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Abstract 
We propose a new notion of surprising temporal pat- 

terns in market. basket data, and algorithms to find such 
pat,terns. This is distinct, from finding frequent pat-terns as 
addressed in the common mining literature. We argue that. 
once the analyst. is already familiar with prevalent patterns 
in t,he data, the greatest, increment,al benefit. is likely t,o be 
from changes in the relationship between item frequencies 
over time. 

A simple measure of surprise is the extent of depar- 
ture from a model, estimated using standard mult,ivariat,e 
t,ime series analysis. Unfortunately, such estimation in- 
volves models, smoothing windows and parameters whose 
optimal choices can vary dramatically from one application 
to another. In contrast,, we propose a precise characteri- 
zation of surprise based on the number of bits in which a 
basket. sequence can be encoded under a carefully chosen 
coding scheme. In this scheme it, is inexpensive to encode 
sequences of itemset,s t-hat have st,eady, hence likely t,o be 
well-known, correlation bet.ween items. Conversely, a se- 
quence with large code length hints at. a possibly surprising 
corrdat,ion. 

Ocr not,ion of surprise also has t,he desirable property 
t,hat, ihe score of a set. of items is offset. by anything sur- 
prising t,hat. the user may already know from t,he marginal 
distribution of any proper subset.. No parameters, such 
as support,, confidence, or smoothing windows, need to be 
estimated or specified by t.he user. 

WC: experimentred with real-life market. basket data. The 
algorithm successfully rejectBed a large number of frequent, 
sets cf items that, bore obvious and st,eady complemen- 
tary relations to each other, such as cereal and milk. In- 
st,ead, our algorithm found itemsets that showed statisti- 
cally st,rong fluctuations in correlation over time. These 
items had no obviously complementary roles. 

1 Introduction 
Data warehousing technology has enabled corpora- 
tions to store huge amounts of data, and data min- 
ing has become a major motivating application. Large 
data sources suitable for mining are growing in number 
and size literally every passing moment. 

For almost any such data source collected over years 
to decades, there will be prevalent patterns or broad 
regularities that are already known to domain experts, 
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and surprising patterns that are novel, unexpected 
and non-trivial to explain. There may be patterns of 
both types that are statistically significant. There is 
broad consensus [15, 21, 22, 231 that the success of 
data mining will depend critically on the ability to 
go beyond obvious patterns and find novel and use- 
ful patterns [12]. Otherwise the results of mining will 
often be large and lack novelty, making it overwhelm- 
ing and unrewarding for the analyst to sieve through 
them. A domain expert who is already familiar with 
the application domain is very unlikely to be satisfied 
with merely prevalent patterns, because (1) presum- 
ably the company is already exploiting them to the 
extent possible and (2) the competition knows about 
these patterns as well. The payoff from data mining 
lies in surprising second-order phenomena. 

An ill-defined, vague notion of “domain knowledge” 
gets in the way of separating the novel patterns from 
the prevalent ones. In principle, one can propose var- 
ious well-defined notions of domain knowledge. The 
analyst has a mental multivariate distribution over the 
attributes, and the system reports, from a certain class 
of patterns, those that reduce the distance between the 
mental distribution and the true distribution at the 
quickest rate. Of course, it is impossible to implement 
this in a real system. 

1.1 Our contributions 
This paper proposes and explores the notion that anal- 
ysis of variation of inter-item correlations along time 
can approximate the role of domain knowledge in the 
search for interesting patterns. We concentrate on the 
problem of boolean market basket data [l, 21. A set 
of k items is declared as “interesting” not necessar- 
ily because its absolute support exceeds a user-defined 
threshold, but because the rehtionship between the 
items changes over time. Furthermore, even if the sup- 
port of the itemset changes over time, it is not consid- 
ered interesting if the changes are totally exphined by 
the changes in the support of smaller subsets of items. 
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We develop this notion of interest based on the num- 
ber of bits needed to encode a itemset sequence using a 
specific coding scheme that we design. In this scheme 
it takes relatively few bits to encode sequences of item- 
sets that have steady correlation between items (which 
are likely to be well-known). Conversely, a sequence 
with large code length (relative to a baseline uncon- 
strained coding scheme) hints at a possibly surprising 
correlation [19]. The surprise value of the itemset is re- 
lated to the difference or ratio between the constrained 
and unconstrained code lengths. As a subroutine in 
this computation, our analysis produces, in a formal 

606 

description length 

Byron Dom 



information-theoretic sense, the “best” segmentation 
of time for the interesting itemsets, based on how the 
relationship between items is changing. This segmen- 
tation technique could be of independent interest. 

Our work potentially leads to improved accuracy 
and data understanding. Data collected over long in- 
tervals are generated by processes with dri,fing param- 
eters. A single model over all time may lead to poor 
models and predictive accuracy. In this scenario, the 
large volume of data available for mining hurts rather 
than helps. Our analysis builds models for optimal 
segments of time, avoiding this problem. Other appli- 
cations include the segmentation of data for supervised 
learning along time to discover interesting changes in 
decision boundaries as time passes. 

1.2 Comparison with other approaches 
We prefer this somewhat involved analysis to simple 
statistical tests. Any local estimate of support needs 
a time window: a small window leads to poor statis- 
tical confidence of estimated parameters and a large 
window may skip over a surprising segment and aver- 
age it into a larger, uninteresting one. Window size, 
smoothing function, test statistic, surprise threshold, 
will all be critical choices best made by one highly 
experienced in the art. Similar statements hold for 
approaches based on frequency transformations. We 
wish to avoid any need for tuning and instead base ev- 
erything on only one assumed property: that baskets 
are independently drawn from a possibly drifting dis- 
tribution. The distinction from statistical approaches 
is discussed in detail in 57. 

Compared to standard mining algorithms in which 
the core operations are pattern generation and tuple 
counting, our analyses involves more expensive compu- 
tations. Part of the paper will describe techniques to 
greatly reduce the computation cost, but the complex- 
ity of the algorithms remains. We believe this stand 
is justified in view of the aforesaid urgency for min- 
ing tools to ignore mundane rules and discover novel 
ones [12, 15, 21, 22, 231. Otherwise, the time saved in 
computation may well be spent by analysts discarding 
rules by inspection! 

1.3 Organization of the paper 
In $2 we review Information Theory basics and de- 
scribe our model for sequences of market baskets. In 
$3 we present the components of our analysis to find 
surprising patterns. We give an overview of how these 
fit together in $4. In $5 we present techniques for im- 
proving the performance of our method. In $6 we re- 
port on our experience with two real-life market basket 
data sets. Related work and alternative approaches are 
reviewed in $7 and concluding remarks made in $8. 

2 Modeling sequences of market baskets 
2.1 Information theory basics 
The underlying premise in this work is that data which 
can be described using very few bits is simple and pre- 
dictable, and hence less likely to be found interesting 
or surprising. Information Theory gives us a general 

way to construct a model for given data while regard- 
ing it as a compression problem. Imagine a sender S, 
wishing to send some data z to a receiver R, using as 
few bits as possible. A suitable model M is first trans- 
mitted, consuming L(M) bits. Typically M is chosen 
from a class of models and associated parameter space 
that S and R have agreed upon in advance. For ex- 
ample, S may transmit the mean and variance of a 
normal distribution to R, if there is reason to believe 
that the data follows a normal distribution. 

Second, the data is encoded suitably and sent to 
R, using what we denote as L(51M) bits of infor- 
mation. Because R knows M, data compression 
may be greatly enhanced, i.e., L(ZlM) may be much 
smaller than L(5). Specifically, suppose Pr[zc’(M] is 
the probability of a specific data value 2 given the 
model M. Then Shannon’s classical Information The- 
orem [lo] states that the data can be encoded in 
L(z?[M) = - logPr[d]M] bits. Note that S and R 
are motivated to pick a coding scheme that mini- 
mizes L(M) + L(5lM). The initial choice of the pa- 
rameters values of M are usually made to maximize 
Pr[i]M]. Th .l e c assical Minimum Description Length 
(MDL) principle [19] argues that this will generally 
lead to models that capture exactly the regularities in 
the data and avoid over-fitting to random deviations. 
Example 1: Suppose we are given two bit strings of 
identical length and asked to identify the “more com- 
plex” one, without any further information. Then a 
reasonable approach would be to compress both using 
the “universal” Lempel-Ziv (LZ) compression scheme 
and select the larger of the two compressed strings. LZ 
yields asymptotically optimal compression: but does 
not produce a model-based explanation of the data. If 
the data were a finite sequence of floating point num- 
bers drawn from a normal distribution, LZ could be a 
poor choice. cl 

2.2 Data and model for basket sequences 
In our case, the raw data is a sequence (xc,) of market 
baskets, each basket being a set of items, ordered by 
time r. Let us focus on a fixed itemset with k items. 
Then each basket contains one of the 2k possible sub- 
sets of the k items in it. Thus, if we are reasoning 
about k items, we can regard each basket to be the 
outcome of tossing a 2’ sided coin (better called a die) 
with the presence or absence of the i-th item encoded 
in the i-th bit of the toss outcome written as a k-bit 
number between 0 and ‘Lk - 1. 

First consider the case where a sequence of tosses 
(i.e., baskets) are generated from one coin. Our model 
M associates with each face of the coin a probabil- 
ity. For two items the model M, has four terms 
pDo, pol, ~10, pi1 where ~00 denotes the probability that 
both the items are absent, pal denotes the probability 
that the first one is absent but the second is present 
and so on. This notation generalizes to k items in the 
obvious way. 

To capture drift in the process underlying the has- 
kets, we assume a random process that generates the 
data as follows: it has a set of coins with various face 
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probabilities, unknown to us, the observers. It picks 
some coin arbitrarily and then tosses it for an arbi- 
trary number of trials before moving on to another 
coin. Each coin thus defines a segment of time where 
the itemset distribution is stationary. We can observe 
only the sequence of outcomes. For simplicity and effi- 
ciency we pick stationary models within each segment, 
not ones whose parameters gradually drift with time. 
This is in the same spirit as the simple decision bound- 
aries used by classification and regression trees. More 
complicated segment models can be used, but at larger 
complexity. 

To summarize, in our model A4 we represent a k- 
itemset sequence as a set of segments where each seg- 
ment is generated from a 2” sided coin. The model cost 
L(M) has two parts: the parameter cost which for 
each segment includes the cost of encoding the coin 
biases like ~00 and ~01 and the segmentation cost 
which includes the cost of encoding the number of seg- 
ments and the boundary of each segment. The data 
cost is estimated by applying Shannon’s theorem with 
each segment and summing up the log probabilities 
(since the segments are assumed to be independent). 

3 Segmentation of basket sequences 

We use the model introduced above as a basis for 
defining the interest measure of an itemset. We de- 
velop this definition in three steps. First we discuss 
how to find the best segmentation of an itemset using 
the model described above. We call this the uncon- 
strained segmentation problem ($3.1). The uncon- 
strairled model does not provide the best compression 
because it ignores two factors. First, when modeling 
a k-it.emset, user’s knowledge of k - 1 itemsets is not 
exploited. Second, even when the individual param- 
eters of the model change from segment to segment, 
the relationship between the parameters may remain 
constant over time. In the second stage we incorporate 
these two factors into a constrained segmentation 
problem ($3.2). Finally, we explore means of compar- 
ing the complexity of diverse itemsets using a reference 
segmentation for each ($3.3). If the difference or ratio 
betwc:en the constrained and reference segmentation is 
large, we regard the itemset as surprising. 

3.1 Unconstrained segmentation 

We will first discuss the simpler case of segmenting a 
single item and then discuss generalizations to higher 
dimensions. 

3.1.1 Single item 

If a store has only one item, each basket can be thought 
of as the outcome of a single (2-sided) coin toss, based 
on whether the item was purchased or not. Given a 
sequence of T tosses, how do we find a segmentation? 
This is not as simple a question as it may seem at 
first glance. At one extreme, we can assume there are 
T coins, each with bias 0 or 1: given this model, the 
data fits perfectly; i.e., the probability of generating 
the given sequence is 1. At the other extreme we can 
posit only one coin: under this model the probability 

of generating the given sequence may be very low if 
indeed the sequence was generated from many coins 
with diverse biases. One could try estimating biases 
over windows of trials and then merge or split them. 
The danger is in picking these windows. Small win- 
dows will not give bias estimates with sufficient sta- 
tistical confidence, and large windows may skip over a 
very interesting but small segment where the bias was 
remarkably different. 

It turns out that there is a notion of the “correct” 
segmentation of the given sequence, defined in terms 
of MDL defined earlier and we next present a method 
for finding such a segmentation. 
Claim 2 The segmentation and coin pa.ra.meters tha,t 
minimizes L(M) + L(ZIM) can be computed in O(T2) 
time. 
Proof. We construct a graph with T + 1 nodes, and 
directed edges (i, j) for every 0 5 i < j 5 T. Let 
there be t(i, j) trials between i and j, with hi(i, j) 
heads and ho(i,j) tails (these observed values are col- 
lectively called 5 above). Edge (i, j) is assigned a cost 
c(i,j) which represents the model (sum of parameter 
and segmentation cost) and data cost for encoding the 
tosses between i (excluded) and j (included). Calcu- 
lating this cost involves the following steps: 
Estimating model parameters: First, we need to 
find the model parameters pl(i,j) and po(i,j). The 
values of these parameters that optimize the data fit 
are their maximum likelihood (ML) estimates’ calcu- 
lated from the data as: pi(i,j) = hl(i,j)/t(i, j), and 
Po(i,Jl = 1 - Pl(i,j). 

Finding data encoding cost: Then, we use the 
above parameters to calculate the data encoding cost 
for segment (i, j) ( using Shannon’s theorem) as 

L(+k?) = - 1ogp;‘p;” = - c, hrlogp,, (1) 

where each parameter is over the segment (i, j). 
Finding parameter encoding cost: We need to 
transmit pl(i,j) (or ps(i,j); knowing one is enough). 
Note that the maximum likelihood estimate for pl(i, j) 
can take only one of t(i,j) + 1 values, so we need to 
send only about log t(i,j) bits (although the parame- 
ters are real numbers). 
Finding segmentation cost: This is just the en- 
coding for the boundaries of each segment (i,j), or 
the number j itself, costing us 1ogT bits for each of 
the m segments. (Actually, for m coins we just need 
log (:I’,) bits, but this is very close to m log?’ for 

m < T.) 
Finally we find the shortest path from node 0 to 

note T in O(lEl + IT/j log IVl) = O(P) time. Each 
edge of the shortest path is a segment in the optimal 
segmentation. 8 

The capability to find the exact optimum is impor- 
tant as a baseline even if the computation takes more 

‘To avoid problems with parameters approaching zero or one 
we use Laplace’s rule [16], but we ignore this detail in our de- 
scription. 
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than linear time. Also, later we will explore means to 
greatly reduce the computation cost in practice, while 
producing a segmentation of near-optimal quality. 

3.1.2 Larger itemsets 
For Ic-itemsets, our model is a sequence generated by 
a 2k-sided coin. We can apply the same shortest path 
procedure as in the one-itemset case to find the best 
segmentation. The only difference is in the detail of 
computing the edge weights c(i, j) corresponding to 
each segment. 

Consider first the case of two items. Suppose we 
are given a set oft > 0 baskets over two items, among 
which has have neither of the items, hri have both, hro 
have the first item but not the second, and ho1 have the 
second and not the first. These induce parameters p,., 
as before. The data encoding cost is a direct extension 
of the one-item case, viz., - C,,, h,, logp,,. However, 
the way we estimate the model parameters p,, and en- 
code their costs changes because for the two item case 
there are two models to choose from. The first model 
corresponds to the case where the two items are inde- 
pendent, in which case only two parameters, pi. and p.1 
are needed to specify the coin, the rest being calculated 
as pll = pl.p.1, plo = pi. - ~11, etc. The parameter 
cost in this case is log (t + 1)’ M 2logt. The second 
model corresponds to when the items are dependent, 
in which case we need three parameters to specify the 
four-sided coin. The model cost is the logarithm of the 
number of ways in which t trials can be divided into 
four outcomes, log (‘i’) M 3 log t. For both models we 
get the maximum likelihood estimates of the required 
parameters from the data and use the parameters to 
evaluate the data cost. The segmentation cost is also 
the same as in the one-item case. We evaluate the to- 
tal cost for the edge (i, j) for both model types and 
take the smaller cost as c(i, j). 

The number of possible models grows with the num- 
ber of items. For 3-itemsets, depending on how the 
marginals are related, there are eight possibilities. The 
simplest case is when all two-way itemsets are inde- 
pendent, in which case three parameters are needed. 
The most general case is when all three-way marginals 
are correlated, in which case seven parameters are 
needed. Let the items be a,b, c. In between there 
are three cases of the form “(a,b) independent, (b,c) 
independent, (a, c) dependent” and three cases of the 
form “(orb) dependent, (b,c) dependent, (a, c) inde- 
pendent.” Four parameters suffice for all six cases. 
Similar enumerations can be generated for larger item- 
sets. 

The general recipe for calculating edge weights for 
any Ic-itemset is as follows: for each possible model M: 

1. Estimate the model parameters using the corre- 
sponding counts from the data. For example, for 
the independent model in the two-itemset case, 
we estimate pi. = hl./t and p.1 = h.,/t. 

2. Estimate all the /c-dimensional parameters from 
the model parameter calculated above. For exam- 
ple, for independent model in two dimensions we 
estimate pll = pl.p.1, plo = pl. - pll, etc. In gen- 

3. 

4. 

5. 
6. 

eral, these parameters may not always have closed 
form solutions for estimating them from lower di- 
mensional probabilities. In 53.1.3 we discuss the 
general procedure. 
Find data encoding cost using above k- 
dimensional parameters. This is a straight- 
forward generalization of the the two itemset case, 
- C,,, h,s log pm. 
Find the parameter encoding cost for the inde- 
pendent parameters of the model. If a model has 
[ parameters, llogt is often a good estimate, al- 
though in some cases further refinements are pos- 
sible, as discussed in 53.2.3. 
Find the segmentation cost. 
Find total cost as the sum of the data, parameter 
and segmentation cost. 

Finally, select the model with the smallest total cost 
and assign its cost to the edge. 

The number of models to be searched can increase 
exponentially with the number of dimensions. How- 
ever, we can greatly reduce the number by using the 
following simple heuristic. If for a k - 1 dimensional 
itemset, a particular model was found to be the best, 
then for a k dimensional itemset start from that model 
and only consider generalizations of that model. For 
example, if for the two-itemset (a, b), the dependent 
model was found better than the independent model 
then for the three-itemset (a, b, c) do not consider any 
model in which a and b are independent. 

3.1.3 Estimating k dimensional probabilities 
from marginals of fewer dimensions 

In general, it is not always possible to get closed form 
formulas for this estimation. Consider, for instance 
the three-itemset case. Of the eight cases discussed 
earlier, all but one yield-closed form solutions for $111. 
For instance, when one of the item pairs (say a and b) 
is dependent and the other two pairs are independent 
we can calculate the expected value as fill1 = ~~.~p.~.. 
The problem case is when all three-way atomic prob- 
abilities are correlated. In this case, there is no ex- 
plicit formula for computing the expected support Flll 
from the observed marginals. But there are simple it- 
erative procedures [6, 81 that converge to the maxi- 
mum likelihood (ML) estimate for Ijlll. The iteration 
can be used even in cases where direct formulas exist; 
the iterative process will yield (in one iteration) the 
same answer as the closed form formulas when they 
exist [6, page 831. We describe a classical algorithm 
called Ba.rtlett’s method for finding the probability of 
a k itemset given marginal probability of its subsets. 
Bartlett’s iterative procedure: For simplicity we 
discuss this process for three dimensions. The in- 
put consists of twelve 2-way marginals: four for each 
of three pairs of items namely: p~~.,pl~.,p~l.,p~~. for 
item pair 1 and 2 and so on for the other two pairs. 
The process converges to values for all the eight 3- 
way probabilities fi1is,j&r,. . . , ljooo, so that these are 
the “least restrictive or maximal likelihood” estimates 
of the three dimensional probabilities while preserving 
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the specified values of the 2-way marginal probabili- 
ties. That is, pii. = firi1 +fjiis and so on. 

The process starts by first assigning a starting value 
of 1 to each of the eight 3-way probabilities. Then in 
each step of the iteration it scales the 3-way probabili- 
ties so as to come closer to the observed marginals. It 
repeats this process until a suitable error threshold is 
reached. 

Initialize Ijijr, = 1 for i, j, k E (0, 1) 
While error between iterations is high 

For each of the twelve two-way &arginals update the 
3-way probabilities to fit that marginal better: 
e.g., for ~101. update as: 

fiOll = po~.Polr 

ljOl0 = POlpOY PO11 
Claim 3 ([S]) 2% e z era.tion is gvara.nteed to converge ‘t 
for a.ny k. 

3.2 A measure of surprise and the “single d 
segmentation” 

In this section we will propose some answers to this 
question: How do we detect that one sequence of bas- 
kets is more interesting than another? Intuitively, we 
want an answer to have the following properties: 

A k-itemset should not be found surprising simply 
because it has larger support than a pre-specified 
quantity, but because its support is significantly 
different from what is expected given the marginal 
supports of all proper subsets. Similar concerns 
have been raised by Brin and others [22]. 

In order to produce a ranking by surprise mea- 
sure, the measure should reflect, in a uniform 
lvay across different itemsets with diverse absolute 
::upport, the complexity of variation of correlation 
along time. 

To satisfy the first requirement: we need a method 
of calculating expected support of an itemset from the 
support of its subsets. First we estimate expected sup- 
port of the single items. Lacking prior knowledge of 
the data we can assume that all items are equally likely 
(prior knowledge can be easily integrated). Therefore, 
the expected support of each item in the data is the 
ratio of the average transaction length to the number 
of items. 

For 2-itemsets, given the observed marginal sup- 
ports pl. and p.1 of the individual items, the best 
(maximum likelihood) estimate of the 2-itemset is 
fill = pi.~.~ derived using the assumption that the 
two itemsets are independent. If the actual support, 
pll >> @ii then this 2-itemset is interesting. Thus, our 
natural choice for the measure of surprise is 

8 = Pl...l/&...l. (2) 

For larger itemsets, we use the method discussed 
in $3.1.3 to calculate the expected support from the 
lower dimensional marginals. For instance, for three- 
itemsets, if all two-way marginals are dependent we use 
the iterative procedure discussed earlier to calculate 
expected support. 

The above notion generalizes previous work on es- 
timating the expected value by Brin et al [22] that 
make the simplifying assumption that three-way item- 
sets are found interesting only when none of the three 
two-way marginals were dependent. 

3.2.1 The single 0 segmentation 
Recall from 52.1 our scheme of compressing the data 
w.r.t. a model M chosen from a certain model class. 
In the unconstrained case in $3.1, M could be any 
sequence of coins. 

Given two basket sequences, we can perform the 
unconstrained segmentation, but given these two coin 
sequences, which is more complex? A direct formal 
way of comparing the complexity of two coin sequences 
appears elusive. For example, a large number of un- 
constrained segments for a 2-itemset may not be sur- 
prising if the segmentation is always caused by one of 
the items and the items are always independent. 

Since we assume that the analyst assumes “constant 
# unless proved otherwise,” we must encode the data 
w.r.t. a model M’ from the restricted model class con- 
taining all possible sequences of coins in which all coins 
have the same 0 value (say the value that is computed 
from data over all time). We call this the %ingle-8 
segmentation.” Roughly speaking, itemsets with large 
code length in this model class depart from the ana- 
lyst’s prior expectation and are therefore interesting. 

3.2.2 Approximate solution for general k 

Consider a 2-itemset. First we take the entire data and 
find which of the independent or the dependent model 
fits the data better using the procedure in $3.1.2. Call 
this the global model Mg. If Mg is the independent 
model, the global value of 0 is 1 (costing just one bit) 
otherwise estimate the value as: 

h(0, q/T 

e(olT) = (h,.(O, T)/T)(h.l(O,T)/T)’ (3) 

For setting up the shortest path instance, we must 
then assign the coding cost to edge (i,j). The seg- 
mentation and parameter costs are computed as be- 
fore. To compute the data cost, we must estimate 
the coin face probabilities given the observed record 
colds h00, h01, ho, h ( over the t records in this time 
range (i, j)). W e calculate from these the observed 
marginals 17.1 = bl/t and pi. = hl./t, which then give 
all the parameters of our coin for segment (i, j) via 
Cl1 = @.ipr., $10 = ~1. - $11, etc. If the resulting 
coin is inconsistent (i.e., some face probability is not 
between zero and one) we declare the edge (i, j) as 
having infinite cost. It is easy to see that there is at 
least one feasible path in the shortest path problem, 
viz., the (0,T) path, that remains unaffected by this 
approximation. In $3.2.3 we discuss a more elaborate 
exact procedure for k = 2. Given this coin we estimate 
the probability of the observed data in this segment as 
Pr[QS] = CT,, b,, logi%,, as before. We add the data 
cost to the model cost as evaluated in the various cases 
described in $3.1.2 and take the minimum for the edge 
cost c(i, j). 
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The procedure remains essentially unchanged for 
larger itemsets. For a k-itemset, we find over all time 
the best model 1M,. If Mg is the complete model in- 
volving k dimensional probabilities as parameters, the 
expected value &...i(O, T) is computed by Bartlett’s 
iteration using the k - 1 dimensional marginals, and 
the global 8 is then calculated as 

8(0,T) = m. 
For segment (i,j), we compute observed k - 1 and 
marginals p...(i, j) over only the records in interval 
(i, j). Next we invoke the iterative algorithm on these 
observed marginals to obtain fii...l, and compute all 
the other ~7s as discussed for the two-item case. Again, 
if the coin becomes inconsistent we mark the edge as 
infeasible; this can be looked at as a kind of approx- 
imation. If Mg is not the complete model, we apply 
the same model iUs on all the segments and compute 
the edge cost as in the unconstrained case. 

3.2.3 Exact solution for 2-itemsets’ 
For the important special case of 2-itemsets, we do 
not need the approximate above; we have an exact 
characterization of the code length. We envision a 
system with precise analysis for the k = 2 case and 
approximations beyond; in 53.1.2 we noted that the 
most interesting patterns we found were for k = 2, 
and indeed all patterns for k = 3 were explained by 
2-way marginals. 

The potential difficulty with summarily discarding 
inconsistent coins as above is that there may exist a 
consistent coin satisfying the global 0 constraint which 
does not exactly fit the observed marginals but still has 
a reasonably high data probability. 

Therefore, we cannot compute the p’s directly from 
observed data, but must cast this as a constrained op- 
timization problem. Thus we want to assign consistent 
values to variables pr,= : T, s E (0, 1) is as to obey the 
constraints and maximize the data probability (mini- 
mize data cost). Let the observed numbers of “heads” 
of the four types be h,,,. Then we must solve the 
following constrained non-linear optimization problem 
over unknowns p,., (all other quantities are numeri- 
cally known): 

max c r,sE{O,l} hr,s l%Pr,, 

subject to 

This can be solved using a variety of iterative tech- 
niques [14]. WI e use a simple steepest ascent algorithm. 

Finally we turn to the question of the optimal way 
of encoding the parameters. To do this we produce a 
particular coding scheme and argue that nothing can 
be better. Here is the scheme, we omit the argument 
for lack of space. Recall that 8 is transmitted once 
for all segments; this is a negligible cost. For all seg- 
ments, this fixed value of 8 will be used. For segment 

2This section can be skipped on first reading. 

(i,j), we will send two parameters. As we have noted 
earlier, although these are interpreted as real num- 
bers, the model can only assume a discrete number of 
configurations, and we can thus send the parameters 
as integers. We will pick two integers &. and 4.i to 
send. The intent is that the receiver will compute the 
model as ~1, = +1./t, p.1 = &l/t, pll = 0&.#.,, and 
thus know all p,,. We have to ensure that the #J’S are 
such that all prs’s are consistent, specifically, that the 
following hold: 

Pll 5 PI., Pll I P.1, and PI. +P.I I 1 +PII. 

Replacing by #J’S and simplifying, we get: 

dl. 5 9, h1 5 tie, and 41. + 4.1 5 t + ~h.4.1, 

apart from the standard constraints 5, 5 t. The num- 
ber of bits required to encode 41. and 4.1 is the log of 
the number of ways in which they can be chosen sub- 
ject to the constraints. Because the boundaries are 
smooth, we can use continuous analysis and approxi- 
mate the number of choices by the volume within the 
feasibility region of the constraints. 

There are two cases, 0 2 1 and 8 < 1. In the former 
case, it is easy to verify that the constraints 41. 5 t/e 
and 4.1 5 t/e are sufficient to yield a consistent 4- 
sided coin. The last constraint kicks in when 8 < 1. 
Simplifying notation, we need to find the area within 
the region bounded by 

z,y>O and ~+y<t+:zy, 

which evaluates to 

s 

t 
t-x 

0 1 - (e/G 
da: = 7 ln(1 - ej] .(5) 

We briefly discuss the computational problem of 
carrying the exact analysis over to larger itemsets. For 
k 2 3, the Q-constraint in equation (4) or the volume 
evaluation in equation (5) cannot be written in closed 
form in general. Numerical or Monte-Carlo integration 
may be too expensive. 

3.3 Piecewise constant 8 segmentation 
Given files of diverse length, it is not reasonable to 
compress them, compare the absolute sizes of the com- 
pressed files, and pick the largest one as most complex. 
The compression mtio would be a better indicator of 
complexity (large ratio of original to final size implies 
less complexity). Similarly, the code-length of various 
itemsets using the constant-8 segmentation are not di- 
rectly comparable; a baseline code-length is needed for 
each itemset. 

One option is to use the unconstrained code-length. 
it may be either smaller or larger than the constrained 
code-length. It can be larger in a 2-item situation, for 
example, when the unconstrained segmentation is in- 
duced mostly by sudden changes in only one marginal 
probability, but the value of 8 is the same in all 
segments, so that the joint probability tracks these 
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changes. The unconstrained segmentation will assign 
a new three-parameter coin to each of these segments. 
In contrast, the single-8 segmentation lucks out, pay- 
ing only for two parameters per segment, and paying 
for 0 only once. Conversely, the unconstrained code- 
length can be smaller if the constrained model was a 
poor fit to the data. Thus positive differences are in- 
teresting, and negative differences are not (but zero is 
not a very significant notch on this scale). 

Another option for the baseline would be a piece- 
wise constant 0 segmentation. This is a relaxation 
of the single-0 model class. A piecewise constant 0 
model first specifies an outer segmentation of (0,T). 
Over each outer segment, it specifies a single value of 
0. Then, for each outer segment, it specifies an in- 
ner segmentation, each assigned to one coin. All inner 
coins assigned to an outer segment have the same value 
of 8, the one associated with the outer segment. Fi- 
nally, other necessary parameters for inner coins are 
specified as in the single 0 case. 

Finding a piecewise constant 0 segmentation is sim- 
ple given the previous building blocks. We set up a 
shortest path problem again. To assign the cost for 
edge (;, j), we run the constant 0 segmentation algo- 
rithm on the (i, j) segment of the data. To avoid too 
many invocations of the constant 0 procedure in prac- 
tice, .we can heuristically restrict potential segmenta- 
tion points to those of the unconstrained segmentation. 
For e&iency and simplicity we use the unconstrained 
baseline in our experiments. 

4 Algorithm summary 
In the previous section we described the building 
blocks of our technique. Here we put them together 
to show an overall picture of our system. We pro- 
ceed from small to large itemsets as usual. However, 
because our surprise measure is conditioned on the 
marginals and on variation along time, we have to de- 
sign pruning strategies different from the simple fixed 
support filtering commonly used in bottom-up itemset 
searcli algorithms (although any such minimum sup- 
port can also be gainfully used). Thus the outline of 
our algorithm takes the following form. 
One item: 

1. Select only those items that can possibly have 
more than one segment. This is the pruning cri- 
lerion discussed in $5.1. 

2. Find unconstrained segments for single items. 
Also find the code length using only one global 
coin from start to finish. This is also the (triv- 
ial) constmined segmentation problem for single 
items. 

3. Order items by the difference, ratio, or relative 
difference of these code lengths. Display items to 
user. 

Two or more items: 
1. From marginals of proper subsets, compute the 

maximum support the itemset could have along 
time. Call this the support envelope. 

2. From the envelope estimate if the itemset could 
possibly have more than one segment. If not elim- 

inate the itemset. This property of prunability is 
monotonic with respect to itemset containment, 
i.e., if an itemset can have at most one segment, no 
superset can have more. Thus we can use subset- 
based pruning when it helps. 

3. Compute two segmentations of the itemset: the 
piecewise constant 8 segmentation, and the single 
e segmentation. 

4. Use the difference, ratio, or relative difference 
of code-lengths to order the itemsets by surprise 
due. 

5 Computational issues 
We discuss two important performance issues in this 
section: how to control itemset expansion via pruning, 
and how to compute near-optimal segmentations in 
near-linear time. 

5.1 Pruning criteria 
We prune an itemset when its support sequence along 
time is so close to zero that it will not be possible 
to get more than one segment for any sequence that 
is enveloped by this sequence. This is superior to an 
absolute aggregated support based pruning because it 
can differentiate between the following two sequences 
both of which have the same aggregated support: One 
of the sequences has all the ones concentrated in one 
or two contiguous segments and another has the ones 
spread uniformly over the entire time base. Clearly, 
the former is more interesting than the latter. How- 
ever, if for some economic reasons one is interested 
only in itemsets with support above a value, we can 
always include that as an additional filtering step. 

This property, like the absolute support based prun- 
ing is also monotonic, meaning if an itemset is pruned 
all its supersets must also be pruned. Therefore, we 
can apply the “aprior?’ technique [2] of pruning any 
itemsets with at least one subsets already pruned, dur- 
ing the candidate generation phase. In addition, we 
can also prune by looking at the estimated upper en- 
velope on the support sequence of an itemset. This 
upper envelope is calculated during candidate genera- 
tion by taking a minimum of the supports of each of 
the immediate subsets at each point in time. If this 
upper envelope meets the pruning criteria below, we 
drop the itemset. 
Claim 4 A sequence 5’ of length n cmnot be pruned if 
there is a.t lea.st a fraction f of the sequence for which 
the estima.te of coin bia.s p is lmge enough to satisfy 

plog(l/f) > % - (1 - P) Wl - P) (6) 

t-((llf) - P)hdl - Pf). 

Proof. (Sketch) C onsider a sequence y’ that is en- 
veloped by 2. The best case in which y’can have two 
segments is when it is identical to 5 for some segment 
(i, j) in time and zero everywhere else. For such a 
sequence, find two coding costs: Cl assuming the en- 
tire sequence is a single segment and Cz assuming a 
separate segment for (i, j). Cl has higher data encod- 
ing cost whereas CZ has at least one extra segment and 
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thus pays higher parameter and segmentation cost (see 
$3.1). These costs can be expressed in terms of f,p, n 
where f, p refer to the parameters of the sequence (i, j). 
We then use the inequality Cl > CZ to find the above 
condition. n 

5.2 Fast shortest path approximations 

The second important performance issue concerns the 
shortest path computation. This is a key subroutine in 
all our algorithms. For data mining applications with 
millions of transactions, it is clearly unacceptable to 
have quadratic complexity along time. In this section 
we will study how to arrest this quadratic growth and 
still get a good segmentation. 

One immediate way to cut d.own running time is to 
pre-aggregate the data. In developing the algorithms, 
we have been dealing with each market basket as one 
reading of a random variable, but many data sets are 
pre-aggregated at daily or weekly levels. Given such 
data, it clearly makes no sense to segment finer than 
a day or week. In fact, if the input data is not ag- 
gregated at all, i.e. it is a O-l sequence, optimality is 
preserved in first taking run lengths of zeroes and ones. 
However, care may be needed to aggregate at coarser 
levels. Larger chunks will cut down running time but 
may gloss over narrow, interesting segments. Thus, 
a simple fixed size chunking and pre-aggregation, fol- 
lowed by a single shortest path computation, will not 
always achieve our goal. 
The heuristic: Suppose there are T transactions and 
thus T+l nodes in the graph. Fix a constant E between 
0 and 1 to be decided later and break up the graph 
into T1-’ chunks, each having T’ nodes in it. Now we 
solve T1-’ instances of shortest path over the chunks, 
each taking O(T*‘) time, for a total time of O(Tl+‘). 
Let the nodes on the shortest path in some chunk be 
called chosen. Heuristically, we hope that most chunks 
are completely contained within some global optimal 
segment, so that there are very few edges in the local 
shortest path for each chunk. Jf this is not the case, 
the chunk size is too large. 

We now construct a sparsified version of the orig- 
inal graph. All T + 1 nodes are there, but the only 
edges are those that go from one chosen node to an- 
other. If our heuristic assumption above holds, this 
graph has only O(T’-“) chosen nodes and a final short- 
est path run on it takes O(T2--2L) time. The total 
time is thus O(T ‘+’ + T2-2r), which has the smallest 
value, O(T4j3), f or E = i, assuming, of course, that 
this choice yields a small number of chosen nodes. We 
finally report the shortest path found in the sparse 
graph. 
Analysis. How about the quality of the approximate 
segmentation compared to the optimal? 
Claim 5 The a.pprodmate shortest path has corre- 
sponding code length at most twice the optima.1. 
Proof. (Can be skipped.) Consider a chunk c hav- 
ing nodes e,, m,, rcr where the global optimal short- 
est path has edges (.!,, m,) and (m,, rg), whereas the 
chunk’s local shortest path skips from e, to T, avoiding 

f‘ 

Figure 1: Illustration of approximate short.est. pat,hs. 

m,. (Note that e,, T, are not necessarily the leftmost 
or rightmost nodes of c, .&, rg could also belong to c, 
and some of these nodes could be one and the same.j 
Note the parameter and data encoding costs Ml and 
Di through MT and 07 in Figure 1. Consider the total 
cost of the path (e,, &, r,, TV), which is less than the 
cost of the path (!,, &, m,, rcr rg), because (!,, rc) was 
preferred by the local shortest path to (&, mcr rc). We 
will now compare (-&, m,) in optimal with (&,, &, m,), 
and (mcr r9) in optimal with (mcr rc, rg). 

For all edges, the global segmentation cost is the 
same, 5’ = log T. Let Ml, D1 be the parameter and 
data costs for (e,, m,) in optimal, and M2, D2; M3, D3 
be the maximum likelihood model and data costs for 
($,,e,) and (&,m,) respectively. Then observe that 
D2+D3 5 DI, and A42 + A& < 2Ml. This is because 
D2 and D3 are ML estimates. Similarly, Dd + Dg 5 
Dg and M4 + MS 5 ‘LM6. Thus we have to compare 
between 2S + (Ml + 01) + (M6 + DC) (cost of the 
optimal) and4S+(M2+D2+M3+D3)+(M4+D4+ 
MS + 05) (cost of approximate). The approximate 
cost is at most 2s + Ml + MS larger. Since optimal 
is at least 2S + Ml + MC large, this is a factor of at 
most 2. n 

Consider how the optimal path may interact with 
a given chunk c. It may never touch any node in c, 
in which case there is nothing to do. If it does, it 
enters c at some node and leaves at another (perhaps 
the same) node. If these nodes are not chosen, we 
can make the adjustment above to construct a path 
passing through only chosen nodes that has at most 
two times the optimal cost. In practice, if e is small 
enough, the optimal path avoids most chunks and so 
the cost increase is quite negligible, less than 0.2% 
in our experiments. It is roughly proportional to the 
number of hops in the optimal path. 
Exploiting marginal segmentations: Another 
source of information that can be exploited for faster 
segmentation is the segmentation of marginals. The 
advantage of using marginals as against a fixed width 
chunking is that statistically, most swings in the joint 
distribution are explained by marginals. Note that the 
heuristic and analysis does not depend on how the ini- 
tial chunks are derived. 

6 Experiments and experience 

We developed a prototype and studied real-life market 
basket data over several years. Dataset-A consisted of 
2.8 million transactions spanning over seven years from 

613 



Figure 2: Effect of E on the fast shortest path heuristic. 
One line shows running time and the other shows quality 
of the result. If optimal uses b’ bits and the heuristic uses 
b bits t,he quantity plotted is b/b* - 1. 

1987 to 1993. The time stamps with each transaction 
was recorded to a granularity of a day. Therefore, each 
sequence was of length at most 2590. There were 15.8 
thousand total number of items and the average length 
of a transaction was 2.62. Dataset-B consisted of 1.65 
million transactions spanning over a period of three 
years from 1991 to 1993. Here again, the recording 
granularity was a day yielding a total of 1092 time 
points for each item sequence. There were a total of 69 
thousand items and the average length of a transaction 
was 1.6. 

WC describe the performance of our system in s6.1, 
and in $6.2 we evaluate the quality of the output of 
our system, using anecdotal evidence as well as quan- 
titati rre measures. 

6.1 Performance 

The apparent complexity of our data analyses may 
evoke questions about practicality. Actually, our 
method works within very reasonable time. The main 
potential complexity was in the shortest path compu- 
tation. This was significantly mitigated by our fast 
shortest path heuristic. Figure 2 shows how the fast 
approximation can cut down the time for shortest path 
computation. Specifically we study the effect of E be- 
tween i and 1. First consider the plot of running time 
against e. It is evident that for a broad range of E, the 
time taken by the approximate algorithm is smaller 
than that of the optimal algorithm by more than an or- 
der of magnitude. It is not monotonic: there is a small 
valley near .4. At small E, there are many chunks but 
almost never more than two chosen nodes per chunk, 
i.e. their endpoints. Most of the work is in the fi- 
nal phase. At larger E, there are larger, fewer chunks; 
there is more work in the first phase, and perhaps more 
chosen nodes in the second phase. 

Next consider the plot of error against E. We plot 
the ratio of approximate bits to optimal bits minus 
one. The big message is that the error is tiny, less than 
.2% t.ypically. Error also shows non-monotonicity. At 
small e, MDL is extremely unwilling to posit more than 
one coin per chunk, but this is OK since tiny chunks 
are unlikely to straddle optimal segment boundaries. 
As chunk size increases, MDL maintains this stand for 
some time even as errors accumulate because of strad- 
dling. Eventually, MDL gives in and increases chosen 
nodes, at which point the final phase picks up good 

paths again. Summarizing, the fast heuristic enables 
our analysis to execute within reasonable time without 
losing accuracy. 

6.2 Quality of results 

In this section we compare the quality of the output of 
our algorithm with that of simpler or previously known 
alternatives. 

MDL: Our approach as discussed in this paper. 

Stat: This is a standard statistical approach where 
data is first aggregated to some level of granular- 
ity (a week by default in our experiments). For 
each such regular segment, we measure the 13 value 
and find the spread (ratio of standard deviation 
and mean) of 8 over all the segments. We order 
itemsets based on this measure. We experimented 
with four other measures of interest: standard de- 
viation of 0, spread of chi-squared values, spread 
and standard deviation of p-values. We report 
comparisons with only the spread of 0 measure 
since it showed the best overall results. 

MDL-Stat: A shortcoming of the above method is 
that users need to specify a fixed window size to 
segment the sequence. The MDL-based method 
can find the best segmentation automatically. 
Therefore, we test a hybrid of the two methods 
above where we first use the MDL approach to 
get the best segmentation (by solving the uncon- 
strained segmentation problem). Next, we order 
itemsets on the spread of the 0 between segments 
as in the statistical approach. 

Correlation: In this approach, we ignore time and 
simply calculate the 0 value over the entire se- 
quence aggregated to a single point. 

We present three kinds of evaluation. First we 
present anecdotal evidence (56.2.1) that the top sets 
output by our method are more interesting than those 
from the alternatives, and explain why this is the case. 
Next we undertake a more quantitative evaluation. We 
consider the top items found interesting by our method 
and find their positions in the itemset orderings of the 
alternative methods. We call this the ra.nlc-order eval- 
uation ($6.2.2). Th en, we evaluate the sharpness or 
selectivity of the different approaches. We consider 
what fraction of the total itemsets have “high” values 
of the interest measure. Intuitively, a method where a 
very small number of itemsets have high values of the 
interest measure is better than another where the high 
interest values are spread over large number of item- 
sets making it harder to define a sharp cut-off. We 
call this the selectivity evalzlation ($6.2.3). For these 
comparisons we consider itemsets of size two; in our ex- 
periments with these large datasets we have not found 
any 3-itemset which is surprising given the marginals 
of item subsets. 
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Figure 3: Sequences ranked top by each of the four methods. The x-axis shows time. The top row shows marginals pl. 
and p.1 averaged over a weeklv window. The middle row shows the support pll of both items in a basket, and the lowest 
row shows the 0 values. 

6.2.1 Anecdotes 

In Figure 3 we show various sequences for three pairs of 
itemsets. The first itemset (first column) was ranked 
very high by the Stat method and the MDL-Stat meth- 
ods but was not found interesting by MDL. The sec- 
ond item pair was ranked high by MDL but was ranked 
very low by all of the other approaches (did not appear 
in the top several hundred, or lo%, of their ranked list) 
and the final itemset (third column) was ranked high 
by Correlation but was not found interesting by MDL. 

A quick look shows that 0 fluctuates a fair amount 
for each of the three cases. That is normal. We want 
to separate statistically significant fluctuations from 
random noise. A closer look at these sequences shows 
these differences. 

Consider the itemset that was found near the top of 
the Stat and the MDL-Stat list but was found uninter- 
esting by MDL (first column). The spread of the 13 val- 
ues is high for this sequence because of the high peaks 
of 0 caused due to small support of the marginals. The 
MDL-based approach is robust to such small marginals 
since these end up having small code lengths. The 
items turned out to be complementary: polo shirt and 
shorts. 

Now, consider the itemset that was picked as in- 
teresting by MDL but was ranked low by the other 
two methods (second column). Once we ignore short 
range noise in 0, we notice that it increases from 2 (al- 
most independent) to around 17 over a steady range. 
The change happens gradually with the result that the 
deviation-based measures do not find this interesting. 
The items were men’s and women’s shorts. These do 
not have complementary roles and there is no obvi- 
ous reason why dependence between these two items 

should increase with time, and yet the pattern is sta- 
tistically significant. We are therefore justified in re- 
garding this as a surprising pattern. 

For the itemset that was ranked high based on Cor- 
relation but not by MDL, we observe that 0 fluctuates 
around a large constant mean of 250, but the fluctu- 
ation is small relative to 250, compared to the MDL 
topper. The item pair turned out to be bedsheets and 
pillow-cases, which people routinely buy together. 

6.2.2 Rank order 

As far as the user is concerned, an exact measure of 
complexity of itemset sequences is less important than 
the ordering it imposes on itemsets. In a typical appli- 
cation, we envision that the user will be shown ranked 
lists of the most surprising itemsets (by some measure) 
from single to double to larger itemsets which are not 
explained by smaller itemsets shown earlier in the list. 
Accordingly, in this section, we will compare the rank- 
ings computed using the various suggested approaches. 
6.2.2.1 Comparing rankings: In the graphs in 
Figure 4 we plot the ranks assigned by MDL (y-axis) 
against the rank assigned by the Stat and MDL-Stat 
methods. (To reduce clutter a random collection of 
500 itemset pairs are plotted.) First note that there is 
no strong correlation between the MDL and the Stat 
method. The correlation coefficient (over all itemset 
pairs) is 0.02 which is practically close to zero. With 
better segmentation using the MDL-Stat method the 
correlation improves from 0.02 to 0.08 as shown by 
the second figure but the correlation is still not strong 
enough for te method to be a substitute for MDL. For 
instance, on zooming to the 100 by 100 grid near the 
origin we find that only 11 of the top 100 itemsets in 
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the MDL list occur in the top-100 MDL-Stat list. 

0 STit 1000 1MO 0 rank MDrStat. rzk 
correlation = 0.02 correlation = 0.08 

Figure 4: Scatt.er plots comparing ranks of itemsets in dif- 
ferent. methods. In both figures t,he y axis is t,he rank as- 
signed by MDL. 

6.2.2.2 Sensitivity to window sizes of the Stat 
method. Another potential problem with the Stat 
approach is coming up with a good window size over 
which to compute 9. To show the sensitivity of the 
result to this parameter in Figure 5 we show the cor- 
relation between the Stat method for different values 
of periodicity with the MDL method. As we increase 
the window size from 1 week to 4 weeks the correla- 
tion with MDL increases but then drop slightly as we 
incre;Lse the window size further. The best correlation 
is achieved when we use MDL to find the best seg- 
mentation as indicated by the extreme point marked 
‘LOpt”. 

Figure 5: Change in correlation with the MDL approach 
wit,h difference window sizes. 

6.2.3 Selectivity 
We give a measure of the selectivity of the different 
methods in filtering interesting itemsets from the rest. 
This is related to the sharpness with which the count of 
the number of itemsets with interest above a threshold 
falls. In Figure 6 we compare this measure for different 
methods. The z-axis shows the interest measure used 
by the method and the y axis shows the count of the 
number of itemsets above a given interest value. Note 
that the sharpest gradient is obtained by the MDL 
method. Out of a total of 1600 itemsets, less than 50 
have interest measure greater than zero. The number 
is significantly higher for the other three methods. 

7 Related work 
We review related work spanning Statistics, Machine 
Learning, and Data Mining and discuss how our work 
compares with existing approaches. 

‘Stat ” 
0 

MLL-Stat 

Figure 6: Comparing sharpness of select,ivit,y for the four 
methods. The z-axis shows the interest. value used by that, 
met,hod. The y axis shows the count of the number of 
it,emset,s above a given interest. value. 

Statistics. In principle, our problem does permit a 
standard statistical approach involving the following 
steps: 

Decide on a model M of the time series: usually 
using deep domain knowledge of the process. 
Choose a suitable smoothing window w1 and es- 
timate the model parameter over many windows 
where the process can be assumed to be station- 
ary. Also devise a confidence test. Various simpli- 
fying assumptions such as normal approximations 
may be made at this stage. 
To judge if another (recent.) window w2 shows a 
shift, estimate its parameters and apply the con- 
fidence test to it,, reporting deviations more than 
a threshold a. 

This approach requires the user to make at least, 
four critical choices: .M, WI, w2 and a. Significant 
tuning and domain expertize may be entailed. An ap- 
proximation that may be valid in one application may 
behave poorly in another setting. For example: we al- 
ready saw in Section 6 how different window sizes can 
give different interest rankings. Such issues are echoed 
even in textbooks on the subject [5, Page 541: 

It is difficult to formulate [smoothing] and give a 
mathematical statistical solutiou. The practitiouer, 
thus, must proceed on the basis of general experience 
aud intuitiou Smoothiug leads to au estimated 
treud that is descriptive rather thau aualytic or ex- 
placatory. Because it is uot based on au explicit 
probabilistic model, the method cauuot be treated 
fully aucl rigorously in terms of mathematical statis- 
tics. 

Our work is an attempt to address this very issue. 
A system which needs no tuning is closer to the needs 
of mining systems that must deal with diverse data. 
Machine Learning. Our segmentation problem is in 
some sense a one-dimensional unsupervised clustering 
scenario. Similar segmentation problems have been 
addressed by Dom [ll] in the context of image seg- 
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mentation, Rissanen and Shedler [20] in the context of 
identifying stretches of production or short-lived items 
in a factory, and Ron and F’reund [13] and Blum and 
Chalasani [7] in the context of learning from a set of 
distributions. Most of the proposed algorithms are 
worse than quadratic, and none deal with identifying 
segments based only on the drift of the rektionship 
between variables, i.e., potentially ignoring drifts that 
are well-explained by drifts in the marginals. 
Data Mining. The issue of efficiently updating min- 
ing results incrementally is relatively well-studied [9, 
24, 31 in the data mining literature. A few recent pa- 
pers have also addressed the issue of discovering inter- 
esting patterns along time for market basket data. Oz- 
den et al present an algorithm for discovering “cyclic” 
associations rules provided the user specifies period(s) 
and segment size(s) of interest [HI. Lent et al. in [17] 
discuss how a plot of support versus time for frequent 
itemsets can be queried to find interesting trends along 
time. Their methodology is to first partition the data 
into a fixed number of segments, find support in each 
of these segments and then provide a query interface 
for the resulting timeseries as discussed in [4]; query- 
ing based on shapes of the time series can be used as 
a good user interface in front of our system. 

8 Conclusion and future work 

We have proposed and explored a new approach to 
extracting temporally surprising patterns, as against 
just prevalent patterns, from market basket databases. 
This is an attempt to substitute the user’s domain 
knowledge and hence effectively eliminate patterns 
that are already well-known. We used the minimum 
description length principle together with an appropri- 
ate encoding scheme and model class to achieve this. 
No domain expertise, model selection, or parameter 
tuning is needed from the user. Experiments with mar- 
ket basket data showed that our method is effective 
in eliminating prevalent and obvious itemsets (such as 
milk and cereal), while extracting itemsets with no ob- 
vious complementary relationship showing statistically 
strong variation of dependence along time. 
Seasonal variations: Our work opens up many av- 
enues for future exploration. In our experiments, 
the top ranking itemsets had seasonal marginals, but 
seasonality of 8 was not a major reason for high 
ranks. Nevertheless, it will be interesting to handle 
predictable seasonal variation. The current coding 
scheme has to be extended to recognize simplicity in 
the regular reuse of coin parameters, perhaps by trans- 
mitting an index to a known coin from the past, not 
all its parameters from scratch. 
Incremental mining: The attention to time pro- 
vides a very natural framework for doing incremental 
mining. Rather than fold new transactions into global 
estimates of support [9], one can maintain incremental 
shortest paths and integrate the new segment of data 
into the existing segmentation. 
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