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1. Introduction 

Extensible database systems allow users to create new 
data types representing spatial, text, image, and other 
multimedia objects, and functions which operate on the 
new types[S96]. The new data types and functions can be 
used as predicates in SQL queries. Consider an insurance 
industry application, built using an extensible DBMS that 
has user defined extensions for spatial, text, date/time, 
and other business objects. The extensions support new 
data types such as point, circle, etc., and functions such as 
confains, interval, text-contains, etc. Let the tables Poli- 
cies (policy-id, name, address, location, vehicle-type, . . .) 
and Claims (policy-id, claim-tag, accident-date, acci- 
dent-location, accident-report, . . .) represent the partial 
schema containing both SQL’92 and user defined data 
types (UDTs). Consider a scenario in a targeted market- 
ing application that requires a mailing list of all customers 
within 5 miles of point L, who have insured a ‘sports 
utility vehicle’ and were involved in a ‘rear-ended’ acci- 
dent in the past 3 years. The corresponding SQL query 
would be: 
SELECT P.name, P.address 
FROM Policies P, Claims C 
WHERE coniuins(P.location, circle(L, 5)) 
AND P.vehicle type=“Sports Utility” 
AND P.policy-id = C.policy-id 
AND texl_contuins(C.accident-report, “rear-ended”) 
AND inietval(C.accident-date,current_date)<3 years 
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This query has multiple predicates involving user defined 
functions (UDFs), namely, contains, interval, circle, cur- 
rent-date, and text-contains. The order in which the dif- 
ferent predicates are evaluated within the query plan will 
significantly affect query performance [HS93], particu- 
larly when the tables contain a large number of rows. 
Predicate selectivity, which denotes the fraction of the 
table that satisfies a given predicate, plays a crucial role 
in determining the optimal execution order. The optimizer 
needs accurate selectivity estimates for these predicates in 
order to come up with an efficient query plan. 

The histogram and other statistical techniques, widely 
used in commercial DBMSs, are well suited for predi- 
cates involving SLQ-92 type one dimensional, numeric 
data and operators such as <, =, and > [CR94, HS92, 
HNSS95, IP95, PIHS96, SLRD93]. Extending them to 
arbitrary UDTs and UDFs is, however, non-trivial. A 
histogram of spatial data types (say circle or box), or im- 
ages, is rather non-intuitive. Selectivity estimation for 
predicates involving multi-dimensional and non-numeric 
data types is still in its infancy [TS96, KV196]. We be- 
lieve that using a learning system, which makes crude 
initial estimates that are progressively improved based on 
data gathered from operational systems, is a practical ap- 
proach for solving this problem. In this paper, we present 
a neural network based approach for estimating the selec- 
tivity of predicates involving UDFs. Experimental results 
showing the accuracy and validity of the proposed 
scheme are also provided. The proposed scheme has been 
incorporated in a database administrator’s tool for Infor- 
mix Universal Server, an object relational DBMS. We 
briefly discuss the design of this tool and its integration 
with the DBMS. 

2. Neural Networks in Selectivity Estimation 

Readers are referred to [AIFAQ, HNC96], and the refer- 
ences there, for an introduction to the field of neural net- 
works and an in-depth understanding of the various ar- 
chitectures, learning algorithms, mathematical formalism, 
similarities and differences between neural networks and 
classical statistical techniques, etc. 
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Our neural network approach for selectivity estimation 
involves two major tasks, 1) construction and training of 
neural networks and 2) use of trained networks to predict 
the selectivity. Task 1 can be performed off-line as a 
DBMS maintenance routine, similar to invoking the UP- 
DATE-STAT or RUNSTAT utilities provided by the 
DBMS for gathering histogram data. The outcome of task 
1 is a set of trained networks that are saved as mathemati- 
cal equations within a system table in the database. Dur- 
ing the query optimization phase, the optimizer retrieves 
the equation corresponding to a predicate, and evaluates 
it after substituting the parameters in the equation with 
the actual values from the query being optimized. Based 
on our design approach for collecting training data set 
and our experience with spatial data, we find that the 
overhead of task 1 is comparable to that of gathering his- 
togram data and the overhead for task 2 is imperceptible. 

In the rest of this section we describe the process of 
constructing and training a neural network for determin- 
ing the selectivity of an example predicate viz., contains 
(P.location, circle(L, 5)). 

2.1 Feature Vector as Neural Network Input 

The back-propagation class of algorithms used to train 
neural networks requires the network inputs to be nu- 
meric values. Hence, the first step in constructing the neu- 
ral network is to identify and map the nonnumeric argu- 
ments in the predicate. The CIRCLE object circle(L, 5) in 
the example predicate is a nonnumeric argument. We use 
the term feature vector to refer to the set of numeric val- 
ues that represent an object. Feature vector for complex 
data type objects can be extracted from the meta-data 
maintained by the database. For example, the CIRCLE 
object in the spatial extension is a complex data type ob- 
ject made of two other objects, namely, a POINT object 
representing its center and a floating point object repre- 
senting its radius. A POINT object, in turn a complex ob- 
ject, is made of two floating point objects representing its 
x and y coordinates. The meta-data maintained by the 
database regarding the spatial data types CIRCLE and 
POINT include the following UDFs: 

POINT centedcircle-object) 
FLOAT rudius(circle-object) 
FLOAT x(point-object) 
FLOAT y(point-object) 

By recursively applying the appropriate functions, until a 
numeric value is returned, the feature vector for the circle 
object can be obtained as: 

{x(center(circle-object)), y(center(circle-object)), 
ru&s(circle-object)} 

We discuss feature vector extraction of other types of 
objects in [LZ97]. 

2.2 Neural Network Configuration 

Once the feature vector and input to the neural network 
are identified, the next step is to construct a neural net- 
work. Neural network experts recommend constructing, 
training, and validating several configurations, and 
choosing the best one as the final candidate. A possible 
back propagation based neural network configuration for 
the example predicate is shown in Figure 1. 
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Figure 1. A Back Propagation Network for 
contains ( . . . ,circle-object) 

2.3 Training Data Set 

Training a neural network is the process of establishing 
values for the connection weights. This is carried out by 
presenting the network with a training data set and using 
a training algorithms such as the back propagation algo- 
rithm to adjust the connection weights. The training data 
set consists of tuples of input parameters and the corre- 
sponding actual selectivity. The data set should be repre- 
sentative of the operational environment in which the 
trained network will be deployed. It is obtained either by 
tracing and monitoring the queries in an operational 
DBMS or by executing synthetically generated queries. 
The input parameters for the synthetically generated que- 
ries can be obtained either by sampling the database or 
using a random value generator. In our implementation, if 
the input parameter corresponds to a binary large object 
such as an image or a character large object such as a text 
file, we sample a database table containing the appropri- 
ate objects; for other input parameter types (e.g. complex 
objects such as the circle object) we construct the object 
using the constructor function available as meta-data for 
that data type. For instance, using the constructor function 
&cfe(center, radius) for the circle data type, a random 
circle object is generated by drawing three random values 
to represent the x, y coordinates of the circle’s center and 
the radius. Finally, the synthetic query, to be executed 
against the real database for obtaining the training data 
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set, is formulated as follows: 
SELECT COUNT(*) FROM Policies P 
WHERE contuinse.location, circle(point(rundom(X), 

rundom(Y)), rundom(R )) 
Note that, in an efficient implementation, the training data 
set can be gather through a single scan of the table, as 
opposed to executing mutiple SQL query. 

The training data set, then, comprises of tuples of the 
form (X, Y, R, N/number of rows in table) where X, Y, R 
are random values, and N is the result of executing the 
above query. Our empirical studies suggest that even a 
small training data set (100-200 samples from tables with 
32K rows) leads to fairly accurate predictions by the 
trained network. A portion of the training data set is usu- 
ally reserved for validation purposes. Once the training 
data set is available, the network can be trained repeat- 
edly with this data until the desired accuracy is observed 
on the validation data set. The final configuration of the 
trained network is represented by the number of input 
nodes, feature vector, number of hidden nodes, and a 
vector of connection weights. 

3. Empirical Results 

We evaluated the predictive capabilities of the proposed 
technique with a variety of predicates and found the re- 
sults to be very compelling. Here we present some results 
obtained with spatial extensions and built-in functions. 
Our test environment corresponds to the SEQUOIA 2000 
benchmark [SFGM93]. It consisted of 3 tables containing 
62K, 200K, and 16K of 2-D spatial data. Figure 2 shows 
the absolute difference between the actual selectivity and 
the predicted selectivity for 150 queries with predicates 
involving the following three spatial UDFs: 
2. coniuins(APointTypeColumn, circk@oint(X,Y),R)) 
2. intersecrln(APathTypeColumn, box(point(Xl ,Y l), 

point(X2,Y2))) 
3. overlup(APolygonTypeColumn, box@oinr(Xl ,Y l), 

point(X2,Y2))) 

The actual selectivities ranged from 0 to 1. From Figure 2 
we can observe that in each case, for 80% of the test cases 
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Figure 2. Error Measures 

the predicted selectivity is within 10% of the actual se- 
lectivity and that the maximum error is within 25%. 

We also tested the neural network approach with inte- 
ger and character data types and operators such as = and 
>. The data distribution for the columns involved in the 
predicate had different degrees of skew. The predictions 
from our neural network models were always within 10% 
of the actual value. Additional information on our ex- 
perimental studies regarding sensitivity to the network 
configuration, training set size, learning algorithms, etc. is 
available in [LZ97]. Overall, we found the accuracy and 
the overhead to be within satisfactory levels. 

4. Integration with an ORDBMS 

The motivation behind our investigation into a neural 
network approach is to provide a practical solution for a 
problem faced by the current wave of ORDBMSs. For 
the initial introduction of this technology, we have devel- 
oped an interactive tool called BladeWatcher for Informix 
Universal Server. DBAs will use this tool to construct and 
train the neural networks for the predicates in poorly per- 
forming queries. Note that this tool is for facilitating task 
1 described in Section 2. Task 2 is integral to the op- 
timizer and is performed within the DBMS. 
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Figure 3. BladeWatcher Architechture 

The high level architecture of BladeWatcher is shown in 
Figure 3. The meta-data access module helps DBAs select 
specific tables, columns, and UDFs involved in a predi- 
cate for which accurate selectivity estimates are needed. It 
also automatically chooses the feature vector extraction 
functions and constructors for random query generation. 
DBAs can approve or override these choices. Blade- 
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watcher can either automatically generate the training 
data set or accept an external file containing the training 
data set. The neuralnet generator and trainer modules 
construct a back propagation or cascade correlation net- 
work and train it to the desired degree of accuracy. The 
trainer module repeatedly uses part of the training data to 
progressively adjust the connection weights and node 
biases using the chosen training algorithm. The remaining 
data in the training set is used as validation data to assess 
the accuracy of the network and to produce error meas- 
ures. Based on the error value the DBA can either register 
the network with the DBMS or perform additional train- 
ing. The registration module stores the network repre- 
sentation within the database system tables for the op- 
timizer to use. Registered networks can be retrained if the 
database has undergone a substantial number of updates 
or if a new training data set reflecting a different usage 
pattern is available. The registration module also allows 
the registered networks to be disabled or dropped from 
the system. 

BladeWatcher is a client server tool that communi- 
cates with the DBMS through a DB access layer. It ac- 
cesses the DBMS only for meta data information (which 
is subsequently cached locally) and for generating the 
training data set. Actual training of the neural network is 
done on the client machine. 

5. Summary 

In this paper we have presented a neural network based 
approach for estimating predicate selectivities in extensi- 
ble ORDBMS. While neural network models can be 
viewed as a class of statistical non-linear regression mod- 
els, the algorithms used to train the neural networks make 
them more appealing to practitioners than classical re- 
gression technique because the latter can become quite 
unwieldy when we have to deal with complex data repre- 
senting spatial, multimedia and other arbitrary user de- 
fined data types. The proposed method has been incorpo- 
rated in a database administrator’s tool for Informix Uni- 
versal Server. With this tool, administrators create and 
train neural network models to compute the selectivity of 
UDFs. The trained neural network is stored as a selectiv- 
ity function which is invoked by the optimizer during the 
optimization phase. Our experimental studies with spatial 
extensions to the DBMS show that i) the proposed 
method provides fairly accurate selectivity estimates; ii) 
the run-time overhead for evaluating the selectivity func- 
tion during the optimization phase is imperceptible; and 
iii) the overhead of training the neural network is compa- 
rable to collecting the necessary statistics for building a 
histogram for traditional SLQ92 data types. Thus, the 
proposed technique offers a practical solution for an im- 

portant problem faced by today’s ORDBMS and extensi- 
ble DBMS vendors who allow numerous user defined 
extensions to their databases in the form of datablades, 
data cartridges, or extenders. 
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