
Mining surprising patterns using temporal

Soumen Chakrabarti Sunita Sarawagi
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120

Abstract
We propose a new notion of surprising temporal pat-

terns in market. basket data, and algorithms to find such
pat,terns. This is distinct, from finding frequent pat-terns as
addressed in the common mining literature. We argue that.
once the analyst. is already familiar with prevalent patterns
in t,he data, the greatest, increment,al benefit. is likely t,o be
from changes in the relationship between item frequencies
over time.

A simple measure of surprise is the extent of depar-
ture from a model, estimated using standard mult,ivariat,e
t,ime series analysis. Unfortunately, such estimation in-
volves models, smoothing windows and parameters whose
optimal choices can vary dramatically from one application
to another. In contrast,, we propose a precise characteri-
zation of surprise based on the number of bits in which a
basket. sequence can be encoded under a carefully chosen
coding scheme. In this scheme it, is inexpensive to encode
sequences of itemset,s t-hat have st,eady, hence likely t,o be
well-known, correlation bet.ween items. Conversely, a se-
quence with large code length hints at. a possibly surprising
corrdat,ion.

Ocr not,ion of surprise also has t,he desirable property
t,hat, ihe score of a set. of items is offset. by anything sur-
prising t,hat. the user may already know from t,he marginal
distribution of any proper subset.. No parameters, such
as support,, confidence, or smoothing windows, need to be
estimated or specified by t.he user.

WC: experimentred with real-life market. basket data. The
algorithm successfully rejectBed a large number of frequent,
sets cf items that, bore obvious and st,eady complemen-
tary relations to each other, such as cereal and milk. In-
st,ead, our algorithm found itemsets that showed statisti-
cally st,rong fluctuations in correlation over time. These
items had no obviously complementary roles.

1 Introduction
Data warehousing technology has enabled corpora-
tions to store huge amounts of data, and data min-
ing has become a major motivating application. Large
data sources suitable for mining are growing in number
and size literally every passing moment.

For almost any such data source collected over years
to decades, there will be prevalent patterns or broad
regularities that are already known to domain experts,

(soumen,sunita,dom)@almaden.ibm.com

and surprising patterns that are novel, unexpected
and non-trivial to explain. There may be patterns of
both types that are statistically significant. There is
broad consensus [15, 21, 22, 231 that the success of
data mining will depend critically on the ability to
go beyond obvious patterns and find novel and use-
ful patterns [12]. Otherwise the results of mining will
often be large and lack novelty, making it overwhelm-
ing and unrewarding for the analyst to sieve through
them. A domain expert who is already familiar with
the application domain is very unlikely to be satisfied
with merely prevalent patterns, because (1) presum-
ably the company is already exploiting them to the
extent possible and (2) the competition knows about
these patterns as well. The payoff from data mining
lies in surprising second-order phenomena.

An ill-defined, vague notion of “domain knowledge”
gets in the way of separating the novel patterns from
the prevalent ones. In principle, one can propose var-
ious well-defined notions of domain knowledge. The
analyst has a mental multivariate distribution over the
attributes, and the system reports, from a certain class
of patterns, those that reduce the distance between the
mental distribution and the true distribution at the
quickest rate. Of course, it is impossible to implement
this in a real system.

1.1 Our contributions
This paper proposes and explores the notion that anal-
ysis of variation of inter-item correlations along time
can approximate the role of domain knowledge in the
search for interesting patterns. We concentrate on the
problem of boolean market basket data [l, 21. A set
of k items is declared as “interesting” not necessar-
ily because its absolute support exceeds a user-defined
threshold, but because the rehtionship between the
items changes over time. Furthermore, even if the sup-
port of the itemset changes over time, it is not consid-
ered interesting if the changes are totally exphined by
the changes in the support of smaller subsets of items.

Permission to covv without fee all or part of this material is
gmnted provided th”at the copies are not-made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication-and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 24th VLDB Conference
New York, USA, 1998

We develop this notion of interest based on the num-
ber of bits needed to encode a itemset sequence using a
specific coding scheme that we design. In this scheme
it takes relatively few bits to encode sequences of item-
sets that have steady correlation between items (which
are likely to be well-known). Conversely, a sequence
with large code length (relative to a baseline uncon-
strained coding scheme) hints at a possibly surprising
correlation [19]. The surprise value of the itemset is re-
lated to the difference or ratio between the constrained
and unconstrained code lengths. As a subroutine in
this computation, our analysis produces, in a formal

606

description length

Byron Dom

information-theoretic sense, the “best” segmentation
of time for the interesting itemsets, based on how the
relationship between items is changing. This segmen-
tation technique could be of independent interest.

Our work potentially leads to improved accuracy
and data understanding. Data collected over long in-
tervals are generated by processes with dri,fing param-
eters. A single model over all time may lead to poor
models and predictive accuracy. In this scenario, the
large volume of data available for mining hurts rather
than helps. Our analysis builds models for optimal
segments of time, avoiding this problem. Other appli-
cations include the segmentation of data for supervised
learning along time to discover interesting changes in
decision boundaries as time passes.

1.2 Comparison with other approaches
We prefer this somewhat involved analysis to simple
statistical tests. Any local estimate of support needs
a time window: a small window leads to poor statis-
tical confidence of estimated parameters and a large
window may skip over a surprising segment and aver-
age it into a larger, uninteresting one. Window size,
smoothing function, test statistic, surprise threshold,
will all be critical choices best made by one highly
experienced in the art. Similar statements hold for
approaches based on frequency transformations. We
wish to avoid any need for tuning and instead base ev-
erything on only one assumed property: that baskets
are independently drawn from a possibly drifting dis-
tribution. The distinction from statistical approaches
is discussed in detail in 57.

Compared to standard mining algorithms in which
the core operations are pattern generation and tuple
counting, our analyses involves more expensive compu-
tations. Part of the paper will describe techniques to
greatly reduce the computation cost, but the complex-
ity of the algorithms remains. We believe this stand
is justified in view of the aforesaid urgency for min-
ing tools to ignore mundane rules and discover novel
ones [12, 15, 21, 22, 231. Otherwise, the time saved in
computation may well be spent by analysts discarding
rules by inspection!

1.3 Organization of the paper
In $2 we review Information Theory basics and de-
scribe our model for sequences of market baskets. In
$3 we present the components of our analysis to find
surprising patterns. We give an overview of how these
fit together in $4. In $5 we present techniques for im-
proving the performance of our method. In $6 we re-
port on our experience with two real-life market basket
data sets. Related work and alternative approaches are
reviewed in $7 and concluding remarks made in $8.

2 Modeling sequences of market baskets
2.1 Information theory basics
The underlying premise in this work is that data which
can be described using very few bits is simple and pre-
dictable, and hence less likely to be found interesting
or surprising. Information Theory gives us a general

way to construct a model for given data while regard-
ing it as a compression problem. Imagine a sender S,
wishing to send some data z to a receiver R, using as
few bits as possible. A suitable model M is first trans-
mitted, consuming L(M) bits. Typically M is chosen
from a class of models and associated parameter space
that S and R have agreed upon in advance. For ex-
ample, S may transmit the mean and variance of a
normal distribution to R, if there is reason to believe
that the data follows a normal distribution.

Second, the data is encoded suitably and sent to
R, using what we denote as L(51M) bits of infor-
mation. Because R knows M, data compression
may be greatly enhanced, i.e., L(ZlM) may be much
smaller than L(5). Specifically, suppose Pr[zc’(M] is
the probability of a specific data value 2 given the
model M. Then Shannon’s classical Information The-
orem [lo] states that the data can be encoded in
L(z?[M) = - logPr[d]M] bits. Note that S and R
are motivated to pick a coding scheme that mini-
mizes L(M) + L(5lM). The initial choice of the pa-
rameters values of M are usually made to maximize
Pr[i]M]. Th .l e c assical Minimum Description Length
(MDL) principle [19] argues that this will generally
lead to models that capture exactly the regularities in
the data and avoid over-fitting to random deviations.
Example 1: Suppose we are given two bit strings of
identical length and asked to identify the “more com-
plex” one, without any further information. Then a
reasonable approach would be to compress both using
the “universal” Lempel-Ziv (LZ) compression scheme
and select the larger of the two compressed strings. LZ
yields asymptotically optimal compression: but does
not produce a model-based explanation of the data. If
the data were a finite sequence of floating point num-
bers drawn from a normal distribution, LZ could be a
poor choice. cl

2.2 Data and model for basket sequences
In our case, the raw data is a sequence (xc,) of market
baskets, each basket being a set of items, ordered by
time r. Let us focus on a fixed itemset with k items.
Then each basket contains one of the 2k possible sub-
sets of the k items in it. Thus, if we are reasoning
about k items, we can regard each basket to be the
outcome of tossing a 2’ sided coin (better called a die)
with the presence or absence of the i-th item encoded
in the i-th bit of the toss outcome written as a k-bit
number between 0 and ‘Lk - 1.

First consider the case where a sequence of tosses
(i.e., baskets) are generated from one coin. Our model
M associates with each face of the coin a probabil-
ity. For two items the model M, has four terms
pDo, pol, ~10, pi1 where ~00 denotes the probability that
both the items are absent, pal denotes the probability
that the first one is absent but the second is present
and so on. This notation generalizes to k items in the
obvious way.

To capture drift in the process underlying the has-
kets, we assume a random process that generates the
data as follows: it has a set of coins with various face

607

probabilities, unknown to us, the observers. It picks
some coin arbitrarily and then tosses it for an arbi-
trary number of trials before moving on to another
coin. Each coin thus defines a segment of time where
the itemset distribution is stationary. We can observe
only the sequence of outcomes. For simplicity and effi-
ciency we pick stationary models within each segment,
not ones whose parameters gradually drift with time.
This is in the same spirit as the simple decision bound-
aries used by classification and regression trees. More
complicated segment models can be used, but at larger
complexity.

To summarize, in our model A4 we represent a k-
itemset sequence as a set of segments where each seg-
ment is generated from a 2” sided coin. The model cost
L(M) has two parts: the parameter cost which for
each segment includes the cost of encoding the coin
biases like ~00 and ~01 and the segmentation cost
which includes the cost of encoding the number of seg-
ments and the boundary of each segment. The data
cost is estimated by applying Shannon’s theorem with
each segment and summing up the log probabilities
(since the segments are assumed to be independent).

3 Segmentation of basket sequences

We use the model introduced above as a basis for
defining the interest measure of an itemset. We de-
velop this definition in three steps. First we discuss
how to find the best segmentation of an itemset using
the model described above. We call this the uncon-
strained segmentation problem ($3.1). The uncon-
strairled model does not provide the best compression
because it ignores two factors. First, when modeling
a k-it.emset, user’s knowledge of k - 1 itemsets is not
exploited. Second, even when the individual param-
eters of the model change from segment to segment,
the relationship between the parameters may remain
constant over time. In the second stage we incorporate
these two factors into a constrained segmentation
problem ($3.2). Finally, we explore means of compar-
ing the complexity of diverse itemsets using a reference
segmentation for each ($3.3). If the difference or ratio
betwc:en the constrained and reference segmentation is
large, we regard the itemset as surprising.

3.1 Unconstrained segmentation

We will first discuss the simpler case of segmenting a
single item and then discuss generalizations to higher
dimensions.

3.1.1 Single item

If a store has only one item, each basket can be thought
of as the outcome of a single (2-sided) coin toss, based
on whether the item was purchased or not. Given a
sequence of T tosses, how do we find a segmentation?
This is not as simple a question as it may seem at
first glance. At one extreme, we can assume there are
T coins, each with bias 0 or 1: given this model, the
data fits perfectly; i.e., the probability of generating
the given sequence is 1. At the other extreme we can
posit only one coin: under this model the probability

of generating the given sequence may be very low if
indeed the sequence was generated from many coins
with diverse biases. One could try estimating biases
over windows of trials and then merge or split them.
The danger is in picking these windows. Small win-
dows will not give bias estimates with sufficient sta-
tistical confidence, and large windows may skip over a
very interesting but small segment where the bias was
remarkably different.

It turns out that there is a notion of the “correct”
segmentation of the given sequence, defined in terms
of MDL defined earlier and we next present a method
for finding such a segmentation.
Claim 2 The segmentation and coin pa.ra.meters tha,t
minimizes L(M) + L(ZIM) can be computed in O(T2)
time.
Proof. We construct a graph with T + 1 nodes, and
directed edges (i, j) for every 0 5 i < j 5 T. Let
there be t(i, j) trials between i and j, with hi(i, j)
heads and ho(i,j) tails (these observed values are col-
lectively called 5 above). Edge (i, j) is assigned a cost
c(i,j) which represents the model (sum of parameter
and segmentation cost) and data cost for encoding the
tosses between i (excluded) and j (included). Calcu-
lating this cost involves the following steps:
Estimating model parameters: First, we need to
find the model parameters pl(i,j) and po(i,j). The
values of these parameters that optimize the data fit
are their maximum likelihood (ML) estimates’ calcu-
lated from the data as: pi(i,j) = hl(i,j)/t(i, j), and
Po(i,Jl = 1 - Pl(i,j).

Finding data encoding cost: Then, we use the
above parameters to calculate the data encoding cost
for segment (i, j) (using Shannon’s theorem) as

L(+k?) = - 1ogp;‘p;” = - c, hrlogp,, (1)

where each parameter is over the segment (i, j).
Finding parameter encoding cost: We need to
transmit pl(i,j) (or ps(i,j); knowing one is enough).
Note that the maximum likelihood estimate for pl(i, j)
can take only one of t(i,j) + 1 values, so we need to
send only about log t(i,j) bits (although the parame-
ters are real numbers).
Finding segmentation cost: This is just the en-
coding for the boundaries of each segment (i,j), or
the number j itself, costing us 1ogT bits for each of
the m segments. (Actually, for m coins we just need
log (:I’,) bits, but this is very close to m log?’ for

m < T.)
Finally we find the shortest path from node 0 to

note T in O(lEl + IT/j log IVl) = O(P) time. Each
edge of the shortest path is a segment in the optimal
segmentation. 8

The capability to find the exact optimum is impor-
tant as a baseline even if the computation takes more

‘To avoid problems with parameters approaching zero or one
we use Laplace’s rule [16], but we ignore this detail in our de-
scription.

608

than linear time. Also, later we will explore means to
greatly reduce the computation cost in practice, while
producing a segmentation of near-optimal quality.

3.1.2 Larger itemsets
For Ic-itemsets, our model is a sequence generated by
a 2k-sided coin. We can apply the same shortest path
procedure as in the one-itemset case to find the best
segmentation. The only difference is in the detail of
computing the edge weights c(i, j) corresponding to
each segment.

Consider first the case of two items. Suppose we
are given a set oft > 0 baskets over two items, among
which has have neither of the items, hri have both, hro
have the first item but not the second, and ho1 have the
second and not the first. These induce parameters p,.,
as before. The data encoding cost is a direct extension
of the one-item case, viz., - C,,, h,, logp,,. However,
the way we estimate the model parameters p,, and en-
code their costs changes because for the two item case
there are two models to choose from. The first model
corresponds to the case where the two items are inde-
pendent, in which case only two parameters, pi. and p.1
are needed to specify the coin, the rest being calculated
as pll = pl.p.1, plo = pi. - ~11, etc. The parameter
cost in this case is log (t + 1)’ M 2logt. The second
model corresponds to when the items are dependent,
in which case we need three parameters to specify the
four-sided coin. The model cost is the logarithm of the
number of ways in which t trials can be divided into
four outcomes, log (‘i’) M 3 log t. For both models we
get the maximum likelihood estimates of the required
parameters from the data and use the parameters to
evaluate the data cost. The segmentation cost is also
the same as in the one-item case. We evaluate the to-
tal cost for the edge (i, j) for both model types and
take the smaller cost as c(i, j).

The number of possible models grows with the num-
ber of items. For 3-itemsets, depending on how the
marginals are related, there are eight possibilities. The
simplest case is when all two-way itemsets are inde-
pendent, in which case three parameters are needed.
The most general case is when all three-way marginals
are correlated, in which case seven parameters are
needed. Let the items be a,b, c. In between there
are three cases of the form “(a,b) independent, (b,c)
independent, (a, c) dependent” and three cases of the
form “(orb) dependent, (b,c) dependent, (a, c) inde-
pendent.” Four parameters suffice for all six cases.
Similar enumerations can be generated for larger item-
sets.

The general recipe for calculating edge weights for
any Ic-itemset is as follows: for each possible model M:

1. Estimate the model parameters using the corre-
sponding counts from the data. For example, for
the independent model in the two-itemset case,
we estimate pi. = hl./t and p.1 = h.,/t.

2. Estimate all the /c-dimensional parameters from
the model parameter calculated above. For exam-
ple, for independent model in two dimensions we
estimate pll = pl.p.1, plo = pl. - pll, etc. In gen-

3.

4.

5.
6.

eral, these parameters may not always have closed
form solutions for estimating them from lower di-
mensional probabilities. In 53.1.3 we discuss the
general procedure.
Find data encoding cost using above k-
dimensional parameters. This is a straight-
forward generalization of the the two itemset case,
- C,,, h,s log pm.
Find the parameter encoding cost for the inde-
pendent parameters of the model. If a model has
[parameters, llogt is often a good estimate, al-
though in some cases further refinements are pos-
sible, as discussed in 53.2.3.
Find the segmentation cost.
Find total cost as the sum of the data, parameter
and segmentation cost.

Finally, select the model with the smallest total cost
and assign its cost to the edge.

The number of models to be searched can increase
exponentially with the number of dimensions. How-
ever, we can greatly reduce the number by using the
following simple heuristic. If for a k - 1 dimensional
itemset, a particular model was found to be the best,
then for a k dimensional itemset start from that model
and only consider generalizations of that model. For
example, if for the two-itemset (a, b), the dependent
model was found better than the independent model
then for the three-itemset (a, b, c) do not consider any
model in which a and b are independent.

3.1.3 Estimating k dimensional probabilities
from marginals of fewer dimensions

In general, it is not always possible to get closed form
formulas for this estimation. Consider, for instance
the three-itemset case. Of the eight cases discussed
earlier, all but one yield-closed form solutions for $111.
For instance, when one of the item pairs (say a and b)
is dependent and the other two pairs are independent
we can calculate the expected value as fill1 = ~~.~p.~..
The problem case is when all three-way atomic prob-
abilities are correlated. In this case, there is no ex-
plicit formula for computing the expected support Flll
from the observed marginals. But there are simple it-
erative procedures [6, 81 that converge to the maxi-
mum likelihood (ML) estimate for Ijlll. The iteration
can be used even in cases where direct formulas exist;
the iterative process will yield (in one iteration) the
same answer as the closed form formulas when they
exist [6, page 831. We describe a classical algorithm
called Ba.rtlett’s method for finding the probability of
a k itemset given marginal probability of its subsets.
Bartlett’s iterative procedure: For simplicity we
discuss this process for three dimensions. The in-
put consists of twelve 2-way marginals: four for each
of three pairs of items namely: p~~.,pl~.,p~l.,p~~. for
item pair 1 and 2 and so on for the other two pairs.
The process converges to values for all the eight 3-
way probabilities fi1is,j&r,. . . , ljooo, so that these are
the “least restrictive or maximal likelihood” estimates
of the three dimensional probabilities while preserving

609

the specified values of the 2-way marginal probabili-
ties. That is, pii. = firi1 +fjiis and so on.

The process starts by first assigning a starting value
of 1 to each of the eight 3-way probabilities. Then in
each step of the iteration it scales the 3-way probabili-
ties so as to come closer to the observed marginals. It
repeats this process until a suitable error threshold is
reached.

Initialize Ijijr, = 1 for i, j, k E (0, 1)
While error between iterations is high

For each of the twelve two-way &arginals update the
3-way probabilities to fit that marginal better:
e.g., for ~101. update as:

fiOll = po~.Polr

ljOl0 = POlpOY PO11
Claim 3 ([S]) 2% e z era.tion is gvara.nteed to converge ‘t
for a.ny k.

3.2 A measure of surprise and the “single d
segmentation”

In this section we will propose some answers to this
question: How do we detect that one sequence of bas-
kets is more interesting than another? Intuitively, we
want an answer to have the following properties:

A k-itemset should not be found surprising simply
because it has larger support than a pre-specified
quantity, but because its support is significantly
different from what is expected given the marginal
supports of all proper subsets. Similar concerns
have been raised by Brin and others [22].

In order to produce a ranking by surprise mea-
sure, the measure should reflect, in a uniform
lvay across different itemsets with diverse absolute
::upport, the complexity of variation of correlation
along time.

To satisfy the first requirement: we need a method
of calculating expected support of an itemset from the
support of its subsets. First we estimate expected sup-
port of the single items. Lacking prior knowledge of
the data we can assume that all items are equally likely
(prior knowledge can be easily integrated). Therefore,
the expected support of each item in the data is the
ratio of the average transaction length to the number
of items.

For 2-itemsets, given the observed marginal sup-
ports pl. and p.1 of the individual items, the best
(maximum likelihood) estimate of the 2-itemset is
fill = pi.~.~ derived using the assumption that the
two itemsets are independent. If the actual support,
pll >> @ii then this 2-itemset is interesting. Thus, our
natural choice for the measure of surprise is

8 = Pl...l/&...l. (2)

For larger itemsets, we use the method discussed
in $3.1.3 to calculate the expected support from the
lower dimensional marginals. For instance, for three-
itemsets, if all two-way marginals are dependent we use
the iterative procedure discussed earlier to calculate
expected support.

The above notion generalizes previous work on es-
timating the expected value by Brin et al [22] that
make the simplifying assumption that three-way item-
sets are found interesting only when none of the three
two-way marginals were dependent.

3.2.1 The single 0 segmentation
Recall from 52.1 our scheme of compressing the data
w.r.t. a model M chosen from a certain model class.
In the unconstrained case in $3.1, M could be any
sequence of coins.

Given two basket sequences, we can perform the
unconstrained segmentation, but given these two coin
sequences, which is more complex? A direct formal
way of comparing the complexity of two coin sequences
appears elusive. For example, a large number of un-
constrained segments for a 2-itemset may not be sur-
prising if the segmentation is always caused by one of
the items and the items are always independent.

Since we assume that the analyst assumes “constant
unless proved otherwise,” we must encode the data
w.r.t. a model M’ from the restricted model class con-
taining all possible sequences of coins in which all coins
have the same 0 value (say the value that is computed
from data over all time). We call this the %ingle-8
segmentation.” Roughly speaking, itemsets with large
code length in this model class depart from the ana-
lyst’s prior expectation and are therefore interesting.

3.2.2 Approximate solution for general k

Consider a 2-itemset. First we take the entire data and
find which of the independent or the dependent model
fits the data better using the procedure in $3.1.2. Call
this the global model Mg. If Mg is the independent
model, the global value of 0 is 1 (costing just one bit)
otherwise estimate the value as:

h(0, q/T

e(olT) = (h,.(O, T)/T)(h.l(O,T)/T)’ (3)

For setting up the shortest path instance, we must
then assign the coding cost to edge (i,j). The seg-
mentation and parameter costs are computed as be-
fore. To compute the data cost, we must estimate
the coin face probabilities given the observed record
colds h00, h01, ho, h (over the t records in this time
range (i, j)). W e calculate from these the observed
marginals 17.1 = bl/t and pi. = hl./t, which then give
all the parameters of our coin for segment (i, j) via
Cl1 = @.ipr., $10 = ~1. - $11, etc. If the resulting
coin is inconsistent (i.e., some face probability is not
between zero and one) we declare the edge (i, j) as
having infinite cost. It is easy to see that there is at
least one feasible path in the shortest path problem,
viz., the (0,T) path, that remains unaffected by this
approximation. In $3.2.3 we discuss a more elaborate
exact procedure for k = 2. Given this coin we estimate
the probability of the observed data in this segment as
Pr[QS] = CT,, b,, logi%,, as before. We add the data
cost to the model cost as evaluated in the various cases
described in $3.1.2 and take the minimum for the edge
cost c(i, j).

610

The procedure remains essentially unchanged for
larger itemsets. For a k-itemset, we find over all time
the best model 1M,. If Mg is the complete model in-
volving k dimensional probabilities as parameters, the
expected value &...i(O, T) is computed by Bartlett’s
iteration using the k - 1 dimensional marginals, and
the global 8 is then calculated as

8(0,T) = m.
For segment (i,j), we compute observed k - 1 and
marginals p...(i, j) over only the records in interval
(i, j). Next we invoke the iterative algorithm on these
observed marginals to obtain fii...l, and compute all
the other ~7s as discussed for the two-item case. Again,
if the coin becomes inconsistent we mark the edge as
infeasible; this can be looked at as a kind of approx-
imation. If Mg is not the complete model, we apply
the same model iUs on all the segments and compute
the edge cost as in the unconstrained case.

3.2.3 Exact solution for 2-itemsets’
For the important special case of 2-itemsets, we do
not need the approximate above; we have an exact
characterization of the code length. We envision a
system with precise analysis for the k = 2 case and
approximations beyond; in 53.1.2 we noted that the
most interesting patterns we found were for k = 2,
and indeed all patterns for k = 3 were explained by
2-way marginals.

The potential difficulty with summarily discarding
inconsistent coins as above is that there may exist a
consistent coin satisfying the global 0 constraint which
does not exactly fit the observed marginals but still has
a reasonably high data probability.

Therefore, we cannot compute the p’s directly from
observed data, but must cast this as a constrained op-
timization problem. Thus we want to assign consistent
values to variables pr,= : T, s E (0, 1) is as to obey the
constraints and maximize the data probability (mini-
mize data cost). Let the observed numbers of “heads”
of the four types be h,,,. Then we must solve the
following constrained non-linear optimization problem
over unknowns p,., (all other quantities are numeri-
cally known):

max c r,sE{O,l} hr,s l%Pr,,

subject to

This can be solved using a variety of iterative tech-
niques [14]. WI e use a simple steepest ascent algorithm.

Finally we turn to the question of the optimal way
of encoding the parameters. To do this we produce a
particular coding scheme and argue that nothing can
be better. Here is the scheme, we omit the argument
for lack of space. Recall that 8 is transmitted once
for all segments; this is a negligible cost. For all seg-
ments, this fixed value of 8 will be used. For segment

2This section can be skipped on first reading.

(i,j), we will send two parameters. As we have noted
earlier, although these are interpreted as real num-
bers, the model can only assume a discrete number of
configurations, and we can thus send the parameters
as integers. We will pick two integers &. and 4.i to
send. The intent is that the receiver will compute the
model as ~1, = +1./t, p.1 = &l/t, pll = 0&.#.,, and
thus know all p,,. We have to ensure that the #J’S are
such that all prs’s are consistent, specifically, that the
following hold:

Pll 5 PI., Pll I P.1, and PI. +P.I I 1 +PII.

Replacing by #J’S and simplifying, we get:

dl. 5 9, h1 5 tie, and 41. + 4.1 5 t + ~h.4.1,

apart from the standard constraints 5, 5 t. The num-
ber of bits required to encode 41. and 4.1 is the log of
the number of ways in which they can be chosen sub-
ject to the constraints. Because the boundaries are
smooth, we can use continuous analysis and approxi-
mate the number of choices by the volume within the
feasibility region of the constraints.

There are two cases, 0 2 1 and 8 < 1. In the former
case, it is easy to verify that the constraints 41. 5 t/e
and 4.1 5 t/e are sufficient to yield a consistent 4-
sided coin. The last constraint kicks in when 8 < 1.
Simplifying notation, we need to find the area within
the region bounded by

z,y>O and ~+y<t+:zy,

which evaluates to

s

t
t-x

0 1 - (e/G
da: = 7 ln(1 - ej] .(5)

We briefly discuss the computational problem of
carrying the exact analysis over to larger itemsets. For
k 2 3, the Q-constraint in equation (4) or the volume
evaluation in equation (5) cannot be written in closed
form in general. Numerical or Monte-Carlo integration
may be too expensive.

3.3 Piecewise constant 8 segmentation
Given files of diverse length, it is not reasonable to
compress them, compare the absolute sizes of the com-
pressed files, and pick the largest one as most complex.
The compression mtio would be a better indicator of
complexity (large ratio of original to final size implies
less complexity). Similarly, the code-length of various
itemsets using the constant-8 segmentation are not di-
rectly comparable; a baseline code-length is needed for
each itemset.

One option is to use the unconstrained code-length.
it may be either smaller or larger than the constrained
code-length. It can be larger in a 2-item situation, for
example, when the unconstrained segmentation is in-
duced mostly by sudden changes in only one marginal
probability, but the value of 8 is the same in all
segments, so that the joint probability tracks these

611

changes. The unconstrained segmentation will assign
a new three-parameter coin to each of these segments.
In contrast, the single-8 segmentation lucks out, pay-
ing only for two parameters per segment, and paying
for 0 only once. Conversely, the unconstrained code-
length can be smaller if the constrained model was a
poor fit to the data. Thus positive differences are in-
teresting, and negative differences are not (but zero is
not a very significant notch on this scale).

Another option for the baseline would be a piece-
wise constant 0 segmentation. This is a relaxation
of the single-0 model class. A piecewise constant 0
model first specifies an outer segmentation of (0,T).
Over each outer segment, it specifies a single value of
0. Then, for each outer segment, it specifies an in-
ner segmentation, each assigned to one coin. All inner
coins assigned to an outer segment have the same value
of 8, the one associated with the outer segment. Fi-
nally, other necessary parameters for inner coins are
specified as in the single 0 case.

Finding a piecewise constant 0 segmentation is sim-
ple given the previous building blocks. We set up a
shortest path problem again. To assign the cost for
edge (;, j), we run the constant 0 segmentation algo-
rithm on the (i, j) segment of the data. To avoid too
many invocations of the constant 0 procedure in prac-
tice, .we can heuristically restrict potential segmenta-
tion points to those of the unconstrained segmentation.
For e&iency and simplicity we use the unconstrained
baseline in our experiments.

4 Algorithm summary
In the previous section we described the building
blocks of our technique. Here we put them together
to show an overall picture of our system. We pro-
ceed from small to large itemsets as usual. However,
because our surprise measure is conditioned on the
marginals and on variation along time, we have to de-
sign pruning strategies different from the simple fixed
support filtering commonly used in bottom-up itemset
searcli algorithms (although any such minimum sup-
port can also be gainfully used). Thus the outline of
our algorithm takes the following form.
One item:

1. Select only those items that can possibly have
more than one segment. This is the pruning cri-
lerion discussed in $5.1.

2. Find unconstrained segments for single items.
Also find the code length using only one global
coin from start to finish. This is also the (triv-
ial) constmined segmentation problem for single
items.

3. Order items by the difference, ratio, or relative
difference of these code lengths. Display items to
user.

Two or more items:
1. From marginals of proper subsets, compute the

maximum support the itemset could have along
time. Call this the support envelope.

2. From the envelope estimate if the itemset could
possibly have more than one segment. If not elim-

inate the itemset. This property of prunability is
monotonic with respect to itemset containment,
i.e., if an itemset can have at most one segment, no
superset can have more. Thus we can use subset-
based pruning when it helps.

3. Compute two segmentations of the itemset: the
piecewise constant 8 segmentation, and the single
e segmentation.

4. Use the difference, ratio, or relative difference
of code-lengths to order the itemsets by surprise
due.

5 Computational issues
We discuss two important performance issues in this
section: how to control itemset expansion via pruning,
and how to compute near-optimal segmentations in
near-linear time.

5.1 Pruning criteria
We prune an itemset when its support sequence along
time is so close to zero that it will not be possible
to get more than one segment for any sequence that
is enveloped by this sequence. This is superior to an
absolute aggregated support based pruning because it
can differentiate between the following two sequences
both of which have the same aggregated support: One
of the sequences has all the ones concentrated in one
or two contiguous segments and another has the ones
spread uniformly over the entire time base. Clearly,
the former is more interesting than the latter. How-
ever, if for some economic reasons one is interested
only in itemsets with support above a value, we can
always include that as an additional filtering step.

This property, like the absolute support based prun-
ing is also monotonic, meaning if an itemset is pruned
all its supersets must also be pruned. Therefore, we
can apply the “aprior?’ technique [2] of pruning any
itemsets with at least one subsets already pruned, dur-
ing the candidate generation phase. In addition, we
can also prune by looking at the estimated upper en-
velope on the support sequence of an itemset. This
upper envelope is calculated during candidate genera-
tion by taking a minimum of the supports of each of
the immediate subsets at each point in time. If this
upper envelope meets the pruning criteria below, we
drop the itemset.
Claim 4 A sequence 5’ of length n cmnot be pruned if
there is a.t lea.st a fraction f of the sequence for which
the estima.te of coin bia.s p is lmge enough to satisfy

plog(l/f) > % - (1 - P) Wl - P) (6)

t-((llf) - P)hdl - Pf).

Proof. (Sketch) C onsider a sequence y’ that is en-
veloped by 2. The best case in which y’can have two
segments is when it is identical to 5 for some segment
(i, j) in time and zero everywhere else. For such a
sequence, find two coding costs: Cl assuming the en-
tire sequence is a single segment and Cz assuming a
separate segment for (i, j). Cl has higher data encod-
ing cost whereas CZ has at least one extra segment and

612

thus pays higher parameter and segmentation cost (see
$3.1). These costs can be expressed in terms of f,p, n
where f, p refer to the parameters of the sequence (i, j).
We then use the inequality Cl > CZ to find the above
condition. n

5.2 Fast shortest path approximations

The second important performance issue concerns the
shortest path computation. This is a key subroutine in
all our algorithms. For data mining applications with
millions of transactions, it is clearly unacceptable to
have quadratic complexity along time. In this section
we will study how to arrest this quadratic growth and
still get a good segmentation.

One immediate way to cut d.own running time is to
pre-aggregate the data. In developing the algorithms,
we have been dealing with each market basket as one
reading of a random variable, but many data sets are
pre-aggregated at daily or weekly levels. Given such
data, it clearly makes no sense to segment finer than
a day or week. In fact, if the input data is not ag-
gregated at all, i.e. it is a O-l sequence, optimality is
preserved in first taking run lengths of zeroes and ones.
However, care may be needed to aggregate at coarser
levels. Larger chunks will cut down running time but
may gloss over narrow, interesting segments. Thus,
a simple fixed size chunking and pre-aggregation, fol-
lowed by a single shortest path computation, will not
always achieve our goal.
The heuristic: Suppose there are T transactions and
thus T+l nodes in the graph. Fix a constant E between
0 and 1 to be decided later and break up the graph
into T1-’ chunks, each having T’ nodes in it. Now we
solve T1-’ instances of shortest path over the chunks,
each taking O(T*‘) time, for a total time of O(Tl+‘).
Let the nodes on the shortest path in some chunk be
called chosen. Heuristically, we hope that most chunks
are completely contained within some global optimal
segment, so that there are very few edges in the local
shortest path for each chunk. Jf this is not the case,
the chunk size is too large.

We now construct a sparsified version of the orig-
inal graph. All T + 1 nodes are there, but the only
edges are those that go from one chosen node to an-
other. If our heuristic assumption above holds, this
graph has only O(T’-“) chosen nodes and a final short-
est path run on it takes O(T2--2L) time. The total
time is thus O(T ‘+’ + T2-2r), which has the smallest
value, O(T4j3), f or E = i, assuming, of course, that
this choice yields a small number of chosen nodes. We
finally report the shortest path found in the sparse
graph.
Analysis. How about the quality of the approximate
segmentation compared to the optimal?
Claim 5 The a.pprodmate shortest path has corre-
sponding code length at most twice the optima.1.
Proof. (Can be skipped.) Consider a chunk c hav-
ing nodes e,, m,, rcr where the global optimal short-
est path has edges (.!,, m,) and (m,, rg), whereas the
chunk’s local shortest path skips from e, to T, avoiding

f‘

Figure 1: Illustration of approximate short.est. pat,hs.

m,. (Note that e,, T, are not necessarily the leftmost
or rightmost nodes of c, .&, rg could also belong to c,
and some of these nodes could be one and the same.j
Note the parameter and data encoding costs Ml and
Di through MT and 07 in Figure 1. Consider the total
cost of the path (e,, &, r,, TV), which is less than the
cost of the path (!,, &, m,, rcr rg), because (!,, rc) was
preferred by the local shortest path to (&, mcr rc). We
will now compare (-&, m,) in optimal with (&,, &, m,),
and (mcr r9) in optimal with (mcr rc, rg).

For all edges, the global segmentation cost is the
same, 5’ = log T. Let Ml, D1 be the parameter and
data costs for (e,, m,) in optimal, and M2, D2; M3, D3
be the maximum likelihood model and data costs for
($,,e,) and (&,m,) respectively. Then observe that
D2+D3 5 DI, and A42 + A& < 2Ml. This is because
D2 and D3 are ML estimates. Similarly, Dd + Dg 5
Dg and M4 + MS 5 ‘LM6. Thus we have to compare
between 2S + (Ml + 01) + (M6 + DC) (cost of the
optimal) and4S+(M2+D2+M3+D3)+(M4+D4+
MS + 05) (cost of approximate). The approximate
cost is at most 2s + Ml + MS larger. Since optimal
is at least 2S + Ml + MC large, this is a factor of at
most 2. n

Consider how the optimal path may interact with
a given chunk c. It may never touch any node in c,
in which case there is nothing to do. If it does, it
enters c at some node and leaves at another (perhaps
the same) node. If these nodes are not chosen, we
can make the adjustment above to construct a path
passing through only chosen nodes that has at most
two times the optimal cost. In practice, if e is small
enough, the optimal path avoids most chunks and so
the cost increase is quite negligible, less than 0.2%
in our experiments. It is roughly proportional to the
number of hops in the optimal path.
Exploiting marginal segmentations: Another
source of information that can be exploited for faster
segmentation is the segmentation of marginals. The
advantage of using marginals as against a fixed width
chunking is that statistically, most swings in the joint
distribution are explained by marginals. Note that the
heuristic and analysis does not depend on how the ini-
tial chunks are derived.

6 Experiments and experience

We developed a prototype and studied real-life market
basket data over several years. Dataset-A consisted of
2.8 million transactions spanning over seven years from

613

Figure 2: Effect of E on the fast shortest path heuristic.
One line shows running time and the other shows quality
of the result. If optimal uses b’ bits and the heuristic uses
b bits t,he quantity plotted is b/b* - 1.

1987 to 1993. The time stamps with each transaction
was recorded to a granularity of a day. Therefore, each
sequence was of length at most 2590. There were 15.8
thousand total number of items and the average length
of a transaction was 2.62. Dataset-B consisted of 1.65
million transactions spanning over a period of three
years from 1991 to 1993. Here again, the recording
granularity was a day yielding a total of 1092 time
points for each item sequence. There were a total of 69
thousand items and the average length of a transaction
was 1.6.

WC describe the performance of our system in s6.1,
and in $6.2 we evaluate the quality of the output of
our system, using anecdotal evidence as well as quan-
titati rre measures.

6.1 Performance

The apparent complexity of our data analyses may
evoke questions about practicality. Actually, our
method works within very reasonable time. The main
potential complexity was in the shortest path compu-
tation. This was significantly mitigated by our fast
shortest path heuristic. Figure 2 shows how the fast
approximation can cut down the time for shortest path
computation. Specifically we study the effect of E be-
tween i and 1. First consider the plot of running time
against e. It is evident that for a broad range of E, the
time taken by the approximate algorithm is smaller
than that of the optimal algorithm by more than an or-
der of magnitude. It is not monotonic: there is a small
valley near .4. At small E, there are many chunks but
almost never more than two chosen nodes per chunk,
i.e. their endpoints. Most of the work is in the fi-
nal phase. At larger E, there are larger, fewer chunks;
there is more work in the first phase, and perhaps more
chosen nodes in the second phase.

Next consider the plot of error against E. We plot
the ratio of approximate bits to optimal bits minus
one. The big message is that the error is tiny, less than
.2% t.ypically. Error also shows non-monotonicity. At
small e, MDL is extremely unwilling to posit more than
one coin per chunk, but this is OK since tiny chunks
are unlikely to straddle optimal segment boundaries.
As chunk size increases, MDL maintains this stand for
some time even as errors accumulate because of strad-
dling. Eventually, MDL gives in and increases chosen
nodes, at which point the final phase picks up good

paths again. Summarizing, the fast heuristic enables
our analysis to execute within reasonable time without
losing accuracy.

6.2 Quality of results

In this section we compare the quality of the output of
our algorithm with that of simpler or previously known
alternatives.

MDL: Our approach as discussed in this paper.

Stat: This is a standard statistical approach where
data is first aggregated to some level of granular-
ity (a week by default in our experiments). For
each such regular segment, we measure the 13 value
and find the spread (ratio of standard deviation
and mean) of 8 over all the segments. We order
itemsets based on this measure. We experimented
with four other measures of interest: standard de-
viation of 0, spread of chi-squared values, spread
and standard deviation of p-values. We report
comparisons with only the spread of 0 measure
since it showed the best overall results.

MDL-Stat: A shortcoming of the above method is
that users need to specify a fixed window size to
segment the sequence. The MDL-based method
can find the best segmentation automatically.
Therefore, we test a hybrid of the two methods
above where we first use the MDL approach to
get the best segmentation (by solving the uncon-
strained segmentation problem). Next, we order
itemsets on the spread of the 0 between segments
as in the statistical approach.

Correlation: In this approach, we ignore time and
simply calculate the 0 value over the entire se-
quence aggregated to a single point.

We present three kinds of evaluation. First we
present anecdotal evidence (56.2.1) that the top sets
output by our method are more interesting than those
from the alternatives, and explain why this is the case.
Next we undertake a more quantitative evaluation. We
consider the top items found interesting by our method
and find their positions in the itemset orderings of the
alternative methods. We call this the ra.nlc-order eval-
uation ($6.2.2). Th en, we evaluate the sharpness or
selectivity of the different approaches. We consider
what fraction of the total itemsets have “high” values
of the interest measure. Intuitively, a method where a
very small number of itemsets have high values of the
interest measure is better than another where the high
interest values are spread over large number of item-
sets making it harder to define a sharp cut-off. We
call this the selectivity evalzlation ($6.2.3). For these
comparisons we consider itemsets of size two; in our ex-
periments with these large datasets we have not found
any 3-itemset which is surprising given the marginals
of item subsets.

614

0.035 0.14 0.006
0.03 0.12 0.007

0.025 01 0.006

0.02 0.06 0.005

0.015 0.06
0.004

0.01 0.04
0.003
0.002

0.005 0.02 0.001
0 0 n

75 1M) 125 150 175 200 0 25 50 75 100 125 150 175 200 225

200 0 25 50 75 100 125 150 175 200 225 1500000 2000000 2500000 3000000

75 100 125 150 175 200

Stat and MDL-Stat

0 25 50 75 100 125 150 175 200 225

MDL

2OWOW 2500400

Correlation

Figure 3: Sequences ranked top by each of the four methods. The x-axis shows time. The top row shows marginals pl.
and p.1 averaged over a weeklv window. The middle row shows the support pll of both items in a basket, and the lowest
row shows the 0 values.

6.2.1 Anecdotes

In Figure 3 we show various sequences for three pairs of
itemsets. The first itemset (first column) was ranked
very high by the Stat method and the MDL-Stat meth-
ods but was not found interesting by MDL. The sec-
ond item pair was ranked high by MDL but was ranked
very low by all of the other approaches (did not appear
in the top several hundred, or lo%, of their ranked list)
and the final itemset (third column) was ranked high
by Correlation but was not found interesting by MDL.

A quick look shows that 0 fluctuates a fair amount
for each of the three cases. That is normal. We want
to separate statistically significant fluctuations from
random noise. A closer look at these sequences shows
these differences.

Consider the itemset that was found near the top of
the Stat and the MDL-Stat list but was found uninter-
esting by MDL (first column). The spread of the 13 val-
ues is high for this sequence because of the high peaks
of 0 caused due to small support of the marginals. The
MDL-based approach is robust to such small marginals
since these end up having small code lengths. The
items turned out to be complementary: polo shirt and
shorts.

Now, consider the itemset that was picked as in-
teresting by MDL but was ranked low by the other
two methods (second column). Once we ignore short
range noise in 0, we notice that it increases from 2 (al-
most independent) to around 17 over a steady range.
The change happens gradually with the result that the
deviation-based measures do not find this interesting.
The items were men’s and women’s shorts. These do
not have complementary roles and there is no obvi-
ous reason why dependence between these two items

should increase with time, and yet the pattern is sta-
tistically significant. We are therefore justified in re-
garding this as a surprising pattern.

For the itemset that was ranked high based on Cor-
relation but not by MDL, we observe that 0 fluctuates
around a large constant mean of 250, but the fluctu-
ation is small relative to 250, compared to the MDL
topper. The item pair turned out to be bedsheets and
pillow-cases, which people routinely buy together.

6.2.2 Rank order

As far as the user is concerned, an exact measure of
complexity of itemset sequences is less important than
the ordering it imposes on itemsets. In a typical appli-
cation, we envision that the user will be shown ranked
lists of the most surprising itemsets (by some measure)
from single to double to larger itemsets which are not
explained by smaller itemsets shown earlier in the list.
Accordingly, in this section, we will compare the rank-
ings computed using the various suggested approaches.
6.2.2.1 Comparing rankings: In the graphs in
Figure 4 we plot the ranks assigned by MDL (y-axis)
against the rank assigned by the Stat and MDL-Stat
methods. (To reduce clutter a random collection of
500 itemset pairs are plotted.) First note that there is
no strong correlation between the MDL and the Stat
method. The correlation coefficient (over all itemset
pairs) is 0.02 which is practically close to zero. With
better segmentation using the MDL-Stat method the
correlation improves from 0.02 to 0.08 as shown by
the second figure but the correlation is still not strong
enough for te method to be a substitute for MDL. For
instance, on zooming to the 100 by 100 grid near the
origin we find that only 11 of the top 100 itemsets in

615

the MDL list occur in the top-100 MDL-Stat list.

0 STit 1000 1MO 0 rank MDrStat. rzk
correlation = 0.02 correlation = 0.08

Figure 4: Scatt.er plots comparing ranks of itemsets in dif-
ferent. methods. In both figures t,he y axis is t,he rank as-
signed by MDL.

6.2.2.2 Sensitivity to window sizes of the Stat
method. Another potential problem with the Stat
approach is coming up with a good window size over
which to compute 9. To show the sensitivity of the
result to this parameter in Figure 5 we show the cor-
relation between the Stat method for different values
of periodicity with the MDL method. As we increase
the window size from 1 week to 4 weeks the correla-
tion with MDL increases but then drop slightly as we
incre;Lse the window size further. The best correlation
is achieved when we use MDL to find the best seg-
mentation as indicated by the extreme point marked
‘LOpt”.

Figure 5: Change in correlation with the MDL approach
wit,h difference window sizes.

6.2.3 Selectivity
We give a measure of the selectivity of the different
methods in filtering interesting itemsets from the rest.
This is related to the sharpness with which the count of
the number of itemsets with interest above a threshold
falls. In Figure 6 we compare this measure for different
methods. The z-axis shows the interest measure used
by the method and the y axis shows the count of the
number of itemsets above a given interest value. Note
that the sharpest gradient is obtained by the MDL
method. Out of a total of 1600 itemsets, less than 50
have interest measure greater than zero. The number
is significantly higher for the other three methods.

7 Related work
We review related work spanning Statistics, Machine
Learning, and Data Mining and discuss how our work
compares with existing approaches.

‘Stat ”
0

MLL-Stat

Figure 6: Comparing sharpness of select,ivit,y for the four
methods. The z-axis shows the interest. value used by that,
met,hod. The y axis shows the count of the number of
it,emset,s above a given interest. value.

Statistics. In principle, our problem does permit a
standard statistical approach involving the following
steps:

Decide on a model M of the time series: usually
using deep domain knowledge of the process.
Choose a suitable smoothing window w1 and es-
timate the model parameter over many windows
where the process can be assumed to be station-
ary. Also devise a confidence test. Various simpli-
fying assumptions such as normal approximations
may be made at this stage.
To judge if another (recent.) window w2 shows a
shift, estimate its parameters and apply the con-
fidence test to it,, reporting deviations more than
a threshold a.

This approach requires the user to make at least,
four critical choices: .M, WI, w2 and a. Significant
tuning and domain expertize may be entailed. An ap-
proximation that may be valid in one application may
behave poorly in another setting. For example: we al-
ready saw in Section 6 how different window sizes can
give different interest rankings. Such issues are echoed
even in textbooks on the subject [5, Page 541:

It is difficult to formulate [smoothing] and give a
mathematical statistical solutiou. The practitiouer,
thus, must proceed on the basis of general experience
aud intuitiou Smoothiug leads to au estimated
treud that is descriptive rather thau aualytic or ex-
placatory. Because it is uot based on au explicit
probabilistic model, the method cauuot be treated
fully aucl rigorously in terms of mathematical statis-
tics.

Our work is an attempt to address this very issue.
A system which needs no tuning is closer to the needs
of mining systems that must deal with diverse data.
Machine Learning. Our segmentation problem is in
some sense a one-dimensional unsupervised clustering
scenario. Similar segmentation problems have been
addressed by Dom [ll] in the context of image seg-

616

mentation, Rissanen and Shedler [20] in the context of
identifying stretches of production or short-lived items
in a factory, and Ron and F’reund [13] and Blum and
Chalasani [7] in the context of learning from a set of
distributions. Most of the proposed algorithms are
worse than quadratic, and none deal with identifying
segments based only on the drift of the rektionship
between variables, i.e., potentially ignoring drifts that
are well-explained by drifts in the marginals.
Data Mining. The issue of efficiently updating min-
ing results incrementally is relatively well-studied [9,
24, 31 in the data mining literature. A few recent pa-
pers have also addressed the issue of discovering inter-
esting patterns along time for market basket data. Oz-
den et al present an algorithm for discovering “cyclic”
associations rules provided the user specifies period(s)
and segment size(s) of interest [HI. Lent et al. in [17]
discuss how a plot of support versus time for frequent
itemsets can be queried to find interesting trends along
time. Their methodology is to first partition the data
into a fixed number of segments, find support in each
of these segments and then provide a query interface
for the resulting timeseries as discussed in [4]; query-
ing based on shapes of the time series can be used as
a good user interface in front of our system.

8 Conclusion and future work

We have proposed and explored a new approach to
extracting temporally surprising patterns, as against
just prevalent patterns, from market basket databases.
This is an attempt to substitute the user’s domain
knowledge and hence effectively eliminate patterns
that are already well-known. We used the minimum
description length principle together with an appropri-
ate encoding scheme and model class to achieve this.
No domain expertise, model selection, or parameter
tuning is needed from the user. Experiments with mar-
ket basket data showed that our method is effective
in eliminating prevalent and obvious itemsets (such as
milk and cereal), while extracting itemsets with no ob-
vious complementary relationship showing statistically
strong variation of dependence along time.
Seasonal variations: Our work opens up many av-
enues for future exploration. In our experiments,
the top ranking itemsets had seasonal marginals, but
seasonality of 8 was not a major reason for high
ranks. Nevertheless, it will be interesting to handle
predictable seasonal variation. The current coding
scheme has to be extended to recognize simplicity in
the regular reuse of coin parameters, perhaps by trans-
mitting an index to a known coin from the past, not
all its parameters from scratch.
Incremental mining: The attention to time pro-
vides a very natural framework for doing incremental
mining. Rather than fold new transactions into global
estimates of support [9], one can maintain incremental
shortest paths and integrate the new segment of data
into the existing segmentation.

Acknowledgement. Thanks’ to Rakesh Agrawal,
Trang Nguyen, and Ramakrishnan Srikant for helpful

discussions and Martin van den Berg for comments on
the manuscript. We used Andrew Goldberg’s shortest
path library as a starting point for our system.

References
111

121

[31

[41

[51

b51
PI

b31

Dl

1101
[111

1121

[I31

D41

[I51

b31

1171

k31

1191
PO1

Pll

[=I

D31

[241

R. Agrawal, T. Imielinski, and A. Swami. Database mining: A
performance perspective. IEEE Tmnsactions on Knowledge
and Data Engineering, 5(6):914-925, December 1993.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast Discovery of Association Rules. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth. and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining,
chapter 12. pages 307-328. AAAI/MIT Press, 1996.
R. Agrawal and G. P&la. Active data mining. In Proc. of the
1st Int’l Conference on Knowledge Discovery in Databases
and Data Mining, Montreal. Canada, August 1995.
R. Agrawal, G. Psaila, E. L. Wimmers, and M. Z&it. Querying
shapes of histories. In Proc. of the 21st Int’l Conference on
Very Large Databases, Zurich, Switzerland, September 1995.
T. W. Anderson. The statistical analysis of time series. John
Wiley 8i Sons, Inc, 1971.
Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate
Analysis theory and practice. The MIT Press, 1975.
A. Blum and P. Chalasani. Learning switching concepts. In
Proc. fifth annual workshop on cmputational learning theory,
1992.
B.S.Everitt. The analysis of contingency tables. Monographs
on statistics and applied probability 45. Chapman & Hall, sec-
ond edition, 1992.
D. Cheung, J. Han, V. NC, and C. Wong. Maintenance of
discovered association rules m large databases: An incremental
updating techniques. In Proc. of 1996 Int’l Conference on
Data Engineering, New Orleans, USA, February 1996.
T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley and Sons, Inc., 1991.
B. Dom. MDL estimation with small sample sines including an
application to the problem of segmenting binary strings using
Bernoulli models. In International Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer So-
ciety, June 1997. longer version: IBM Research Report RJ 9997
(89085).
U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data
mining to knowledge discover: and overview. In U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthuruswamy, edi-
tors, Advances in Knowledge Discovery and Data Mining.
AAAIfMIT Press, 1996.
Y. Freund and D. Ron. Learning to model sequences gener-
ated by switching distributions. In Proceedings of the Eighth
Annual ACM Conference on Comoutational Learnino Theorv
(COLT), 1995. .
P. E. Gill, W. Murray, and M. H. Wright. Practical Optimiza-
tion. Academic Press, 1981.
M. Klemettinen, H. Mannila. P. Ronkainen, H. Toivonen, and
A. I. Verkamo. Findine interesting rules from laree sets of dis-
covered association rules. In Third International Conference
on Information and Knowledge Management, pages 401-407,
1994.
P.-S. Laplace. Philosophical Essays on Probabilities. Springer-
Verlag. New York, 1995. Translated by A. 1. Dale from the 5th
Fren& edition of 1825.
B. Lent, R. Agrawal, and R. Srikant. Discovering Trends in
Text Databases. In Proc. of the 3rd Int’l Gonfe~ence on
Knowledge Discovery in Da&bases and Data Miking, New-
port Beach, California, August 1997.
B. Orden. S. Ramaswamy, and A. Silberschats. Cyclic associ-
ation rules. In Proc. Int’l Conference on Data Engineering,
1998.
J. Rissanen. Stochastic complexity in statistical inquiry. World
scientijic sew* in computer science, 15, 1989.
J. Rissanen and G. Shedler. Failure-time prediction. Technical
Report RJ 9745. IBM Research Division, Almaden Research
Center, 650 Harry Road, San Jose CA 95120-6099, 1994.
A. Silberschatz and A. Tuzhilin. What makes patterns inter-
esting in knowledge discovery systems. IEEE Transactions on
Knowledge and Data Engineering. 5(6):970-974, 1996. Special
issue on Data Mining.
C. Silverstein. R. Motwani, and S. Brin. Beyond market bas-
kets: Generalizing association rules to correlations. In SIG-
MOD, 1997.
C. Stedman. Data mining for fool’s aold. Computerworld.
31(48). Dec. 1997.
P. Utgoff, N. Berkman, and J. Clause. Decision tree induc-
tion based on efficient tree restructuring. Machine learning
journal, Ott 1997.

617

