Conclusions 

We have defined a new, useful, and public benchmark 
that measures Data Mining performance of DBMS 
products, and sets a yardstick for future developments 
in this area. The results of our benchmarking effort 
using Data Surveyor indicate that interactive Data 
Mining on large data sets is possible, but requires spe- 
cific algorithms and data structures to be integrated in 
DBMS technology. We are looking forward to results 
produced by other DBMS platforms to help identify 
new efficient DBMS techniques for supporting Data 
Mining applications. 

References 

[AS941 

[BWK98] 

[GMS92] 

[Gra93] 

[HKS95] 

[SKN94] 

[Tra95] 

R. Agrawal and R. Srikant. Fast algorithms 
for mining association rules. In Proc. VLDB 
conf., 1994. 

P. A. Boncz, A. Wilschut, and M. L. Ker- 
sten. Flattening an object algebra to pro- 
vide performance. In Proc. ICDE Conf., 
1998. 

H. Garcia-Molina and K. Salem. Main mem- 
ory database systems: An overview. IEEE 
TKDE, 4(6):509, 1992. 

J. Gray. The Benchmark Handbook For 
Databases and Transaction Processing Sys- 
tems. Morgan Kaufman, 1993. 

M . Holsheimer , M. L. Kersten, and 
A. Siebes. Data Surveyor: Searching for 
nuggets in parallel. In Knowledge Discou- 
ery in Databases. MIT Press, 1995. 

A. Shatdahl, C. Kant, and J.F. Naughton. 
Cache conscious algorithms for relational 
query processing. In Proc. VLDB Conf, 
1994. 

Transaction Processing Performance Coun- 
cil. TPC Benchmark D, 1.2.3 edition, 1995. 

632 


