
Selectivity Estimation in Extensible Databases
- A Neural Network Approach’

Seetha Lakshmi
Informix Software Inc.
Menlo Park, CA 94025
seetha@informix.com

1. Introduction

Extensible database systems allow users to create new
data types representing spatial, text, image, and other
multimedia objects, and functions which operate on the
new types[S96]. The new data types and functions can be
used as predicates in SQL queries. Consider an insurance
industry application, built using an extensible DBMS that
has user defined extensions for spatial, text, date/time,
and other business objects. The extensions support new
data types such as point, circle, etc., and functions such as
confains, interval, text-contains, etc. Let the tables Poli-
cies (policy-id, name, address, location, vehicle-type, . . .)
and Claims (policy-id, claim-tag, accident-date, acci-
dent-location, accident-report, . . .) represent the partial
schema containing both SQL’92 and user defined data
types (UDTs). Consider a scenario in a targeted market-
ing application that requires a mailing list of all customers
within 5 miles of point L, who have insured a ‘sports
utility vehicle’ and were involved in a ‘rear-ended’ acci-
dent in the past 3 years. The corresponding SQL query
would be:
SELECT P.name, P.address
FROM Policies P, Claims C
WHERE coniuins(P.location, circle(L, 5))
AND P.vehicle type=“Sports Utility”
AND P.policy-id = C.policy-id
AND texl_contuins(C.accident-report, “rear-ended”)
AND inietval(C.accident-date,current_date)<3 years

i Patent pending.
2 Current affiliation: Microsoft Corp., Redmond, WA.

E-mail: shaozhou@microsoft.com
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.
Proceedings of the 24th VLDB Conference
New York, USA, 1998

Shaoyu Zhou 2
Informix Software Inc.
Menlo Park, CA 94025
shaoyu@informix.com

This query has multiple predicates involving user defined
functions (UDFs), namely, contains, interval, circle, cur-
rent-date, and text-contains. The order in which the dif-
ferent predicates are evaluated within the query plan will
significantly affect query performance [HS93], particu-
larly when the tables contain a large number of rows.
Predicate selectivity, which denotes the fraction of the
table that satisfies a given predicate, plays a crucial role
in determining the optimal execution order. The optimizer
needs accurate selectivity estimates for these predicates in
order to come up with an efficient query plan.

The histogram and other statistical techniques, widely
used in commercial DBMSs, are well suited for predi-
cates involving SLQ-92 type one dimensional, numeric
data and operators such as <, =, and > [CR94, HS92,
HNSS95, IP95, PIHS96, SLRD93]. Extending them to
arbitrary UDTs and UDFs is, however, non-trivial. A
histogram of spatial data types (say circle or box), or im-
ages, is rather non-intuitive. Selectivity estimation for
predicates involving multi-dimensional and non-numeric
data types is still in its infancy [TS96, KV196]. We be-
lieve that using a learning system, which makes crude
initial estimates that are progressively improved based on
data gathered from operational systems, is a practical ap-
proach for solving this problem. In this paper, we present
a neural network based approach for estimating the selec-
tivity of predicates involving UDFs. Experimental results
showing the accuracy and validity of the proposed
scheme are also provided. The proposed scheme has been
incorporated in a database administrator’s tool for Infor-
mix Universal Server, an object relational DBMS. We
briefly discuss the design of this tool and its integration
with the DBMS.

2. Neural Networks in Selectivity Estimation

Readers are referred to [AIFAQ, HNC96], and the refer-
ences there, for an introduction to the field of neural net-
works and an in-depth understanding of the various ar-
chitectures, learning algorithms, mathematical formalism,
similarities and differences between neural networks and
classical statistical techniques, etc.

623

Our neural network approach for selectivity estimation
involves two major tasks, 1) construction and training of
neural networks and 2) use of trained networks to predict
the selectivity. Task 1 can be performed off-line as a
DBMS maintenance routine, similar to invoking the UP-
DATE-STAT or RUNSTAT utilities provided by the
DBMS for gathering histogram data. The outcome of task
1 is a set of trained networks that are saved as mathemati-
cal equations within a system table in the database. Dur-
ing the query optimization phase, the optimizer retrieves
the equation corresponding to a predicate, and evaluates
it after substituting the parameters in the equation with
the actual values from the query being optimized. Based
on our design approach for collecting training data set
and our experience with spatial data, we find that the
overhead of task 1 is comparable to that of gathering his-
togram data and the overhead for task 2 is imperceptible.

In the rest of this section we describe the process of
constructing and training a neural network for determin-
ing the selectivity of an example predicate viz., contains
(P.location, circle(L, 5)).

2.1 Feature Vector as Neural Network Input

The back-propagation class of algorithms used to train
neural networks requires the network inputs to be nu-
meric values. Hence, the first step in constructing the neu-
ral network is to identify and map the nonnumeric argu-
ments in the predicate. The CIRCLE object circle(L, 5) in
the example predicate is a nonnumeric argument. We use
the term feature vector to refer to the set of numeric val-
ues that represent an object. Feature vector for complex
data type objects can be extracted from the meta-data
maintained by the database. For example, the CIRCLE
object in the spatial extension is a complex data type ob-
ject made of two other objects, namely, a POINT object
representing its center and a floating point object repre-
senting its radius. A POINT object, in turn a complex ob-
ject, is made of two floating point objects representing its
x and y coordinates. The meta-data maintained by the
database regarding the spatial data types CIRCLE and
POINT include the following UDFs:

POINT centedcircle-object)
FLOAT rudius(circle-object)
FLOAT x(point-object)
FLOAT y(point-object)

By recursively applying the appropriate functions, until a
numeric value is returned, the feature vector for the circle
object can be obtained as:

{x(center(circle-object)), y(center(circle-object)),
ru&s(circle-object)}

We discuss feature vector extraction of other types of
objects in [LZ97].

2.2 Neural Network Configuration

Once the feature vector and input to the neural network
are identified, the next step is to construct a neural net-
work. Neural network experts recommend constructing,
training, and validating several configurations, and
choosing the best one as the final candidate. A possible
back propagation based neural network configuration for
the example predicate is shown in Figure 1.

piizq

n Connection

Output layer

Figure 1. A Back Propagation Network for
contains (. . . ,circle-object)

2.3 Training Data Set

Training a neural network is the process of establishing
values for the connection weights. This is carried out by
presenting the network with a training data set and using
a training algorithms such as the back propagation algo-
rithm to adjust the connection weights. The training data
set consists of tuples of input parameters and the corre-
sponding actual selectivity. The data set should be repre-
sentative of the operational environment in which the
trained network will be deployed. It is obtained either by
tracing and monitoring the queries in an operational
DBMS or by executing synthetically generated queries.
The input parameters for the synthetically generated que-
ries can be obtained either by sampling the database or
using a random value generator. In our implementation, if
the input parameter corresponds to a binary large object
such as an image or a character large object such as a text
file, we sample a database table containing the appropri-
ate objects; for other input parameter types (e.g. complex
objects such as the circle object) we construct the object
using the constructor function available as meta-data for
that data type. For instance, using the constructor function
&cfe(center, radius) for the circle data type, a random
circle object is generated by drawing three random values
to represent the x, y coordinates of the circle’s center and
the radius. Finally, the synthetic query, to be executed
against the real database for obtaining the training data

624

set, is formulated as follows:
SELECT COUNT(*) FROM Policies P
WHERE contuinse.location, circle(point(rundom(X),

rundom(Y)), rundom(R))
Note that, in an efficient implementation, the training data
set can be gather through a single scan of the table, as
opposed to executing mutiple SQL query.

The training data set, then, comprises of tuples of the
form (X, Y, R, N/number of rows in table) where X, Y, R
are random values, and N is the result of executing the
above query. Our empirical studies suggest that even a
small training data set (100-200 samples from tables with
32K rows) leads to fairly accurate predictions by the
trained network. A portion of the training data set is usu-
ally reserved for validation purposes. Once the training
data set is available, the network can be trained repeat-
edly with this data until the desired accuracy is observed
on the validation data set. The final configuration of the
trained network is represented by the number of input
nodes, feature vector, number of hidden nodes, and a
vector of connection weights.

3. Empirical Results

We evaluated the predictive capabilities of the proposed
technique with a variety of predicates and found the re-
sults to be very compelling. Here we present some results
obtained with spatial extensions and built-in functions.
Our test environment corresponds to the SEQUOIA 2000
benchmark [SFGM93]. It consisted of 3 tables containing
62K, 200K, and 16K of 2-D spatial data. Figure 2 shows
the absolute difference between the actual selectivity and
the predicted selectivity for 150 queries with predicates
involving the following three spatial UDFs:
2. coniuins(APointTypeColumn, circk@oint(X,Y),R))
2. intersecrln(APathTypeColumn, box(point(Xl ,Y l),

point(X2,Y2)))
3. overlup(APolygonTypeColumn, box@oinr(Xl ,Y l),

point(X2,Y2)))

The actual selectivities ranged from 0 to 1. From Figure 2
we can observe that in each case, for 80% of the test cases

0 - N” is s 5: 23 c 8 $ 00
Percentage Queries r

Figure 2. Error Measures

the predicted selectivity is within 10% of the actual se-
lectivity and that the maximum error is within 25%.

We also tested the neural network approach with inte-
ger and character data types and operators such as = and
>. The data distribution for the columns involved in the
predicate had different degrees of skew. The predictions
from our neural network models were always within 10%
of the actual value. Additional information on our ex-
perimental studies regarding sensitivity to the network
configuration, training set size, learning algorithms, etc. is
available in [LZ97]. Overall, we found the accuracy and
the overhead to be within satisfactory levels.

4. Integration with an ORDBMS

The motivation behind our investigation into a neural
network approach is to provide a practical solution for a
problem faced by the current wave of ORDBMSs. For
the initial introduction of this technology, we have devel-
oped an interactive tool called BladeWatcher for Informix
Universal Server. DBAs will use this tool to construct and
train the neural networks for the predicates in poorly per-
forming queries. Note that this tool is for facilitating task
1 described in Section 2. Task 2 is integral to the op-
timizer and is performed within the DBMS.

Meta-data
-Access Module *

IVGenerator l-l
I

e
S

S

L

1

a
Y
e
r

D
B v M
S

Figure 3. BladeWatcher Architechture

The high level architecture of BladeWatcher is shown in
Figure 3. The meta-data access module helps DBAs select
specific tables, columns, and UDFs involved in a predi-
cate for which accurate selectivity estimates are needed. It
also automatically chooses the feature vector extraction
functions and constructors for random query generation.
DBAs can approve or override these choices. Blade-

625

watcher can either automatically generate the training
data set or accept an external file containing the training
data set. The neuralnet generator and trainer modules
construct a back propagation or cascade correlation net-
work and train it to the desired degree of accuracy. The
trainer module repeatedly uses part of the training data to
progressively adjust the connection weights and node
biases using the chosen training algorithm. The remaining
data in the training set is used as validation data to assess
the accuracy of the network and to produce error meas-
ures. Based on the error value the DBA can either register
the network with the DBMS or perform additional train-
ing. The registration module stores the network repre-
sentation within the database system tables for the op-
timizer to use. Registered networks can be retrained if the
database has undergone a substantial number of updates
or if a new training data set reflecting a different usage
pattern is available. The registration module also allows
the registered networks to be disabled or dropped from
the system.

BladeWatcher is a client server tool that communi-
cates with the DBMS through a DB access layer. It ac-
cesses the DBMS only for meta data information (which
is subsequently cached locally) and for generating the
training data set. Actual training of the neural network is
done on the client machine.

5. Summary

In this paper we have presented a neural network based
approach for estimating predicate selectivities in extensi-
ble ORDBMS. While neural network models can be
viewed as a class of statistical non-linear regression mod-
els, the algorithms used to train the neural networks make
them more appealing to practitioners than classical re-
gression technique because the latter can become quite
unwieldy when we have to deal with complex data repre-
senting spatial, multimedia and other arbitrary user de-
fined data types. The proposed method has been incorpo-
rated in a database administrator’s tool for Informix Uni-
versal Server. With this tool, administrators create and
train neural network models to compute the selectivity of
UDFs. The trained neural network is stored as a selectiv-
ity function which is invoked by the optimizer during the
optimization phase. Our experimental studies with spatial
extensions to the DBMS show that i) the proposed
method provides fairly accurate selectivity estimates; ii)
the run-time overhead for evaluating the selectivity func-
tion during the optimization phase is imperceptible; and
iii) the overhead of training the neural network is compa-
rable to collecting the necessary statistics for building a
histogram for traditional SLQ92 data types. Thus, the
proposed technique offers a practical solution for an im-

portant problem faced by today’s ORDBMS and extensi-
ble DBMS vendors who allow numerous user defined
extensions to their databases in the form of datablades,
data cartridges, or extenders.

Acknowledgment

The authors would like to thank Mike Stonebraker , Paul
Brown, Bob Hedges, Jeff Sidel, and Piyush Gupta for
their support and feedback.

References

[AIFA97]

[CR941

[HNC96]

[HNSS95]

[HS92]

[HS93]

[IFMX96]

[lP95]

[KVI96]

[LZ97]

“ai-faq/neural-nets,” archive at
jip://Srsas.com/pub/neural/FAQ.html

C.M Chen and N. Roussopoulos “Adaptive
Selectivity Estimation Using Query Feed-
back”, Proc. of the ACM SIGMOD ‘94; 161-
172.

“Handbook of Neural Computation,” ZOP
Publishing Ltd. 1996. Editors: E. Fiesler and
R. Beale.

P.J. Haas, J.F. Naughton, S. Seshadri, and L.
Stokes, “Sampling-based estimation of num-
ber of distinct value of an attribute,” Proc. of
VLDB ‘95; 3 1 l-322.

P.J. Haas and A. Swami “Sequential sam-
pling procedures for query size estimation,”
Proc. of the ACMSIGMOD’92; 341-350.

J.M. Hellerstein and M. Stonebraker,
“Predicate Migration: Optimizing Predicates
with Expensive Predicates,” Proc. of the
ACMSIGMOD ‘93; 267-276.

Informix Software, Inc. “DataBlade Devel-
opers Kit. User’s Guide,” 1996.

Y. Ioannidis and V. Poosala “Balancing
Histogram Optimality and Practicality for
Query Result Size Estimation”, Proc. of the
ACMSIGMOD’95; 233-244.

P. Krishnan, J.S. Vitter, and B. Iyer,
“Estimating alphanumeric Selectivity in the
Presence of Wildcards,” Proc. of the ACM
SIGMOD’96; 282-293.

S. Lakshmi and S. Zhou, “A Neural Network
Based Approach for Estimating Selectivity in

626

Extensible Databases,” An Informix CT0
Paper (1997).

[PIHS96] V. Poosala, Y. Iaonnidis, P. Haas, and E.
Shekita, “Improved Histograms for Selectiv-
ity Estimation of range Predicates,” Proc. of
the ACMSIGMOD’96; 294305.

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, and J.
Meredith, “The SEQUOIA 2000 Storage
Benchmark,” Proc. of the ACM SIG-
MOD ‘93; 2- 11.

[SLRD93] W. Sun, Y. Ling, N. Rishe, and Y. Deng,
“An Instant and Accurate Size Estimation
Method for Join and Selection in a Retrieval-
Intensive Environment,” Proc. of the ACM
SIGMOD’93; 79-88.

tS961 M. Stonebraker, “Object-Relational DBMSs:
The Next Great Wave,” Morgan Kaufmann
Publishers, Inc. (1996)

[TS96] Y. Theodoridis and T. Sellis, “A Model for
the Prediction of R-tree Performance,” Proc.
oftheACMPODS’96; 161-171.

627

