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Abstract: Structural queries constitute a special form of 
content-based retrieval where the user specifies a set of spatial 
constraints among query variables and asks for all 
configurations of actual objects that (totally or partially) match 
these constraints. Processing such queries can be thought of as a 
general form of spatial joins, i.e., instead of pairs, the result 
consists of n-tuples of objects, where n is the number of query 
variables. In this paper we describe a flexible framework which 
permits the representation of configurations in different 
resolution levels and supports the automatic derivation of 
similarity measures. We subsequently propose three algorithms 
for structural query processing which integrate constraint 
satisfaction with spatial indexing (R-trees). For each algorithm 
we apply several optimization techniques and experimentally 
evaluate performance using real data. 

1. Introduction 
Several types of spatial queries have been the focus of 
active research in the database community: window 
queries [G84], nearest neighbors [RKV95], relation-based 
queries [PTSE95] etc. The above types retrieve all objects 
in the database that satisfy some spatial property with 
respect to a fixed reference object or window. Recently 
the focus has shifted towards spatial joins [R91] [G93] 
[BKS93], which involve the retrieval of pairs of objects 
that satisfy some spatial predicate (most often overlap). 

This work examines an alternative form of spatial 
information processing, namely, queries involving the 
retrieval of n-tuples (n>2) of objects that satisfy some 
spatial structure. Structure is described as a set of spatial 
constraints between query variables which can be 
expressed either by a “verbal” (e.g., select X, Y, Z, from 
Roadmap, where overlaps(X,Y) and north(Y,Z)) or 
pictorial language (e.g., by drawing a prototype 
configuration on a sketch-board). This type of queries can 
be thought of as the generalization of spatial joins (if the 
relation between variables is overlap, it corresponds to 
common multi-way spatial join). From a different 
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perspective, structural queries constitute a special class of 
image similarity retrieval, where the query specifies an 
input configuration to be matched with stored images. 
Similarity is based on relative locations and not on visual 
characteristics (e.g., colour, shape). 

Let n be the query size (number of variables) and N be 
the data size (number of image objects): in the worst case 
(exhaustive search), all n-permutations of N objects have 
to be searched in order to find solutions (i.e., N!/(N-n)!). 
In real DBMSs where N>>n, this number is O(N”), 
meaning that the retrieval of structural queries can be 
exponential to the query size. Query processing becomes 
more expensive if inexact matches are to be retrieved, a 
situation which arises very often in practical applications. 

In order to avoid this problem, most related previous 
techniques (e.g., [GR95] [NNS96]) have focused on a 
specific instance where images consist of known 
(labelled) objects and queries express spatial constraints 
among a subset of these objects. [PF97] employ R-trees to 
solve structural queries for images that contain a constant 
number of labelled objects (e.g., lungs) and a small 
number of unlabelled ones (e.g., tumours). Although their 
method is efficient for domains involving numerous small 
images with few unlabelled objects (e.g., medical 
databases of X-rays) it is not applicable to large images of 
unlabelled objects. 

In this paper we deal with the general problem where 
large images contain arbitrary numbers of unlabelled 
objects. In order to provide a general solution, we present 
a unified framework for structural similarity, which can 
represent various resolution levels and automates the 
derivation of similarity measures. We then propose 
algorithms that can solve the problem for considerable 
data and query sizes. These algorithms utilize ideas from 
related work in spatial databases (spatial join processing) 
and AI (constraint satisfaction algorithms). 

Although the problem of querying by structure is not a 
new one (it has been around since the early stages of 
computer vision [BB84]), to the best of our knowledge 
this is the first approach to provide a solution which 
combines search algorithms with spatial indexing and can 
be applied for secondary memory retrieval. Our 
techniques have a wide range of potential applications in 
various areas (e.g., GIS, Multimedia Databases, VLSI). 

546 



The rest of the paper is organized as follows: Section 2 
describes a binary string encoding for the representation 
of structure in multiple resolutions and dimensions. 
Sections 3 outlines the problem and provides examples of 
spatial queries and their processing. Sections 4, 5 and 6 
describe three algorithms for structural query processing: 
the first one extends traditional spatial join methods for R- 
trees to multi-way (nested) joins. The second algorithm 
uses a search heuristic to prune the windows where query 
variables can be instantiated from, while the third one 
combines ideas from the first two algorithms. Section 7 
compares the performance of the algorithms under several 
conditions. Finally, Section 8 concludes with future 
research directions. 

2. A Framework for Structural Similarity 
We will initially confine our discussion to one dimension 
and address the most common types of relations proposed 
and mathematically defined so far in the spatial domain 
[PS94], namely topological (e.g., inside, overlaps), 
directional (e.g., north, northeast) and qualitative distance 
relations (e.g., near, far). Figure 1 illustrates the three 
types of ID relations assuming that the lower interval is 
the reference object and the upper interval is the primary 
one. 

Our goal is to provide a unified and adjustable 
framework which permits the definition of any type of 
spatial relation and the automatic generation of 
similarities between them. Assume that in a particular 
application the only relations of interest are the ones in 
Figure 1, and we are given a (reference) interval [a,b]. 
Then we identify nine potential regions of interest: 
I.(-co,a-6) 2.[a-&a-6] 3.(a-b,a) 4.[a,a] 5.(a,b) 6.[b,b] 7.(b, 

b+6) S.[b+d, b+6] 9.(b+d,+oo) 
For each of the above regions we associate a binary 

variable, r, s, t, U, v, w, x, y, z, respectively (see Figure 2). 
Given a primary interval [cd], the value of every variable 
indicates the result of the intersection between [cd] and 
the variable’s associated region (“0” corresponds to an 
empty intersection while “1” corresponds to a non-empty 
one). Thus, we can define ID relations to be 9-tuples 

topological relations 
meets overlaps covers equal 

IIiI 

directional relations 

- left-near 
‘s 

Figure 1 Categorization of 1D relations 

(Rrsruww : c s, t, u, v, w, x, y, z E {O,l 1). 
Such a consecutive partitioning of space constitutes a 

resolution scheme. There are several possible schemes; 
the particular choice is affected by the users’ expectations 
or the application’s requirements, as every scheme can 
refine or generalize a particular relation class. For 
example, when distance relations are not needed we can 
apply a scheme with only five bits (two corresponding to 
the points of the reference interval) which defines the 13 
relations between intervals proposed by Allen [A83]. 

The feasible relations at a particular resolution scheme 
are called primitive relations. In general, the less the 
binary variables, the coarser the resolution, and vice versa. 
If b is the number of bits used by the resolution scheme, 
the number of primitive relations in 1D is b(b+1)/2 - k, 
where k is the number of point variables, i.e. intervals of 
the form [a,a]. For b=9, k=4 we get 41 relations (see 
Figure 2), while for b=5, k=2, there exist 13 (Allen’s) 
relations. 

Each spatial relation is mapped onto a set of primitive 
relations. For instance, lest can be mapped onto 
~R~oooooooo, RII~OOO~O~, R,IIOOOOOO, ROIIOOOOOO, Roo~oooooo~ and 
near onto (ROO1OOOOOO, ROOOOOO1OO). Disjunction of spatial 
relations (e.g., left or near) are represented by the unions 
of the corresponding sets, and conjunctions by their 
intersection (e.g., {ROO1OOOOOO} corresponds to left-near). 

The next step is to provide a mechanism for 
representing similarities among relations independently of 
the resolution scheme. [F92] defined the concept of 
conceptual neighborhood as a cognitively plausible way 
to measure similarity among Allen’s interval relations. A 
neighborhood is represented as a graph whose nodes 
denote relations that are linked through an edge, if they 
can be directly transformed to each other by continuous 
interval deformations. Depending on the allowed 
deformation (e.g., movement, enlargement), several 
graphs may be obtained. 

Figure 2 represents the neighborhood graph for a 
distance-enhanced resolution scheme, assuming that a 
minimal deformation is a movement of a single interval 
endpoint. Starting from relation R,OOOOOOOO and extending 

covered by contains contained by disjoint 

I 1 I -I 

distance relations 
far 
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the upper interval to the right, we derive relation R1lOOOOOOO. 
With a similar extension we can get the transition from 
RIIOO~~~OO to RII~~~~OOO and so on. RIOO~~OOOO and RIIIOO~OOO are 
called 1” degree neighbors of Rllooooooo. The distance d 
between two relations is equa1 to the length of the shortest 
path connecting them in the neighborhood graph. 

The binary string representation enables automatic 
calculation of distances using the pseudo-code of Figure 
3, which counts the minimal number of “0”s that have to 
be replaced with “1”s in order to make the two strings 
identical. For example d(Rooo,loooo, RO1OOOOOOO) = 5 and 
d(R~lloooo, Rllooooooo) = 6 (the underlined% are the ones 
counted during the calculation of distance). The distance 
between a relation R and a relation set {Rt,. . . ,Ri} equals 
the minimum distance between R and any of RI,. . .,Ri 
(e.g., 4&~~~0000, WOIWOOOO, RIMLOOOOO))= 5). 
INT distance(relation Rl, relation R2) 
R = RI OR R2; /*bitwise OR */ 
d= 0; 

FOR i:= R.leftmost-I to Rxightmost-I DO 
IF Rl[i]=O THEN d++; 
IF R2[i]=O THEN d ++; 

RETURN (~5); 
Figure 3 Distance calculation 

The encoding and distance calculation can be 
extended accordingly to multi-dimensional spaces. A D- 
dimensional relation is defined as a D-tuple of 1D 
projections, e.g. RIIOOOOOOO-IHOOOOOO = RIOOOOOOO, RIIIOOOOOO). 

In order to derive a neighboring relation we have to 
replace one of the constituent 1D projections with its 

Figure 2 1D Conceptual neighborhood including distances 
neighbors. As a result, computing D-relation distances is 
reduced to the already solved problem of computing 1D 
distances. In this paper we calculate the distance between 
two multi-dimensional relations by summing up the 
distances in each dimension (other metrics, such as 
Euclidean [NNS96], can also be applied). 

The advantages of the proposed framework are i) the 
expressiveness of the encoding in the sense that given a 
binary string, the corresponding spatial configuration can 
be easily inferred, and vice versa, ii) efficient automatic 
calculation of neighborhoods and relation distance, and 
iii) the uniform representation of all three types of 
relations (topological, directional, distance) in various 
resolution levels. For the sake of clarity, in the rest of the 
paper we use the distance enhanced resolution scheme of 
Figure 2. However for more realistic applications, 
sufficiently fine schemes (large encoding strings) can be 
used, while retaining the model’s properties. The 
algorithms of the following sections are independent of 
the resolution and can be applied with any set of spatio- 
temporal relations. For a number of alternative resolution 
schemes and a more detailed description of the framework 
see [DPM98]. 

3. Structural Queries 
The projection-based definitions of relations and 
similarity measures of Section 2 are particularly suitable 
for structural similarity retrieval, because spatial databases 
often utilize minimum bounding rectangles (i.e., 
projection-based approximations) as a fast jZter step to 
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(4 Query (b) Constraints 
Figure 4 Example query 

_, 

(c) Solution 

exclude the objects that could not possibly satisfy a query 
[086]. Furthermore, structural queries do not always have 
exact matches and crisp results. Rather, the output should 
have an associated “score” to indicate its similarity to the 
query. By adoption, this score is inversely proportional to 
the degree of neighborhood. 

A structural query can be formalised as a binary 
constraint satisfaction problem [N89] (CSP) which 
consists of: 
l A set of n variables, VO,V1,...,Vn-i that appear in the 

wry. 
l For each variable Vi a finite domain Di ={uo,. . ., UN-l} of 

N potential values which correspond to image objects. In 
this paper we assume that all domains are identical, i.e., 
each variable can be instantiated to any image object. 

l For each pair of variables Vi,Vj a binary spatial 
constraint Cij which is a set of primitive relations. 

Consider, for example, the query of Figure 4(a) which is a 
spatial arrangement of n=4 variables, expressed using a 
query-by-sketch language. Assuming the distance- 
enhanced resolution scheme of Figure 2, the set of query 
constraints between all variable pairs is illustrated in 
Figure 4(b). The domain of each variable is the set of 
objects in the image to be searched. Figure 4(c) illustrates 
a solution where variable V, is instantiated to object 143, 
V, to object 207 and so on. Although the particular 
language specifies relations between all pairs of variables, 
in some cases (e.g., verbal languages), queries may be 
incomplete (some C, may be left unspecified) or indefinite 
(C, may be disjunctions of relations). 

A binary instantiation {Vituk, Vjtui} is consistent, 
if R(uk,ui) z Cu. For instance, the constraint between V0 
and V3 is R1OOOOOOOO-I1lOOOOOO, which is also the relation 
between their corresponding instantiations (143,42) in 
Figure 4(c); therefore, {V&143, Vst42) is consistent. 
We define the binary degree of inconsistency z of {Vi+ 

uk, Vj tui] as the distance between Cij and R(UiJ.li). 
Although the constraint between V0 and V, is ROO1lllOOO- 
OolllllOO, the relation between objects 143 and 207 is 
Roollllooo-oollllQoo; hence, z =l for {Vo+143, Vl+2W. 
The degree of inconsistency T of a solution {V,t up, . . ., 
V,-, t u,} is the sum of all binary inconsistency degrees: 

p xd(C,,R( uk, 2.0)) where {vi + Uk, Vj + UI> 

VIJ, OSi,j<n 

Degrees of inconsistency are used for the retrieval of 
configurations that match the input structure closely, but 
not perfectly. The maximum allowed T and z are 
submitted with a query in order to adjust the trade-off 
between the level of approximation and the cost of query 
processing. For instance, if T=6 and 2=2, only solutions 
that produce total relation difference I 6 and pair-wise 
difference I 2 will be retrieved. Obviously as T and z 
increase, so does the number of solutions, but also the cost 
of query processing. 

3.1 Forward Checking with Dynamic Value Ordering 

A number of algorithms have been proposed for solving 
CSPs [N89]. One of the most effective, is forward 
checking (FC) [HE801 [BG95] which has been shown to 
outperform the rest for a wide range of problems 
involving “crisp” constraints [BvR95]. FC must be 
modified for structural queries in order to handle soft 
constraint processing using T and z. 

The adjusted version works as follows: when a 
variable Vi is assigned a value uk, the domain of each 
future @n-instantiated) variable Vj is pruned according to 
uk and the constraint Cij, for all j>i. That is, all values ui 
that produce a distance d(Cti,R(Uk,Ui))>% are removed from 
the domain of Vj. The same happens for values that 
produce global inconsistency degree > T, taking into 
account the constraints between Vj and all instantiated 
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variables’. Consequently, when we reach instantiation 
level i (variables up to Vi have been instantiated), the 
values of variables V,,,... ,Vi will constitute a partial 
solution, and the domains of Wure variables will contain 
only values that may lead to a (complete) solution given 
the instantiations so far. 

The procedure of pruning the domains of the future 
variables is called check forward. If, after a check forward 
the whole domain of a future variable is eliminated, the 
algorithm un-assigns the current variable’s value, and 
restores the values of future variables, which were 
eliminated due to the current instantiation. When the 
domain of the current variable is exhausted the algorithm 
backtracks to the previous one and assigns a new value to 
it. FC ou$uts a solution whenever the last variable is 
given a value, and terminates when it backtracks from the 
first variable. 

In order to keep track of the allowable values for each 
variable at every instantiation level, FC uses a nxnxN 
domain table. Each element of domain[i]bJ is an array of 
N values that Vj can take at different levels. Before FC 
starts, domain[O]fiJ is initialized to D for all variables. 
When V0 is assigned a value up, domain[l]b] is 
computed for each remaining Vj, by including only values 
UI E domain[O]fi] such that d(Coj,R(up,ul))lZ. In general if 
uk is the current value of Vi, domain[i+I],ljJ is the subset 
of domain[iJli/ which is valid w.r.t. Cq and uk. In this 
way, at each instantiation level the domain[iJfiJ of V; 
continuously shrinks; when we reach level j, Vj gets 
instantiated from domainfi]fi] which contains only values 
compatible with the instantiations of previous variables. If 
a value of Vi results in the domain of some Vj to become 
empty, a new value is chosen and domain[i+I]/j] is re- 
initialized to domain[i]b]. 

Dynamic Variable Ordering (DVO) [BvR95] is a 
technique employed by several CSP algorithms to 
improve efficiency. The key idea behind FC-DVO is to 
reorder the future variables according to their domain size 
after “checking forward” at the current instantiation level. 
The variable with the minimum domain size becomes the 
next variable to be tested. In this way the number of 
search paths is minimized, because the variable with the 
smallest domain is the most likely to be pruned out; the 
algorithm will backtrack faster in the case that there is no 
valid assignment after the current partial solution. DVO is 
responsible for changing the order of VI and V2 in Figure 
4(c). 

The pseudo-code of a non-recursive version of FC 
with DVO which can be applied for structural query 
processing is given in Figure 5. FC-DVO has two 
drawbacks for the current application. First it is 
inapplicable for large spatial databases, because the 3D 

’ The inverse constraints Cji are also considered but, for the sake of 
simplicity, we omit these tests in the rest of the paper. 

FC-DVO(Query q, int r, T) 
FOR j = 0 TO n-f DO domain[Oj] = D /*inikdize all domains to D */ 
i = 0; /* index to the current variable */ 
WHILE (TRUE) ( 

new-value := chooseNextValue(domain[rjl[ifi; 
IF new-value = NULL THEN /* end ofdomoin */ 

IF i=O THEN RETURN; 
ELSE i:=i-1; CONTINUE; /*Buckrruck*/ 

ELSE instantiations[i] := new-value; /*store instantiation*/ 
IF i = n-l THEN /*last variable instantiated*/ 

output-solution(instantiations); 
ELSE /* intermediate variable instantiated */ 

IF check-forward(i) THEN /* successfil instantiation*/ 
DVO(i+l,n-I); Pvur. with the smallesl domain as next*/ 
i := i+ I; /* successful insfantiation: go forward */ 

1 

BOOLEAN check-forward(int i) 
FOR j = i+l TO n-l DO /*for all uninstanriated variables*/ 

domain[i+l]b]= domain[i]b]; 
FOR all values UI E domain[i+l],fJ 

IF d(Cg,R(instantiations[i],ul)) > z OR Texceeded 
THEN domain[i+l],Q]= domain[i+l],Q]-{u,); 

IF domain[i+ I]i/=0 THEN RETURN FALSE; 
RETURN TRUE; 
Figure 5 Soft forward checking with dynamic value ordering 

domain table cannot fit in main memory. The second 
drawback is the fact that it does not utilize the existing 
spatial indices which may exist for spatial relations. The 
incorporation of R-trees [G84] and appropriate query 
processing techniques can solve both these problems. 

3.2 Multi-Relation Spatial Join 

Structural queries can be viewed as multi-way spatial self- 
joins, where structural constraints correspond to join 
predicates. For example, a pair-wise spatial join is 
equivalent to a structural query with two variables related 
by a spatial constraint. The most influential technique for 
efficiently computing pair-wise, intersection joins using 
R-trees is presented in [BKS93]. It is based on the 
enclosure property: if two intermediate R-tree nodes do 
not intersect, there can be no MBRs below them that 
intersect. The algorithm first joins the high level nodes 
and then follows the links in order to find qualifying pairs 
below them (Figure 6). 
SpatialJoin(Rtree-Node N[i], Nfi]) 
FOR all NI E Nu] DO 
FOR all Nk E N[i] with Nk n NI # 0 DO 

IF N[i] is a leaf page THEN 
Output (Nk, W 

ELSE 
ReadPage(Nk.ref); ReadPage(Nl.ref); 
SpatialJoin(N[k], N[I]) 

Figure 6 R-tree SpatialJoin 
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In the pseudo-code of Figure 6, as well as in the rest of 
the paper, we make the distinction between an R-tree node 
N[i] and its entries Nk, which correspond to MBRs 
included in N[i]. Nk.ref points to the corresponding node 
N[k] at the next (lower) level. Although SpatialJoin 
assumes that the nodes to be joined are of equal height, 
the extension to different heights is straightforward. 

Two local optimization techniques are used to improve 
the CPU speed of the above algorithm. The first, search 
space restriction, reduces the quadratic number of pairs to 
be evaluated when two nodes N[i], Nlj] are joined. If an 
entry Nk E N[i] does not intersect the MBR of Nu] (that 
is the MBR of all entries contained in Nu]), then there can 
be no entry N, E Nu], such that Nk and Ni overlap. Using 
this observation, space restriction performs two linear 
scans in the entries of both nodes before starting the 
SpatialJoin procedure, and prunes out from each node the 
entries that do not intersect the MBR of the other node. 
The second technique, based on the plane sweep paradigm 
[PS88], applies sorting in one dimension in order to 
reduce the computation time of the overlapping pairs 
between the nodes to be joined. 

In addition, [BKS93] apply a technique that uses 
pinning (or page fiing), a well known I/O buffer 
management method, to force page fetching according to 
the optimal order. In [HJR97], SpatialJoin was extended 
by introducing an on-the-fly indexing mechanism to 
optimize the execution order of matchings at intermediate 
levels. [BKSS94] study the multi-step processing of 
spatial joins using several approximations, while [BKS96] 
employ parallel execution. 

In order to use an arbitrary relation as the join 
condition in SpatialJoin, we need a mapping from 
relations, to bounding conditions between intermediate 
node entries that should be recursively joined. Table 1 
shows the bounding condition BCij for Ni given NJ. This 
condition is based solely on the positions of the leftmost 
and rightmost l’s in C+ In particular, the leftmost 1, 
determines the position of Ni.l with respect to Nj.U, while 
the rightmost 1 of Ni.u with respect to Nj./ (I and u 
represent the lower and upper node-MBR points 
respectively). Entries that do not satisfy these conditions 
can be excluded during search. 

(a) leftmost bit (a) rightmost bit 
Table 1 Bounding condition BCij for Ni 

Assume, for instance, the query “find all pairs (V2, V,) 
related by RooOOOOOO1-OO1lOOOOO”. An entry N2 is bounded with 
respect to N3 by the following conditions: (N2.u > N3.1 + 6 
) on the x dimension, and by (I$.1 < N3.u), (NZ.u 2 N3.1) 
on the y dimension. Figure 4.3 illustrates an example for 
axis x: if N3 is the intermediate node entry containing an 
object assigned to V3, then the upper point of candidate 
entries for N2 (Nz.u) should lie in the grey area. Entries, 
like N2, not satisfying this constraint, cannot contain 
consistent instantiations of VZ. For approximate retrieval, 
bounding conditions are adapted to include z. 

N’, 

I 
N, taunding mndium for F$ Y 

Figure 7 Example of bounding condition for intermediate nodes 
Using the above transformation, SpatialJoin is 

extended to handle multiple relations. Figure 8 illustrates 
the code for multi-relation spatial join (MJS). In this case, 
the desired relation Cij, as well as z, are passed as 
parameters. Each BCG is computed using CG, z and Table 
1 (inverse conditions are also computed, but omitted for 
clarity). Leaf nodes constitute solutions, if they are related 
by a relation whose distance from Cti is I z. Intermediate 
nodes are recursively searched if they satisfy BCij. 

MSJ(Rtree-Node N[i], Nu], RelationSet C,,, int z) 
BCg = computeNodeBC(C,j,r); 
FOR all NI E Nb] DO 
FOR all Nk E N[i] DO 

IF N[i] is a leaf page THEN 
IF d(C,,R(Nk, NI)) 5 z THEN OUtpUt (Nk, Nk, d) 

ELSE 
IF BC&, NI) THEN 

ReadPage(Nk.ref); ReadPage(Nl.ref); 

MSJ(NIkl, WI, C+ 2) 
Figure 8 Multi-relation spatial join 

Structural queries could be processed by executing 
MSJ for all pairs of variables and combining the binary 
solutions. The main problem with this approach is the 
large number of pair-wise joins (six for the query of 
Figure 4) and the complexity of combining their results 
(which may be too large to fit in main memory). In the rest 
of the paper we propose three algorithms that avoid 
calculating intermediate results by incorporating ideas 
from forward checking and traditional spatial join 
processing. 

4. A Multilevel Forward Checking Algorithm 
The first algorithm, multilevel forward checking (MFC), 
extends MSJ to deal with n-tuples instead of pairs. MFC 
finds all n-combinations of intermediate nodes (at each 
level of the R-tree) that may contain some solution objects 
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and follows the references to the next level, until it 
reaches the leaves, where it outputs solutions. As an 
example consider the rectangles of Figure 9(a) which are 
organized in the R-tree of Figure 9(b) assuming a bucket 
size equal to three. The path to solution (de, 4) of the 
example query is: (1 ,l, 1,2) at the top, (B,B,A,D) at level 1 
and (d,e,a,k) at level 0. 

(a) Image 
& 

Figure 9 Image and corresponding R-tree 
The calculation of combinations of the qualifying 

nodes at each level (e.g., (l,l,l,l), (1,1,1,2), . . . . . (2,2,2,2) 
for the top) is expensive, as their number can be as high as 
C?, where C is the capacity of an R-tree bucket. Although 
the search space is not prohibitively large (usually nH0 
and &200), the computational burden is due to numerous 
appearances of the problem during query processing. 
Finding the subset of node combinations which is 
consistent with the input query can be treated as a local 
CSP at each level. In particular the problem consists of 
l A set of n variables, V,,,Vi,. . .,V,,-i. 
l For each variable Vi a domain Di={No,. . .,Ni.i} of I (15 

C) potential values which correspond to entries in R-tree 
node N[i]. 

l For each pair of variables V,Vj a binary constraint 
which: i] for intermediate nodes is a bounding condition 
BCG derived from Table 1 using the corresponding Cij 
and z, ii] for leaf nodes is a constraint CQ (disjunction of 
primitive relations). 

The CSP ti the case of the top level of the tree in Figure 9 
has four variables V0,V1,V2,V3, which can be instantiated 
to entries 1 or 2 of the root. As we saw in the example of 
Figure 7, BCz3 is: @&,u > Ns.1 + 6) on the x dimension, 
and (I$.1 < N3. u ) A (N2. u 2 Ns.1) on the y dimension. The 
binary instantiation {V,t2, V3tl} cannot lead to a 
solution at the lower levels because (1.~ < 2.1 + 6). 
Therefore, all combinations (x,x,2,1) can be pruned out 
during search. 

MFC (Figure 10) applies forward checking to solve 
the CSP at each R-tree level: every time a variable Vi is 
instantiated to an entry Nk, the algorithm eliminates all Ni 
that do not satisfy BC@k,Ni) from the domains of each 
un-instantiated variable Vj. Initially N[j is set to an n- 
tuple that points to the tree root for all variables, i.e. 
N[i]=root, for i=O.. .n-1. A solution for the current tree 
level is found when the last variable is instantiated. The 
algorithm is then recursively invoked for the lower level, 
taking as parameter the n-tuple of the solution’s 
references. Solutions are output if they refer to actual 
objects. MFC returns to the previous tree level when it 
backtracks from the first variable at the current level. 

In the example of Figure 9, when the first valid 
combination (l,l,l,l) is found at the top, MFC will be 
called for the next level, trying to find a combination of 
entries inside node 1 that satisfy all BCti (the domain of all 
variables is now D={A,B}). If such a combination does 
not exist, as is the case here, it will backtrack to the top 
level and attempt to find another solution - assume 

MFC(Query q, Rtree-Nodes N[], int r, T) 
FORj=OTOn-ID0 

domain[O]u] = {NI( NI E Nu]) /*NI is an entry ofNj*/ 
i = 0; /* index to the current variable */ 
WHILE (TRUE) ( 

new-value := chooseNextValue(domain[i][iJ); 
IF new-value = NULL THEN /* end of domain */ 

IF i=O THEN RETURN; 
ELSE i:=i-I; CONTINUE; /*Backtrack*/ 

ELSE instantiations[i] := new-value; /*store instantiation*/ 
IF i = n-1 THEN /Vast variable instantiated*/ 

IF (N[i] is a leaf page) THEN 
output-solution(instantiations); 

ELSE 
MFC(q, instantiations.ref, 1, T) /*go to lower tree level */ 

ELSE /* intermediate variable instantiated */ 
IF check-forward(N[i].level,i) THEN /*valid instantiation*/ 

DVO(i+l,n-I); /*var. with the smallest domain as next*/ 
i := i+l; /*go to the next variable */ 

1 

BOOLEAN check-forward(int level, int i) 
FOR j = i+l TO n-l DO /*for all uninstantiated variables*/ 

domain[ii+l],$J= domain[i]l]; 
FOR all values III E domain[i+l]/J] 

IF (level = 0) /*leafnodes*/ 
IF d(Cij,R(instantiations[i],ui)) > I OR Texceeded 

THEN domain[i+l]b]= domain[i+ I]fi]-{III}; 
ELSE /*intermediate nodes*/ 

IF NOT (BCij(instantiations[i],ui)) 
THEN domain[ii+l]/j]= domain[i+l]/j]-{uI}; 

IF domain[i+l]~]=@ THEN RETURN FALSE; 
RETURN TRUE; 

Figure 10 Multilevel FC 
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(l,l, 1,2). The new domains for the next call of MFC 
become: D0=Di=D2={A,B} and D,={C,D}. A solution at 
this level is {V&B, VicB, V+A, VitC}. At the 
next call of MFC for level 0, the domains become 
D,,=D,={c,d,e}, Dz={a,b,f), D,={l,kj} and the solution 
(de, a, k) is found. 

In order to enhance the performance of MFC we have 
implemented a variation of the space restriction heuristic. 
Assume the qualifying 4-tuple (1,2,2,2) for the top level of 
the tree. Although, candidate values for V0 are {A,B}, due 
to the relative positions of B and intermediate node 2 
(disjoint), there can’t be any instantiations of Vi below 
node 2 that lead to solutions for {V&B} (valid 
instantiations for V0 and Vi should be inside intersecting 
nodes). Therefore, we can safely prune value B from VO’s 
domain and avoid useless instantiations. The following 
Space-Restriction routine takes the entries (e.g., A, B) of 
a node (e.g., 1) one by one and tests them against the rest 
of the nodes (e.g., 2) eliminating the ones that do not 
satisfy the corresponding bounding conditions. 

Space-Restriction(Query q. Rtree-Nodes N[])( 
FOR i=O TO n-l DO 

FOR ail Nk E N[i] DO 
FOR j=O TO n-l, i#j DO 

IF N[i] is a leaf page THEN 
IF NOT (LBCzjN, Nljl)) 

THEN domain[O][i]= domain[O][i]-(Nk}; 
ELSE /* N[i] is a intermediate node */ 

IF NOT (BCt@k, Nbl)) 
THEN domain[O][i]= domain[O][i]-(Nk}; 

Figure 11 Multi-relation space restriction 

The bounding conditions of Table 1 are used when 
N[i] is at an intermediate level. On the other hand, when 
N[i] is a leaf node (its entries are object MBRs) a more 
restrictive bounding condition can be applied. Consider 
that in Figure 12, we want to join objects in N[2] with all 
objects in N[3] w.r.t. R,,OOOooool (in Figure 7 we showed 
that N[2] satisfies the corresponding BC). Once we know 
the locations of each MBR in N[2] we can determine that 
some objects, such as N12, can be excluded. N’* cannot be 
related by ~OOoooOl with any MBR in N[3] because N12.1 < 
N[3].1+6. If only the bounding conditions of Table 1 were 
used, N’2 would pass the space restriction test. 

NPI 

N31 baading condhon for N2 I 

Figure 12 Example of leaf bounding conditions 
Table 2 illustrates the complete set of leaf bounding 

conditions LBCij between object MBRs and intermediate 
nodes. The bounding condition for the previous example 

is at the bottom row of the first table (the corresponding 
condition was unlimited in Table 1). 

(a) leftmost bit (a) rightmost bit 
Table 2 LBC that Nk must satisfy to pass space restriction 

5. A Window-Reduction Algorithm 
Usually, constraints between intermediate nodes are in 
general too loose even for tight queries. As a result, a 
large number of qualifying intermediate nodes are visited 
by MFC, and this does not pay off in most cases, where 
the number of solutions is small and a large percentage of 
qualifying intermediate nodes are false hits. An alternative 
approach that overcomes this problem is to use the data 
MBRs for the instantiation of query variables and employ 
forward checking with R-trees to efficiently prune the 
domains. As mentioned in Section 3.1, the problem with 
this method is that it cannot be applied for large images 
because of the domain table size (O(n2N)). In this section 
we propose another FC-based algorithm, window 
reduction (WR), which avoids this problem. 

WR maintains a 2D domain window (instead of the 3D 
domain set used by FC) that encloses all potential values 
for each variable (and possibly some false hits). When Vi 
takes a new value Nk, a new window Wj is computed for 
every un-istantiated variable Vj taking into account Nk and 
Cji. The intersection of Wj with (existing) domain Window 
[i],ijJ is stored at domainwindow [i+l]b]. Figure 13(a) 
illustrates the domain windows for V2 and V3, assuming 
that the first two variables of the example query have been 

(a) {Votd, VlteI (a) {Votd, VICe, V2Ca) 
Figure 13 Example of WR 

When VZ is instantiated to a (Figure 13(b)), the 
constraint C32 specifies that valid instantiations for V3 
should lie in W3. The new domain Window[3][3] for V3 is 
the intersection of domainWindow[2][3] and W3, i.e., it 
corresponds to the only area that may contain values 
consistent with both {V&d, Vice} and V+a. Table 3 
illustrates bounding windows used for the computation of 
Wj, given Cji and {Vi+ Nk} 
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(a) leftmost bit 

ml 
(a) rightmost bit 

Table 3 Domain window bounds 

If some domain window becomes null (empty 
intersection), the current instantiation is invalid and the 
algorithm proceeds to the next value for Vi. WR can be 
thought of as a “lazy” version of forward checking 
because the domain windows are calculated but no values 
are retrieved until the variable gets instantiated. A 
drawback of this method is the fact that a possibly empty 
domain of Vj cannot be detected until WR reaches 
instantiation level j and performs the window search. 
However, this disadvantage is counterbalanced by the 
smaller number of R-tree searches. WR is illustrated in 
Figure 14. 

WR(Quety q, int r, T) 
FOR j=O TO n-l DO domain Window[O]fi] = U, /*Universal Space*/ 
i=O; /* index to the current variable */ 
WHILE (TRUE) { 

new-value := getNextValue(domain Window[i][ifi; 
IF new-value = NULL THEN /* end ofdomain */ 

IF i=O THEN RETURN; 
ELSE i:=i-1 ; CONTINUE; /*Backtrack*/ 

IF d(C,,,R(instantiations[i],ui)) > z OR Texceeded 
THEN CONTINUE /* invalid value inside domain window */ 
ELSE instantiations[i] := new-value; /*store instantiation*/ 

IF i = n-1 THEN output-solution(instantiations); 
ELSE /+ intermediate variable instantiated */ 

IF window-reduction(i) THEN /* success-l instantiation*/ 
Window-DVO(i+l,n-I); /*var. with smallest window next*/ 
i := i+ 1; /* successful instantiation: go forward */ 

1 

BOOLEAN window-reduction(int i) 
FOR j = i+l TO n-1 DO /*for all uninstantiated variables*/ 

W, = computeWindow(instantiations[i],Cj,,r); 
domain Window[i+ I]li/= domain Window[i/llinW,; 
IF domain[i+ I//j]=0 THEN RETURN FALSE; 

RETURN TRUE; 
Figure 14 Window-reduction algorithm 

The next value for a variable Vi is retrieved via 
getNext ValueO, which uses domain Window[il[il as the 
query window for Vi. GetNextValueO does not perform a 
window query every time it is invoked, but the whole 
search path for each variable is maintained in memory. 
The overhead for this path-holding technique is pinning na 
h pages - a small number for most applications. After a 
value is retrieved for Vi, the algorithm checks whether it is 
consistent with the previous instantiations since not all 

values that fall inside the domain window of Vi are 
necessarily legal. 

In addition to domain windows and path maintenance 
techniques, WR uses DVO: when the domain windows of 
the future variables are calculated after an instantiation, 
the variable with the smallest domain window becomes 
the next to be examined. This is lead by the intuition that a 
small window is more likely to contain the least number of 
instantiations and minimize redundant consistency checks. 

WR can be seen as a special form of indexed nested 
loop join. All blocks of first variable are scanned and 
directed index search finds the qualifying instantiations of 
the rest of the variables. The difference of this approach, 
is that its input is a graph of relations instead of a chain, 
and that it applies FC to take advantage of all constraints. 

6. A Join Window-Reduction Algorithm 
WR essentially searches the whole space in order to 
instantiate the first variable, but after doing so it performs 
only window queries which are cheap operations in R- 
trees. The disadvantage of blindly instantiating the first 
variable in the whole universe could be avoided by an 
algorithm that combines properties of multi-relation 
spatial join and window reduction. The third algorithm 
(JWR) first applies a pairwise spatial join to retrieve 
instantiations for the first pair of variables and then uses 
window reduction to instantiate the rest of the variables. 
The subsequent variables are instantiated in the same way 
as WR: 

JWR(Quety q, int 2, T ) 
FOR j=O TO n-l DO domainWindow[l]lj] = U; /*Universal Space*/ 
i=l; /* index to the current variable. Initially 1 (means both 0 and 1) */ 
WHILE (TRUE) ( 

IF i=l THEN /* valuesforfirst pair of variables (0, I) V 
IF getNextPair(instantiations,q)=NULL THEN RETURN; 

ELSE /* values ofsubsequent variables */ 
new-value := getNextValue(domain Window[i][iJ); 
IF new-value = NULL THEN /* end of domain */ 

i:=i-1 ; CONTINUE; /*Backtrack*/ 
IF d(C,j,R(instantiations[i],ui)) > r OR Texceeded 

THEN CONTINUE /* invalid value inside domain window */ 
ELSE instantiations[i] := new-value; /*store instantiation*/ 

IF i = n-l THEN output-solution(instantiations); 
ELSE /+ intermediate variable instantiated */ 

IF window-reduction(i) THEN /* successfil instantiation*/ 
Window-DVO(i+l,n-I); /*var. with smallest window next*/ 

i := i+l; /* successful instantiafion: goforward */ 

1 
Figure 15 Join window-reduction algorithm 

Function getNextPair(l assigns the next pair that 
satisfies the relations between the first two variables using 
MU, search space restriction (like MFC) and plane 
sweep. We apply a multi-relation plane sweep (MPS), 
which can deal with the whole set of relations of the 
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current resolution scheme. MPS finds intersections of 
rectangles belonging to nodes N[i], Nb] in two steps: 
a] first transforms the x-projection of each rectangle N, 

ENS] to a new one N’r, according to Cij. This 
transformation is done so that: if N’i does not intersect 
on the x-axis with some entry Nk E N[i], then the 
original rectangle Ni will not be consistent w.r.t. Nk 
and Cti. 

b] then it applies spatial sorting and plane-sweep to find 
all pairs (NL.x, N’r) that intersect. For each such pair it 
checks whether the corresponding pair (Nk,Ni) is 
consistent according to Cij and Cji. 

In order to perform the transformation, MPS chooses a bit 
whose value is 1 on the x projection of CQ. Bits that refer 
to points <i.e. odd bits), rather than intervals, are 
preferred, because they restrict the resulting intervals N’i 
into single points. For instance, consider that Cij= 
~OOOoOO1l. We transform the reference interval Nr~Nlj] to 
N’i as shown in Figure 16. If N’i, (which is a single point) 
does not intersect some Nk then the original intervals 
cannot satisfy ~OODOOOl i. 

R 00000001 I Nk 
- 

Figure 16 An example transformation 
We call guide bit, the bit according to which the above 

transformation is performed. For our resolution scheme, 
the preference order for guide bits is {3,5,1,7,4,2,6,0,8}. 
The transformation is then performed for intermediate and 
leaf-level entries as illustrated in Table 4, where the first 
column illustrates the guide bit. The transformation to leaf 
node entries corresponds to the binary variables presented 
in Figure 2. 

N',.I=N,.I, N',u=N,.u 

(a) Intermediate nodes (a) leaf nodes 
Table 4 Transformation of x-axis projections 

For calculating the first pair of variables to be joined 
we use statistical information about the number of 
occurrences of each relation in the data files. Relations 
that occur rarely prune search space more effectively than 
frequent ones. For instance, the constraint Rr,ollllooO- 
oollllloO between VO and V, is more restrictive than the 
other relations, because only a few pairs of objects satisfy 
it in normal data distributions. 

7. Experiments 
In order to compare the performance of the three 
algorithms presented above, we implemented and tested 
them under several conditions. For our experiments we 
used LB data-file [T94] which contains 53,145 rectangles 
representing road segments of Long Beach county. The 
maximum distance of the rectangles in each axis is 10000, 
and the data density 0.25. From the above tile we built 
several R*-trees [BKSS90] of different block sizes, i.e. 
512 bytes, lK, 2K, and 4K. The LRU buffer size of the 
R*-trees during the experiments was set to 128. We 
constructed 5 artificial sets of 30 queries: the number of 
variables in the queries of each set was fixed to 3,4, . , . , 7. 
In order to avoid trivial queries, each variable was set to 
intersect with some other variable on at least one axis. The 
distance between two variables on each axis did not 
exceed 6, which was set to 100. The number of solutions 
ranged from 0 to 6,366. The implementation language was 
C++, and all experiments were run on a SUN UltraSparc2 
(200MHz) workstation with 256 MB of RAM. 

Figure 17(a) shows the mean CPU-time and 17(b) the 
I/O page accesses averaged over all query-sets on the R*- 
tree with 1KB block size. WR and JWR clearly 
outperform MFC by orders of magnitude in terms of CPU- 
time. The performance gap widens with the query size 
because the domain windows in WR and JWR are 
continuously decreasing as new variables are instantiated. 
Moreover, empty window domains of the latter variables 
are detected early using the window reduction policy. On 
the other hand, the relaxed constraints between 
intermediate nodes do not permit MFC to prune the search 
space at the higher levels of the tree; thus, MFC cannot 
avoid the combinatorial explosion of possible 
instantiations as the number of variables increases. It is 
interesting to notice that MFC is better than WR in terms 
of page faults and this is due to the fact that WR 
instantiates the first variable in the whole space. 

Another important observation from our experiments 
(not obvious in these diagrams) was the expected 
behaviour of MFC for almost all queries; the CPU-time 
was at the same levels depending only on the query size. 
On the other hand, the performance of WR and JWR was 
unpredictable: for instance the CPU time of WR may 
differ an order of magnitude for two different queries of 
the same size. This unstable behaviour is due to the fact 
that the resolution scheme may facilitate large reduction 
of the domain windows for some queries (e.g. inside), and 
not for others (e.g. disjoint). 

Although MFC is not an appropriate algorithm for the 
current resolution scheme, it is still useful in other 
applications; we found that it outperforms the other 
algorithms in some cases of multiway intersection joins 
involving high density data. Improving the CPU-time of 
MFC is an issue for future work, as now the algorithm 
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Figure 17 Experimental evaluation 
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applies plain FC at a specific level, without taking 7. Conclusion 
advantage of the spatial locations of the objects. 

Figure 17(c) illustrates the relative CPU-time 
performance of WR and JWR (also for block size of 1K). 
JWR maintains a significant performance gain over WR. 
The performance gap is not affected by query size, 
because the only difference of the algorithms is the 
instantiation method for the first pair of variables. 

In order to evaluate the algorithms for various block 
sizes we executed the 4-variable query set using R*-trees 
of 5 12, lK, 2K, and 4K bucket sizes. CPU-time and page 
accesses are shown in Figure 17(d) and (e), respectively. 
Figure 17(f) shows the overall cost for WR and JWR, 
which was estimated by charging 1Oms for each page 
access (a typical value [HJR97]). The algorithms perform 
better for page size of 2K, while for larger sizes (4K) the 
degeneration of the tree affects the speed of the search. 

Finally, we tested the performance of JWR over 
queries with non-zero degrees of inconsistency. In all 
experiments the T was set to 10. Figure 18 illustrates the 
overall cost of JWR for the 2K page size R*-tree. Each 
line corresponds to a different value of local tolerance 7. 
Because approximate retrieval is equivalent to exact 
retrieval using a larger window, the domain windows of 
JWR get larger as z increases. Larger windows imply 
more potential legal values and more consistency checks. 

OJ 

3 4 5 

Figure 18 Overall cost of JWR for partial retrieval 

There has been significant progress recently on image and 
video content retrieval [M98]; research focused mainly on 
visual content, i.e. properties like colour, shape, texture, 
etc. Here, we shift our interest on a rather neglected type 
of content retrieval, namely structural retrieval. This 
paper addresses the issue of spatial structural queries, i.e., 
queries that ask for all n-tuples of objects that satisfy some 
spatial constraints. 

We first described a framework for encoding 1D 
relations in a way that allows efficient generation of 
similarity measures. We subsequently extended the model 
in a uniform way to arbitrary dimensions and multiple 
resolution levels. Then we presented three algorithms for 
structural query processing: 
- MFC which applies hierarchical constraint 

satisfaction to eliminate tuples of intermediate nodes 
that cannot lead to solutions. 

- WR which gradually reduces the domain windows of 
uninstantiated variables based on the values of 
instantiated ones. 

- JWR which performs a pairwise join to instantiate the 
first pair of variables and then applies the same 
window reduction technique as WR. 

Finally we experimentally evaluated their performance 
and found that JWR clearly outperforms the rest for the 
current application. All algorithms are independent of the 
resolution scheme so they can be used to process any type 
of spatial predicates. 

Currently we are working on optimizing the I/O time 
of JWR and MFC, by using several page fetching policies. 
Adapting and testing the algorithms for several query 
plans is also an interesting topic. Research can also be 
carried out on the integration of other search algorithms 
with spatial indexes. 
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