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Abstract 

Mining for association rules in market basket 
data has proved a fruitful area of research. Mea- 
sures such as conditional probability (confi- 
dence) and correlation have been used to infer 
rules of the form “the existence of item A im- 
plies the existence of item B.” However, such 
rules indicate only a statistical relationship be- 
tween A and B. They do not specify the na- 
ture of the relationship: whether the presence 
of A causes the presence of B, or the converse, 
or some other attribute or phenomenon causes 
both to appear together. In applications, know- 
ing such causal relationships is extremely use- 
ful for enhancing understanding and effecting 
change. While distinguishing causality from 
correlation is a truly difficult problem, recent 
work in statistics and Bayesian learning pro- 
vide some avenues of attack. In these fields, 
the goal has generally been to learn complete 
causal models, which are essentially impossible 
to learn in large-scale data mining applications 
with a large number of variables. 

In this paper, we consider the problem of de- 
termining casual relationships, instead of mere 
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associations, when mining market basket data. 
We identify some problems with the direct ap- 
plication of Bayesian learning ideas to min- 
ing large databases, concerning both the scala- 
bility of algorithms and the appropriateness of 
the statistical techniques, and introduce some 
initial ideas for dealing with these problems. 
We present experimental results from apply- 
ing our algorithms on several large, real-world 
data sets. The results indicate that the approach 
proposed here is both computationally feasible 
and successful in identifying interesting causal 
structures. An interesting outcome is that it is 
perhaps easier to infer the luck ofcausality than 
to infer causality, information that is useful in 
preventing erroneous decision making. 

1 Introduction 

In this paper we consider the problem of determining cu- 
suul relationships, instead of mere associations, when 
mining market basket data. We discuss ongoing re- 
search in Bayesian learning where techniques are be- 
ing developed to infer casual relationships from obser- 
vational data, and we identify one line of research in 
that community which appears to hold promise for large- 
scale data mining. We identify some problems with the 
direct application of Bayesian learning ideas to mining 
large databases, concerning both the issue of scalability 
of algorithms and the appropriateness of the statistical 
techniques, and introduce some ideas for dealing with 
these problems. We present experimental results from 
applying our algorithms on several large, real-world data 
sets. The results indicate that the approach proposed here 
is both feasible and successful in identifying interesting 
causal structures. A significant outcome is that it appears 
easier to infer the luck of causality, information that is 



useful in preventing erroneous decision making. We con- 
clude that the notion of causal data mining is likely to be 
a fruitful area of research for the database community at 
large, and we discuss some possibilities for future work. 

Let us begin by briefly reviewing the past work in- 
volving the market basket problem, which involves a 
number of baskets, each of which contains a subset of 
some universe of items. An alternative interpretation is 
that each item has a boolean variable representing the 
presence or absence of that item. In this view, a basket is 
simply a boolean vector of values assigned to these vari- 
ables. The market basket problem is to find “interesting” 
patterns in this data. The bulk of past research has con- 
centrated on patterns that are called association rules, of 
the type: “item Y is very likely to be present in baskets 
containing items X1, . . . , Xi.” 

A major concern in mining association rules has 
been finding appropriate definitions of “interest” for spe- 
cific applications. An early approach, due to Agrawal, 
Imielinski, and Swami [AIS93], was to find a set of items 
that occur together often (that is, have high support), and 
also have the property that one item often occurs in bas- 
kets containing the other items (that is, have high con- 
Jidence). In effect, this framework chooses conditional 
probability as the measure of interest. Many variants of 
this interest measure have been considered in the litera- 
ture, but they all have a flavor similar to conditional prob- 
ability. These measures were critiqued by Brin, Mot- 
wani, and Silverstein [BMS97], who proposed statistical 
correlation as being a more appropriate interest measure 
for capturing the intuition behind association rules. 

In all previous work in association rules and market 
basket mining, the rules being inferred, such as “the ex- 
istence of item A in a basket implies that item B is 
also likely to be present in that basket,” often denoted 
as A 3 B, indicate only the existence of a statisti- 
cal relationship between items A and B. They do not, 
however, specify the nature of the relationship: whether 
the presence of A causes the presence of B, or the con- 
verse, or some other phenomenon causes both to appear 
together. The knowledge of such causal relationships is 
likely to be useful for enhancing understanding and ef- 
fecting change; in fact, even the knowledge of the lack 
of a casual relationship will aid decision making based 
on data mining. We illustrate these points in the follow- 
ing hypothetical example. 

Example 1 ’ 
Consider a supermarket manager who notes that his 

meat-buying customers have the following purchasing 
pattern: buy hamburgers 33% of the time, buy hot dogs 
33% of the time, and buy both hamburgers and hot dogs 
33% of the time; moreover, they buy barbecue sauce 
if and only if they buy hamburgers. Under these as- 
sumptions, 66% of the baskets contain hot dogs and 
50% of the baskets with hot dogs also contain barbecue 

‘This example is borrowed from a talk given by Heckerman. 

sauce. The manager will find that the association rule 
HOT-DOGS 3 BARBECUE-SAUCE has both high support 
and confidence. (Of course, the rule HAMBURGER + 

BARBECUE-SAUCE has even higher confidence, but that 
is an obvious association.) 

A manager who has a deal on hot dogs may choose 
to sell them at a large discount, hoping to increase profit 
by simultaneously raising the price of barbecue sauce. 
However; the correct causal model (that the purchase of 
hamburgers causes the purchase of barbecue sauce) tells 
us that this approach is not going to work. In fact, the 
sales of both hamburgers and barbecue sauce are likely 
to plummet in this scenario, as the customers buy more 
hot dogs and fewer hamburgers, leading to a reduction 
in sales of barbecue sauce. The manager, in inferring 
the correct causal model, or even discovering that “HOT- 

DOGS causes BARBECUE-SAUCE” is notpart of anypos- 
sible causal model, could avoid a pricing fiasco. I 

A basic tenet of classi- 
cal statistics ([Agr90], [MSW86]) is that correlation does 
not imply causation. Thus, it appears impossible to infer 
causal relationships from mere observational data avail- 
able for data mining, since we can only infer correlations 
from such data. In fact, it would seem that to infer causal 
relationships it is essential to collect experimental data, 
in which some of the variables are controlled explicitly. 
This experimental method is neither desirable nor possi- 
ble in most applications of data mining. 

Fortunately, recent research in statistics and Bayesian 
learning communities provide some avenues of attack. 
Two classes of technique have arisen: Bayesian causal 
discovery, which focuses on learning complete causal 
models for small data sets [BP94, CH92, H95, H97, 
HGC94, HMC97, P94, P95, SGS93], atid an offshoot 
of the Bayesian learning method called constraint-based 
causal discovery, which use the data to limit - some- 
times severely - the possible causal models [C97, 
SGS93, PV91]. While techniques in the first class are 
still not practical on very large data sets, a limited ver- 
sion of the constraint-based approach is linear in the 
database size and thus practical on even gigabytes of 
data. We present a more flexible constraint-based algo- 
rithm, which is linear in the number of records (baskets) 
in the database, though it is cubic in the number of items 
in each record. Despite the cubic time bound, the algo- 
rithm proves to be practical for databases with thousands 
of items. 

In this paper, we explore the applicability of a 
constraint-based causal discovery to discovering causal 
relationships in market basket data. Particularly, we 
build on ideas presented by Cooper [C97], using local 
tests to find a subset of the causal relationships. In the 
rest of this section, we discuss causality for data min- 
ing in the context of research into causal learning. We 
begin, in Section 2, with a particular constraint-based al- 
gorithm, due to Cooper [C97], upon which we build the 
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algorithms presented in this paper. We then enhance the 
algorithm so that for the first time causality can be in- 
ferred in large-scale market-basket problems. 

Section 2 introduces “CCU” inferences, a form of 
causal structure not used by [C97]. 

Section 3 discusses weaknesses of the Cooper algo- 
rithm, notably a susceptibility to statistical error, and 
how power statistics such as correlation can be used to 
mitigate these problems. 

In Section 4 we describe in detail the algorithms we 
developed for discovering causal relationships, and we 
also discuss discovery of noncausal relationships, an im- 
portant technique that filters many statistically unlikely 
inferences of causality. 

For the first time, we are able to run causality tests on 
real, large-scale data. In Section 5 we test this algorithm 
on a variety of real-world data sets, including census data 
and text data. In the former data sets we discover causal 
relationships (and nonrelationships) between census cat- 
egories such as gender and income. In the text data set 
we discover relationships between words. 

Finally, in Section 6, we discuss possible directions 
forfutureresearch. 

1.1 Previous Research in Causality 

As we have mentioned, there has been significant work 
in discovering causal relationships using Bayesian anal- 
ysis. A Bayesian network is a combination of a prob- 
ability distribution and a structural model that is a di- 
rected acyclic graph in which the nodes represent the 
variables (attributes) and the arcs represent probabilistic 
dependence. In effect, a Bayesian network is a specifi- 
cation of a joint probability distribution that is believed 
to have generated the observed data. A causal Bajesian 
network is a Bayesian network in which the predecessors 
of a node are interpreted as directly causing the variable 
associated with that node. 

In Bayesian learning techniques, the user typically 
specifies a prior probability distribution over the space 
of possible Bayesian networks. These algorithms then 
search for that network maximizing the posterior proba- 
bility of the data provided. In general, they try to balance 
the complexity of the network with its fit to the data. 

The possible number of causal networks is severely 
exponential in the number of variables, so practical al- 
gorithms must use heuristics to limit the space of net- 
works. This process is helped by having a quality prior 
distribution, but often the prior distribution is unknown 
or tedious to specify, particularly if the number of vari- 
ables (i.e., items) is large. In this case, an uninformative 
prior is used. Even when informative priors are available, 
the goal of finding a full causal model is aggressive, and 
Bayesian algorithms can be computationally expensive. 
While improved heuristics, and the use of sampling, may 
make Bayesian algorithms practical, this has yet to be 
demonstrated for data sets with many variables. 

In our view, inferring complete causal models (i.e., 
causal Bayesian networks) is essentially impossible in 
large-scale data mining applications with thousands 
of variables. For our class of applications, the so- 
called constraint-based causal discovery method [PV9 1, 
SGS93] appears to be more useful. The basic insight 
here, as articulated by Cooper [C97], is that informa- 
tion about statistical independence and dependence re- 
lationships among a set of variables can be used to con- 
strain (sometimes significantly) the possible causal re- 
lationships among a subset of the variables. A simple 
example of such a constraint is that if attributes A and 
B are independent, then it is clear that there is no causal 
relationship between them. It has been shown that, under 
some reasonable set of assumptions about the data (to be 
discussed later), a whole array of valid constraints can be 
derived on the causal relationships between the variables. 

Constraint-based methods provide an alternative to 
Bayesian methods. The PC and FCI algorithms [SGS93] 
use observational data to constrain the possible causal 
relationships between variables. They allow claims to be 
made such as “X causes Y ,” “X is not caused by Y ,” “X 
and Y have a common cause,” and so on. For some pairs, 
they may not be able to state the causal relationship. 

These constraint-based algorithms, like the Bayesian 
algorithms, attempt to form a complete causal model and 
therefore can take exponential time. (Due to the com- 
plexity of their causal tests, they may also be less reliable 
than simpler algorithms.) Cooper [C97] has described an 
algorithm called LCD that is a special case of the PC and 
FCI algorithms and runs in polynomial time. Since our 
algorithm is based on Cooper’s, we discuss it in some 
detail in Section 2. 

1.2 Causality for Market Basket Analysis 

Finding causality in the context of data mining is partic- 
ularly difficult because data sets tend to be large: on the 
order of megabytes of data and thousands of variables. 
While this large size poses a challenge, it also allows for 
some specializations and optimizations of causal algo- 
rithms, holding out promise that algorithms crafted par- 
ticularly for data mining applications may yield useful 
results despite the large amount of data to be processed. 
This promise holds particularly true for market basket 
data, which is an even more specialized application. Be- 
low, we note some issues involved with finding causality 
in the market basket case. 

l Market basket data is boolean. This may allow 
for added efficiency over algorithms that work with 
discrete or continuous data. As we shall see in 
Section 3.1, some statistical tests that are essential 
to constraint-based causal discovery have pleasant 
properties in the boolean case. 

l The traditional market basket problem assumes 
there is no missing data: that is, for a given item 



and basket it is known whether or not the item is 
in the basket. This assumption obviates the need for 
complex algorithms to estimate missing data values. 

l Market basket data is usually voluminous, so algo- 
rithms that need large amounts of data to develop a 
causal theory are well suited to this application. 

l With thousands of items, there are likely to be hun- 
dreds of thousands of causal relationships. While an 
optimal algorithm might find all these relationships 
and output only the “interesting” ones (perhaps us- 
ing another data mining algorithm as a subroutine!), 
it is acceptable to find and output only a small num- 
ber of causal relationships. Selection may occur ei- 
ther due to pruning or due to an algorithm that finds 
only causal relationships of a certain form. Algo- 
rithms that output a small number (possibly arbi- 
trarily decided) of causal relationships may not be 
useful outside a data mining context. Data mining, 
however, is used for exploratory analysis, not hy- 
pothesis testing. Obviously, a technique for finding 
all causal relationships and somehow picking “in- 
teresting” ones is superior to one that chooses rela- 
tionships arbitrarily, but even techniques in the latter 
category are valuable in a data mining setting. 

l For market basket applications with thousands of 
items, finding a complete causal model is not only 
expensive, it is also difficult to interpret. We believe 
isolated causal relationships, involving only pairs or 
small sets of items, are easier to interpret. 

l For many market basket problems, discovering that 
two items are not causally related, or at least not di- 
rectly causally related (that is, one may cause the 
other but only through the influence of a third fac- 
tor), may be as useful as finding out that two items 
are causally related. While complete causal models 
illuminate lack of causality as easily as they illumi- 
nate causality, algorithms that produce partial mod- 
els are more useful in the market basket setting if 
they can discover some noncausal relationships as 
well as causal relationships. 

These aspects of discovering causality for market bas- 
ket data drove the development of the algorithms we 
present in Section 4. Many of these issues point to 
constraint-based methods as being well suited to mar- 
ket basket analysis, while others indicate that tailoring 
constraint-based methods - for instance by providing 
error analysis predicated on boolean data and discover- 
ing lack of causality -can yield sizable advantages over 
using generic constraint-based techniques. 

2 The LCD Algorithm 

The LCD algorithm [C97] is a polynomial time, 
constraint-based algorithm. It uses tests of variable de- 
pendence, independence, and conditional independence 

to restrict the possible causal relationships between vari- 
ables. The crux of this technique is the Markov condi- 
tion [ SGS931. 

Definition 1 (Markov Condition) Let A be a node in a 
causal Bayesian network, and let B be any node that 
is not a descendant of A in the causal network. Then 
the Markov condition holds if A and B are independent, 
conditioned on the parents of A. 

The intuition of this condition is as follows: If A and B 
are dependent, it is because both have a common cause or 
because one causes the other (possibly indirectly). If A 
causes B then B is a descendent of A, and the condition 
is trivially satisfied. Otherwise, the dependence is due to 
some variable causing A, but once the immediate parents 
of A are fixed (this is the “conditioning” requirement), 
the variable causing A no longer has any effect. 

For example, suppose everybody over 18 both drives 
and votes, but nobody under 18 does either. Then driving 
and voting are dependent - quite powerfully, since driv- 
ing is an excellent predictor of voting, and vice versa - 
but they have a common cause, namely age. Once we 
know people’s ages (that is, we have conditioned on the 
parents of A), knowing whether they drive yields no ex- 
tra insight in predicting whether they vote (that is, A and 
B are independent). 

Assuming the Markov condition, we can make causal 
claims based on independence data. For instance, sup- 
pose we know, possibly through a priori knowledge, that 
A has no causes. Then if B and A are dependent, B 
must be caused by A, though possibly indirectly. (The 
other possibilities - that B causes A or some other vari- 
able causes both A and B - are ruled out because A has 
no causes.) If we have a third variable C dependent on 
both A and B, then the three variables lie along a causal 
chain. Variable A, since it has no causes, is at the head of 
the chain, but we don’t know whether B causes C or vice 
versa. If, however, A and C become independent condi- 
tioned on B, then we conclude by the Markov condition 
that B causes C. 

In the discussion that follows, we denote by B -+ C 
the claim that B causes C. Note that, contrary to normal 
use in the Bayesian network literature, we do not use this 
to mean that B is a direct cause of C. Because we have 
restricted our attention to only three variables, we cannot 
in fact say with assurance that B is a direct cause of C; 
there may be a confounding variable D, or some hidden 
variable, that mediates between B and C. A confound- 
ing variable is a variable that interacts causally with the 
items tested, but was not discovered because it was not 
included in the tests performed. A hidden variable repre- 
sents an identical effect, but one that is not captured by 
any variable in the data set. 

Even with hidden and confounding variables, we can 
say with assurance that A is a cause of B and B a cause 
of C. We can also say with assurance that A is not a 
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Table 1: The LCD algorithm. 
Algorithm: LCD 
Input: A set V of variables. w, a variable known to 
have no causes. Tests for dependence (D) and condi- 
tional independence (CI). 
Output: A list of possible causal relationships. 

For all variables z # w 
If D(z, w) 

For all variables y # {z, W} 

If D(z, y) and D(y, w) and Cl(z, y, W) 

output ‘x might cause y’ 

direct cause of C, since its causality is mediated by B, at 
the minimum. 

If we drop the assumption that A has no causes, then 
other models besides A + B + C become consistent 
with the data. In particular, it may be that A t B -+ C, 
or A t B t C. In this case, it is impossible, without 
other knowledge, to make causality judgments, but we 
can still say that A is not a direct cause of C, though we 
do not know if it is an indirect cause, or even caused by 
C instead of causing C. 

We summarize these observations in the CCC rule, 
so named since it holds when A, B, and C are all pair- 
wise correlated.” 

Rule 1 (CCC causality) Suppose that A, B, and C are 
three variables that are paitwise dependent, and that 
A and C become independent when conditioned on B. 
Then we may infer that one of the following causal rela- 
tions exists between A, B, and C: 

AtB+C A+B-+C AtBtC 

Now suppose two variables B and C are independent, 
but each is correlated with A. Then B and C are not 
on a causal path, but A is on a causal path with both of 
them, implying either both are ancestors of A or both 
are descendants of A. If B and C become dependent 
when conditioned on A, then by the Markov condition 
they cannot be descendants of A, so we can conclude 
that B and C are causes of A. This observation gives 
rise to the CCU rule, so named since two variable pairs 
are correlated and one is uncorrelated. 

Rule 2 (CCU causality) Suppose A, B, and C are 
three variables such that A and B are dependent, A and 
C are dependent, and B and C are independent, and 
that B and C become dependent when conditioned on 
A. Then we may infer that B and C cause A. 

Again we cannot say whether hidden or confounding 
variables mediate this causality. 

The LCD algorithm uses the CCC rule (but not the 
CCU rule) to determine causal relationships. It looks at 

*Here correlation indicates dependence and not a specific value of 
the correlation coefficient. Which use of the term “correlation” we 
intend should be clear from context. 

triples of items, where one item is known a priori to have 
no cause. In this way it can disambiguate the possible 
causal models. The algorithm is shown in Table 1. 

The LCD algorithm depends on the correctness of the 
statistical tests given as input. If one test wrongly in- 
dicates dependence or conditional independence, the re- 
sults will be invalid, with both false positives and false 
negatives. An additional assumption, as has already 
been stated, is in the applicability of the Markov con- 
dition. We list some other assumptions, as described by 
Cooper [C97], and their validity for market basket data. 

Database Completeness The value of every variable is 
known for every database record. This is commonly 
assumed for market basket applications. 

Discrete Variables Every variable has a finite number 
of possible values. The market basket problem has 
boolean variables. 

Causal Faithfulness If two variables are causally re- 
lated, they are not independent. This is a reason- 
able assumption except for extraordinary data sets, 
where, for instance, positive and negative correla- 
tions exactly cancel. 

Markov Condition This condition is reasonable if the 
data can actually be represented by a Bayesian net- 
work, which in turn is reasonable if there is no feed- 
back between variables. 

No Selection Bias The probability distribution over the 
data set is equal to the probability distribution over 
the underlying causal network. The reasonableness 
of this assumption depends on the specific problem: 
if we only collect supermarket data on customers 
who use a special discount card, there is likely to 
be selection bias. If we collect data on random cus- 
tomers, selection bias is unlikely to be a problem. 

Valid Statistical Testing If two variables are indepen- 
dent, then the test of independence will say so. If 
they are dependent, the test of dependence will say 
so. This assumption is unreasonable, since all tests 
have a probability of error. When many tests are 
done, as is the case for the LCD algorithm, this er- 
ror is an even bigger concern (see Section 3.1). 

A criticism of the LCD algorithm is that it finds only 
causal relationships that are embedded in CCC triples, 
presumably a small subset of all possible causal relation- 
ships. Furthermore, this pruning is not performed on the 
basis of a goodness function, but rather because of the 
exigencies of the algorithm: these are the causal rela- 
tionships that can be discovered quickly. While this trait 
of the LCD algorithm is limiting in general, it is not as 
problematic in the context of data mining. As we men- 
tioned in Section 1.2, data mining is used for exploratory 
analysis, in which case it is not necessary to find all, or 
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even a small number of specified, causal relationships. 
While not ideal, finding only a small number of causal 
relationships is acceptable for data mining. 

3 Determining Dependence and Indepen- 
dence 

Cooper [C97] uses tests for dependence and indepen- 
dence as primitives in the LCD algorithm, and also pro- 
poses Bayesian statistics for these tests, In our ap- 
proach, we use instead the much simpler x2 statistic; re- 
fer to [BMS97] for a discussion on using the chi-squared 
tests in market basket applications. The necessary fact 
is that if two boolean variables are independent, the x2 
value is likely to exceed the threshold value x”, with 
probability at most cr. There are tables holding xi for 
various values of (Y.~ We say that if the x2 value is 
greater than x2,, then the variables are correlated with 
probability 1 -cr. We extend this definition to the market 
basket problem by adding the concept of support, which 
is the proportion of baskets that a set of items occurs in. 

Definition 2 (Correlation) Let s E (0,l) be a support 
threshold and c E (0,l) be a confidence threshold. An 
itemset S C I is (s, c)-correlated (hereafter, merely cor- 
related) if the following two conditions are met: 

I. The value of support(S) exceeds s. 

2. The x2 vulue for the set of items S exceeds the x2 
vulue at significance level c. 

Typical values for the two threshold parameters are 
s = 1% and c = 5%. If c = 5%, then we would expect 
that, for 5% of the pairs that are actually uncorrelated, 
we would claim (incorrectly)they are correlated. 

Support is not strictly necessary; we use it both to 
increase the effectiveness of the chi-squared test and to 
eliminate rules involving infrequent items. 

Intimately tied to the notion of correlation is that of 
uncorrelation, or independence. Typically, uncorrelation 
is defined as the opposite of correlation: an itemset with 
adequate support is uncorrelated if the x2 value does not 
support correlation. In effect, the chi-squared test is be- 
ing applied as a one-tailed test. 

This definition is clearly problematic: with c = 5%, 
item sets with a x2 value just below the cutoff will be 
judged uncorrelated, even though we judge there is al- 
most a 95% chance the items are actually correlated. We 
propose, instead, a two-tailed test, which says there is 
evidence of dependence if x2 > x”, and evidence of in- 
dependence if x2 < x2,,. The following definition is 
based on this revised test. 

Definition 3 (Uncorrelation) Let s E (0,l) be a sup- 
port threshold and c E (0,l) be a confidence threshold. 

31n the boolean case the appropriate row of the table is the one for 
1 degree of freedom. 

An itemset S C I is (s, c)-uncorrelated(hereafter, merely 
uncorrelated) if the following two conditions are met: 

1. The value of support( S) exceeds s. 

2. The x2 value for the set of items S does not exceed 
the x2 value at sign&ance level c. 

If c = 95%, then we would expect that, for 5% of the 
pairs that are actually uncorrelated, we would fail to say 
they are uncorrelated. Note that we would not necessar- 
ily say they are correlated: a pair of items may be neither 
correlated nor uncorrelated. Such a pair cannot be part 
of either CCC causality or CCU causality. 

We can use the chi-squared test not only for depen- 
dence and independence, but also for conditional depen- 
dence and conditional independence. Variables A and 
B are independent conditioned on C if p(AB 1 C) = 
p(A ( C)p(B 1 C). The chi-squared test for conditional 
independence looks at the statistic x2(AB ( C = 0) + 
x2(ABlC = l), where x*(AB 1 C = i) is the chi- 
squared value for the pair A, B limited to data where 
C = i. As with standard correlation, we use a two- 
tailed chi-squared test, using different thresholds for con- 
ditional dependence and conditional independence. 

Note that both the correlation and the uncorrelation 
tests bound the probability of incorrectly labeling uncor- 
related data but do not estimate the probability of incor- 
rectly labeling correlated pairs. This is a basic problem 
in statistical analysis of correlation: while rejecting the 
null hypothesis of independence requires only one test, 
namely that the correlation is unlikely to actually be 0, 
rejecting the null hypothesis of dependence requires an 
infinite number of tests: that the correlation is not 0.5, 
that the correlation is not 0.3, and so on. Obviously, if 
the observed correlation is 0.1, it is likelier that the actual 
correlation is 0.3 than that it is 0.5, giving two different 
probabilities. It is unclear what number would capture 
the concept that the pair is “correlated.” One solution to 
this problem is to define correlation as “the correlation 
coefficient is higher than a cutoff value.” For boolean 
data, this is equivalent to testing the chi-squared value as 
we do above; see Section 3.1 and Appendix A for details. 

3.1 Coefficient of Correlation 

The LCD algorithm can perform the tests for dependence 
and independence tens of thousands of times on data sets 
with many items. Though the individual tests may have 
only a small probability of error, repeated use means 
there will be hundreds of errors in the final result. This 
problem is exacerbated by the fact one erroneous judg- 
ment could form the basis of many causal rules. 

This problem is usually handled in the statistical com- 
munity by lowering the tolerance value for each individ- 
ual test, so that the total error rate is low. In general, 
with thousands of tests the error rate will have to be set 
intolerably low. However, for boolean data even a very 
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low tolerance value is acceptable because of a connection 
between the probability of error and the strength of cor- 
relation, presented in the following theorem. This proof 
of this theorem, along with the concept of correlation co- 
efficient at its heart, can be found in Appendix A. 

Theorem 1 Let X and Y be boolean variables in a 
data set of size n, with correlation coeficient p. Then 
x2(X,Y) = np’. Th us, X and Y will fail to be judged 
correlated only if the confidence levelfor the correlation 
test is below that for x”, = np’. 

Because of this relationship, by discarding rules that 
are more likely to be erroneous, we are at the same time 
discarding rules with only a weak correlation. Weak 
rules are less likely to be interesting in a data mining con- 
text, so we are at the same time reducing the probability 
of error and improving the quality of results. 

4 Algorithms for Causal Discovery 

In the following discussion we shall use the following 
terminology: A pair of items constitutes a C-edge if they 
are correlated according to the correlation test and a U- 
edge if they are uncorrelated according to the uncorrela- 
tion test. (Note that an item pair may be neither a C-edge 
nor a U-edge.) We denote the number of items by m, the 
number of baskets by n, and the degree of node A - that 
is, the number of C- and U- edges involving item A - 
by AA. When necessary, we shall also refer to As and 
AZ, which are the degree of A when restricted to C- and 
U-edges, respectively. Let A be the maximum degree, 
that is, maxA{AA 

cl 
; AC and Au are defined similarly. 

Acu = max,{A,Ax}. 
We consider the performance of algorithms with re- 

spect to three factors: memory use, running time, and 
number of passes required over the database. Since our 
techniques look at triples of items, O(m3) memory is 
enough to store all the count information needed for 
our algorithms. Because of this, machines with O(m3) 
memory require only one pass over the database in all 
cases. The algorithms below assume that m is on the 
order of thousands of items, so caching the required 
database information in this way is not feasible. How- 
ever, we consider O(m2) memory to be available. Situa- 
tions where less memory is available will have to rely on 
the naive algorithm, which requires only 0( 1) memory. 

4.1 The Naive Algorithm 

Consider first the brute force search algorithm for deter- 
mining all valid causal relations from market basket data. 
Effectively, we iterate over all triples of items, checking 
if the given triple satisfies the conditions for either CCC 
or CCU causality. This requires a conditional indepen- 
dence test, which requires knowing how many baskets 
contain all three items in the triple. Thus, the brute force 
algorithm requires O(m3) passes over the database, and 

this alone takes time O(nm3). However, the algorithm 
requires only O(1) memory. If A4 words of memory 
are available, we can bundle count requests to reduce the 
number of database passes to O(m3/M). 

4.2 The CC-path Algorithm 

The naive algorithm can be speeded up easily if 
O((AC)2) memory is available: Consider each item A 
in turn, determine all items connected to A via C-edges, 
and for each pair B and C of these C-neighbors check if 
either causality rule applies to ABC. This approach re- 
quires examining O(m(Ac)2) triples, instead of O(m3). 
More importantly, it requires only n passes over the 
database; in the pass for item A, we use O((Ac)2) space 
to store counts for all ABC in which B and C are con- 
nected to A by a C-edge. The running time of the result- 
ing algorithm is O(nm(Ac)2). This algorithm has the 
same worst-case running time as the naive algorithm, but 
unless AZ is very large it is faster than performing the 
naive algorithm and bundling m2 count requests. 

4.3 The CU-path Algorithm 

The CC-path algorithm is so named because it looks at 
C-C paths (with A as the joint) and then checks for the 
existence of the third edge. Another approach, appropri- 
ate only for finding CCU causality, is to look for C - U 
paths and check if the third edge is correlated. This algo- 
rithm is superior when Ai < AZ for most A. The CU- 
path algorithm requires O(Acu) memory, O(nmAcu) 
time, and O(m) passes over the database. 

4.4 The Cl-I-path Algorithm with Heuristic 

The CU-path algorithm allows for a heuristic that is not 
available for the CC-path algorithm. It follows from the 
fact every CCU triple has two C - U paths but only 
one C - C path. Therefore, for every U edge there is a 
choice, when looking for C - U paths, of whether to look 
at one endpoint or the other. From a computational point 
of view it makes sense to pick the endpoint that abuts 
fewer C-edges. As a result there will be fewer C - U 
paths to process. (One way to think of it is this: there are 
C - U paths that are part of CCU triples, and those that 
are not. The former we must always look at, but the latter 
we can try to avoid.) This heuristic has proven extremely 
successful, particularly when the number of C-edges is 
large. For the clari data set (Section .5.4), the CU-path 
heuristic cut the running time in half. 

Optimizations are possible. For instance, the algo- 
rithms described above check twice whether a pair of 
items share an edge, once for each item in the pair. It 
would be faster, memory permitting, to determine all cor- 
related and uncorrelated edges once as a pre-processing 
step and store them in a hash table. Even better would be 
to store edges in an adjacency list as well as in the hash 

600 



table, to serve as a ready-made list of all C- and U-edges 
abutting the “joint” item. In experiments, this improve- 
ment in data structures halved the running time. Caching 
as many triple counts as will fit in main memory will also 
improve the running time by a constant factor. 

4.5 Comparison of Performance 

Table 2 holds a summary of the algorithms we consider 
and their efficiencies. Note that the number of database 
passes is not the same for all algorithms. This is because 
if an item lacks a correlated (or uncorrelated) neighbor, 
we need not perform a database pass for that item. For 
the clari data set (Section 5.4), there are 3 16295 C- 
edges but only 5417 U-edges. This explains the superior 
performance of the CU-path algorithm, both in terms of 
time and database passes. 

When the data is very large, we expect the I/O cost - 
the cost of moving data between main and secondary 
memory, which in this case is n times the number of DB 
passes - to dominate. In this case, though, the I/O cost 
is proportional to the processing cost: as is clear from 
Table 2, the time required for an algorithm is the product 
of the memory requirement and n times the number of 
DB passes, which is the I/O cost. For a fixed amount of 
memory, the processing time is proportional to the I/O 
cost, and henceforth we only consider processor time in 
our comparisons. 

5 Experimental Results 

We use two data sets for our analysis, similar to those 
in [BMS97]. One holds boolean census data (Sec- 
tion 5.1). The other is a collection of text data from 
UP1 and Reuters newswires (Section 5.2). We actually 
study two newsgroup corpora, one of which is signifi- 
cantly larger than the other. 

In the experiments below, we used a chi-squared cut- 
off c = 5% for C-edges and c = 95% for U-edges. We 
use the definition of support given by Brin, Motwani, and 
Silverstein [BMS97]. All experiments were performed 
on a Pentium Pro with a 166 MHz processor running 
Solaris x86 2.5.1, with 96 Meg. of main memory. All 
algorithms were written in C and compiled using gee 
2 -7 .2 -2 with the -06 compilation option. 

5.1 Census Data 

The census data set consists of n = 126229 baskets and 
m = 63 binary items; it is a 5% random sample of 
the data collected in Washington state in the 1990 cen- 
sus. Census data has categorical data that we divided 
into a number of boolean variables. For instance, we di- 
vided the census question about marital status into sev- 
eral boolean items: MARRIED, DIVORCED, SEPARATED, 
WIDOWED, NEVER-MARRIED.~ Every individual has 

4The census actually has a choice, “Never married or under 15 years 
old.” To simplify the analysis of this and similar questions, we dis- 

Another CCC rule shows that if people who are never 
married are less likely to drive to work, it is only because 
they are less likely to be employed. The conditional is 
used here because we cannot be sure of the causal rela- 
tionship: are the unmarried less likely to have jobs, or are 
the unemployed less likely to get married? In any case, 
we can be sure that there is no direct causality between 
being married and driving to work. If these factors are 
causally related, it is mediated by employment status. 
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Table 4 shows some of the CCU causal relationships 
discovered on census data. While the causal relationship 
is uniquely determined, confounding and hidden vari- 
ables keep us from determining if causality is direct. For 
instance, in the first row of Table 4, we can say not having 
graduated high school causes one not to drive to work, 
but we do not know if this is mediated by the fact high 
school dropouts are less likely to have jobs. A causal 
rule such as NOGRAD-HS -+ EMPLOYED may exist, but 
if so neither the CCC nor CCU causality tests found 
it. As we see, these algorithms are better at exploratory 
analysis than hypothesis testing. 

Note that both CCC and CCU causality tests discov- 
ered a causal relationship between being employed and 
never having been married. The CCU result can be used 
to disambiguate among the possible causal relationships 
found from the CCC test. A danger of this if that if the 
CCU result is inaccurate, due to statistical error, using it 
to disambiguate the CCC result propagates the error. 

As it is, an improper uncorrelation judgment can 

carded the responses of those under 2.5 and over 60 years old. 

TRUE for one of these variables and FALSE for the rest. 
The test for CCU causality took 3 seconds of user 

CPU time to complete, while the test for CCC causality 
took 35 seconds of user CPU time. This indicates the 
census data has many more C edges than U edges, which 
is not surprising since all variables derived from the same 
census question are of necessity correlated. 

In Table 3 we show some of the results of finding 
CCC causality. Since several variables (such as MALE 

and UNDER-43) cannot have causes, census data fits well 
into Cooper’s LCD framework, and it is often possible to 
determine the direction of causation. Because of the pos- 
sibility of confounding and hidden variables however, we 
cannot determine direct causality. The CCC test, how- 
ever, allows us to rule out direct causality, and this in 
itself yields interesting results. 

For example, being in a support position is negatively 
correlated with having moved in the past five years. This 
may lead one to believe that support personnel are unusu- 
ally unlikely to move around. However, when we condi- 
tion on being male, the apparent relationship goes away. 
From this, we can guess that being male causes one to 
move frequently, and also causes one not to have a sup- 
port job. Notice that in any case the correlation between 
support jobs and moving is very weak, indicating this 
rule is not powerful. 



Table 2: Summary of running time and space for finding CCU causal relationships, in both theory and practice on 
the clari data set (Section 5.4). This data set has m = 6303 and n = 27803. Time is in seconds of user time. To 
improve running time, the algorithm grouped items together to use the maximum memory available on the machine. 
Thus, a comparison of memory use is not helpful. The naive algorithm was not run on this data set. 

Theoretical Theoretical clari 
Space Time Time 
00) 3 

O(nm > 
OWc)2) O(nm(Ac)2) 3684 set 
O(ACu) O(nmAcU) 1203 set 
O(ACU) O(nmAcU) 631 set 

Theoretical clari 
DB passes DB passes 
OW) - 

O(m) 12606 
O(m) 9718 
O(m) 9718 

Table 3: Some of the 25 causal CCC relationships found in census data. The causal relationship is given when it 
can be disambiguated using a priori information, p is the coefficient of correlation between the pair of items, and is 
positive when the two items are found often together, and negative when they are rarely found together. 

A B C causality PAB /'AC i'BC 
MOVED-LAST-SYRS MALE SUPPORT-JOB ) A t B 4 c ( 0.0261 -0.0060 -0.2390 
NEVER-MARRIED EMPLOYED CAR-TO-WORK ? -0.0497 -0.0138 0.2672 
HOUSEHOLDER $20-$40K NATIVE-AMER AtBtC 0.2205 -0.0111 -0.0537 
IN-MILITARY PAY-JOB GOVT-JOB ? 0.1350 -0.0795 -0.5892 

cause many erroneous causal inferences. For instance, 
the uncorrelated edge SALES-HOUSEHOLDER is the base 
of 10 CCU judgments, causing 20 causal inferences. If 
this edge is marked incorrectly, all 20 causal inferences 
are unjustified. In fact, a priori knowledge would lead 
us to believe there is a correlation between being in sales 
and being the head of a household. Causal inferences 
based on this U-edge, such as the last entry in Table 4, 
are clearly false - dropping out of high school is tem- 
porally prior to getting a job or a house, and thus cannot 
be caused by them - leading us to question all causal 
inferences involving the SALES-HOUSEHOLDER edge. 

5.2 Text Data 

We analyzed 3056 news articles 
from the clari . worldnews hierarchy, gatheredon 13 
September 1996, comprising 18 megabytes of text. For 
the text experiments, we considered each article to be a 
basket, and each wordto be an item. These transforma- 
tions result in a data set that looks remarkably different 
from the census data: there are many more items than 
baskets, and each basket is sparse. To keep the number 
of items at a reasonable level, we considered only words 
that occurred in at least 10 articles. We also removed 
commonly occurring “stop words” such as “the,” “you,” 
and “much.” We were left with 6723 distinct words. 

Since we have no a priori knowledge to distinguish 
between the possible causal models returned by the 
CCC algorithm, we ran only the CCU algorithm on the 
text data. The algorithm returned 73074 causal relation- 
ships. To study these, we sorted them by (the absolute 
value of) their correlation coefficient. We would expect 

the very top pairs to be obvious causal relationships, and 
indeed we see from Table 5 that this is the case. To ex- 
plore more interesting causal relationships, we also show 
some results from 5% down the list of correlations. 

Even the first set of causal relationships, along with its 
obvious relationships such as “united” causing “states,” 
has some surprises. One is in the relationships “quoted’ 
causes “saying,” probably part of the set phrase, &‘. . . was 
quoted as saying . . . .” Though this may not illuminate 
the content of the corpus, it does lend insight into the 
writing style of the news agency. 

Another interesting property is the frequency of 
causal relationships along with their converse. For in- 
stance, “prime” causes “minister” and “minister” causes 
“prime.” The probable reason is that these words are usu- 
ally found in a phrase and there is therefore a determinis- 
tic relationship between the words; that is, one is unlikely 
to occur in an article without the other. When words are 
strongly correlated but not part of a phrase - “iraqi” and 
“iraq” are an example - then we only see the causal re- 
lationship in one direction. This observation suggests a 
somewhat surprising use of causality for phrase detec- 
tion. If words that always occur together do so only as 
part of a phrase, then we can detect phrases even with- 
out using word location information, just by looking for 
two-way causality. Presumably, incorporating this strat- 
egy along with conventional methods of phrase detection 
would only improve the quality of phrase identification. 

The causal relationships at the 5% level are also in- 
triguing. The relationship “infiltration” -+ “iraqi” points 
to an issue that may bear further study. Other relation- 
ships, such as “Saturday” -+ “state,” seem merely bizarre. 
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Table 4: Some of the 36 causal CCU relationships found in census data. The causal relationship is uniquely deter- 
mined. p is the coefficient of correlation between the pair of items. It is not given for the (uncorrelated) AB pair. 

A and B each cause C I’AC PBC 
BLACK and NOGRAD-HS each cause CAR-TO-WORK -0.0207 -0.1563 
ASIAN and LABORER each cause <$20K 0.0294 -0.0259 
ASIAN and LABORER each cause $20-$40K -0.0188 0.0641 
EMPLOYED and IN-MILITARY each cause UNDER-43 -0.0393 -0.2104 
EMPLOYED and IN-MILITARY each cause NEVER-MARRIED -0.0497 -0.0711 
SALES-JOB and HOUSEHOLDER each cause NOGRAD-HS -0.0470 -0.0334 

Table 5: Causal relationships from the top and 5% mark of the list of causal relationships for words in the 
clari . world news hierarchy. The list is sorted by IpI. The x2 value measures the confidence that there is a 
causal relationship; all these x2 values indicate a probability of error of less than 0.0001. The p value measures the 
power of the causality. 

I- 

Causal relationships x2 value P 
upi + reuter 2467.2895 -0.8985 
reuter + upi 2467.2895 -0.8985 
iraqi + iraq 2362.6179 0.8793 
united + states 1691.0389 0.7439 
states + united 1691.0389 0.7439 
prime -+ minister 1288.8601 0.6494 
minister + prime 1288.8601 0.6494 
quoted + saying 866.6014 0.5325 
news + agency 718.1454 0.4848 
agency -+ news 718.1454 0.4848 

5.3 Comparing Causality with Correlation 

A question naturally arises: what is the advantage of 
causal discovery over merely ranking correlated item 
pairs? In Table 6 we ‘show the top 10 correlations, as 
measured by the correlation coefficient. These results are 
directly comparable to the top portion of Table 5. Two 
difference are immediately noticeable. One is the new 
item pairs. Some of them, like “iraq” and “warplanes,” 
seem like significant additions. Others, like “hussein” 
and “northern,” have plausible explanations (the U.S. 
flies over Northern Iraq) but is higher on the list than 
other, more perspicuous, causal relationships. The other 
noticeable difference is that, since correlation is symmet- 
ric, there is no case of a pair and its converse both occur- 
ring. Insofar as asymmetric causalities yield extra under- 
standing of the data set, identifying causal relationships 
yields an advantage over identifying correlations. 

A third difference, not noticeable in the figure, is that 
there are many more correlation rules than causal rules. 
While there are around 70 thousand causal relationships 
in this data set, there are 200 thousand correlated pairs. 

5.4 Performance on a Large Text Data Set 

The clari . world data set, at 18 megabytes, is rather 
small. We therefore repeated the text experiments on 

Causal relationships xL value P 
state + officials 70.5726 0.1520 
Saturday + state 70.6340 0.1520 
infiltration -+ iraqi 70.5719 0.1520 
forces -+ company 70.5456 -0.1519 
company -+ forces 70.5456 -0.1519 
win + party 70.3964 0.1518 
commitment + peace 70.2756 0.1516 
british + perry 70.2082 0.1516 
support + states 70.1291 0.1515 
states -+ support 70.1291 0.1515 

the entire clari hierarchy, a larger, more heteroge- 
neous news hierarchy that covers sports, business, and 
technology along with regional, national, and interna- 
tional news. This data set was gathered on 5 September 
1997. Whileclari.worldislogicallyasubtreeofthe 
clari hierarchy, the clari .world database is not a 
subset of the clari database since the articles were col- 
lected on different days. The clari data set consists 
of 27803 articles and 186 megabytes of text, and is thus 
ten times larger than the clari . world data set. How- 
ever, the number of items was kept about the same - the 
larger data set, at 6303 items, actually has fewer items 
than the clari . wor Id data set - by pruning infre- 
quent words. In both cases, words found in fewer than 
0.3% of all documents were pruned; for the clari data 
set this worked out to an 84 document minimum. 

As in the smaller data set, where the highest corre- 
lated terms concerned Iraq, the terms with the highest 
correlation come from a coherent subset of documents 
from the collection. Unfortunately, the coherent subset 
of the clari collection is a large mass of Government 
postings soliciting bids, in technical shorthand, for au- 
tomotive supplies. Thus, the top causalities are “reed” 
causes “solnbr” and “desc” causes “solnbr.” 

The causal relationships found 5% down the list are a 
little more interesting. Some are shown in Table 7. 
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Table 6: Correlations from the top of the list of corre- 
lations from the clari .world news hierarchy, sorted 
by IpI. This list is a superset of the list of top causal 
relationships (Table 5). The x2 value measures the con- 
fidence that there is a correlation; all these x2 values in- 
dicate a probability of error of less than 0.0001. The p 
value measures the power of the causality. 

Corr. relationships 
reuter - upi 
iraq - iraqi 
states - united 
minister - prime 
quoted - saying 
democratic - party 
agency - news 
iraqs - northern 
hussein - northern 
iraq - warplanes 

6 Conclusion and Further Research 

xL value 
2467.2895 
2362.6179 
1691.0389 
1288.8601 
866.6014 
777.7790 
718.1454 
705.4615 
678.5580 
655.5450 

-0.898; 
0.8793 
0.7439 
0.6494 
0.5325 
0.5045 
0.4848 
0.4805 
0.4712 
0.4632 

In data mining context, constraint-based approaches 
promise to find causal relationships with the efficiency 
needed for the large data sets involved. The size of the 
data mining data sets mitigate some of the weaknesses 
of constraint-based approaches, namely that they some- 
times need large amounts of data in order to make causal 
judgments, and instead of finding all causal relationships, 
they only find a subset of these relationships. For data 
mining, which seeks to explore data rather than to test 
a hypothesis, finding only a portion of the causal rela- 
tionships is acceptable. Another weakness of constraint- 
based algorithms, the error inherent in repeated use of 
statistical tests, is mitigated in boolean data by using a 
power statistic to reduce the probability of error without 
discarding powerful causal relationships. 

We developed a series of algorithms, based on tech- 
niques used in Cooper’s LCD algorithm, that run in time 
linear in the size of the database and cubic in the num- 
ber of variables. For large data sets with thousands of 
variables, these algorithms proved feasible and returned 
a large number of causal relationships and, equally inter- 
esting, not-directly-causal relationships. This feasibility 
came from heuristics and algorithmic choices that im- 
proved on both the time and memory requirements of the 
naive cubic-time algorithm. 

Finding causal relationships is useful for a variety of 
reasons. One is that it can help in visualizing relation- 
ships among variables. Another is that, unlike correla- 
tion, causation is an asymmetric concept. In contexts 
where it is possible to intervene on the variables (for 
instance, in choosing to lower the price on hot dogs) 
causality can help predict the effect of the intervention, 
whereas a correlation analysis cannot. In the context of 
text analysis, causation can help identify phrases. 

There are still a variety of unresolved and unexplored 

Table 7: Causal relationships from the list of causal rela- 
tionships for words in the clari news hierarchy, start- 
ing from 5% down the list when the list is sorted by 
IpI. The x2 value measures the confidence that there is a 
causal relationship; all these x2 values indicate a proba- 
bility of error of less than 0.0001. The p value measures 
the power of the causality. 

Causal relationships 
cause + company 
15 + 90 
constitutes + number 
modification + pot 
email -+ 1997 
today -+ time 
time + today 
rise + market 
people + update 
134-+28 

xL value 
558.2142 0.141: 
557.9750 0.1417 
557.8370 0.1416 
557.2716 0.1416 
557.1664 0.1416 
557.0560 0.1415 
557.0560 0.1415 
556.6937 0.1415 
556.6686 0.1415 
556.1250 0.1414 

issues in the area of mining for causal relationships. We 
briefly list some of them below. 

Choosing Thresholds Is there a way to determine opti- 
mal values for the correlation and uncorrelation cut- 
offs for a given data set? Better yet, is it possible to 
replace cutoff values with efficient estimates of the 
probability of correlation? 

Disambiguation We mentioned in Section 5.1 that, at 
the risk of propagating error, we can use known 
causal rules to disambiguate the CCC rule. How- 
ever, both A -+ B and B + A may occur in data. 
Is there a principled way to resolve bidirectional 
causality for disambiguation? Can we then devise 
efficient algorithms for using incremental causal in- 
formation to perform disambiguation? 

Hidden Variables Bidirectional causality may indicate 
deterministic relationships (as in text phrases), error 
in statistical tests, or the presence of hidden vari- 
ables. Under what situations can we be confident 
hidden variables are the cause? What other tech- 
niques can we use to discover hidden variables? 

Heuristics for Efficiency How can we make the above 
algorithm even more efficient? The largest 
speedups could be obtained by avoiding checking 
all triples. Can we determine when a conditional 
independence test will fail without explicitly testing 
the triple? Can we reduce the number of items, per- 
haps by collapsing items with similar distributions? 
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A Relationship between x2 and p 

We provide the manipulations to show that X2(X, Y) = 
n . p(X, Y)2. The X2 statistic, as we have mentioned, 
measures the probability that two variables would yield 
an observed count distribution if they were independent. 
The correlation coefficient p(X, Y), on the other hand, 
measures the strength of the dependence observed in the 
data. It does this by summing over the joint deviation 
from the mean. Formally, the two concepts are defined 
as follows: 

dew(x, y) = 
(0(X = 2, Y = y) - O(x)O(y)/n)2 

o(xP(Y)ln 

x2(XJ) = c Wx, Y) 
~E~O,l),YE{O,l} 

P(xm2 = 
(C&c - PX)(yz - PLyN2 

+s$ 

0 counts the number of records having a given proprty. ,LL 
is the observed mean of a variable, and u2 the variance. 
We define x = 0(X = l), y = O(Y = l), and b = 
0(X = 1,Y = 1). R. is the total number of records. 

The X2 and p2 statistics can easily be simplified in the 
boolean case. For instance, PX = x/n. A little manipu- 
lation from first principles shows that C& = x/n.(n-x). 
Thus the denominator of p2 is xy (n - x) (n - y) /n” . The 
numerator of p is (C XiYi - PX C Yi - py C Xi + 
np~py)~ = (b-xy/n-yx/n+yx/n)2 = (b-~y/n)~. 

If we perform the substitutions above for X2 and p2, 
we obtain the following formulas: 

x2(XJ) = 
VJ - XYN2 

w/n 

+ (x - b - x(n - y)/n)2 

x(n - y)ln 

+ (Y - b - Y(n - x)ln12 
(n - x)yln 

+ (n - 2 - y + b - (n - x)(n - y)/n)2 

(n - x>(n - y)ln 

P(xm2 = 
(bn - XY)~ 

4n - x)(n - Y) 

X2 can be simplified further; the key is to note that all 
the numerators are actually equal to (b- x~/n)~. Putting 
all four terms over a common denominator yields 

x2(X, Y) = 
n. (b - xy/n)2 . n2 

XY(~ - x)(n - Y) 

or X2 = n. (bn - xy)2/xy(n - x)(n - y). It is easy to 
see that this is n . p2. 
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