
Algorithms for Querying by Spatial Structure

Dimitris Papadias’, Nikos Mamoulis’ and Vasilis Delis2

‘Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{ dimitris, mamoulis} @cs.ust.hk

Abstract: Structural queries constitute a special form of
content-based retrieval where the user specifies a set of spatial
constraints among query variables and asks for all
configurations of actual objects that (totally or partially) match
these constraints. Processing such queries can be thought of as a
general form of spatial joins, i.e., instead of pairs, the result
consists of n-tuples of objects, where n is the number of query
variables. In this paper we describe a flexible framework which
permits the representation of configurations in different
resolution levels and supports the automatic derivation of
similarity measures. We subsequently propose three algorithms
for structural query processing which integrate constraint
satisfaction with spatial indexing (R-trees). For each algorithm
we apply several optimization techniques and experimentally
evaluate performance using real data.

1. Introduction
Several types of spatial queries have been the focus of
active research in the database community: window
queries [G84], nearest neighbors [RKV95], relation-based
queries [PTSE95] etc. The above types retrieve all objects
in the database that satisfy some spatial property with
respect to a fixed reference object or window. Recently
the focus has shifted towards spatial joins [R91] [G93]
[BKS93], which involve the retrieval of pairs of objects
that satisfy some spatial predicate (most often overlap).

This work examines an alternative form of spatial
information processing, namely, queries involving the
retrieval of n-tuples (n>2) of objects that satisfy some
spatial structure. Structure is described as a set of spatial
constraints between query variables which can be
expressed either by a “verbal” (e.g., select X, Y, Z, from
Roadmap, where overlaps(X,Y) and north(Y,Z)) or
pictorial language (e.g., by drawing a prototype
configuration on a sketch-board). This type of queries can
be thought of as the generalization of spatial joins (if the
relation between variables is overlap, it corresponds to
common multi-way spatial join). From a different

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
an&or special permission from the Endowment.
Proceedings of the 24th VLDB Conference, New York, USA,
1998

‘Computer Engineering and Informatics Department
and Computer Technology Institute

University of Patras, Greece
delis@cti.gr

perspective, structural queries constitute a special class of
image similarity retrieval, where the query specifies an
input configuration to be matched with stored images.
Similarity is based on relative locations and not on visual
characteristics (e.g., colour, shape).

Let n be the query size (number of variables) and N be
the data size (number of image objects): in the worst case
(exhaustive search), all n-permutations of N objects have
to be searched in order to find solutions (i.e., N!/(N-n)!).
In real DBMSs where N>>n, this number is O(N”),
meaning that the retrieval of structural queries can be
exponential to the query size. Query processing becomes
more expensive if inexact matches are to be retrieved, a
situation which arises very often in practical applications.

In order to avoid this problem, most related previous
techniques (e.g., [GR95] [NNS96]) have focused on a
specific instance where images consist of known
(labelled) objects and queries express spatial constraints
among a subset of these objects. [PF97] employ R-trees to
solve structural queries for images that contain a constant
number of labelled objects (e.g., lungs) and a small
number of unlabelled ones (e.g., tumours). Although their
method is efficient for domains involving numerous small
images with few unlabelled objects (e.g., medical
databases of X-rays) it is not applicable to large images of
unlabelled objects.

In this paper we deal with the general problem where
large images contain arbitrary numbers of unlabelled
objects. In order to provide a general solution, we present
a unified framework for structural similarity, which can
represent various resolution levels and automates the
derivation of similarity measures. We then propose
algorithms that can solve the problem for considerable
data and query sizes. These algorithms utilize ideas from
related work in spatial databases (spatial join processing)
and AI (constraint satisfaction algorithms).

Although the problem of querying by structure is not a
new one (it has been around since the early stages of
computer vision [BB84]), to the best of our knowledge
this is the first approach to provide a solution which
combines search algorithms with spatial indexing and can
be applied for secondary memory retrieval. Our
techniques have a wide range of potential applications in
various areas (e.g., GIS, Multimedia Databases, VLSI).

546

The rest of the paper is organized as follows: Section 2
describes a binary string encoding for the representation
of structure in multiple resolutions and dimensions.
Sections 3 outlines the problem and provides examples of
spatial queries and their processing. Sections 4, 5 and 6
describe three algorithms for structural query processing:
the first one extends traditional spatial join methods for R-
trees to multi-way (nested) joins. The second algorithm
uses a search heuristic to prune the windows where query
variables can be instantiated from, while the third one
combines ideas from the first two algorithms. Section 7
compares the performance of the algorithms under several
conditions. Finally, Section 8 concludes with future
research directions.

2. A Framework for Structural Similarity
We will initially confine our discussion to one dimension
and address the most common types of relations proposed
and mathematically defined so far in the spatial domain
[PS94], namely topological (e.g., inside, overlaps),
directional (e.g., north, northeast) and qualitative distance
relations (e.g., near, far). Figure 1 illustrates the three
types of ID relations assuming that the lower interval is
the reference object and the upper interval is the primary
one.

Our goal is to provide a unified and adjustable
framework which permits the definition of any type of
spatial relation and the automatic generation of
similarities between them. Assume that in a particular
application the only relations of interest are the ones in
Figure 1, and we are given a (reference) interval [a,b].
Then we identify nine potential regions of interest:
I.(-co,a-6) 2.[a-&a-6] 3.(a-b,a) 4.[a,a] 5.(a,b) 6.[b,b] 7.(b,

b+6) S.[b+d, b+6] 9.(b+d,+oo)
For each of the above regions we associate a binary

variable, r, s, t, U, v, w, x, y, z, respectively (see Figure 2).
Given a primary interval [cd], the value of every variable
indicates the result of the intersection between [cd] and
the variable’s associated region (“0” corresponds to an
empty intersection while “1” corresponds to a non-empty
one). Thus, we can define ID relations to be 9-tuples

topological relations
meets overlaps covers equal

IIiI

directional relations

- left-near
‘s

Figure 1 Categorization of 1D relations

(Rrsruww : c s, t, u, v, w, x, y, z E {O,l 1).
Such a consecutive partitioning of space constitutes a

resolution scheme. There are several possible schemes;
the particular choice is affected by the users’ expectations
or the application’s requirements, as every scheme can
refine or generalize a particular relation class. For
example, when distance relations are not needed we can
apply a scheme with only five bits (two corresponding to
the points of the reference interval) which defines the 13
relations between intervals proposed by Allen [A83].

The feasible relations at a particular resolution scheme
are called primitive relations. In general, the less the
binary variables, the coarser the resolution, and vice versa.
If b is the number of bits used by the resolution scheme,
the number of primitive relations in 1D is b(b+1)/2 - k,
where k is the number of point variables, i.e. intervals of
the form [a,a]. For b=9, k=4 we get 41 relations (see
Figure 2), while for b=5, k=2, there exist 13 (Allen’s)
relations.

Each spatial relation is mapped onto a set of primitive
relations. For instance, lest can be mapped onto
~R~oooooooo, RII~OOO~O~, R,IIOOOOOO, ROIIOOOOOO, Roo~oooooo~ and
near onto (ROO1OOOOOO, ROOOOOO1OO). Disjunction of spatial
relations (e.g., left or near) are represented by the unions
of the corresponding sets, and conjunctions by their
intersection (e.g., {ROO1OOOOOO} corresponds to left-near).

The next step is to provide a mechanism for
representing similarities among relations independently of
the resolution scheme. [F92] defined the concept of
conceptual neighborhood as a cognitively plausible way
to measure similarity among Allen’s interval relations. A
neighborhood is represented as a graph whose nodes
denote relations that are linked through an edge, if they
can be directly transformed to each other by continuous
interval deformations. Depending on the allowed
deformation (e.g., movement, enlargement), several
graphs may be obtained.

Figure 2 represents the neighborhood graph for a
distance-enhanced resolution scheme, assuming that a
minimal deformation is a movement of a single interval
endpoint. Starting from relation R,OOOOOOOO and extending

covered by contains contained by disjoint

I 1 I -I

distance relations
far

547

bit: 0 I 2 3 4 5678
r stu Y wiry.2

T T n

the upper interval to the right, we derive relation R1lOOOOOOO.
With a similar extension we can get the transition from
RIIOO~~~OO to RII~~~~OOO and so on. RIOO~~OOOO and RIIIOO~OOO are
called 1” degree neighbors of Rllooooooo. The distance d
between two relations is equa1 to the length of the shortest
path connecting them in the neighborhood graph.

The binary string representation enables automatic
calculation of distances using the pseudo-code of Figure
3, which counts the minimal number of “0”s that have to
be replaced with “1”s in order to make the two strings
identical. For example d(Rooo,loooo, RO1OOOOOOO) = 5 and
d(R~lloooo, Rllooooooo) = 6 (the underlined% are the ones
counted during the calculation of distance). The distance
between a relation R and a relation set {Rt,. . . ,Ri} equals
the minimum distance between R and any of RI,. . .,Ri
(e.g., 4&~~~0000, WOIWOOOO, RIMLOOOOO))= 5).
INT distance(relation Rl, relation R2)
R = RI OR R2; /*bitwise OR */
d= 0;

FOR i:= R.leftmost-I to Rxightmost-I DO
IF Rl[i]=O THEN d++;
IF R2[i]=O THEN d ++;

RETURN (~5);
Figure 3 Distance calculation

The encoding and distance calculation can be
extended accordingly to multi-dimensional spaces. A D-
dimensional relation is defined as a D-tuple of 1D
projections, e.g. RIIOOOOOOO-IHOOOOOO = RIOOOOOOO, RIIIOOOOOO).

In order to derive a neighboring relation we have to
replace one of the constituent 1D projections with its

Figure 2 1D Conceptual neighborhood including distances
neighbors. As a result, computing D-relation distances is
reduced to the already solved problem of computing 1D
distances. In this paper we calculate the distance between
two multi-dimensional relations by summing up the
distances in each dimension (other metrics, such as
Euclidean [NNS96], can also be applied).

The advantages of the proposed framework are i) the
expressiveness of the encoding in the sense that given a
binary string, the corresponding spatial configuration can
be easily inferred, and vice versa, ii) efficient automatic
calculation of neighborhoods and relation distance, and
iii) the uniform representation of all three types of
relations (topological, directional, distance) in various
resolution levels. For the sake of clarity, in the rest of the
paper we use the distance enhanced resolution scheme of
Figure 2. However for more realistic applications,
sufficiently fine schemes (large encoding strings) can be
used, while retaining the model’s properties. The
algorithms of the following sections are independent of
the resolution and can be applied with any set of spatio-
temporal relations. For a number of alternative resolution
schemes and a more detailed description of the framework
see [DPM98].

3. Structural Queries
The projection-based definitions of relations and
similarity measures of Section 2 are particularly suitable
for structural similarity retrieval, because spatial databases
often utilize minimum bounding rectangles (i.e.,
projection-based approximations) as a fast jZter step to

548

(4 Query (b) Constraints
Figure 4 Example query

_,

(c) Solution

exclude the objects that could not possibly satisfy a query
[086]. Furthermore, structural queries do not always have
exact matches and crisp results. Rather, the output should
have an associated “score” to indicate its similarity to the
query. By adoption, this score is inversely proportional to
the degree of neighborhood.

A structural query can be formalised as a binary
constraint satisfaction problem [N89] (CSP) which
consists of:
l A set of n variables, VO,V1,...,Vn-i that appear in the

wry.
l For each variable Vi a finite domain Di ={uo,. . ., UN-l} of

N potential values which correspond to image objects. In
this paper we assume that all domains are identical, i.e.,
each variable can be instantiated to any image object.

l For each pair of variables Vi,Vj a binary spatial
constraint Cij which is a set of primitive relations.

Consider, for example, the query of Figure 4(a) which is a
spatial arrangement of n=4 variables, expressed using a
query-by-sketch language. Assuming the distance-
enhanced resolution scheme of Figure 2, the set of query
constraints between all variable pairs is illustrated in
Figure 4(b). The domain of each variable is the set of
objects in the image to be searched. Figure 4(c) illustrates
a solution where variable V, is instantiated to object 143,
V, to object 207 and so on. Although the particular
language specifies relations between all pairs of variables,
in some cases (e.g., verbal languages), queries may be
incomplete (some C, may be left unspecified) or indefinite
(C, may be disjunctions of relations).

A binary instantiation {Vituk, Vjtui} is consistent,
if R(uk,ui) z Cu. For instance, the constraint between V0
and V3 is R1OOOOOOOO-I1lOOOOOO, which is also the relation
between their corresponding instantiations (143,42) in
Figure 4(c); therefore, {V&143, Vst42) is consistent.
We define the binary degree of inconsistency z of {Vi+

uk, Vj tui] as the distance between Cij and R(UiJ.li).
Although the constraint between V0 and V, is ROO1lllOOO-
OolllllOO, the relation between objects 143 and 207 is
Roollllooo-oollllQoo; hence, z =l for {Vo+143, Vl+2W.
The degree of inconsistency T of a solution {V,t up, . . .,
V,-, t u,} is the sum of all binary inconsistency degrees:

p xd(C,,R(uk, 2.0)) where {vi + Uk, Vj + UI>

VIJ, OSi,j<n

Degrees of inconsistency are used for the retrieval of
configurations that match the input structure closely, but
not perfectly. The maximum allowed T and z are
submitted with a query in order to adjust the trade-off
between the level of approximation and the cost of query
processing. For instance, if T=6 and 2=2, only solutions
that produce total relation difference I 6 and pair-wise
difference I 2 will be retrieved. Obviously as T and z
increase, so does the number of solutions, but also the cost
of query processing.

3.1 Forward Checking with Dynamic Value Ordering

A number of algorithms have been proposed for solving
CSPs [N89]. One of the most effective, is forward
checking (FC) [HE801 [BG95] which has been shown to
outperform the rest for a wide range of problems
involving “crisp” constraints [BvR95]. FC must be
modified for structural queries in order to handle soft
constraint processing using T and z.

The adjusted version works as follows: when a
variable Vi is assigned a value uk, the domain of each
future @n-instantiated) variable Vj is pruned according to
uk and the constraint Cij, for all j>i. That is, all values ui
that produce a distance d(Cti,R(Uk,Ui))>% are removed from
the domain of Vj. The same happens for values that
produce global inconsistency degree > T, taking into
account the constraints between Vj and all instantiated

549

variables’. Consequently, when we reach instantiation
level i (variables up to Vi have been instantiated), the
values of variables V,,,... ,Vi will constitute a partial
solution, and the domains of Wure variables will contain
only values that may lead to a (complete) solution given
the instantiations so far.

The procedure of pruning the domains of the future
variables is called check forward. If, after a check forward
the whole domain of a future variable is eliminated, the
algorithm un-assigns the current variable’s value, and
restores the values of future variables, which were
eliminated due to the current instantiation. When the
domain of the current variable is exhausted the algorithm
backtracks to the previous one and assigns a new value to
it. FC ou$uts a solution whenever the last variable is
given a value, and terminates when it backtracks from the
first variable.

In order to keep track of the allowable values for each
variable at every instantiation level, FC uses a nxnxN
domain table. Each element of domain[i]bJ is an array of
N values that Vj can take at different levels. Before FC
starts, domain[O]fiJ is initialized to D for all variables.
When V0 is assigned a value up, domain[l]b] is
computed for each remaining Vj, by including only values
UI E domain[O]fi] such that d(Coj,R(up,ul))lZ. In general if
uk is the current value of Vi, domain[i+I],ljJ is the subset
of domain[iJli/ which is valid w.r.t. Cq and uk. In this
way, at each instantiation level the domain[iJfiJ of V;
continuously shrinks; when we reach level j, Vj gets
instantiated from domainfi]fi] which contains only values
compatible with the instantiations of previous variables. If
a value of Vi results in the domain of some Vj to become
empty, a new value is chosen and domain[i+I]/j] is re-
initialized to domain[i]b].

Dynamic Variable Ordering (DVO) [BvR95] is a
technique employed by several CSP algorithms to
improve efficiency. The key idea behind FC-DVO is to
reorder the future variables according to their domain size
after “checking forward” at the current instantiation level.
The variable with the minimum domain size becomes the
next variable to be tested. In this way the number of
search paths is minimized, because the variable with the
smallest domain is the most likely to be pruned out; the
algorithm will backtrack faster in the case that there is no
valid assignment after the current partial solution. DVO is
responsible for changing the order of VI and V2 in Figure
4(c).

The pseudo-code of a non-recursive version of FC
with DVO which can be applied for structural query
processing is given in Figure 5. FC-DVO has two
drawbacks for the current application. First it is
inapplicable for large spatial databases, because the 3D

’ The inverse constraints Cji are also considered but, for the sake of
simplicity, we omit these tests in the rest of the paper.

FC-DVO(Query q, int r, T)
FOR j = 0 TO n-f DO domain[Oj] = D /*inikdize all domains to D */
i = 0; /* index to the current variable */
WHILE (TRUE) (

new-value := chooseNextValue(domain[rjl[ifi;
IF new-value = NULL THEN /* end ofdomoin */

IF i=O THEN RETURN;
ELSE i:=i-1; CONTINUE; /*Buckrruck*/

ELSE instantiations[i] := new-value; /*store instantiation*/
IF i = n-l THEN /*last variable instantiated*/

output-solution(instantiations);
ELSE /* intermediate variable instantiated */

IF check-forward(i) THEN /* successfil instantiation*/
DVO(i+l,n-I); Pvur. with the smallesl domain as next*/
i := i+ I; /* successful insfantiation: go forward */

1

BOOLEAN check-forward(int i)
FOR j = i+l TO n-l DO /*for all uninstanriated variables*/

domain[i+l]b]= domain[i]b];
FOR all values UI E domain[i+l],fJ

IF d(Cg,R(instantiations[i],ul)) > z OR Texceeded
THEN domain[i+l],Q]= domain[i+l],Q]-{u,);

IF domain[i+ I]i/=0 THEN RETURN FALSE;
RETURN TRUE;
Figure 5 Soft forward checking with dynamic value ordering

domain table cannot fit in main memory. The second
drawback is the fact that it does not utilize the existing
spatial indices which may exist for spatial relations. The
incorporation of R-trees [G84] and appropriate query
processing techniques can solve both these problems.

3.2 Multi-Relation Spatial Join

Structural queries can be viewed as multi-way spatial self-
joins, where structural constraints correspond to join
predicates. For example, a pair-wise spatial join is
equivalent to a structural query with two variables related
by a spatial constraint. The most influential technique for
efficiently computing pair-wise, intersection joins using
R-trees is presented in [BKS93]. It is based on the
enclosure property: if two intermediate R-tree nodes do
not intersect, there can be no MBRs below them that
intersect. The algorithm first joins the high level nodes
and then follows the links in order to find qualifying pairs
below them (Figure 6).
SpatialJoin(Rtree-Node N[i], Nfi])
FOR all NI E Nu] DO
FOR all Nk E N[i] with Nk n NI # 0 DO

IF N[i] is a leaf page THEN
Output (Nk, W

ELSE
ReadPage(Nk.ref); ReadPage(Nl.ref);
SpatialJoin(N[k], N[I])

Figure 6 R-tree SpatialJoin

550

In the pseudo-code of Figure 6, as well as in the rest of
the paper, we make the distinction between an R-tree node
N[i] and its entries Nk, which correspond to MBRs
included in N[i]. Nk.ref points to the corresponding node
N[k] at the next (lower) level. Although SpatialJoin
assumes that the nodes to be joined are of equal height,
the extension to different heights is straightforward.

Two local optimization techniques are used to improve
the CPU speed of the above algorithm. The first, search
space restriction, reduces the quadratic number of pairs to
be evaluated when two nodes N[i], Nlj] are joined. If an
entry Nk E N[i] does not intersect the MBR of Nu] (that
is the MBR of all entries contained in Nu]), then there can
be no entry N, E Nu], such that Nk and Ni overlap. Using
this observation, space restriction performs two linear
scans in the entries of both nodes before starting the
SpatialJoin procedure, and prunes out from each node the
entries that do not intersect the MBR of the other node.
The second technique, based on the plane sweep paradigm
[PS88], applies sorting in one dimension in order to
reduce the computation time of the overlapping pairs
between the nodes to be joined.

In addition, [BKS93] apply a technique that uses
pinning (or page fiing), a well known I/O buffer
management method, to force page fetching according to
the optimal order. In [HJR97], SpatialJoin was extended
by introducing an on-the-fly indexing mechanism to
optimize the execution order of matchings at intermediate
levels. [BKSS94] study the multi-step processing of
spatial joins using several approximations, while [BKS96]
employ parallel execution.

In order to use an arbitrary relation as the join
condition in SpatialJoin, we need a mapping from
relations, to bounding conditions between intermediate
node entries that should be recursively joined. Table 1
shows the bounding condition BCij for Ni given NJ. This
condition is based solely on the positions of the leftmost
and rightmost l’s in C+ In particular, the leftmost 1,
determines the position of Ni.l with respect to Nj.U, while
the rightmost 1 of Ni.u with respect to Nj./ (I and u
represent the lower and upper node-MBR points
respectively). Entries that do not satisfy these conditions
can be excluded during search.

(a) leftmost bit (a) rightmost bit
Table 1 Bounding condition BCij for Ni

Assume, for instance, the query “find all pairs (V2, V,)
related by RooOOOOOO1-OO1lOOOOO”. An entry N2 is bounded with
respect to N3 by the following conditions: (N2.u > N3.1 + 6
) on the x dimension, and by (I$.1 < N3.u), (NZ.u 2 N3.1)
on the y dimension. Figure 4.3 illustrates an example for
axis x: if N3 is the intermediate node entry containing an
object assigned to V3, then the upper point of candidate
entries for N2 (Nz.u) should lie in the grey area. Entries,
like N2, not satisfying this constraint, cannot contain
consistent instantiations of VZ. For approximate retrieval,
bounding conditions are adapted to include z.

N’,

I
N, taunding mndium for F$ Y

Figure 7 Example of bounding condition for intermediate nodes
Using the above transformation, SpatialJoin is

extended to handle multiple relations. Figure 8 illustrates
the code for multi-relation spatial join (MJS). In this case,
the desired relation Cij, as well as z, are passed as
parameters. Each BCG is computed using CG, z and Table
1 (inverse conditions are also computed, but omitted for
clarity). Leaf nodes constitute solutions, if they are related
by a relation whose distance from Cti is I z. Intermediate
nodes are recursively searched if they satisfy BCij.

MSJ(Rtree-Node N[i], Nu], RelationSet C,,, int z)
BCg = computeNodeBC(C,j,r);
FOR all NI E Nb] DO
FOR all Nk E N[i] DO

IF N[i] is a leaf page THEN
IF d(C,,R(Nk, NI)) 5 z THEN OUtpUt (Nk, Nk, d)

ELSE
IF BC&, NI) THEN

ReadPage(Nk.ref); ReadPage(Nl.ref);

MSJ(NIkl, WI, C+ 2)
Figure 8 Multi-relation spatial join

Structural queries could be processed by executing
MSJ for all pairs of variables and combining the binary
solutions. The main problem with this approach is the
large number of pair-wise joins (six for the query of
Figure 4) and the complexity of combining their results
(which may be too large to fit in main memory). In the rest
of the paper we propose three algorithms that avoid
calculating intermediate results by incorporating ideas
from forward checking and traditional spatial join
processing.

4. A Multilevel Forward Checking Algorithm
The first algorithm, multilevel forward checking (MFC),
extends MSJ to deal with n-tuples instead of pairs. MFC
finds all n-combinations of intermediate nodes (at each
level of the R-tree) that may contain some solution objects

551

and follows the references to the next level, until it
reaches the leaves, where it outputs solutions. As an
example consider the rectangles of Figure 9(a) which are
organized in the R-tree of Figure 9(b) assuming a bucket
size equal to three. The path to solution (de, 4) of the
example query is: (1 ,l, 1,2) at the top, (B,B,A,D) at level 1
and (d,e,a,k) at level 0.

(a) Image
&

Figure 9 Image and corresponding R-tree
The calculation of combinations of the qualifying

nodes at each level (e.g., (l,l,l,l), (1,1,1,2), (2,2,2,2)
for the top) is expensive, as their number can be as high as
C?, where C is the capacity of an R-tree bucket. Although
the search space is not prohibitively large (usually nH0
and &200), the computational burden is due to numerous
appearances of the problem during query processing.
Finding the subset of node combinations which is
consistent with the input query can be treated as a local
CSP at each level. In particular the problem consists of
l A set of n variables, V,,,Vi,. . .,V,,-i.
l For each variable Vi a domain Di={No,. . .,Ni.i} of I (15

C) potential values which correspond to entries in R-tree
node N[i].

l For each pair of variables V,Vj a binary constraint
which: i] for intermediate nodes is a bounding condition
BCG derived from Table 1 using the corresponding Cij
and z, ii] for leaf nodes is a constraint CQ (disjunction of
primitive relations).

The CSP ti the case of the top level of the tree in Figure 9
has four variables V0,V1,V2,V3, which can be instantiated
to entries 1 or 2 of the root. As we saw in the example of
Figure 7, BCz3 is: @&,u > Ns.1 + 6) on the x dimension,
and (I$.1 < N3. u) A (N2. u 2 Ns.1) on the y dimension. The
binary instantiation {V,t2, V3tl} cannot lead to a
solution at the lower levels because (1.~ < 2.1 + 6).
Therefore, all combinations (x,x,2,1) can be pruned out
during search.

MFC (Figure 10) applies forward checking to solve
the CSP at each R-tree level: every time a variable Vi is
instantiated to an entry Nk, the algorithm eliminates all Ni
that do not satisfy BC@k,Ni) from the domains of each
un-instantiated variable Vj. Initially N[j is set to an n-
tuple that points to the tree root for all variables, i.e.
N[i]=root, for i=O.. .n-1. A solution for the current tree
level is found when the last variable is instantiated. The
algorithm is then recursively invoked for the lower level,
taking as parameter the n-tuple of the solution’s
references. Solutions are output if they refer to actual
objects. MFC returns to the previous tree level when it
backtracks from the first variable at the current level.

In the example of Figure 9, when the first valid
combination (l,l,l,l) is found at the top, MFC will be
called for the next level, trying to find a combination of
entries inside node 1 that satisfy all BCti (the domain of all
variables is now D={A,B}). If such a combination does
not exist, as is the case here, it will backtrack to the top
level and attempt to find another solution - assume

MFC(Query q, Rtree-Nodes N[], int r, T)
FORj=OTOn-ID0

domain[O]u] = {NI(NI E Nu]) /*NI is an entry ofNj*/
i = 0; /* index to the current variable */
WHILE (TRUE) (

new-value := chooseNextValue(domain[i][iJ);
IF new-value = NULL THEN /* end of domain */

IF i=O THEN RETURN;
ELSE i:=i-I; CONTINUE; /*Backtrack*/

ELSE instantiations[i] := new-value; /*store instantiation*/
IF i = n-1 THEN /Vast variable instantiated*/

IF (N[i] is a leaf page) THEN
output-solution(instantiations);

ELSE
MFC(q, instantiations.ref, 1, T) /*go to lower tree level */

ELSE /* intermediate variable instantiated */
IF check-forward(N[i].level,i) THEN /*valid instantiation*/

DVO(i+l,n-I); /*var. with the smallest domain as next*/
i := i+l; /*go to the next variable */

1

BOOLEAN check-forward(int level, int i)
FOR j = i+l TO n-l DO /*for all uninstantiated variables*/

domain[ii+l],$J= domain[i]l];
FOR all values III E domain[i+l]/J]

IF (level = 0) /*leafnodes*/
IF d(Cij,R(instantiations[i],ui)) > I OR Texceeded

THEN domain[i+l]b]= domain[i+ I]fi]-{III};
ELSE /*intermediate nodes*/

IF NOT (BCij(instantiations[i],ui))
THEN domain[ii+l]/j]= domain[i+l]/j]-{uI};

IF domain[i+l]~]=@ THEN RETURN FALSE;
RETURN TRUE;

Figure 10 Multilevel FC

552

(l,l, 1,2). The new domains for the next call of MFC
become: D0=Di=D2={A,B} and D,={C,D}. A solution at
this level is {V&B, VicB, V+A, VitC}. At the
next call of MFC for level 0, the domains become
D,,=D,={c,d,e}, Dz={a,b,f), D,={l,kj} and the solution
(de, a, k) is found.

In order to enhance the performance of MFC we have
implemented a variation of the space restriction heuristic.
Assume the qualifying 4-tuple (1,2,2,2) for the top level of
the tree. Although, candidate values for V0 are {A,B}, due
to the relative positions of B and intermediate node 2
(disjoint), there can’t be any instantiations of Vi below
node 2 that lead to solutions for {V&B} (valid
instantiations for V0 and Vi should be inside intersecting
nodes). Therefore, we can safely prune value B from VO’s
domain and avoid useless instantiations. The following
Space-Restriction routine takes the entries (e.g., A, B) of
a node (e.g., 1) one by one and tests them against the rest
of the nodes (e.g., 2) eliminating the ones that do not
satisfy the corresponding bounding conditions.

Space-Restriction(Query q. Rtree-Nodes N[])(
FOR i=O TO n-l DO

FOR ail Nk E N[i] DO
FOR j=O TO n-l, i#j DO

IF N[i] is a leaf page THEN
IF NOT (LBCzjN, Nljl))

THEN domain[O][i]= domain[O][i]-(Nk};
ELSE /* N[i] is a intermediate node */

IF NOT (BCt@k, Nbl))
THEN domain[O][i]= domain[O][i]-(Nk};

Figure 11 Multi-relation space restriction

The bounding conditions of Table 1 are used when
N[i] is at an intermediate level. On the other hand, when
N[i] is a leaf node (its entries are object MBRs) a more
restrictive bounding condition can be applied. Consider
that in Figure 12, we want to join objects in N[2] with all
objects in N[3] w.r.t. R,,OOOooool (in Figure 7 we showed
that N[2] satisfies the corresponding BC). Once we know
the locations of each MBR in N[2] we can determine that
some objects, such as N12, can be excluded. N’* cannot be
related by ~OOoooOl with any MBR in N[3] because N12.1 <
N[3].1+6. If only the bounding conditions of Table 1 were
used, N’2 would pass the space restriction test.

NPI

N31 baading condhon for N2 I

Figure 12 Example of leaf bounding conditions
Table 2 illustrates the complete set of leaf bounding

conditions LBCij between object MBRs and intermediate
nodes. The bounding condition for the previous example

is at the bottom row of the first table (the corresponding
condition was unlimited in Table 1).

(a) leftmost bit (a) rightmost bit
Table 2 LBC that Nk must satisfy to pass space restriction

5. A Window-Reduction Algorithm
Usually, constraints between intermediate nodes are in
general too loose even for tight queries. As a result, a
large number of qualifying intermediate nodes are visited
by MFC, and this does not pay off in most cases, where
the number of solutions is small and a large percentage of
qualifying intermediate nodes are false hits. An alternative
approach that overcomes this problem is to use the data
MBRs for the instantiation of query variables and employ
forward checking with R-trees to efficiently prune the
domains. As mentioned in Section 3.1, the problem with
this method is that it cannot be applied for large images
because of the domain table size (O(n2N)). In this section
we propose another FC-based algorithm, window
reduction (WR), which avoids this problem.

WR maintains a 2D domain window (instead of the 3D
domain set used by FC) that encloses all potential values
for each variable (and possibly some false hits). When Vi
takes a new value Nk, a new window Wj is computed for
every un-istantiated variable Vj taking into account Nk and
Cji. The intersection of Wj with (existing) domain Window
[i],ijJ is stored at domainwindow [i+l]b]. Figure 13(a)
illustrates the domain windows for V2 and V3, assuming
that the first two variables of the example query have been

(a) {Votd, VlteI (a) {Votd, VICe, V2Ca)
Figure 13 Example of WR

When VZ is instantiated to a (Figure 13(b)), the
constraint C32 specifies that valid instantiations for V3
should lie in W3. The new domain Window[3][3] for V3 is
the intersection of domainWindow[2][3] and W3, i.e., it
corresponds to the only area that may contain values
consistent with both {V&d, Vice} and V+a. Table 3
illustrates bounding windows used for the computation of
Wj, given Cji and {Vi+ Nk}

553

(a) leftmost bit

ml
(a) rightmost bit

Table 3 Domain window bounds

If some domain window becomes null (empty
intersection), the current instantiation is invalid and the
algorithm proceeds to the next value for Vi. WR can be
thought of as a “lazy” version of forward checking
because the domain windows are calculated but no values
are retrieved until the variable gets instantiated. A
drawback of this method is the fact that a possibly empty
domain of Vj cannot be detected until WR reaches
instantiation level j and performs the window search.
However, this disadvantage is counterbalanced by the
smaller number of R-tree searches. WR is illustrated in
Figure 14.

WR(Quety q, int r, T)
FOR j=O TO n-l DO domain Window[O]fi] = U, /*Universal Space*/
i=O; /* index to the current variable */
WHILE (TRUE) {

new-value := getNextValue(domain Window[i][ifi;
IF new-value = NULL THEN /* end ofdomain */

IF i=O THEN RETURN;
ELSE i:=i-1 ; CONTINUE; /*Backtrack*/

IF d(C,,,R(instantiations[i],ui)) > z OR Texceeded
THEN CONTINUE /* invalid value inside domain window */
ELSE instantiations[i] := new-value; /*store instantiation*/

IF i = n-1 THEN output-solution(instantiations);
ELSE /+ intermediate variable instantiated */

IF window-reduction(i) THEN /* success-l instantiation*/
Window-DVO(i+l,n-I); /*var. with smallest window next*/
i := i+ 1; /* successful instantiation: go forward */

1

BOOLEAN window-reduction(int i)
FOR j = i+l TO n-1 DO /*for all uninstantiated variables*/

W, = computeWindow(instantiations[i],Cj,,r);
domain Window[i+ I]li/= domain Window[i/llinW,;
IF domain[i+ I//j]=0 THEN RETURN FALSE;

RETURN TRUE;
Figure 14 Window-reduction algorithm

The next value for a variable Vi is retrieved via
getNext ValueO, which uses domain Window[il[il as the
query window for Vi. GetNextValueO does not perform a
window query every time it is invoked, but the whole
search path for each variable is maintained in memory.
The overhead for this path-holding technique is pinning na
h pages - a small number for most applications. After a
value is retrieved for Vi, the algorithm checks whether it is
consistent with the previous instantiations since not all

values that fall inside the domain window of Vi are
necessarily legal.

In addition to domain windows and path maintenance
techniques, WR uses DVO: when the domain windows of
the future variables are calculated after an instantiation,
the variable with the smallest domain window becomes
the next to be examined. This is lead by the intuition that a
small window is more likely to contain the least number of
instantiations and minimize redundant consistency checks.

WR can be seen as a special form of indexed nested
loop join. All blocks of first variable are scanned and
directed index search finds the qualifying instantiations of
the rest of the variables. The difference of this approach,
is that its input is a graph of relations instead of a chain,
and that it applies FC to take advantage of all constraints.

6. A Join Window-Reduction Algorithm
WR essentially searches the whole space in order to
instantiate the first variable, but after doing so it performs
only window queries which are cheap operations in R-
trees. The disadvantage of blindly instantiating the first
variable in the whole universe could be avoided by an
algorithm that combines properties of multi-relation
spatial join and window reduction. The third algorithm
(JWR) first applies a pairwise spatial join to retrieve
instantiations for the first pair of variables and then uses
window reduction to instantiate the rest of the variables.
The subsequent variables are instantiated in the same way
as WR:

JWR(Quety q, int 2, T)
FOR j=O TO n-l DO domainWindow[l]lj] = U; /*Universal Space*/
i=l; /* index to the current variable. Initially 1 (means both 0 and 1) */
WHILE (TRUE) (

IF i=l THEN /* valuesforfirst pair of variables (0, I) V
IF getNextPair(instantiations,q)=NULL THEN RETURN;

ELSE /* values ofsubsequent variables */
new-value := getNextValue(domain Window[i][iJ);
IF new-value = NULL THEN /* end of domain */

i:=i-1 ; CONTINUE; /*Backtrack*/
IF d(C,j,R(instantiations[i],ui)) > r OR Texceeded

THEN CONTINUE /* invalid value inside domain window */
ELSE instantiations[i] := new-value; /*store instantiation*/

IF i = n-l THEN output-solution(instantiations);
ELSE /+ intermediate variable instantiated */

IF window-reduction(i) THEN /* successfil instantiation*/
Window-DVO(i+l,n-I); /*var. with smallest window next*/

i := i+l; /* successful instantiafion: goforward */

1
Figure 15 Join window-reduction algorithm

Function getNextPair(l assigns the next pair that
satisfies the relations between the first two variables using
MU, search space restriction (like MFC) and plane
sweep. We apply a multi-relation plane sweep (MPS),
which can deal with the whole set of relations of the

554

current resolution scheme. MPS finds intersections of
rectangles belonging to nodes N[i], Nb] in two steps:
a] first transforms the x-projection of each rectangle N,

ENS] to a new one N’r, according to Cij. This
transformation is done so that: if N’i does not intersect
on the x-axis with some entry Nk E N[i], then the
original rectangle Ni will not be consistent w.r.t. Nk
and Cti.

b] then it applies spatial sorting and plane-sweep to find
all pairs (NL.x, N’r) that intersect. For each such pair it
checks whether the corresponding pair (Nk,Ni) is
consistent according to Cij and Cji.

In order to perform the transformation, MPS chooses a bit
whose value is 1 on the x projection of CQ. Bits that refer
to points <i.e. odd bits), rather than intervals, are
preferred, because they restrict the resulting intervals N’i
into single points. For instance, consider that Cij=
~OOOoOO1l. We transform the reference interval Nr~Nlj] to
N’i as shown in Figure 16. If N’i, (which is a single point)
does not intersect some Nk then the original intervals
cannot satisfy ~OODOOOl i.

R 00000001 I Nk
-

Figure 16 An example transformation
We call guide bit, the bit according to which the above

transformation is performed. For our resolution scheme,
the preference order for guide bits is {3,5,1,7,4,2,6,0,8}.
The transformation is then performed for intermediate and
leaf-level entries as illustrated in Table 4, where the first
column illustrates the guide bit. The transformation to leaf
node entries corresponds to the binary variables presented
in Figure 2.

N',.I=N,.I, N',u=N,.u

(a) Intermediate nodes (a) leaf nodes
Table 4 Transformation of x-axis projections

For calculating the first pair of variables to be joined
we use statistical information about the number of
occurrences of each relation in the data files. Relations
that occur rarely prune search space more effectively than
frequent ones. For instance, the constraint Rr,ollllooO-
oollllloO between VO and V, is more restrictive than the
other relations, because only a few pairs of objects satisfy
it in normal data distributions.

7. Experiments
In order to compare the performance of the three
algorithms presented above, we implemented and tested
them under several conditions. For our experiments we
used LB data-file [T94] which contains 53,145 rectangles
representing road segments of Long Beach county. The
maximum distance of the rectangles in each axis is 10000,
and the data density 0.25. From the above tile we built
several R*-trees [BKSS90] of different block sizes, i.e.
512 bytes, lK, 2K, and 4K. The LRU buffer size of the
R*-trees during the experiments was set to 128. We
constructed 5 artificial sets of 30 queries: the number of
variables in the queries of each set was fixed to 3,4, . , . , 7.
In order to avoid trivial queries, each variable was set to
intersect with some other variable on at least one axis. The
distance between two variables on each axis did not
exceed 6, which was set to 100. The number of solutions
ranged from 0 to 6,366. The implementation language was
C++, and all experiments were run on a SUN UltraSparc2
(200MHz) workstation with 256 MB of RAM.

Figure 17(a) shows the mean CPU-time and 17(b) the
I/O page accesses averaged over all query-sets on the R*-
tree with 1KB block size. WR and JWR clearly
outperform MFC by orders of magnitude in terms of CPU-
time. The performance gap widens with the query size
because the domain windows in WR and JWR are
continuously decreasing as new variables are instantiated.
Moreover, empty window domains of the latter variables
are detected early using the window reduction policy. On
the other hand, the relaxed constraints between
intermediate nodes do not permit MFC to prune the search
space at the higher levels of the tree; thus, MFC cannot
avoid the combinatorial explosion of possible
instantiations as the number of variables increases. It is
interesting to notice that MFC is better than WR in terms
of page faults and this is due to the fact that WR
instantiates the first variable in the whole space.

Another important observation from our experiments
(not obvious in these diagrams) was the expected
behaviour of MFC for almost all queries; the CPU-time
was at the same levels depending only on the query size.
On the other hand, the performance of WR and JWR was
unpredictable: for instance the CPU time of WR may
differ an order of magnitude for two different queries of
the same size. This unstable behaviour is due to the fact
that the resolution scheme may facilitate large reduction
of the domain windows for some queries (e.g. inside), and
not for others (e.g. disjoint).

Although MFC is not an appropriate algorithm for the
current resolution scheme, it is still useful in other
applications; we found that it outperforms the other
algorithms in some cases of multiway intersection joins
involving high density data. Improving the CPU-time of
MFC is an issue for future work, as now the algorithm

555

3om 400
EIMFC n WR q JWR

350. 2500 ,/-
300 ,A

,/'
,m.. . /'

zew 250

200 -
24W

~ ___._e ."

150 -

(a) CPU-time as a fonction of n (block=lK) (b) Page accesses as a function of n (block=lK) (c) CPU-time for WR - JWR as a function of n

512

(d) CPU-timt as a diction of ikck size (%I) (e) Accesses as a function of block size (n=4)
Figure 17 Experimental evaluation

(0 Overall cost of I& and J6 (n=4)

applies plain FC at a specific level, without taking 7. Conclusion
advantage of the spatial locations of the objects.

Figure 17(c) illustrates the relative CPU-time
performance of WR and JWR (also for block size of 1K).
JWR maintains a significant performance gain over WR.
The performance gap is not affected by query size,
because the only difference of the algorithms is the
instantiation method for the first pair of variables.

In order to evaluate the algorithms for various block
sizes we executed the 4-variable query set using R*-trees
of 5 12, lK, 2K, and 4K bucket sizes. CPU-time and page
accesses are shown in Figure 17(d) and (e), respectively.
Figure 17(f) shows the overall cost for WR and JWR,
which was estimated by charging 1Oms for each page
access (a typical value [HJR97]). The algorithms perform
better for page size of 2K, while for larger sizes (4K) the
degeneration of the tree affects the speed of the search.

Finally, we tested the performance of JWR over
queries with non-zero degrees of inconsistency. In all
experiments the T was set to 10. Figure 18 illustrates the
overall cost of JWR for the 2K page size R*-tree. Each
line corresponds to a different value of local tolerance 7.
Because approximate retrieval is equivalent to exact
retrieval using a larger window, the domain windows of
JWR get larger as z increases. Larger windows imply
more potential legal values and more consistency checks.

OJ

3 4 5

Figure 18 Overall cost of JWR for partial retrieval

There has been significant progress recently on image and
video content retrieval [M98]; research focused mainly on
visual content, i.e. properties like colour, shape, texture,
etc. Here, we shift our interest on a rather neglected type
of content retrieval, namely structural retrieval. This
paper addresses the issue of spatial structural queries, i.e.,
queries that ask for all n-tuples of objects that satisfy some
spatial constraints.

We first described a framework for encoding 1D
relations in a way that allows efficient generation of
similarity measures. We subsequently extended the model
in a uniform way to arbitrary dimensions and multiple
resolution levels. Then we presented three algorithms for
structural query processing:
- MFC which applies hierarchical constraint

satisfaction to eliminate tuples of intermediate nodes
that cannot lead to solutions.

- WR which gradually reduces the domain windows of
uninstantiated variables based on the values of
instantiated ones.

- JWR which performs a pairwise join to instantiate the
first pair of variables and then applies the same
window reduction technique as WR.

Finally we experimentally evaluated their performance
and found that JWR clearly outperforms the rest for the
current application. All algorithms are independent of the
resolution scheme so they can be used to process any type
of spatial predicates.

Currently we are working on optimizing the I/O time
of JWR and MFC, by using several page fetching policies.
Adapting and testing the algorithms for several query
plans is also an interesting topic. Research can also be
carried out on the integration of other search algorithms
with spatial indexes.

556

Acknowledgements
We would like to thank Dimitris Meretakis and Eleanna
Kafeza for their insightful comments. This work was by
DAG96197.EG36 from Hong Kong Research Grant
Council.

References

L4831 Allen, J., “Maintaining Knowledge About
Temporal Intervals”, CACM, 26(1 l), 1983.

[BG95] Bacchus, F., Grove, A. “On the Forward
Checking Algorithm”, International Conference
on Principles and Practice of Constraint
Programming, 1995.

[BB84] Ballard, D., Brown, C. “Computer Vision”.
Prentice Hall, 1984.

[BKSS90]Beckmann, N., Kriegel, H.P., Schneider, R.,
Seeger, B. “The R*-tree: an Efficient and
Robust Access Method for Points and
Rectangles”. ACM SIGMOD, 1990.

[BKS93] Brinkhoff, T., Kriegel, H.-P., Seeger, B.,
“Efficient processing of spatial joins using R-
trees”. ACM SIGMOD, 1993.

[BKSS94]Brinkhoff, T., H.-P. Kriegel, R. Schneider, and
B. Seeger “Multi-step Processing of Spatial
Joins”. ACM SIGMOD, 1994.

[BKS96] Brinkhoff, T., Kriegel, H.-P., Seeger B.
“Parallel Processing of Spatial Joins Using R-
trees”. Proceedings of 12th International
Conference on Data Engineering, 1996.

[BvR95] Bacchus, F., van Run, P. “Dynamic Variable
Ordering in CSPs”, International Conference on
Principles and Practice of Constraint
Programming, 1995.

[DPM98]Delis, V, Papadias, D., Mamoulis, N.
“Assessing Multimedia Similarity: A
Framework for Structure and Motion”, ACM
SIGMM, 1998.

[~921

[GR95]

EG931

[G841

Freksa, C., “Temporal Reasoning based on Semi
Intervals”, Artificial Intelligence, Vol 54, pp.
199-227, 1992.

Gudivada, V., Raghavan, V. “Design and
evaluation of algorithms for image retrieval by
spatial similarity”. ACM Transactions on
Information Systems, 13(1):115-144, 1995.
Guenther, 0. “Efficient computation of spatial
joins”. IEEE International Conference on Data
Engineering, 1993.
Guttman, A. “R-trees: A Dynamic Index
Structure for Spatial Searching”. ACM
SIGMOD, 1984.

[HE801 Haralick, R.M., Elliott, G.L., “Increasing tree
search efficiency for constraint satisfaction
problems”. Artificial Intelligence Vol 14, pp
263-313, 1980.

[HJR97] Huang, Y-W, Jing, N, Rundensteiner, E.
“Spatial Joins using R-trees: Breadth First
Travesral with Global Optimizations”. VLDB,
1997.

[M98] Maybury M. (ed.), Intelligent Multimedia
Information Retrieval, AAAI Press/MIT Press,
1998.

[NNS96] Nabil, M., Ngu, A., Shepherd, J., “Picture
Similarity Retrieval using 2d Projection Interval
Representation”, IEEE TKDE, 8(4), 1996.

w91 Nadel, B. “Constraint Satisfaction Algorithms”.
Computational Intelligence, 5, pp. 188-224,
1989.

[086] Orenstein, J. A. “Spatial Query Processing in an
Object-Oriented Database System. ACM
SIGMOD, 1986.

[PS94] Papadias, D., Sellis, T., “Qualitative
Representation of Spatial Knowledge in Two-
Dimensional Space”, VLDB Journal, Vol. 3(4),
pp. 479-516, 1994.

[PTSE95]Papadias, D., Theodoridis, Y., Sellis, T.,
Egenhofer, M. “Topological Relations in the
World of Minimum Bounding Rectangles: A
study with R-trees”. ACM SIGMOD, 1995.

[PF97] Pet&is, E., Faloutsos, C. “Similarity Searching
in Medical Image Databases”. IEEE TKDE, 9
(3)435-447, 1997.

[PS88] Preparata F, Shamos, M. “Computational
Geometry”. Springer, 1988.

P911 Rotem, D. “Spatial Join Indices”. IEEE
International Conference on Data Engineering,
1991.

[RKV95] Roussopoulos, N., Kelley, F., Vincent, F.,
“Nearest Neighbor Queries”, ACM SIGMOD,
1995.

D941 TIGER/Line Files, 1994 Technical
Documentation I prepared by the Bureau of the
Census, Washington, DC, 1994.

